
MULTIVARIATE EXPANSIVITY THEORY

T. AGAMA

Abstract. In this paper we launch an extension program for single variable

expansivity theory. We study this notion under tuples of polynomials belong-

ing to the ring R[x1, x2, . . . , xn]. As an application we show that

min{max{Indfk (xσ(i))}sk=1 + 1}li=1 <
1

l

l∑
i=1

max{Indfk (xσ(i))}sk=1 + 2 + J

where J := J (l) ≥ 0 and Indfk (xj) is the largest power of xj (1 ≤ j ≤ n) in
the polynomial fk ∈ R[x1, x2, . . . , xn].

1. Introduction

The notion of the single variable expansivity theory had been developed quite
extensively by the author [1]. This notion turns out to be an important tool in
studying Sendov’s conjecture. This theory also has wide range of applications in
determining the insolubility of certain systems of differential equations. In the
current paper we launch an extension program where the study is carried out for
polynomials in the ring R[x1, x2, . . . , xn] with real number base field R. It turns
out that various basic notion studied under the single variable theory carry over to
this setting.

Throughout this paper, we keep the usual standard notion S for all tuples whose
entries belong to the ring R[x1, x2, . . . , xn]. Occasionally we might choose to index
these tuples by Sj over the natural numbers N if we have two or more and we want
to keep them distinct from each other. The tuples S0 = (0, 0, . . . , 0) and Se =
(1, 1, . . . , 1) are still reserved for the null and the unit tuple respectively. Further to
the above requirements any tuple of polynomial will be assumed to contain exactly
n entries and two tuples under the operation of addition or subtraction will be
assumed to contain the same number of entries.

2. Expansion in mixed and specified directions

In this section we introduce the notion of an expansion in a mixed and specific
directions. We launch the following extension program

Definition 2.1. Let F := {Si}∞i=1 be a collection of tuples of polynomials fk ∈
R[x1, x2, . . . , xn]. Then by an expansion on S ∈ F := {Si}∞i=1 in the direction xi
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for 1 ≤ i ≤ n, we mean the composite map

(γ−1 ◦ β ◦ γ ◦ ∇)[xi] : F −→ F

where

γ(S) =


f1

f2

...
fn

 and β(γ(S)) =


0 1 · · · 1
1 0 · · · 1
...

... · · ·
...

1 1 · · · 0



f1

f2

...
fn


with

∇[xi](S) =

(
∂f1

∂xi
,
∂f2

∂xi
, . . . ,

∂fn
∂xi

)
.

The value of the l th expansion at a given value a of xi is given by

(γ−1 ◦ β ◦ γ ◦ ∇)l[xi](a)(S)

where (γ−1◦β◦γ◦∇)l[xi](a)(S) is a tuple of polynomials in R[x1, . . . , xi−1, xi+1, . . . , xn].

Similarly by an expansion in the mixed direction ⊗li=1[xσ(i)] we mean

(γ−1 ◦ β ◦ γ ◦ ∇)⊗li=1[xσ(i)]
(S) = (γ−1 ◦ β ◦ γ ◦ ∇)⊗li=2[xσ(i)]

◦ (γ−1 ◦ β ◦ γ ◦ ∇)[xσ(1)](S)

for any permutation σ : {1, 2, . . . , l} −→ {1, 2, . . . , l}. The value of this expansion
on a given value ai of xσ(i) for all i ∈ [σ(1), σ(l)] is given by

(γ−1 ◦ β ◦ γ ◦ ∇)⊗li=1[xσ(i)](ai)
(S)

where (γ−1 ◦ β ◦ γ ◦ ∇)⊗li=1[xσ(i)](ai)
(S) is tuple of real numbers R.

Proposition 2.2. A multivariate expansion is linear.

Proof. It suffices to show that each of the operators∇[xi] : {Si}∞i=1 −→ {Si}∞i=1 for a
fixed direction [xi], γ : {Si}∞i=1 −→ {Si}∞i=1 and β◦γ : {Si}∞i=1 −→ {Si}∞i=1 is linear,
since the map γ : {Si}∞i=1 −→ {Si}∞i=1 is bijective. Let Sa = (f1, f2, . . . , fn),Sb =
(g1, g2, . . . , gn) ∈ F = {Si}∞i=1 and let λ, µ ∈ R, then it follows that

∇[xi](λSa + µSb) = ∇(λ(f1, f2, . . . , fn) + µ(g1, g2, . . . , gn))

= ∇[xi]((λf1, λf2, . . . , λfn) + (µg1, µg2, . . . , µgn))

= ∇[xi]((λf1 + µg1, λf2 + µg2, . . . λfn + µgn))

= (
∂(λf1 + µg1)

∂xi
,
∂(λf2 + µg2)

∂xi
, . . . ,

∂(λfn + µgn)

∂xi
)

= (λ
∂f1

∂xi
+ µ

∂g1

∂xi
, λ
∂f2

∂xi
+ µ

∂g2

∂xi
, . . . , λ

∂fn
∂xi

+ µ
∂gn
∂xi

)

= (λ
∂f1

∂xi
, λ
∂f2

∂xi
, . . . , λ

∂fn
∂xi

) + (µ
∂g1

∂xi
, µ
∂g2

∂xi
, . . . , µ

∂gn
∂xi

)

= λ(
∂f1

∂xi
,
∂f2

∂xi
, . . . ,

∂fn
∂xi

) + µ(
∂g1

∂xi
,
∂g2

∂xi
, . . . ,

∂gn
∂xi

)

= λ∇[xi](Sa) + µ∇[xi](Sb).
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Similarly,

γ(λSa + µSb) =


λf1 + µg1

λf2 + µg2

...
λfn + µgn



=


λf1

λf2

...
λfn

+


µg1

µg2

...
µgn


= λγ(Sa) + µγ(Sb).

Similarly

β ◦ γ(λSa + µSb) =


0 1 · · · 1
1 0 1 · · · 1
...

... · · ·
...

1 1 · · · 0



λf1 + µg1

λf2 + µg2

...
λfn + µgn



=


0 1 · · · 1
1 0 1 · · · 1
...

... · · ·
...

1 1 · · · 0


{

λf1

λf2

...
λfn

+


µg1

µg2

...
µgn


}

= λ


0 1 · · · 1
1 0 1 · · · 1
...

... · · ·
...

1 1 · · · 0



f1

f2

...
fn

+ µ


0 1 · · · 1
1 0 1 · · · 1
...

... · · ·
...

1 1 · · · 0



g1

g2

...
gn


= λ(β ◦ γ)(Sa) + µ(β ◦ γ)(Sb).

This proves the linearity of expansion. �

Remark 2.3. Next we prove a fundamental result which shows that an expansion
is commutative. This reinforces the very notion that there is no need to give
precedence to the direction of an expansion. In essence, it gives some flexibility to
the way and manner an expansion could be carried out.

Proposition 2.4. An expansion is commutative.

Proof. Consider F := {Si}∞i=1 the collection of tuples in the ring R[x1, x2, . . . , xn].
It suffices to show that for any S ∈ F then

(γ−1 ◦ β ◦ γ ◦ ∇)[xi]⊗[xj ](S) = (γ−1 ◦ β ◦ γ ◦ ∇)[xj ]⊗[xi](S).

