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Abstract

An effective hard-sphere model of the diffusion and cross-diffusion of salt in unentangled polymer
solutions is developed. Given the viscosity, sedimentation coefficient and osmotic pressure of the
polymer, the model predicts the diffusion and cross-diffusion coefficients as functions of the polymer
concentration and molecular weight. The results are compared with experimental data on NaCl
diffusion in aqueous polyethylene glycol solutions, showing good agreement at polymer molecular
weights up to 400 g/L. At higher molecular weights the model becomes less accurate, likely because
of the effects of entanglement. The tracer Fickian diffusivity can be written in the form of a
Stokes-Einstein equation containing the solution viscosity. For NaCl diffusion in polyethylene glycol
solutions, the Stokes-Einstein equation breaks down as the polymer size increases. Using Batchelor’s
viscous correction factor to determine an effective viscosity experienced by the salt ions within the
polymer matrix leads to much closer agreement with experiment.

1 Introduction
The diffusion of a dissolved solute in water can be modelled by Fick’s law, with a single diffusion
coefficient D quantifying the solute flux in response to a concentration gradient [1]. In aqueous
polymer solutions the diffusion is more complex, involving cross-diffusion effects between the
solute and polymer, and requiring knowledge of a diffusion coefficient matrix for a complete
description [1–3]. The diffusion coefficient matrix of salt in polymer solutions has been measured
for several systems [4, 5], showing that at high polymer concentrations cross-diffusion effects
are significant; in some cases the cross-diffusion coefficients are larger in magnitude than the
main Fickian coefficients [6]. In this work a model of cross-diffusion in unentangled, uncharged
polymer solutions is obtained by treating the polymers as effective hard spheres. The model uses
measurements of the viscosity, osmotic pressure, and sedimentation coefficient of the polymer;
given these data explicit expressions for the four diffusion coefficients are obtained as functions
of the polymer concentration and molecular weight.

In Section 2 a brief description of cross diffusion in ternary solutions is given; Section 3 reviews
Batchelor’s hard-sphere cross-diffusion model, and compares the predictions to experimental
data on salt diffusion within an aqueous polymer solution. In Section 4 an effective hard-sphere
model is developed, that takes account of departures of the polymer molecules from hard-sphere
behaviour. Effective hard-sphere radii and viscous mobilities are defined using the osmotic
pressure and viscosity of the binary polymer solutions, leading to improved agreement with
experiment. Section 5 extends the model to non-dilute polymer concentrations and contains a
discussion of the breakdown of the Stokes-Einstein equation in polymer solutions.

2 Cross-diffusion in ternary solutions
The flux equations describing cross-diffusion in ternary solutions can be written in the form

J1 = −D11∇n1 −D12∇n2, (1a)

For God so loved the world, that He gave His only begotten Son, that whosoever believeth in Him
should not perish, but have everlasting life. John 3:16
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Figure 1: Cross-diffusion coefficients Dij in the ternary solution PEG200–NaCl–H2O as functions
of the PEG hydrodynamic volume fraction φ1. The NaCl concentration is 0.5M (φ2 = 0.0042)
and the particle size ratio is λ = R2/R1 = 0.44. The data (circles) are from Vergara et al. [4].
The dash-dot lines are from the hard-sphere model (10); the dashed lines are from the effective
hard-sphere model (19); the solid curves are from the non-dilute effective hard-sphere model (35).
The dotted curves are from (35) using the best-fit parameter λ = 0.36.

J2 = −D21∇n1 −D22∇n2, (1b)

where J1 is the flux of the host polymer relative to the volume velocity of the mixture at
concentration n1 (number of polymer molecules per unit volume of mixture), and J2 is the flux
of salt at concentration n2. Here D11 is the main Fickian diffusion coefficient of the polymer,
while D12 is a cross-diffusion coefficient characterizing motion of the host molecules caused by
a gradient in salt concentration (diffusiophoresis); similarly, D22 is the Fickian salt diffusivity,
while D21 accounts for motion of salt caused by a gradient in the polymer concentration (osmotic
diffusion) [7].

