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Abstract

This paper deals with finite (possibly not complete) unambiguous automata, not

necessarily deterministic. In this setting, we investigate the problem of the minimal length

of the uncompletable word. This problem is associated with the well-known conjecture

formulated by A. Restivo. We introduce the concept of relatively maximal row for a

suitable set of matrices, and show the existence of a relatively maximal row of length

of quadratic order with respect to the number of the states of the treated automaton.

We give some estimates of the maximal length of the minimal uncompletable word in

connection with the number the states of the involved automaton and the length of a

suitable relatively maximal but not maximal word, provided that it exists. In the general

case, we establish an estimate of the length of the minimal uncompletable word in terms of

the number of states of the studied automaton, the length of a suitable relatively maximal

word and the minimal length of the uncompletable word of the automaton formed by all

maximal rows associated with A.

Keywords: Unambiguous automaton, complete automaton, uncompletable word, relatively

maximal row.

1 Introduction

Automata are the subject of several studies existing in the recent literature. Automata theory is

strongly related with different structures investigated in different branches of Mathematics and

Computer Sciences, like for instance monoids, semirings, codes, graphs, languages, matrices,

rational series, matrices, probability measures and densities. A comprehensive overview about
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these topics and its fundamental properties and relations can be found, for example, in [1, 12,

13, 22].

In automata theory and its literature, in connection with the main properties of languages

and codes and several related applications (see also [14, 15]), a very important role is played by

the problem of finding an uncompletable word of minimal length for an uncomplete automaton.

Let X be a subset of an alphabet A and let X∗ be its Kleene closure. We say that X is complete

iff any word of A is a factor of some word belonging to X∗. If X is not complete, then any

word which is factor of no word of X∗ is said to be uncompletable. This problem is strictly

related to the mortality problem for matrix monoids (see also [9, 16]). In [20], A. Restivo

conjectured that a finite and not complete set X has always an uncompletable word whose

length is quadratically bounded by the maximal length of the words of X (see also [2, 19, 21]).

Some results related to this problem have been obtained in [8, 11, 18]. Note that, in suitable

contexts, a word of an alphabet can be identified with a suitable matrix and with a suitable

relation (see also [1, 3, 22]).

The problem we study in this article is strongly related to that of finding a synchronizing

word of minimal length, which have several applications in different branches of sciences, for

instance when it is dealt with a sequential transducer. Indeed, in decoding messages, the

existence of errors in an input sequence can make impossible the transmission of a whole

information, so that it is fundamental to have a synchronizing word of suitably small length, in

order that - in the affected input sequence - the errors concerning the past do not have negative

influence on the successive part of the corresponding output sequence. In this direction, there

have been several studies in the literature, related to the famous Černý conjecture introduced

in [7] (see also [4, 5, 6, 10, 17, 18]). In [6] several results are proved, concerning some relations

between the length of the minimal uncompletable word and that of the minimal synchronizing

word.

In this paper we deal with the problem of finding uncompletable words of minimal length in

the context of unambiguous automata, not necessarily in the deterministic case. We identify

the sets of the words A∗ of the input alphabet A of the considered automaton A with a

suitable subset of matrices whose entries are 0 or 1, which we indicate with φA(A∗), where φ

denotes the identifying morphism. We introduce the concept of relatively maximal row (and

column) of a matrix, and we show that this notion is strictly weaker than that of maximality.

We show the existence of a relatively maximal row of length of quadratic order with respect

to the number of the states of the involved automaton. Successively we prove that, if n is

the number of states of the studied automaton and w ∈ A∗ is such that φA(A∗) contains a

row, which is relatively maximal but not maximal, then there is an uncompletable word of

length less than or equal to 2(n − 1)(|w| + n − 1), where |w| denotes the length of |w|. This
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result includes, as a particular case, the setting of deterministic automata. In the general

case, the minimal uncompletable word problem is still an open problem, however we relate

the investigated automaton A with the associated automaton B of all maximal lines, we show

that the uncompleteness of B is equivalent to that of A, and establish a connection between

the length of the minimal uncompletable word of A and that of B, taking into account the

existence of a relatively maximal row in A.