First we can write

(γ−1 ◦ β ◦ γ ◦ ∇)[xi](S) =

(( ∑
t∈[1,n]
t6=1

∑
k=t

∂fk
∂xi

)
, . . . ,

( ∑
t∈[1,n]
t6=n

∑
k=t

∂fk
∂xi

))
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and make the assignment

Sgk = (gk1, gk2, . . . , gkn)

=

(( ∑
t∈[1,n]
t6=1

∑
k=t

∂fk
∂xi

)
, . . . ,

( ∑
t∈[1,n]
t 6=n

∑
k=t

∂fk
∂xi

))

for gki ∈ R[x1, x2, . . . , xn]. Next we carry out the second expansion on Sgk and we
get

(γ−1 ◦ β ◦ γ ◦ ∇)[xj ](Sgk) =

( ∑
s∈[1,n]
s6=1

∑
k=s

∂gks
∂xj

, . . . ,
∑
s∈[1,n]
s6=n

∑
k=s

∂gks
∂xj

)

so that by combining the two expansions in both directions, we have

(γ−1 ◦ β ◦ γ ◦ ∇)[xi]⊗[xj ](S) = (γ−1 ◦ β ◦ γ ◦ ∇)[xj ](Sgk)

=

(( ∑
s∈[1,n]
s 6=1

∑
k=s

∂gks
∂xj

)
, . . . ,

( ∑
s∈[1,n]
s6=n

∑
k=s

∂gks
∂xj

))

=

(( ∑
s∈[1,n]
s 6=1

∑
k=s

∑
t∈[1,n]
t6=1

∑
k=t

∂2fk
∂xj∂xi

)
,

. . . ,

( ∑
s∈[1,n]
s6=n

∑
k=s

∑
t∈[1,n]
t 6=n

∑
k=t

∂2fk
∂xj∂xi

))

by appealing to the linearity of the operator ∂
∂xi

. By carrying out the expansion in
the opposite direction and appealing to the linearity of the operator

∂

∂xi

we have

(γ−1 ◦ β ◦ γ ◦ ∇)[xj ]⊗[xi](S) =

(( ∑
s∈[1,n]
s6=1

∑
k=s

∑
t∈[1,n]
t 6=1

∑
k=t

∂2fk
∂xj∂xi

)
,

. . . ,

( ∑
s∈[1,n]
s6=n

∑
k=s

∑
t∈[1,n]
t 6=n

∑
k=t

∂2fk
∂xj∂xi

))

by exploiting the condition

∂2

∂xi∂xj
=

∂2

∂xj∂xi

for each polynomial gi, fi ∈ R[x1, x2, . . . , xn]. By comparing the result of both
expansions in reverse directions, the claim follows immediately. �
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3. The totient and residue of an expansion

In this section we introduce the notion of the residue and the totient of an
expansion. These two notions are analogous to the notion of the rank and the
degree of an expansion under the single variable theory. We launch more formally
the following languages.

Definition 3.1. Let F = {Si}∞i=1 be a collection of tuples of polynomials in the
ring R[x1, x2, . . . , xn]. Then we say the expansion (γ−1 ◦ β ◦ γ ◦ ∇)[xi](S) is free

with totient k, denoted Φ[(γ−1 ◦ β ◦ γ ◦ ∇)[xi](S)], if

(γ−1 ◦ β ◦ γ ◦ ∇)k[xi](S) = S0

where k > 0 is the smallest such number. We call the expansion (γ−1 ◦ β ◦ γ ◦
∇)k−1

[xi]
(S) the residue of the expansion, denoted by Θ[(γ−1 ◦ β ◦ γ ◦ ∇)k−1

[xi]
(S)].

Similarly by the totient of the mixed expansion (γ−1 ◦ β ◦ γ ◦ ∇)⊗li=1[xσ(i)]
(S), we

mean the smallest value of k such that

(γ−1 ◦ β ◦ γ ◦ ∇)k⊗li=1[xσ(i)]
(S) = S0.

We denote the totient of the mixed expansion with

Φ[(γ−1 ◦ β ◦ γ ◦ ∇)⊗li=1[xσ(i)]
(S)].

Proposition 3.2. Let F = {Si}∞i=1 be a collection of tuples of polynomials in the
ring R[x1, x2, . . . , xn]. If the expansions (γ−1 ◦ β ◦ γ ◦ ∇)[xi](Sk) and (γ−1 ◦ β ◦ γ ◦
∇)[xi](Sl) are free with totients s and t, respectively. Then the expansion

(γ−1 ◦ β ◦ γ ◦ ∇)[xi](Sk + Sl)
is also free with totient max{s, t}.
Proof. Suppose the expansions (γ−1 ◦β ◦ γ ◦∇)[xi](Sk) and (γ−1 ◦β ◦ γ ◦∇)[xi](Sl)
are free with totients s and t, respectively. Then it follows that

(γ−1 ◦ β ◦ γ ◦ ∇)s[xi](Sk) = S0

with (γ−1 ◦ β ◦ γ ◦ ∇)s−m[xi]
(Sk) 6= S0 for all m ≤ s and

(γ−1 ◦ β ◦ γ ◦ ∇)t[xi](Sl) = S0

with (γ−1 ◦β ◦γ ◦∇)t−m[xi]
(Sl) 6= S0 for all m ≤ t. Now let us apply max{s, t} copies

of the expansion maps to the tuple Sk + Sl so that we have by appealing to the
linearity of an expansion map we have

(γ−1 ◦ β ◦ γ ◦ ∇)
max{s,t}
[xi]

(Sk + Sl) = (γ−1 ◦ β ◦ γ ◦ ∇)
max{s,t}
[xi]

(Sk)

+ (γ−1 ◦ β ◦ γ ◦ ∇)
max{s,t}
[xi]

(Sl)
= S0

since s, t ≤ max{s, t}. Next we see that for any 1 ≤ r ≤ max{s, t} then by appealing
to the linearity of the expansion map

(γ−1 ◦ β ◦ γ ◦ ∇)
max{s,t}−r
[xi]

(Sk + Sl) = (γ−1 ◦ β ◦ γ ◦ ∇)
max{s,t}−r
[xi]

(Sk)

+ (γ−1 ◦ β ◦ γ ◦ ∇)
max{s,t}−r
[xi]

(Sl)
6= S0
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since at least one of the inequality max{s, t} − r < s or max{s, t} − r < t must
hold. Thus max{s, t} is the totient of the expansion (γ−1 ◦ β ◦ γ ◦ ∇)[xi](Sk + Sl).
This completes the proof of the proposition. �

Remark 3.3. Next we expose an important relationship that exists between the
totient of the mixed expansion and the underlying expansion in specific directions.
One could view this result as a sub-additivity property of the totient of an expan-
sion.

Theorem 3.4. Let F = {Si}∞i=1 be a collection of tuples of polynomials in the ring
R[x1, x2, . . . , xn]. Then we have the inequality

Φ[(γ−1 ◦ β ◦ γ ◦ ∇)⊗li=1[xσ(i)]
(S)] ≤ 1

l

l∑
i=1

Φ[(γ−1 ◦ β ◦ γ ◦ ∇)[xσ(i)](S)] +K

where K(l) = K > 0.

It is easily noticeable that the inequality allows us to control the totient of a
mixed expansion by the average of the totient of expansions in specific directions
involved in the mixed expansion. We relegate the proof of this to latter sections,
where we develop the required tools needed. It is fair to say that this inequality is
crude; However, we will obtained a much stronger version in the sequel that gives
much information.

4. The dropler effect induced by an expansion

In this section we introduce the notion of the dropler effect induced by an expan-
sion. This phenomena is mostly induced by expansion on several other expansions
in a specific direction.

Definition 4.1. Let F = {Si}∞i=1 be a collection of tuples of polynomials in the
ring R[x1, x2, . . . , xn]. Then the expansion (γ−1 ◦ β ◦ γ ◦ ∇)⊗li=1[xσ(i)]

(S) is said to

induce a dropler effect with intensity k, denoted I[(γ−1 ◦ β ◦ γ ◦ ∇)[xj ](S)] = k,

on the expansion (γ−1 ◦ β ◦ γ ◦ ∇)[xj ](S) if

(γ−1 ◦ β ◦ γ ◦ ∇)k[xj ] ◦ (γ−1 ◦ β ◦ γ ◦ ∇)⊗li=1[xσ(i)]
(S)

is free with k < Φ[(γ−1 ◦ β ◦ γ ◦ ∇)[xj ](S)] and k is the smallest such number. In

other words, we say the expansion admits a dropler effect from the source (γ−1 ◦
β ◦γ ◦∇)⊗li=1[xσ(i)]

(S) with intensity k. The energy saved E[(γ−1 ◦β ◦γ ◦∇)[xj ]](S)

by the expansion under the dropler effect is given by

E[(γ−1 ◦ β ◦ γ ◦ ∇)[xj ]](S) = Φ[(γ−1 ◦ β ◦ γ ◦ ∇)[xj ](S)]− I[(γ−1 ◦ β ◦ γ ◦ ∇)[xj ](S)].

We call this equation the energy-dropler effect intensity equation.