Figure 1 shows Dij data (circles) obtained by Vergara et al. [4] for the diffusion of NaCl within
a matrix of polyethylene glycol (PEG) molecules in water. PEG is a hydrophilic, uncharged
polymer with many uses in the food, medicine and biotechnology industries, and can be prepared
in a range of molecular weights [4]. PEG interacts with other particles in water mainly via
excluded volume effects, and is therefore a relatively good system to apply a hard-sphere diffusion
model [6]. However, as will be seen in Sections 3.2 and 4.1.2, PEG exhibits significant departures
from hard-sphere behaviour even in the dilute limit.

The maximum PEG concentration in the experiments was C1 = 3.0M=3000mol/m3, corre-
sponding to a hydrodynamic volume fraction φ1 = n1v1 = 0.30, where n1 = NaC1 is the PEG
number density, Na is Avogadro’s number, v1 = 4

3πR
3
1 is the hydrodynamic volume of a PEG

molecule and R1 = 0.34× 10−9 m is the PEG hydrodynamic radius [8]. Because of the relatively
small globular size of the PEG molecules (molecular weight 194 [4]), the polymer molecules were
not significantly entangled [9]; however, at these high volume fractions the solution is crowded and
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the Dij data is nonlinear, with the polymer diffusiophoresis coefficient D12 showing a maximum
near φ1 = 0.2.

The concentration of NaCl in the diffusion experiments was 0.5M, corresponding to a
hydrodynamic volume fraction φ2 = n2v2 = 0.0042, where n2 = NaC2 is the NaCl number
density, v2 = 4

3πR
3
2 and R2 = 0.15nm is the NaCl hydrodynamic radius [10]. The NaCl main

Fickian diffusion coefficient D22 in figure 1d decreases rapidly as the PEG concentration increases,
reflecting the obstruction effect of the PEG molecules on the diffusion of salt. The relatively large
measured values of the cross coefficients D12 and D21 indicate the importance of cross-diffusion
on the motion of NaCl in this system [4].

3 Batchelor’s cross-diffusion model
In this section Batchelor’s [3] theory of tracer cross-diffusion in hard-sphere suspensions is briefly
reviewed and applied to the PEG diffusion data. From nonequilibrium thermodynamics [11, 12]
the four diffusion coefficients in a ternary solution can be written in the form

Dij =

2∑
k=1

Likµkj (i, j = 1, 2), (2)

where Lij = Lji are Onsager phenomenological coefficients, µi are the reduced chemical potentials
per particle and µij = (∂µi/∂nj)T,P,nk 6=j = µji [3, 11–13]. In the following the temperature T
and mixture pressure P are assumed constant. In the McMillan-Mayer theory of suspensions the
reduced chemical potentials are equal to the chemical potentials of a binary hard-sphere gas, and
their derivatives can be written in the dilute limit as

µij = kBT

(
δij
ni

+ 2Bij

)
(i, j = 1, 2), (3)

where kB is Boltzmann’s constant, δij is the delta function and Bij are the osmotic virial
coefficients accounting for interparticle forces [12, 14]. To first order in the volume fractions
φi = vini, the phenomenological coefficients Lij in a hard-sphere suspension are

Lij =
ni

6πη0Ri

[
δij

(
1 +

2∑
k=1

K ′ikφk

)
+ λ−3

ij K
′′
ijφj

]
(i, j = 1, 2), (4)

where η0 is the solvent viscosity and K ′ij and K ′′ij are mobility coefficients accounting for viscous
interactions between the particles; for hard spheres the mobility coefficients are functions of the
particle size ratio λij = Rj/Ri [3, 13]. In general the mobility coefficients K ′ij and K ′′ij obey the
relations

lim
λ21→0

K
′

21 = −kη and K
′

11 +K
′′

11 = −ks, (5a,b)

where kη is the viscosity concentration coefficient and ks is the sedimentation concentration
coefficient, described in more detail in Section 4.1. For hard spheres kη = 2.5 and ks = 6.55 [3].
Equation (5a) ensures that when the tracer particles are much larger than the host particles, the
effect of the host matrix is to increase the effective viscosity of the fluid by the factor 1 + kηφ1.
Similarly, (5b) ensures that when the particles are all the same size (λij = 1), the sedimentation
coefficient of the particles is the same as for a monodisperse system with total volume fraction
φ = φ1 + φ2, and is smaller than the sedimentation coefficient of a single particle by the factor
1− ksφ [3].