2 Preliminaries

Let A be a finite set, and A∗ be the free monoid generated by A. The set A is called alphabet.

The elements of A and A∗ are called letters and words, respectively. We denote by ε the empty

word, that is the neutral element of A∗. Given a word w, the symbol |w| indicates the length

of w, defined inductively by |ε| = 0, |wa| = |w|+ 1, for every w ∈ A∗, a ∈ A.

An automaton is a triple (A,Q, δ), where A = {α1, α2, . . . , αh} is the input alphabet, Q =

{q1, q2, . . . , qn} is the set of the states, δ : Q×A→ P(Q) is the transition function, that is the

action of A on Q. An automaton A is said to be deterministic iff card(δ(q, α)) ≤ 1 for each

α ∈ A and q ∈ Q. We associate to the automaton A the monoid morphism φA : (A∗, ◦) →
(NQ×Q, ·), defined by

(φA(α))i,j =

{
1, if qj ∈ δ(qi, α),

0, otherwise.

Here, the symbols ◦ and · denote the product on the monoid A∗ and the row-column product

of matrices, respectively. From now on, as no confusion will arise, we will write ab instead of

a ◦ b. Note that φA(ε) is equal to the identity matrix In.

A word w ∈ A∗ is said to be uncompletable in A iff φA(w) = 0, where 0 is the identically

null matrix.

We denote by {0, 1}Q×Q the set of all matrices whose entries are all 0 or 1. An automaton

is said to be unambiguous iff φA(A∗) ⊂ {0, 1}Q×Q.

We say that an unambiguous automaton is complete iff no word w of A∗ is uncompletable.

For every m ∈ {0, 1}Q×Q and i, j = 1, . . . , n, the symbols mi∗ and m∗j indicate the i-th

row and the j-th column of m, respectively. A nonempty subset M ⊂ {0, 1}Q×Q is said to be

transitive iff for each i, j ∈ Q there is an element m ∈ M with mi,j = 1. From now on, we

assume that the set φA(A∗) is transitive.

Given any two n × n matrices A = (ai,j)i,j and B = (bi,j)i,j with non-negative entries, we

say that A ≤ B iff ai,j ≤ bi,j for every i, j = 1, 2, . . . , n. If A ≤ B and A 6= B, then we write

A < B. It is not difficult to see that, if A ≤ B and C ≥ 0, then AC ≤ BC and CA ≤ CB.
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We say that a row a = (a1 a2 . . . an) of a matrix of φA(A∗) is maximal iff it is a maximal

element in the set of the rows of the matrices of φA(A∗).

A row a = (a1 a2 . . . an) = (φA(u))q∗ of a matrix of φA(A∗) is said to be relatively maximal

iff for every m ∈ φA(A∗) and for each p ∈ Q with mp,q = 1, it is (mφA(u))p∗ = (φA(u))q∗ = a.

An analogous concept can be formulated also if it is dealt with columns.

It is not difficult to check that every maximal row is relatively maximal too, while the

converse, in general, is not true, as the next example shows.

Example 2.1. Let A = (A,Q, δ) be the automaton defined by setting A = {a, b}, Q =

{1, 2, 3},

φA(a) =

0 1 0

1 0 0

0 0 0

 , φA(b) =

0 1 1

0 0 0

1 0 0

 ,
δ(q, a) = q · φA(a), δ(q, b) = q · φA(b), q ∈ Q. We prove that the first row of φA(a), namely

(0 1 0), is relatively maximal. Observe that, to this aim, if D denotes the set of all words of A∗

whose last letter is a, then it will be enough to show that for each d ∈ D and k = 1, 2, 3 it is