Proposition 4.2. Let F = {Si}∞i=1 be a collection of tuples of polynomials in the
ring R[x1, x2, . . . , xn]. If the expansions (γ−1 ◦ β ◦ γ ◦ ∇)[xs](S) and (γ−1 ◦ β ◦ γ ◦
∇)[xt](S) each admits a dropler effect from the same source with intensities k1 and
k2, respectively, then the expansion[

(γ−1 ◦ β ◦ γ ◦ ∇)[xs] + (γ−1 ◦ β ◦ γ ◦ ∇)[xt]

]
(S)
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also admits a dropler effect from the same source with intensity max{k1, k2}.

Proof. Suppose the expansions (γ−1◦β◦γ◦∇)[xs](S) and (γ−1◦β◦γ◦∇)[xt](S) each
admits a dropler effect from the same source with intensities k1 and k2, respectively.
Let (γ−1◦β◦γ◦∇)⊗li=1[xσ(i)]

(S) be their source, then it follows by virtue of Definition
4.1

(γ−1 ◦ β ◦ γ ◦ ∇)k1[xs]
◦ (γ−1 ◦ β ◦ γ ◦ ∇)⊗li=1[xσ(i)]

(S) = S0 (4.1)

and

(γ−1 ◦ β ◦ γ ◦ ∇)k2[xt]
◦ (γ−1 ◦ β ◦ γ ◦ ∇)⊗li=1[xσ(i)]

(S) = S0. (4.2)

Let us consider the expansion map

[
(γ−1 ◦β ◦ γ ◦∇)[xs] + (γ−1 ◦β ◦ γ ◦∇)[xt]

]
and

apply max{k1, k2} copies to the source (γ−1 ◦ β ◦ γ ◦ ∇)⊗li=1[xσ(i)]
(S). It follows by

the linearity of an expansion and further appealing to (4.1) and (4.2)[
(γ−1 ◦ β ◦ γ ◦ ∇)[xs] + (γ−1 ◦ β ◦ γ ◦ ∇)[xt]

]max{k1,k2}

◦ (γ−1 ◦ β ◦ γ ◦ ∇)⊗li=1[xσ(i)]
(S) = S0.

It is easy to observe that[
(γ−1 ◦ β ◦ γ ◦ ∇)[xs] + (γ−1 ◦ β ◦ γ ◦ ∇)[xt]

]max{k1,k2}−r

◦ (γ−1 ◦ β ◦ γ ◦ ∇)⊗li=1[xσ(i)]
(S) 6= S0

(4.3)

for any r ≥ 1, by appealing to the linearity of a multivariate expansion and exploit-
ing the fact that at least one of the inequality must hold

max{k1, k2} − r ≤ k1 or max{k1, k2} − r ≤ k2.

Thus max{k1, k2} is the intensity of the dropler effect induced on the concatenations
of the expansions under the same source. �

Remark 4.3. One could ask whether an analogue of this result exists for expansions
with concatenated directions. While a general answer to this question may seem
very baffling, we can somehow obtain a variant by imposing some conditions that
ensure expansion in one direction does not wear off and interfere with the direction
of the other. We make this assertion more precise in the following proposition.

Proposition 4.4. Let F = {Si}∞i=1 be a collection of tuples of polynomials in the
ring R[x1, x2, . . . , xn]. Let the expansions (γ−1 ◦ β ◦ γ ◦∇)[xs](S) and (γ−1 ◦ β ◦ γ ◦
∇)[xt](S) each admits a dropler effect with intensities k1 and k2, respectively, from

the source (γ−1 ◦ β ◦ γ ◦ ∇)⊗li=1[xσ(i)]
(S). If the expansions (γ−1 ◦ β ◦ γ ◦ ∇)[xs](S)

and (γ−1 ◦ β ◦ γ ◦ ∇)[xt](S) admits no dropler effect from the sources

(γ−1 ◦ β ◦ γ ◦ ∇)[xt] ◦ (γ−1 ◦ β ◦ γ ◦ ∇)⊗li=1[xσ(i)]
(S)

and

(γ−1 ◦ β ◦ γ ◦ ∇)[xs] ◦ (γ−1 ◦ β ◦ γ ◦ ∇)⊗li=1[xσ(i)]
(S)

respectively, then the mixed expansion

(γ−1 ◦ β ◦ γ ◦ ∇)[xs]⊗[xt](S)

also admits a dropler effect from the same source with intensity min{k1, k2}.
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Proof. Suppose the expansions (γ−1◦β◦γ◦∇)[xs](S) and (γ−1◦β◦γ◦∇)[xt](S) each
admits a dropler effect from the same source with intensities k1 and k2, respectively.
Let (γ−1◦β◦γ◦∇)⊗li=1[xσ(i)]

(S) be their source, then it follows by virtue of Definition
4.1

(γ−1 ◦ β ◦ γ ◦ ∇)k1[xs]
◦ (γ−1 ◦ β ◦ γ ◦ ∇)⊗li=1[xσ(i)]

(S) = S0 (4.4)

and

(γ−1 ◦ β ◦ γ ◦ ∇)k2[xt]
◦ (γ−1 ◦ β ◦ γ ◦ ∇)⊗li=1[xσ(i)]

(S) = S0. (4.5)

Let us apply min{k1, k2} copies of the mixed expansion operator (γ−1 ◦ β ◦ γ ◦
∇)[xs]⊗[xt] to the source (γ−1 ◦ β ◦ γ ◦ ∇)⊗li=1[xσ(i)]

(S) then we see that

(γ−1 ◦ β ◦ γ ◦ ∇)
min{k1,k2}
[xs]⊗[xt]

◦ (γ−1 ◦ β ◦ γ ◦ ∇)⊗li=1[xσ(i)]
(S) = S0

by appealing to the commutative property of the expansion operator and (4.4) and
(4.5). Again by appealing to the commutative property of an expansion operator
the relation holds

(γ−1 ◦ β ◦ γ ◦ ∇)
min{k1,k2}−r
[xs]⊗[xt]

◦ (γ−1 ◦ β ◦ γ ◦ ∇)⊗li=1[xσ(i)]
(S) 6= S0

for any min{k1, k2} ≥ r ≥ 1, since min{k1, k2} − r < k1 and min{k1, k2} − r < k2

and k1, k2 are the intensities of the dropler effects and the expansions (γ−1 ◦β ◦ γ ◦
∇)[xs](S) and (γ−1 ◦ β ◦ γ ◦ ∇)[xt](S) admit no dropler effect from the sources

(γ−1 ◦ β ◦ γ ◦ ∇)[xt] ◦ (γ−1 ◦ β ◦ γ ◦ ∇)⊗li=1[xσ(i)]
(S)

and

(γ−1 ◦ β ◦ γ ◦ ∇)[xs] ◦ (γ−1 ◦ β ◦ γ ◦ ∇)⊗li=1[xσ(i)]
(S)

respectively. This proves that min{k1, k2} = I[(γ−1 ◦ β ◦ γ ◦ ∇)[xs]⊗[xt](S)], the
intensity of the dropler effect induced on the mixed expansion. �

Proposition 4.5. Let F = {Si}∞i=1 be a collection of tuples of polynomials in the
ring R[x1, x2, . . . , xn]. Let (γ−1 ◦ β ◦ γ ◦ ∇)[xs](S) and (γ−1 ◦ β ◦ γ ◦ ∇)[xt](S) be

expansions with totients k1 and k2, respectively. If the expansions (γ−1 ◦ β ◦ γ ◦
∇)[xs](S) and (γ−1 ◦ β ◦ γ ◦ ∇)[xt](S) admits no dropler effect from the source

(γ−1 ◦ β ◦ γ ◦ ∇)u[xt](S)

for u < k2 and

(γ−1 ◦ β ◦ γ ◦ ∇)v[xs](S)

for v < k1, respectively, then

Φ[(γ−1 ◦ β ◦ γ ◦ ∇)[xt]⊗[xs](S)] = min{k1, k2}.

