The generalized smooth functions Poisson brackets and cohomology

Antoine Balan

January 31, 2021

Abstract

We define the generalized smooth functions and Poisson brackets. We propose a cohomology theory for the generalized functions.

1 The Poisson brackets and cohomology

1.1 Poisson brackets

The Poisson brackets are define for a symplectic manifold $(M, \omega)[\mathrm{BG}]$ by the formula:

$$
\{f, g\}=\omega(d f, d g)
$$

where $f, g \in \mathcal{C}^{\infty}(M)$ are smooth functions over the manifold M. Due to the fact that the symplectic form is closed, we have the Jacobi identities:

$$
\{f,\{g, h\}\}=\{\{f, g\}, h\}+\{g,\{f, h\}\}
$$

1.2 Cohomology

For a manifold M, it is possible to define the cohomology $[\mathrm{G}]$ of the differential forms over M with help of the differential d :

$$
H^{*}(M, \mathbf{R})=H^{*}\left(\Lambda^{*}(T M), d\right)
$$

2 The generalized functions

2.1 Definition

The generalized functions are defined like the commutativ algebra $A(I)$:

$$
A(I)=\mathcal{C}^{\infty}(M)\left[X_{1}, X_{2}, \ldots, X_{k}\right] / I
$$

where I is an ideal $[\mathrm{LB}]$ of the polynomials over the smooth functions

$$
\mathcal{C}^{\infty}(M)\left[X_{1}, X_{2}, \ldots, X_{k}\right]
$$

such that $A(I)$ is of finite type over $\mathcal{C}^{\infty}(M)$.

2.2 Example

If I is generated by elements which don't depend on M, then $A(I)$ is a tensor product by the smooth functions and is a trivial fiber bundle in algebras.

$$
A(I)=\mathbf{R}\left[X_{1}, X_{2}, \ldots, X_{k}\right] / \tilde{I} \otimes_{\mathbf{R}} \mathcal{C}^{\infty}(M)
$$

3 The Poisson brackets

The Poisson brackets for $A(I)$ are defined by the formula:

$$
\left\{a, a^{\prime}\right\}=\omega\left(d a, d a^{\prime}\right)
$$

where $a, a^{\prime} \in A(I)$ and $\omega \in \Lambda^{2}(T A(I))$ is a symplectic form, $T A(I)=$ $\operatorname{Der}(A(I))$ are the derivations of $A(I)$.

4 Connections over the generalized functions

A connection ∇ over $A(I)$ is a linear application such that:

$$
\nabla_{X}(f \cdot a)=X(f) \cdot a+f \cdot \nabla_{X}(a)
$$

with $a \in A(I)$ and $f \in \mathcal{C}^{\infty}(M), X$ is a vector field of M.

5 Cohomology of the generalized functions

The cohomology [G] of the algebra of the generalized smooth functions is:

$$
H^{*}(M, I, \mathbf{R})=H^{*}(A(I), \mathbf{R})
$$

It is a functor from the pairs (M, I), with values in the category of algebras.

References

[BG] R.Bishop, S.Goldberg, "Tensor Analysis on Manifolds", Dover, New-York, 2014.
[G] C.Godbillon, "Eléments de Topologie Algébrique", Hermann, Paris, 1971.
[LB] S.Mac Lane, G.Birkhoff, "Algebra", The Macmillan Company, USA, 1967.