(φA(d))k∗ 6> (0 1 0), namely

(φA(d))k∗ 6∈ {(1 1 0), (0 1 1), (1 1 1)}. (1)

Easy calculations show that

φA(a2) =

1 0 0

0 1 0

0 0 0

 , φA(a3) =

0 1 0

1 0 0

0 0 0

 = φA(a);

φA(ba) =

1 0 0

0 0 0

0 1 0

 , φA(ba2) = φA(b2a) =

0 1 0

0 0 0

1 0 0

 ;

φA(aba) =

0 0 0

1 0 0

0 0 0

 ≤ φA(a), φA(ab2a) =

0 0 0

0 1 0

0 0 0

 ≤ φA(a2); φA(b3a) = φA(ba).

Thus, for every d ∈ D, any row of d is majorated by some row of one of the matrices above,

and therefore it contains at most one non-null entry, getting (1). However, the row (0 1 0) is

not maximal, since (0 1 1) > (0 1 0), and (0 1 1) is the first row of φA(b). Furthermore, note

that the automaton A is uncomplete, since φA(ab2ab) = 0.

Now we recall the next result, which will be useful in the sequel.

4



Proposition 2.2. (see also [3, Proposition 2.1]) Let A be an unambiguouos automaton and

i, j be two fixed states.

2.2.1) If there exists a word u ∈ A∗ with (φA(u))i,j = 1, then there is a word w ∈ A∗ such that

(φA(w))i,j = 1 and |w| ≤ n− 1.

2.2.2) If there are u ∈ A∗ and p0 ∈ Q with (φA(u))p0,i = (φA(u))p0,j = 1, then there exist

v ∈ A∗ and q0 ∈ Q such that (φA(v))q0,i = (φA(v))q0,j = 1 and

|v| ≤ 1

2
n(n− 1).

3 The main results

We begin with the following technical proposition, which extends [3, Lemma 4.2] to our context.

Proposition 3.1. Let A be an n-state unambiguous automaton (not necessarily complete),

u ∈ A∗ be a word with φA(A) 6= {0}, and a be a row of φA(u), not relatively maximal. Then

there exist a word v ∈ A∗ and a row a′ of φA(v) with a′ > a and

|v| ≤ |u|+ 1

2
n(n− 1). (2)

Proof: Let a = (φA(u))q∗. Since a is not relatively maximal, there exist a word z ∈ A∗

and a state p ∈ {1, 2, . . . , n} with (φA(zu))p∗ > (φA(u))q∗ and (φA(z))p,q = 1. Now we claim

that there exists a state q′ 6= q with (φA(z))p,q′ = 1 and (φA(u))q′∗ 6= 0. Otherwise, if for

every q′ 6= q either (φA(z))p,q′ = 0 or (φA(u))q′∗ = 0, then a not difficult calculation shows that

(φA(zu))p∗ = (φA(u))q∗ , a contradiction. By 2.2.2), there are a word v′ ∈ φA(A∗) and a state

q0 with (φA(v′))q0,q = (φA(v′))q0,q′ = 1 and

|v′| ≤ 1

2
n(n− 1). (3)

Let now v = v′u and a′ = (φA(v))q0∗. For each r = 1, 2, . . . , n it is

(φA(v))q0,r = (φA(v′))q0,q(φA(u))q,r + (φA(v′))q0,q′(φA(u))q′,r +
∑

s 6=q,s6=q′

(φA(v′))q0s(φA(u))s,r ≥

≥ (φA(v′))q0,q(φA(u))q,r + (φA(v′))q0,q′(φA(u))q′,r = ar + (φA(u))q′,r.

Since (φA(u))q′∗ 6= 0, then for at least an index r0 ∈ {1, . . . , n} we get (φA(v))q0,r0 = ar0 + 1 >

ar0 , namely a′ > a. Inequality (2) follows from (3) and the definition of length. This ends the

proof. �
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Remark 3.2. Note that an analogous of Proposition 3.1 holds even if it is dealt with columns

instead of rows.