Proof. Suppose (γ−1 ◦ β ◦ γ ◦ ∇)[xs](S) and (γ−1 ◦ β ◦ γ ◦ ∇)[xt](S) are expansions
with totients k1 and k2, respectively. Then it follows that

(γ−1 ◦ β ◦ γ ◦ ∇)k1[xs]
(S) = S0 (4.6)

and

(γ−1 ◦ β ◦ γ ◦ ∇)k2[xt]
(S) = S0 (4.7)
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where k1, k2 are the smallest such number. Appealing to the commutative property
of the expansion operator, we can write by virtue of (4.6) and (4.7)

(γ−1 ◦ β ◦ γ ◦ ∇)
min{k1,k2}
[xt]⊗[xs]

(S) = (γ−1 ◦ β ◦ γ ◦ ∇)
min{k1,k2}
[xs]

◦ (γ−1 ◦ β ◦ γ ◦ ∇)
min{k1,k2}
[xt]

(S)

= S0.

Under the assumption that the expansions (γ−1 ◦ β ◦ γ ◦ ∇)[xs](S) and (γ−1 ◦ β ◦
γ ◦ ∇)[xt](S) admits no dropler effect from the source

(γ−1 ◦ β ◦ γ ◦ ∇)v[xt](S)

for v < k2 and

(γ−1 ◦ β ◦ γ ◦ ∇)u[xs](S)

for u < k1, respectively, then it certainly follows that Φ[(γ−1 ◦β ◦γ ◦∇)[xs](S)] and

Φ[(γ−1 ◦ β ◦ γ ◦ ∇)[xt](S)] are the smallest numbers, respectively, such that

(γ−1 ◦ β ◦ γ ◦ ∇)
Φ[(γ−1◦β◦γ◦∇)[xs](S)]

[xs]
◦ (γ−1 ◦ β ◦ γ ◦ ∇)v[xt](S) = S0

and

(γ−1 ◦ β ◦ γ ◦ ∇)
Φ[(γ−1◦β◦γ◦∇)[xt](S)]

[xt]
◦ (γ−1 ◦ β ◦ γ ◦ ∇)u[xs](S) = S0

so that for any min{k1, k2} ≥ c ≥ 1 then

(γ−1 ◦ β ◦ γ ◦ ∇)
min{k1,k2}−c
[xt]⊗[xs]

(S) 6= S0

by exploiting the linearity of an expansion operator. This proves that min{k1, k2} =
Φ[(γ−1 ◦ β ◦ γ ◦ ∇)[xt]⊗[xs](S)], the totient of the mixed expansion. �

5. Destabilization of an expansion

In this section we introduce the notion of destabilization induced by an expan-
sion. This notion will form an essential toolbox in proving some result in this sequel.
We launch more formally the following languages.

Definition 5.1. Let F = {Si}∞i=1 be a collection of tuples of polynomials in the
ring R[x1, x2, . . . , xn]. We say the expansion (γ−1 ◦ β ◦ γ ◦ ∇)[xi](S) is said to

undergo natural destabilization if (γ−1 ◦ β ◦ γ ◦ ∇)0
[xi](0)(S) 6= S0. We say it

undergoes destabilization at stage k ≥ 1 if (γ−1 ◦ β ◦ γ ◦ ∇)j[xi](0)(S) = S0 for

all 1 ≤ j ≤ k − 1 and (γ−1 ◦ β ◦ γ ◦ ∇)k[xi](0)(S) 6= S0. In other words, we say the

expansion (γ−1 ◦ β ◦ γ ◦ ∇)[xi](S) admits a destabilization at stage k ≥ 1. We say
it is strongly destabilized if the vector

−−−−−−−−−−−−−−−−−−−−→
O(γ−1 ◦ β ◦ γ ◦ ∇)k[xi](0)(S)

has no zero entry.

Remark 5.2. Next we prove a result that tells us that destabilization should by
necessity happen in an expansion. The following result confines this stage to a
certain range.
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Proposition 5.3. Let F = {Si}∞i=1 be a collection of tuples of polynomials in
the ring R[x1, x2, . . . , xn]. Then the stage of destabilization k of the expansion
(γ−1 ◦ β ◦ γ ◦ ∇)[xi](S) satisfies the inequality

0 ≤ k < Φ[(γ−1 ◦ β ◦ γ ◦ ∇)[xi](S)].

Proof. If the expansion (γ−1 ◦ β ◦ γ ◦ ∇)[xi](S) admits a natural destabilization

then the stage k = 0. Thus we may assume the expansion (γ−1 ◦ β ◦ γ ◦ ∇)[xi](S)
do not admit a natural destabilization. Let us suppose to the contrary that the
stage of destabilization of some expansion (γ−1 ◦ β ◦ γ ◦ ∇)[xi](Sm) satisfies k ≥
Φ[(γ−1 ◦ β ◦ γ ◦ ∇)[xi](Sm)] so that

(γ−1 ◦ β ◦ γ ◦ ∇)
Φ[(γ−1◦β◦γ◦∇)[xi](Sm)]−1

[xi](0) (Sm) = S0.

This is a contradiction, since the expansion

(γ−1 ◦ β ◦ γ ◦ ∇)
Φ[(γ−1◦β◦γ◦∇)[xi](Sm)]−1

[xi]
(Sm)

is the residue of the expansion (γ−1 ◦ β ◦ γ ◦ ∇)[xi](Sm) and thus has no direction
of form [xi]. �

Theorem 5.4. Let F = {Si}∞i=1 be a collection of tuples of polynomials in the
ring R[x1, x2, . . . , xn]. Then for all directions [xj ] with 1 ≤ j ≤ n every expansion
(γ−1◦β◦γ◦∇)[xj ](S) is strongly destabilized at the stage Φ[(γ−1◦β◦γ◦∇)[xj ](S)]−1

Proof. Let (γ−1 ◦ β ◦ γ ◦ ∇)[xj ](S) be any expansion in an arbitrary direction [xj ].
Then by virtue of Definition 3.1 the expansion

(γ−1 ◦ β ◦ γ ◦ ∇)
Φ[(γ−1◦β◦γ◦∇)[xj ](S)]−1

[xj ]
(S)

is the residue of the expansion (γ−1◦β◦γ◦∇)[xj ](S). Let us suppose to the contrary
the vector

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→
O(γ−1 ◦ β ◦ γ ◦ ∇)

Φ[(γ−1◦β◦γ◦∇)[xj ](S)]−1

[xj ](0) (S)

has at least a zero entry. Then it follows that the expansion (γ−1 ◦ β ◦ γ ◦

∇)
Φ[(γ−1◦β◦γ◦∇)[xj ](S)]−1

[xj ]
(S) contains the direction [xj ] and hence

(γ−1 ◦ β ◦ γ ◦ ∇)
Φ[(γ−1◦β◦γ◦∇)[xj ](S)]

[xj ]
(S) 6= S0

which contradicts the fact that Φ[(γ−1 ◦ β ◦ γ ◦ ∇)[xj ](S)] is the totient of the

expansion (γ−1 ◦ β ◦ γ ◦ ∇)[xj ](S). This completes the proof. �

Remark 5.5. Next we relate the notion of the dropler effect induced by a mixed
expansion on expansions in a specific direction to the notion of destabilization. We
show that these two notions are somewhat related.
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6. Diagonalization and sub-expansion of an expansion

In this section we introduce the notion of diagonalization of an expansion and
sub-expansion of an expansion. This notion is mostly applied to expansions in
mixed directions. We launch the following languages to ease our work.

Definition 6.1. Let F = {Si}∞i=1 be a collection of tuples of polynomials in the
ring R[x1, x2, . . . , xn]. We say the mixed expansion (γ−1 ◦ β ◦ γ ◦∇)⊗li=1[xσ(i)]

(S) is

diagonalizable in the direction [xj ] (1 ≤ j ≤ n) at the spot Sr ∈ F with order k
with S − Sr not a tuple of R if

(γ−1 ◦ β ◦ γ ◦ ∇)⊗li=1[xσ(i)]
(S) = (γ−1 ◦ β ◦ γ ◦ ∇)k[xj ](Sr).

We call the expansion (γ−1 ◦β ◦γ ◦∇)[xj ](Sr) the diagonal of the mixed expansion

(γ−1 ◦ β ◦ γ ◦ ∇)⊗li=1[xσ(i)]
(S) of order k ≥ 1. We denote with O[(γ−1 ◦ β ◦ γ ◦

∇)[xj ](Sr)] the order of the diagonal.