Combining equations (2), (3) and (4) in the dilute tracer limit φ2 � φ1 � 1 gives, upon
neglecting terms of order φ2

i ,

D11 = D0
1(1 + [b11 +K ′11 +K ′′11]φ1), D12 = D0

1(b12 +K ′′12)φ1, (6a,b)

D21 = D0
2(b21 +K ′′21)φ2, D22 = D0

2(1 +K ′21φ1), (6c,d)

where D0
i = kBT/(6πRiη0) is the Stokes-Einstein diffusivity of component i in the pure solvent

and bij = 2Bij/vi [3, 15].
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3.1 Hard-sphere virial coefficients and viscous mobilities
For hard-sphere particles the virial coefficients depend only on the particle radii and are given by
the expression [12]

Bij =
2

3
π(Ri +Rj)

3, (7)

so that
bij =

2Bij
vi

= (1 + λij)
3. (8)

Batchelor [3] obtained the following approximate expressions for the mobility coefficients of
hard-sphere suspensions

K
′

ij = − 2.5

(1 + bλij)
and K

′′

ij =
λ2
ij

(1 + λ3
ij)
− (λ2

ij + 3λij + 1), (9a,b)

where b is a constant. In the Corrigendum to [3], Batchelor showed that the value b = 0.16
ensures agreement of (9a) with the results of numerical simulations to within 5% at all λij .

3.2 Hard-sphere results
With (8) and (9), equations (6) can be written in the form

D11 = D0
1(1 + 1.45φ1), D12 = D0

1

(
λ3 + 2λ2 +

λ2

1 + λ3

)
φ1, (10a,b)

D21 = D0
2

(
λ−3 + 2λ−2 +

λ−2

1 + λ−3

)
φ2, D22 = D0

2

(
1− 2.5

1 + 0.16/λ
φ1

)
, (10c,d)

where λ = λ12 = R2/R1. Actually, inserting (8) and (9) into (6a) gives D11 = D0
1(1 + 1.34φ1),

rather than the more exact result (10a). The relatively small difference is caused by the
approximate nature of equations (9) [3, 15].

The Stokes-Einstein diffusivity of PEG200 in water at 25 ◦C is D0
1 = 0.64× 10−9 m2/s, and

the hydrodynamic radius is R1 = kBT/(6πη0D
0
1) = 0.34 nm [4]. For NaCl, D0

2 = 1.50×10−9 m2/s
giving a hydrodynamic radius of R2 = 0.15 nm [10], and therefore λ = R2/R1 = 0.44 for PEG200.
With this value for λ, the dash-dot lines in figure 1 show the diffusion coefficients calculated
from (10). The hard-sphere model does not agree very well with the Dij data, suggesting that
although PEG molecules are relatively globular and inert, they do not behave like hard spheres
in aqueous solution. In the next section this is confirmed using osmotic pressure and viscosity
data, and a more general model is developed that takes into account the unique hydrodynamic
and thermodynamic properties of the PEG molecules.

4 Effective hard-sphere model
In many polymer and colloidal solutions an effective hard-sphere radius Re1 can be used in place of
the hydrodynamic radius R1, leading to improved agreement between experiment and hard-sphere
models [16–18]. In this section a similar effective hard-sphere approach is developed in which
osmotic pressure and viscosity data are used to define an effective particle radius and effective
viscous mobility coefficients. In order to properly define these quantities a brief discussion of
viscosity, diffusion, sedimentation and osmotic pressure in polymer solutions is given below.