The next result extends [3, Proposition 4.3].

Proposition 3.3. Let A be as in Proposition 3.1. Then there are two words u, v ∈ A∗ such that

u (resp. v) contains a relatively maximal row a = (a1 a2 . . . an) (resp. column b = (b1 b2 . . . bn)),

a1 = b1 = 1, and

|uv| ≤ 1

2
n(n− 1)2.

Proof: Let us construct two finite sequences of words of A∗, u1, u2, . . . , ut, v1, v2, . . . , vs, and

corresponding rows a(i) of φA(ui) and columns b(j) of φA(vj), as follows. At the first step, put

u1 = ε, a(1) = (1 0 . . . 0) = (φA(u1))1∗. Now suppose to have find words u1, u2, . . . ui and rows

a(1) < a(2) < . . . < a(i) of φA(u1), φA(u2), . . . , φA(ui) respectively, such that |ui| ≤
i− 1

2
n(n− 1).

If a(i) is relatively maximal, then we take t = i and stop. Otherwise, we apply Proposition

3.1 and Remark 3.2, and we find a word ui+1 ∈ A∗ and a row a(i+1) of φA(ui+1), such that

a(i+1) > a(i) and

|ui+1| ≤ |ui|+
1

2
n(n− 1) ≤ i

2
n(n− 1).

We observe that, after a finite number of steps, this procedure ends, because the greatest

row (resp. column) which can be reached is (1 1 . . . 1) (resp. (1 1 . . . 1)T ), by virtue of unam-

biguity. The words v1, v2 . . . vs and the rows b(1), b(2), . . . , b(s) are defined symmetrically. By

construction, one has a
(t)
1 = b

(s)
1 = 1,

|ut| ≤
t− 1

2
n(n− 1), |vs| ≤

s− 1

2
n(n− 1),

and hence

|ut vs| = |ut|+ |vs| ≤
1

2
n(n− 1)(t+ s− 2).

Thus, in order to prove the proposition, it is enough to demonstrate that t + s − 2 ≤ n − 1.

For every state q 6= 1, we get either a
(t)
q = 0 or b

(s)
q = 0. Otherwise, since b

(s)
q = b

(s)
q = 1, the

(scalar) product between a(t) and b(s) should be strictly greater than 1: this is impossible, since

the involved automaton is unambiguous. In passing from a(i−1) to a(i) (resp. from b(j−1) to

b(j)), the number of null entries becomes strictly smaller. So, after t (resp. s) steps, we get that

the row a(t) (resp. the column and b(s)) contains at most n− t (resp. n− s) null entries. Thus,

the sum of the number of null entries of a(t) and that of b(s) is between n− 1 and 2n− t− s.
From this it follows in particular that n− 1 ≤ 2n− t− s, and hence t + s− 2 ≤ n− 1. This

ends the proof. �
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Proposition 3.4. Under the same hypotheses and notations above, let us assume that there

are two words z, γ ∈ A∗ such that (φA(z))p∗ is a relatively maximal row and nq∗ = (φA(γ))q∗

is a not maximal row. Then there exists a word y ∈ A∗ with nq∗ φA(y) = 0, and

|y| ≤ |z|+ n− 1. (4)

Proof: By hypothesis, there are a matrix µ ∈ φA(A∗) and a state r ∈ {1, 2, . . . , n}, with

µr∗ > nq∗ , namely µr,t ≥ nr,t for every t = 1, 2, . . . , n and there exists s ∈ {1, 2, . . . , n} with