Proposition 6.2. Let F := {Si}∞i=1 be a collection of tuples of polynomials in
the ring R[x1, x2, . . . , xn]. Let the expansions (γ−1 ◦ β ◦ γ ◦ ∇)⊗li=1[xσ(i)]

(St) and

(γ−1 ◦β ◦γ ◦∇)⊗li=1[xσ(i)]
(Sr) be both diagonalizable in the fixed direction [xi] at the

spot Sa with order u and Sk with order v, respectively. If u > v (resp. v > u) then

(γ−1 ◦ β ◦ γ ◦ ∇)⊗li=1[xσ(i)]
(St + Sr)

is also diagonalizable at the spot (γ−1◦β◦γ◦∇)u−v[xi]
(Sa)+Sk with order v, respectively

(γ−1 ◦ β ◦ γ ◦ ∇)v−u[xi]
(Sk) + Sa

with order u.

Proof. Suppose the expansions (γ−1 ◦ β ◦ γ ◦ ∇)⊗li=1[xσ(i)]
(St) and (γ−1 ◦ β ◦ γ ◦

∇)⊗li=1[xσ(i)]
(Sr) be both diagonalizable in the fixed direction [xi] at the spots Sa

with order u and Sk with order v, respectively. Then it follows by virtue of Defini-
tion 6.1

(γ−1 ◦ β ◦ γ ◦ ∇)⊗li=1[xσ(i)]
(St) = (γ−1 ◦ β ◦ γ ◦ ∇)u[xi](Sa)

and

(γ−1 ◦ β ◦ γ ◦ ∇)⊗li=1[xσ(i)]
(Sr) = (γ−1 ◦ β ◦ γ ◦ ∇)v[xi](Sk).

Then by concatenating the two mixed expansion and appealing to the linearity of
an expansion with u > v, we have

(γ−1 ◦ β ◦ γ ◦ ∇)⊗li=1[xσ(i)]
(St + Sr) = (γ−1 ◦ β ◦ γ ◦ ∇)⊗li=1[xσ(i)]

(St) + (γ−1 ◦ β◦
γ ◦ ∇)⊗li=1[xσ(i)]

(Sr)

= (γ−1 ◦ β ◦ γ ◦ ∇)u[xi](Sa) + (γ−1 ◦ β ◦ γ ◦ ∇)v[xi](Sk).

Under the assumption u > v and appealing to the linearity of an expansion operator,
we deduce

(γ−1 ◦ β ◦ γ ◦ ∇)⊗li=1[xσ(i)]
(St + Sr) = (γ−1 ◦ β ◦ γ ◦ ∇)v[xi]

(
(γ−1 ◦ β ◦ γ ◦ ∇)u−v[xi]

(Sa) + Sk
)
.
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The claim follows by choosing the spot

Sf = (γ−1 ◦ β ◦ γ ◦ ∇)u−v[xi]
(Sa) + Sk.

�

Remark 6.3. Next we launch the notion of the sub-expansion of an expansion. The
same notion under the single variable theory still carries over to this setting.

Definition 6.4. Let F = {Si}∞i=1 be a collection of tuples of polynomials in the ring
R[x1, x2, . . . , xn]. We say the expansion (γ−1 ◦ β ◦ γ ◦∇)k[xj ](Sz) is a sub-expansion

of the expansion (γ−1 ◦ β ◦ γ ◦ ∇)l[xj ](St), denoted (γ−1 ◦ β ◦ γ ◦ ∇)k[xj ](Sz) ≤
(γ−1 ◦ β ◦ γ ◦ ∇)l[xj ](St) if there exist some 0 ≤ m such that

(γ−1 ◦ β ◦ γ ◦ ∇)k[xj ](Sz) = (γ−1 ◦ β ◦ γ ◦ ∇)k+m
[xj ]

(St).

We say the sub-expansion is proper if m + k = l. We denote this proper sub-
expansion by (γ−1 ◦β ◦γ ◦∇)k[xj ](Sz) < (γ−1 ◦β ◦γ ◦∇)l[xj ](St). On the other hand,

we say the sub-expansion is ancient if m+ k > l.

Remark 6.5. Next we relate the notion of the sub-expansion of an expansion to
the notion of Diagonalization of a mixed expansion. We expose this profound
relationship in the following proposition

Proposition 6.6. Let F = {Si}∞i=1 be a collection of tuples of polynomials in
the ring R[x1, x2, . . . , xn]. If the mixed expansion (γ−1 ◦ β ◦ γ ◦ ∇)⊗li=1[xσ(i)]

(S) is

diagonalizable in the direction [xj ] (1 ≤ j ≤ n) at the spots St,Sr ∈ F such that
St − Sr is not a tuple of R with orders kt and kr, respectively and kr > kt. Then

(γ−1 ◦ β ◦ γ ◦ ∇)kt[xj ]
(St) ≤ (γ−1 ◦ β ◦ γ ◦ ∇)kr[xj ]

(Sr).

Proof. Let F = {Si}∞i=1 be a collection of tuples of the ring R[x1, x2, . . . , xn] and let
the mixed expansion (γ−1 ◦β ◦γ ◦∇)⊗li=1[xσ(i)]

(S) be diagonalizable in the direction

[xj ] (1 ≤ j ≤ n) at the spots St,Sr ∈ F such that St − Sr is not a tuple of R with
orders kt and kr, so that

(γ−1 ◦ β ◦ γ ◦ ∇)⊗li=1[xσ(i)]
(S) = (γ−1 ◦ β ◦ γ ◦ ∇)kt[xj ]

(St) (6.1)

and

(γ−1 ◦ β ◦ γ ◦ ∇)⊗li=1[xσ(i)]
(S) = (γ−1 ◦ β ◦ γ ◦ ∇)kr[xj ]

(Sr). (6.2)

It follows by combining (6.1) and (6.2) the relation

(γ−1 ◦ β ◦ γ ◦ ∇)kt[xj ]
(St) = (γ−1 ◦ β ◦ γ ◦ ∇)kr[xj ]

(Sr)

since St − Sr is not a tuple of R. Since kr > kt, it follows that there exist some
m ≥ 1 such that

(γ−1 ◦ β ◦ γ ◦ ∇)kt+m[xj ]
(Sr) = (γ−1 ◦ β ◦ γ ◦ ∇)kt[xj ]

(St)

so that

(γ−1 ◦ β ◦ γ ◦ ∇)kt[xj ]
(St) ≤ (γ−1 ◦ β ◦ γ ◦ ∇)kr[xj ]

(Sr).

�
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Remark 6.7. The converse of Proposition 6.6 may not necessarily hold because the
sub-expansion may be ancient. But we can be certain the converse will hold if we
allow the sub-expansion to be a proper sub-expansion. This relation is espoused in
the following result as a weaker converse of the above result.

Proposition 6.8. Let F = {Si}∞i=1 be a collection of tuples of polynomials in the
ring R[x1, x2, . . . , xn]. If the expansion (γ−1 ◦ β ◦ γ ◦ ∇)[xi](St) is a diagonal with

order k of the mixed expansion (γ−1 ◦ β ◦ γ ◦ ∇)⊗li=1[xσ(i)]
(S) and

(γ−1 ◦ β ◦ γ ◦ ∇)l[xi](Sr) < (γ−1 ◦ β ◦ γ ◦ ∇)k[xi](St)

then the expansion (γ−1 ◦ β ◦ γ ◦ ∇)[xi](Sr) is also a diagonal with order l of the
same mixed expansion.

Proof. Let us suppose the expansion (γ−1 ◦ β ◦ γ ◦ ∇)[xi](St) is the diagonal with

order k of the mixed expansion (γ−1 ◦ β ◦ γ ◦ ∇)⊗li=1[xσ(i)]
(S). Then it follows by

virtue of Definition 6.1

(γ−1 ◦ β ◦ γ ◦ ∇)⊗li=1[xσ(i)]
(S) = (γ−1 ◦ β ◦ γ ◦ ∇)k[xi](St).