4.1 Hydrodynamic coefficients in polymer solutions
To first order in concentration the viscosity η, mutual diffusion coefficient D, sedimentation
coefficient s and osmotic pressure Π of a binary polymer-solvent solution can be written as

η = η0(1 + kηφ1), D = D0(1 + kDφ1), (11a,b)
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Figure 2: (a) Relative viscosity η(φ1)/η0 of PEG-H2O solutions measured at 25 ◦C by Albright et
al. [23] (PEG200, circles; PEG2000, squares) and by Vergara et al. [6] (PEG400, crosses). The
curves are from equation (15) giving the viscosity concentration coefficient kη values in Table
1. The dashed line is from equation (11a) using the hard-sphere value kη = 2.5. (b) PEG-H2O
mutual diffusion coefficient D(φ1) measured at 25 ◦C by Vergara et al. [8] (PEG200, circles;
PEG 400, crosses; PEG2000, squares). The solid lines are from equations (11b) and (13a) using
the coefficient values in Table 1, while the dashed line is the hard-sphere case with kD = 1.45.

s = s0(1− ksφ1), Π = Π0(1 + kΠφ1). (11c,d)

In (11a) η0 is the solvent viscosity and kη is the viscosity concentration coefficient; in (11b)
D0 = kBT/(6πR1η0) is the Stokes-Einstein diffusivity of a polymer molecule in the pure fluid
solvent and kD is the diffusion concentration coefficient. Similarly, in (11c) s0 is the dilute-limit
polymer sedimentation coefficient and ks is the sedimentation concentration coefficient; and
in (11d) Π0 = n1kBT is the dilute-limit polymer osmotic pressure and kΠ = B11/v1 = b11/2
is the osmotic concentration coefficient, where B11 is the second virial coefficient [19–21]. For
hard-sphere particles the concentration coefficients in (11) have the known values

kη = 2.5, kΠ = 4, ks = 6.55 and kD = 1.45, (12)

independent of the particle size [19, 21]. For polymers, the values of kD, kη, kΠ and ks often
depart from (12) and typically depend on the molecular weight M1 [8].

The concentration coefficients in (11) are not all independent but are related by the equations

kD = 2kΠ − ks and ks = Rkη, (13a,b)

Equation (13a) is a consequence of the generalized Stokes-Einstein equation [19–21], while (13b)
is the Wales-van Holde relation, where R is the Wales-van Holde ratio [20, 22].

4.1.1 Effective hard-sphere radius

The polymer effective (osmotic) volume is defined as ve1 ≡ v1(kΠ/4) = B11/4 [17, 21] so that the
effective hard-sphere radius is

Re1 = R1

(
kΠ

4

)1/3

. (14)

With equation (14) the effective radius can be determined given the osmotic concentration
coefficient kΠ. For true hard-sphere particles kΠ = 4 and Re1 = R1.

4.1.2 Application to polyethylene glycol

Table 1 gives the Stokes-Einstein diffusivity D0
1, hydrodynamic radius R1 and concentration

coefficients of PEG in water for three molecular weights [8]. The viscosity coefficient kη values in
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D0
1 (×10−9m2/s) R1 (nm) kΠ kη ks Re1 (nm) λ

PEG200 0.64 0.34 1.81 7.7 5.8 0.26 0.44
PEG400 0.44 0.49 1.85 5.7 4.3 0.38 0.30
PEG2000 0.20 1.16 1.98 5.2 3.9 0.85 0.13

Table 1: Physical parameters for PEG-H2O solutions at 25 ◦C.

D0
2 (×10−9m2/s) R2 (nm) iH

NaCl 1.5 0.15 1.8

Table 2: Physical parameters for 0.5M NaCl-H2O solutions at 25 ◦C.

Table 1 have been determined from figure 2a, which shows measurements of the viscosity η of
PEG-H2O solutions as a function of φ1. To extract the viscosity concentration coefficient kη, the
data in figure 2 has been fit to the exponential equation [24, 25]

η = η0ekηφ1 , (15)

which reduces to (11b) in the dilute limit. The PEG viscosity coefficient is significantly larger
than the hard-sphere value of 2.5 at all molecular weights. This is a consequence of the hydrated,
globular nature of the PEG molecules, which tend to interact with each other more strongly in a
shear flow than would occur for true hard-spheres [24].