µr,s > nq,s, that is µr,s = 1 and nq,s = 0, thanks to unambiguity. Hence

µr∗ ≥ nq∗ + es, (5)

where es denotes the vector of Rn whose s-th component is 1 and whose other components

are 0. Note that, by (left or right) multiplying both members of the inequality in (5) by any

matrix with non-negative entries, the sign of the inequality remains the same. By transitivity

and 2.2.1), there is a word x ∈ A∗ with (φA(x))s,p = 1 and |x| ≤ n− 1. Observe that

esφA(x) = (φA(x))s∗ ≥ ep, (6)

because (φA(x))s,p = 1. Furthermore note that, since µr,s = (φA(x))s,p = 1, then, thanks

to unambiguity, it is not difficult to deduce that (µφA(x))r,p = 1. From this and relative

maximality of (φA(z))p∗ it follows that

(φA(z))p∗ = (µφA(x)φA(z))r∗. (7)

From (5), (6) and (7) we obtain

(φA(z))p∗ = (µφA(x)φA(z))r∗ = (µφA(x))r∗ φA(z) ≥ nq∗ φA(x)φA(z) + es φA(x)φA(z)

≥ nq∗ φA(x)φA(z) + ep ≥ φA(z) = nq∗ φA(x)φA(z) + (φA(z))p∗. (8)

So, all inequalities in (8) are actually equalities, and hence, setting y = x z, we get that

nq∗ φA(y) = nq∗ φA(x)φA(z) = 0

and

|y| = |z|+ |x| ≤ |z|+ n− 1.

This concludes the proof. �

The next proposition will be useful in the sequel.

Proposition 3.5. Let a = (φA(α))s∗ be a not identically zero row, and (φA(w))i∗ be a relatively

maximal row. Then there is a word v ∈ A∗ with |v| ≤ n− 1 and a φA(vw) = (φA(w))i∗.
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Proof: Let a = (a1 a2 . . . an). By hypothesis, there is j ∈ {1, . . . , n} with aj = 1. By 2.2.1)

there exists a word v ∈ A∗ with |v| ≤ n − 1 and (φA(v))j,i = 1. Since aj = 1, (φA(v))j,i = 1

and (φA(w))i∗ is relatively maximal, it follows that

a φA(v w) = a φA(v)φA(w) = (φA(w))i∗,

getting the assertion. �

A consequence of Propositions 3.4 and 3.5 is the following result.

Theorem 3.6. Under the same notations and hypotheses as above, let there exist a word

w ∈ A∗ which contains a relatively maximal but not maximal row (φA(w))q∗. Then A has an

uncompletable word ω of length at most 2(n− 1)(|w|+ n− 1).

We construct an uncompletable word of A as follows, arguing by induction. First of all,

thanks to Proposition 3.4, we find a word x0 ∈ A∗ with |x0| ≤ |w|+ n− 1 and

(φA(w))q φA(x0) = (φA(w x0))q∗ = 0. (9)

At the first step, let y1 = ε be the empty word and choose arbitrarily q1 ∈ {1, 2, . . . , n}. If

(φA(y1))q1∗ is a not maximal row of φA(y1), then, by virtue of Proposition 3.4, there is a word

x1 ∈ A∗ with

(φA(y1))q1∗ φA(x1) = (φA(y1 x1))q1∗ = 0

and |x1| ≤ |w| + n − 1. If (φA(y1))q1∗ = a is a maximal line of φA(y1), then, by applying

Proposition 3.5 to a and (φA(w))q1∗ and by (9) we find a word v1 ∈ A∗, with |v1| ≤ n− 1 and

(φA(y1 v1w x0))q1∗ = 0. Put

y2 =

{
x1, if a is not maximal;

v1w x0, if a is maximal.

We get |y2| ≤ 2(|w|+ n− 1) and (φA(y1 y2))q1∗ = 0.

At the second step, proceeding analogously as above, we pick an integer q2 ∈ {1, 2, . . . , n},
q2 6= q1, distinguish the two cases (φA(y2))q2∗ not maximal and (φA(y2))q2∗ maximal and find

a word y3 ∈ A∗ such that |y3| ≤ 2(|w|+ n− 1) and (φA(y2 y3))q2∗ = 0.