Since

(γ−1 ◦ β ◦ γ ◦ ∇)l[xi](Sr) < (γ−1 ◦ β ◦ γ ◦ ∇)k[xi](St)

it follows by appealing to Definition 6.4

(γ−1 ◦ β ◦ γ ◦ ∇)l[xi](Sr) = (γ−1 ◦ β ◦ γ ◦ ∇)l+m[xi]
(St).

for some 0 ≤ m with l +m = k so that

(γ−1 ◦ β ◦ γ ◦ ∇)l[xi](Sr) = (γ−1 ◦ β ◦ γ ◦ ∇)k[xi](St).

The result follows from this relation, since (γ−1 ◦ β ◦ γ ◦ ∇)[xi](St) is a diagonal

with order k of the mixed expansion (γ−1 ◦ β ◦ γ ◦ ∇)⊗li=1[xσ(i)]
(S). �

Remark 6.9. The notion of the totient, the droppler effect and the diagonalization
of an expansion may seem to be quite seperate disparate notion of the theory but
the following Proposition indicates a subtle connection among these three.

Proposition 6.10. Let F = {Si}∞i=1 be a collection of tuples of polynomials in the
ring R[x1, x2, . . . , xn]. If the mixed expansion (γ−1 ◦β ◦ γ ◦∇)⊗li=1[xσ(i)]

(S) induces

a dropler effect with intensity k on the expansion (γ−1 ◦ β ◦ γ ◦ ∇)[xj ](S) and is
diagonalizable in the direction [xj ] at the spot St with order s, then the expansion

(γ−1 ◦ β ◦ γ ◦ ∇)[xj ](St)

is free with totient

Φ[(γ−1 ◦ β ◦ γ ◦ ∇)[xj ](St)] = k + s.

Proof. First let us suppose the mixed expansion (γ−1◦β◦γ◦∇)⊗li=1[xσ(i)]
(S) induces

a dropler effect with intensity k on the expansion (γ−1 ◦ β ◦ γ ◦ ∇)[xj ](S). Then it
follows by virtue of Definition 4.1

(γ−1 ◦ β ◦ γ ◦ ∇)k[xj ] ◦ (γ−1 ◦ β ◦ γ ◦ ∇)⊗li=1[xσ(i)]
(S) = S0
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with k < Φ[(γ−1 ◦ β ◦ γ ◦ ∇)[xj ](S)] and k is the smallest such number. Under

the assumption the expansion (γ−1 ◦ β ◦ γ ◦ ∇)[xj ](S) and is diagonalizable in the
direction [xj ] at the spot St with order s, it follows that

(γ−1 ◦ β ◦ γ ◦ ∇)⊗li=1[xσ(i)]
(S) = (γ−1 ◦ β ◦ γ ◦ ∇)s[xj ](St)

so that we have

(γ−1 ◦ β ◦ γ ◦ ∇)k+s
[xj ]

(St) = S0.

Now let us suppose there exist some r ≤ k + s such that

(γ−1 ◦ β ◦ γ ◦ ∇)k+s−r
[xj ]

(St) = S0

then it follows that

(γ−1 ◦ β ◦ γ ◦ ∇)k−r[xj ]
◦ (γ−1 ◦ β ◦ γ ◦ ∇)⊗li=1[xσ(i)]

(S) = S0.

This is a contradiction, since k = I[(γ−1 ◦ β ◦ γ ◦ ∇)[xj ](S)] is the intensity of the
dropler effect and is the smallest such number. It follows that

Φ[(γ−1 ◦ β ◦ γ ◦ ∇)[xj ](St)] = I[(γ−1 ◦ β ◦ γ ◦ ∇)[xj ](S)] +O[(γ−1 ◦ β ◦ γ ◦ ∇)[xj ](St)]
= k + s

and the claim follows immediately. �

Lemma 6.11. Let F = {Si}∞i=1 be a collection of tuples of polynomials in the ring
R[x1, x2, . . . , xn]. Then the expansion (γ−1 ◦ β ◦ γ ◦ ∇)[xσ(i)](S) for all 1 ≤ i ≤ l
admits dropler effect from the source

(γ−1 ◦ β ◦ γ ◦ ∇)⊗ii=1[xσ(l)]
(S).

Proof. Let us consider an arbitrary expansion (γ−1 ◦ β ◦ γ ◦ ∇)[xσ(j)](S) for all
1 ≤ j ≤ l. Then by appealing to the commutative property of an expansion, we
can rewrite

(γ−1 ◦ β ◦ γ ◦ ∇)⊗li=1[xσ(i)]
(S) = (γ−1 ◦ β ◦ γ ◦ ∇)[xσ(j)]

◦ (γ−1 ◦ β ◦ γ ◦ ∇)⊗l
i=1
i 6=j

[xσ(i)]
(S).

It follows that

(γ−1 ◦ β ◦ γ ◦ ∇)
Φ[(γ−1◦β◦γ◦∇)[xσ(j)](S)]−1

[xσ(j)]
◦ (γ−1 ◦ β ◦ γ ◦ ∇)⊗li=1[xσ(i)]

(S) = S0.

It follows that there exists some smallest number k ≤ Φ[(γ−1 ◦β ◦γ ◦∇)[xσ(j)](S)]−
1 < Φ[(γ−1 ◦ β ◦ γ ◦ ∇)[xσ(j)](S)] such that

(γ−1 ◦ β ◦ γ ◦ ∇)k[xσ(j)] ◦ (γ−1 ◦ β ◦ γ ◦ ∇)⊗li=1[xσ(i)]
(S) = S0.

This proves the claim that each expansion of the form (γ−1 ◦β ◦ γ ◦∇)[xσ(j)](S) for
all 1 ≤ j ≤ l admits a dropler effect from the source

(γ−1 ◦ β ◦ γ ◦ ∇)⊗li=1[xσ(i)]
(S).

�

Remark 6.12. Next we show that the notion of diagonalization exist for mixed
expansion in each direction involved in the mixed expansion. The proof is quite
iterative in nature and will be employed in the sequel.
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Proposition 6.13. Let F = {Si}∞i=1 be a collection of tuples of polynomials be-
longing to the ring R[x1, x2, . . . , xn]. Then the mixed expansion

(γ−1 ◦ β ◦ γ ◦ ∇)⊗li=1[xσ(i)]
(S)

is diagonalizable in each direction [xσ(i)] for 1 ≤ i ≤ l.

Proof. Let us consider the mixed expansion

(γ−1 ◦ β ◦ γ ◦ ∇)⊗li=1[xσ(i)]
(S)

and let [xσ(j)] for 1 ≤ j ≤ l be our targeted direction, then by appealing to the
commutative property of an expansion we have

(γ−1 ◦ β ◦ γ ◦ ∇)⊗li=1[xσ(i)]
(S) = (γ−1 ◦ β ◦ γ ◦ ∇)[xσ(j)] ◦ (γ−1 ◦ β ◦ γ ◦ ∇)⊗l

i=1
i 6=j

[xσ(i)]
(S).

Next let us consider the residual mixed expansion

(γ−1 ◦ β ◦ γ ◦ ∇)⊗l
i=1
i 6=j

[xσ(i)]
(S) = (γ−1 ◦ β ◦ γ ◦ ∇)⊗l

i=1
i6=j

[xσ(i)]

◦ (γ−1 ◦ β ◦ γ ◦ ∇)[xσ(1)](S).

If there exist some tuple Sa ∈ F such that

(γ−1 ◦ β ◦ γ ◦ ∇)[xσ(1)](S) = (γ−1 ◦ β ◦ γ ◦ ∇)[xσ(j)](Sa)

then we make a substitution and obtain two copies of the expansion operator (γ−1◦
β ◦ γ ◦ ∇)[xσ(j)] by virtue of the commutative property of an expansion. Otherwise
we choose

Sb = (γ−1 ◦ β ◦ γ ◦ ∇)[xσ(1)](S)

and apply the remaining operators on it. By repeating the iteration in this manner,
we will obtain

(γ−1 ◦ β ◦ γ ◦ ∇)⊗li=1[xσ(i)]
(S) = (γ−1 ◦ β ◦ γ ◦ ∇)k[xσ(j)](St)

for k ≥ 1 and for some St ∈ F . This completes the proof of the proposition. �

Remark 6.14. We are now ready to prove the inequality announced at the outset of
the paper. We bring together the tools developed in the foregone section to obtain
a stronger version of the inequality.