The osmotic concentration coefficients kΠ in Table 1 have been obtained from measurements
of the second virial coefficient by Yasukawa et al. [26] (Appendix A). The osmotic concentration
coefficient is smaller than the hard-sphere value kΠ = 4. The effective PEG radius can be
calculated from equation (14) as Re1 = R1(kΠ/4)1/3, giving the values shown in Table 1. The
effective osmotic radius of PEG is smaller than its hydrodynamic radius. The relatively large
hydrodynamic radius R1 reflects the hydrophilic nature of PEG molecules, which tend to adsorb
water molecules within the polymer coils and drag the adsorbed water along during motion [9].

The sedimentation concentration coefficient ks has been measured for many polymers [27]
but is not yet available for PEG. Given kη, however, the sedimentation concentration coefficient
can be estimated from equation (13b) as ks = Rkη. For hard spheres the Wales-van Holde ratio
is R = 6.55/2.5 = 2.62, while for polymers and macromolecules R typically varies between 0.2
for rod-like molecules and 1.6 for globular particles [28]. Low molecular weight PEG acts like an
ideal polymer [29], in which case R = 0.75 [30]; using this value for R gives the ks values shown
in Table 1.

Given ks, the diffusion concentration coefficient kD can be obtained from equation (13a) as
kD = 2kΠ − ks. Figure 2b shows D(φ1) calculated from equation (11b) with (13a) (solid lines),
along with experimental PEG-H2O mutual diffusion coefficient data from Vergara et al. [8],
showing good agreement. The dashed line in figure 2b shows the hard-sphere case (kD = 1.45); as
with the viscosity and osmotic pressure the PEG diffusion coefficient shows significant departures
from hard-sphere behaviour, and the difference depends on the polymer molecular weight.

4.1.3 NaCl

The hydrodynamic radius R2 of NaCl at 25 ◦C is 0.15nm and the Stokes-Einstein diffusivity in
water is D0

2 = 1.5× 10−9 m2/s [4, 10] (Table 2). Here it is assumed that the NaCl osmotic radius
is approximately equal to the hydrodynamic radius, Re2 ≈ R2. Also shown in Table 2 is the NaCl
van’t Hoff coefficient iH evaluated at C2 = 0.5M [31], which will be used in Section 5.

4.2 Effective virial coefficients and viscous mobilities
In the effective hard-sphere model the osmotic virial coefficients (7) become Bij = 2

3π(Rei +Rej)
3

so that

bij =
2Bij
vi

=

(
Rei +Rej
Ri

)3

(16)
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in place of (8). The hydrodynamic mobilities K ′ij and K ′′ij will also depart from the hard-sphere
expressions (9) because of the asphericity, flexibility and hydration of the polymer molecules
[32–34]. For relatively globular, unentangled polymers effective mobility coefficients can be
defined as

K
′

ij = a′
(

−2.5

(1 + 0.16λij)

)
and K

′′

ij = a′′

(
λ2
ij

(1 + λ3
ij)
− (λ2

ij + 3λij + 1)

)
, (17a,b)

where the viscous factor a′ and asphericity factor a′′ can be obtained from the PEG viscosity
data. Combining (17a,b) with (5a,b) gives

a′ =
kη
2.5

and a′′ =

(
ks
4.5
− kη

5.5

)
. (18a,b)

4.3 Effective hard-sphere diffusivities
Using (16)–(18) in (6) and assuming Re2 ≈ R2 gives the following effective hard-sphere expressions
for the cross-diffusion coefficients, bearing in mind that λ = λ12 = λ−1

21 , kΠ = b11/2 and
K ′11 +K ′′11 = −ks,

D11 = D0
1[1 + (2kΠ − ks)φ1], (19a)

D12 = D0
1

[(
Re1
R1

+ λ

)3

+ a′′
(

λ2

1 + λ3
− (λ2 + 3λ+ 1)

)]
φ1, (19b)

D21 = D0
2

[(
1 +

Re1
R1

λ−1

)3

+ a′′
(

λ−2

1 + λ−3
− (λ−2 + 3λ−1 + 1)

)]
φ2, (19c)

D22 = D0
2

(
1− kηφ1

1 + 0.16/λ

)
. (19d)

Equations (19) are plotted as the dashed lines in figure 1, using the kΠ, kη and ks values given in
Table 1, showing better agreement with the experimental data. However, the model does not
capture the φ1 dependence of the NaCl osmotic-diffusion coefficient D21, nor the nonlinearities
in the data at higher PEG concentrations. To account for these effects in the next section a
non-dilute effective hard-sphere model is developed.