Proceeding by induction, at the n−1-th step we find a word yn ∈ A∗ and a kn ∈ {1, 2, . . . , n}
with (φA(yn−1 yn))kn∗ = 0, and |yn| ≤ 2(|w|+ n− 1). If

ω = y1 y2 . . . yn−1 yn = y2 . . . yn−1 yn,

then ω is an uncompletable word of A and |ω| ≤ 2(n − 1)(|w| + n − 1). This ends the proof.

�
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Remark 3.7. Observe that, when A is deterministic, since each row of every element of φA(A)

contains at most one 1 and has all other entries equal to 0, it is not difficult to show that every

non-zero row is maximal and every identically null row is relatively maximal but not maximal.

In the general case, given an automaton (A,Q, δ) with an associated transition function

φA, it is advisable to consider the automaton B = (A,Q′, δ′), where Q′ is the set of all maximal

rows, δ′(q, α) = q · φA(α), α ∈ A, q ∈ Q. Note that the uncompleteness of B follows from that

of A, since the product of every maximal line of each element of φA(A∗) with the null matrix

is equal to the null line.

Now we show that the converse is true too, and in particular we establish a connection

between the length of the minimal uncompletable word of A and that of B.

Theorem 3.8. Let A be as in Proposition 2.2, n0 be the length of the minimal uncompletable

word of B and w ∈ A∗ be a word such that φA(w) contains a relatively maximal row. Then A
has an uncompletable word χ with |χ| = (n− 1) (max{|w|+ n− 1, n0}).

Proof: Analogously as in Theorem 3.6, we construct inductively an uncompletable word

of A. At the first step, let y1 = ε be the empty word and choose arbitrarily q1 ∈ {1, 2, . . . , n}.
If (φA(y1))q1∗ is a not maximal row of φA(y1), then, by virtue of Proposition 3.4, there is a

word x1 ∈ A∗ with

(φA(y1))q1∗ φA(x1) = (φA(y1 x1))q1∗ = 0

and |x1| ≤ |w|+n− 1. If (φA(y1))q1∗ is a maximal line of φA(y1), then there is a word v1 ∈ A∗,
with |v1| ≤ n0 and (φA(y1))q1∗ φA(v1) = (φA(y1 v1))q1∗ = 0. Put

y2 =

{
x1, if (φA(y1))q1∗ is not maximal;

v1, if (φA(y1))q1∗ is maximal.

We get |y2| ≤ max{|w|+ n− 1, n0} and (φA(y1 y2))q1∗ = 0.

At the second step, arguing analogously as above, we take an integer q2 6= q1, consider the

two cases (φA(y2))q2∗ not maximal and (φA(y2))q2∗ maximal and construct a word y3 ∈ A∗ with

|y3| ≤ max{|w|+ n− 1, n0} and (φA(y2 y3))q2∗ = 0.

By induction, we find a word yn ∈ A∗ and an index kn ∈ {1, 2, . . . , n} with (φA(yn−1 yn))kn∗ =

0, and |yn| ≤ max{|w|+ n− 1, n0}. Let

χ = y1 y2 . . . yn−1 yn = y2 . . . yn−1 yn.

Then, χ is an uncompletable word of A, and |χ| ≤ (n − 1) (max{|w| + n − 1, n0}). This

completes the proof. �
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4 Conclusions

The problem of finding an uncompletable word of minimal length is still an open problem, in

particular in the non-deterministic case, in which it seems that there are not many results in

the literature. A conjecture which can arise is to find better estimates, possibly sharp, of the

length of the minimal uncompletable word, possibly by dropping the hypothesis of existence

of a relatively maximal but not maximal row, and/or which are independent of the length of

maximal uncompletable word of the automaton of all maximal words.
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[14] J. Néraud, Completing circular codes in regular submonoids, Theoret. Comput. Sci. 391

(2008), 90–98.
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