Theorem 6.15. Let F = {Si}∞i=1 be a collection of tuples of polynomials in the
ring R[x1, x2, . . . , xn]. Then we have the inequality

Φ[(γ−1 ◦ β ◦ γ ◦ ∇)⊗li=1[xσ(i)]
(S)] <

1

l

l∑
i=1

Φ[(γ−1 ◦ β ◦ γ ◦ ∇)[xσ(i)](S)]

+
1

l

∑
1≤i≤l

Sr∈Diag[(γ−1◦β◦γ◦∇)⊗l
i=1

[xσ(i)]
(S)]

Sr=(γ−1◦β◦γ◦∇)[xσ(i)](St)

O[(γ−1 ◦ β ◦ γ ◦ ∇)[xσ(i)](St)]

where Diag[(γ−1 ◦β ◦γ ◦∇)⊗li=1[xσ(i)]
(S)] is the set of all diagonals of the expansion

(γ−1 ◦ β ◦ γ ◦ ∇)⊗li=1[xσ(i)]
(S).
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Proof. Let us consider the mixed expansion

(γ−1 ◦ β ◦ γ ◦ ∇)⊗li=1[xσ(i)]
(S).

Then by appealing to Proposition 6.13 then for each direction [xσ(i)] for 1 ≤ i ≤ l
there exist some spot St and a number k ≥ 1 such that we can write

(γ−1 ◦ β ◦ γ ◦ ∇)⊗li=1[xσ(i)]
(S) = (γ−1 ◦ β ◦ γ ◦ ∇)k[xσ(i)](St).

Again appealing to Lemma 6.11 each of the expansions (γ−1 ◦ β ◦ γ ◦ ∇)k[xσ(i)](S)

admits a dropler effect from the source

(γ−1 ◦ β ◦ γ ◦ ∇)⊗li=1[xσ(i)]
(S).

The upshot is that we can write for each direction [xσ(i)] the relation

Φ[(γ−1 ◦ β ◦ γ ◦ ∇)[xi](St)] = I[(γ−1 ◦ β ◦ γ ◦ ∇)[xi](S)] +O[(γ−1 ◦ β ◦ γ ◦ ∇)[xi](St)].

By appealing to Definition 4.1, we obtain further the inequality

Φ[(γ−1 ◦ β ◦ γ ◦ ∇)[xi](St)] < Φ[(γ−1 ◦ β ◦ γ ◦ ∇)[xi](S)] +O[(γ−1 ◦ β ◦ γ ◦ ∇)[xi](St)].

Again we see that the inequality is valid

Φ[(γ−1 ◦ β ◦ γ ◦ ∇)⊗li=1[xσ(i)]
(S)] = Φ[(γ−1 ◦ β ◦ γ ◦ ∇)k[xi](St)]

≤ Φ[(γ−1 ◦ β ◦ γ ◦ ∇)[xi](St)]

so that we have the refined inequality

Φ[(γ−1 ◦ β ◦ γ ◦ ∇)⊗li=1[xσ(i)]
(S)] < Φ[(γ−1 ◦ β ◦ γ ◦ ∇)[xi](S)] +O[(γ−1 ◦ β ◦ γ ◦ ∇)[xi](St)].

Since there are l directions under consideration, we add l such chains of the in-
equality and obtain

lΦ[(γ−1 ◦ β ◦ γ ◦ ∇)⊗li=1[xσ(i)]
(S)] <

l∑
i=1

Φ[(γ−1 ◦ β ◦ γ ◦ ∇)[xσ(i)](S)]

+
∑

1≤i≤l
Sr∈Diag[(γ−1◦β◦γ◦∇)⊗l

i=1
[xσ(i)]

(S)]

Sr=(γ−1◦β◦γ◦∇)[xσ(i)](St)

O[(γ−1 ◦ β ◦ γ ◦ ∇)[xσ(i)](St)].

This completes the proof of the theorem. �

Corollary 6.16. Let F := {Si}∞i=1 be a collection of tuples of polynomials in the
ring R[x1, x2, . . . , xn]. If O[(γ−1 ◦ β ◦ γ ◦ ∇)[xσ(i)](St)] = 1 for each

(γ−1 ◦ β ◦ γ ◦ ∇)[xσ(i)](St) ∈ Diag[(γ−1 ◦ β ◦ γ ◦ ∇)⊗li=1[xσ(i)]
(S)]

then

Φ[(γ−1 ◦ β ◦ γ ◦ ∇)⊗li=1[xσ(i)]
(S)] <

1

l

l∑
i=1

Φ[(γ−1 ◦ β ◦ γ ◦ ∇)[xσ(i)](S)] + 1.
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Proof. This is a consequence of the inequality in Theorem 6.15 by taking

O[(γ−1 ◦ β ◦ γ ◦ ∇)[xσ(i)](St)] = 1

for each

(γ−1 ◦ β ◦ γ ◦ ∇)[xσ(i)](St) ∈ Diag[(γ−1 ◦ β ◦ γ ◦ ∇)⊗li=1[xσ(i)]
(S)].

�

Appealing further to the energy dropler effect-intensity equation in Definition
4.1

E[(γ−1 ◦ β ◦ γ ◦ ∇)[xj ]](S) = Φ[(γ−1 ◦ β ◦ γ ◦ ∇)[xj ](S)]− I[(γ−1 ◦ β ◦ γ ◦ ∇)[xj ](S)]

and Theorem 6.15, we obtain a refined inequality

Φ[(γ−1 ◦ β ◦ γ ◦ ∇)⊗li=1[xσ(i)]
(S)] <

1

l

l∑
i=1

E[(γ−1 ◦ β ◦ γ ◦ ∇)[xσ(i)](S)]

+
1

l

l∑
i=1

I[(γ−1 ◦ β ◦ γ ◦ ∇)[xσ(i)](S)]

+
1

l

∑
1≤i≤l

Sr∈Diag[(γ−1◦β◦γ◦∇)⊗l
i=1

[xσ(i)]
(S)]

Sr=(γ−1◦β◦γ◦∇)[xσ(i)](St)

O[(γ−1 ◦ β ◦ γ ◦ ∇)[xσ(i)](St)].

We call this inequality the totient, energy, dropler effect intensity inequality.

7. Hybrid expansions

In this section we introduce and study the notion of hybrid expansions and
explore some connections.

Definition 7.1. Let F = {Si}∞i=1 be a collection of tuples of polynomials in the
ring R[x1, x2, . . . , xn]. We say the expansions (γ−1 ◦ β ◦ γ ◦ ∇)k[xi](Sa) and (γ−1 ◦
β ◦ γ ◦ ∇)t[xj ](Sb) with i 6= j are hybrid if

(γ−1 ◦ β ◦ γ ◦ ∇)k[xi](Sa) = (γ−1 ◦ β ◦ γ ◦ ∇)t[xj ](Sb).

We denote this relationship with

(γ−1 ◦ β ◦ γ ◦ ∇)k[xi](Sa) on (γ−1 ◦ β ◦ γ ◦ ∇)t[xj ](Sb).

Proposition 7.2. Let F = {Si}∞i=1 be a collection of tuples of polynomials in
the ring R[x1, x2, . . . , xn]. If the mixed expansion (γ−1 ◦ β ◦ γ ◦ ∇)⊗li=1[xσ(i)]

(S) is

diagonalizable at the spot Sa with order k in the direction [xi] and

(γ−1 ◦ β ◦ γ ◦ ∇)k[xi](Sa) on (γ−1 ◦ β ◦ γ ◦ ∇)t[xj ](Sb)

then the mixed expansion is also diagonalizable at the spot Sb with order t in the
direction [xj ].
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Proof. Suppose the mixed expansion (γ−1 ◦β ◦γ ◦∇)⊗li=1[xσ(i)]
(S) is diagonalizable

at the spot Sa with order k in the direction [xi], then by appealing to Definition
6.1 we have

(γ−1 ◦ β ◦ γ ◦ ∇)⊗li=1[xσ(i)]
(S) = (γ−1 ◦ β ◦ γ ◦ ∇)k[xi](Sa).

Under the assumption the expansions are hybrid, it follows by appealing to Defini-
tion 7.2

(γ−1 ◦ β ◦ γ ◦ ∇)⊗li=1[xσ(i)]
(S) = (γ−1 ◦ β ◦ γ ◦ ∇)t[xj ](Sb)

and the claim follows immediately. �

Proposition 7.3. Let F = {Si}∞i=1 be a collection of tuples of polynomial in the
ring R[x1, x2, . . . , xn]. Let (γ−1 ◦ β ◦ γ ◦ ∇)[xi](Sa) be a diagonal of the mixed
expansion

(γ−1 ◦ β ◦ γ ◦ ∇)⊗li=1[xσ(i)]
(S)

with order k ≥ 1. If

(γ−1 ◦ β ◦ γ ◦ ∇)k[xi](Sa) on (γ−1 ◦ β ◦ γ ◦ ∇)t[xj ](Sb)

then

Φ[(γ−1 ◦ β ◦ γ ◦ ∇)t[xj ](Sb)] < max{Φ[(γ−1 ◦ β ◦ γ ◦ ∇)[xσ(i)](S)]}li=1

+ max{O[(γ−1 ◦ β ◦ γ ◦ ∇)[xσ(i)](St)]}
l

i=1
St∈Diag[(γ−1◦β◦γ◦∇)⊗l

i=1
[xσ(i)]

(S)]

.

Proof. Let us suppose the expansion (γ−1 ◦ β ◦ γ ◦ ∇)[xi](Sa) is a diagonal of the
mixed expansion

(γ−1 ◦ β ◦ γ ◦ ∇)⊗li=1[xσ(i)]
(S)

with order k ≥ 1. Then it follows that

(γ−1 ◦ β ◦ γ ◦ ∇)⊗li=1[xσ(i)]
(S) = (γ−1 ◦ β ◦ γ ◦ ∇)k[xi](Sa).

Since

(γ−1 ◦ β ◦ γ ◦ ∇)k[xi](Sa) on (γ−1 ◦ β ◦ γ ◦ ∇)t[xj ](Sb)

it follows that we can write

(γ−1 ◦ β ◦ γ ◦ ∇)⊗li=1[xσ(i)]
(S) = (γ−1 ◦ β ◦ γ ◦ ∇)t[xj ](Sb)

so that by appealing to Theorem 6.15, we obtain the inequality

Φ[(γ−1 ◦ β ◦ γ ◦ ∇)t[xj ](Sb)] = Φ[(γ−1 ◦ β ◦ γ ◦ ∇)⊗li=1[xσ(i)]
(S)]

<
1

l

l∑
i=1

Φ[(γ−1 ◦ β ◦ γ ◦ ∇)[xσ(i)](S)]

+
1

l

∑
1≤i≤l

St∈Diag[(γ−1◦β◦γ◦∇)⊗l
i=1

[xσ(i)]
(S)]

O[(γ−1 ◦ β ◦ γ ◦ ∇)[xσ(i)](St)]

and the claim follows by further controlling the two sums on the right hand-side of
the inequality. �
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Remark 7.4. Next we express the relationship between hybrid expansion and the
notion of diagonalization of a mixed expansion.

Proposition 7.5. Let F = {Si}∞i=1 be a collection of tuples of polynomials in the
ring R[x1, x2, . . . , xn]. If

(γ−1 ◦ β ◦ γ ◦ ∇)k[xi](Sa) on (γ−1 ◦ β ◦ γ ◦ ∇)t[xj ](Sb)

then the mixed expansion (γ−1 ◦ β ◦ γ ◦∇)[xi] ◦ (γ−1 ◦ β ◦ γ ◦∇)t[xj ](Sb) respectively

(γ−1 ◦ β ◦ γ ◦∇)[xj ] ◦ (γ−1 ◦ β ◦ γ ◦∇)k[xi](Sa) is diagonalizable at the spots Sa with

order k + 1 respectively Sb with order t+ 1.

Proof. Let us suppose

(γ−1 ◦ β ◦ γ ◦ ∇)k[xi](Sa) on (γ−1 ◦ β ◦ γ ◦ ∇)t[xj ](Sb)

then it follows that

(γ−1 ◦ β ◦ γ ◦ ∇)k[xi](Sa) = (γ−1 ◦ β ◦ γ ◦ ∇)t[xj ](Sb)

so that by applying a copy of the expansion (γ−1 ◦ β ◦ γ ◦∇)[xi] respectively (γ−1 ◦
β ◦ γ ◦ ∇)[xj ] on both sides, we have the following relations

(γ−1 ◦ β ◦ γ ◦ ∇)[xi] ◦ (γ−1 ◦ β ◦ γ ◦ ∇)t[xj ](Sb) = (γ−1 ◦ β ◦ γ ◦ ∇)k+1
[xi]

(Sa)

and

(γ−1 ◦ β ◦ γ ◦ ∇)[xj ] ◦ (γ−1 ◦ β ◦ γ ◦ ∇)k[xi](Sa) = (γ−1 ◦ β ◦ γ ◦ ∇)t+1
[xj ]

(Sb)

and the claim follows immediately from these two relations. �

8. Applications of the totient inequality

In this section we explore some applications of the theory. We obtain an in-
equality that will be useful for the study of the Pierce-Birkhoff conjecture. We first
make the following terminologies more precise.

Definition 8.1. Let fk ∈ R[x1, x2, . . . , xn] be a polynomial. By the index of xi for
1 ≤ i ≤ n relative to fk, denoted Indfk(xi), we mean the largest power of xi in the
polynomial fk.

Lemma 8.2. Let S = (f1, f2, . . . , fs) be a tuple of polynomials such that fi ∈
R[x1, x2, . . . , xn] for 1 ≤ i ≤ s. Then for any 1 ≤ j ≤ n

Φ[(γ−1 ◦ β ◦ γ ◦ ∇)[xj ](S)] = max{Indfi(xj)}si=1 + 1.

Proposition 8.3. Let f1, f2, . . . , fs ∈ R[x1, x2, . . . .xn] be polynomials. Then there
exist some J := J (l) ≥ 0 such that

min{max{Indfk(xσ(i))}sk=1 + 1}li=1 <
1

l

l∑
i=1

max{Indfk(xσ(i))}sk=1 + 2 + J .
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Proof. First let us consider the tuple S = (f1, f2, . . . , fs). Next, we break the proof
into two special cases: The case were each of the expansions (γ−1◦β◦γ◦∇)[xσ(i)](S)
for 1 ≤ i ≤ l does not admit and the case at least one admits a dropler effect from
the source

(γ−1 ◦ β ◦ γ ◦ ∇)⊗li=1[xσ(i)]
(S).

In the case each of the expansions admit no dropler effect from the underlying
source then by appealing to Proposition 4.4 and Lemma 8.2, we can write

Φ[(γ−1 ◦ β ◦ γ ◦ ∇)⊗li=1[xσ(i)]
(S)] = min{Φ[(γ−1 ◦ β ◦ γ ◦ ∇)[xσ(i)](S)]}li=1

= min{max{Indfk(xσ(i))}sk=1 + 1}li=1.

Again by appealing to Lemma 8.2 we can write

Φ[(γ−1 ◦ β ◦ γ ◦ ∇)[xσ(i)](S)] = max{Indfi(xj)}si=1 + 1

so that by appealing to Corollary 6.16, we can write

min{max{Indfk(xσ(i))}sk=1 + 1}li=1 <
1

l

l∑
i=1

max{Indfk(xσ(i))}sk=1 + 2.

We now turn to the case where at least one of the expansions (γ−1◦β◦γ◦∇)[xσ(i)](S)
for 1 ≤ i ≤ l admits a dropler effect. In this case we would have by appealing to
Proposition 4.4

Φ[(γ−1 ◦ β ◦ γ ◦ ∇)⊗li=1[xσ(i)]
(S)] = min{(γ−1 ◦ β ◦ γ ◦ ∇)[xσ(i)](S)}li=1 − J

= min{max{Indfk(xσ(i))}sk=1 + 1}li=1 − J
for some J := J (l) > 0. The right hand side expression is not impacted in this
case. By combining the inequalities in both cases, the claim inequality follows as a
consequence. �
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