5 Concentrated solutions
For tracer diffusion in concentrated solutions the diffusivities Dij can be written in the form

D11 = n1
k

η0
Π1, D12 = n1

k

η0
σπ2, (20a,b)

D21 =
n2

n1
`D11 − γDt, D22 = Dt, (20c,d)

where k is the permeability and Π the osmotic pressure of the host-particle matrix, π is the
osmotic pressure of the tracer particles in the pores of the matrix, Πi = (∂Π/∂ni)T,P,nj and
πi = (∂π/∂ni)T,P,nj are derivatives of the osmotic pressure with respect to concentration,
γ = −π1/π2 is the host/tracer preferential interaction coefficient, σ is the reflection coefficient
of the host matrix, Dt is the tracer diffusivity within the pore space, ` = (σ + α − 1)/α is a
cross-diffusion factor and α is the equilibrium partition coefficient of the tracer between the pore
space and bulk solvent [15].
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5.1 Osmotic pressure
The osmotic pressure of the host-particle matrix can be written as

Π = n1kBTZ, (21)

where Z is the compressibility factor (osmotic coefficient). Assuming the NaCl concentration is
sufficiently low that it does not significantly affect the uncharged polymer osmotic pressure (i.e.
assuming Π2 = 0), in the effective hard-sphere model Z is given at volume fractions up to 0.55
by the Carnahan-Starling equation

Z =
1 + φe1 + φe21 − φe31

(1− φe1)3
, (22)

where φe1 = ve1n1 = φ1kΠ/4 is the effective (osmotic) volume fraction and ve1 is the PEG effective
volume defined in Section 4.1.1 [17, 35]. Differentiating (21) with respect to n1 gives, bearing in
mind that ve1 is a constant,

Π1 =

(
∂n1kBT Z

∂n1

)
T,P,n2

= kBT

(
dφe1Z
dφe1

)
= kBT

[
1 + 4φe1 + 4φe 2

1 − 4φe 3
1 + φe 4

1

(1− φe1)4

]
. (23)

The salt osmotic pressure in the pore fluid is

π = inrkBT, (24)

where i is the van’t Hoff factor, nr = n2/α is the salt concentration in the pore space and α is
the salt partition coefficient between the pores and the bulk fluid [15, 36],

α = e−b12φ1 . (25)

Here b12 is given by equation (16) as b12 = 2B12/v1 = (Re1/R1 + λ)3, assuming as in Section 4.3
that Re2 = R2. For NaCl in the infinitely dilute limit the Na+ and Cl− ions completely dissociate
and i = 2; at higher concentrations i is less than 2 (partial dissociation), and at C2 = 0.5M
i = 1.8 [31].

Differentiating (24) with respect to ni gives

π1 = ikBTn2b12v1/α and π2 = ikBT/α, (26a,b)

from which the preferential interaction coefficient γ can be obtained as

γ = −π1/π2 = −n2b12v1 = −φ2b12/λ
3. (27)

Equations (25) and (27) account for the fact that the PEG molecules tend to preferentially adsorb
water molecules while rejecting the Na+ and Cl− ions into the pore fluid, so that nr in the pore
space is larger than the bulk salt concentration n2 [12, 36].

5.2 Permeability
The permeability of the host matrix to the flow of water can be written as

k =
f

6πR1n1
, (28)

where f = s/s0 is the dimensionless sedimentation coefficient (friction coefficient), given by (11c)
in the dilute limit [16, 37]. Here it is assumed that for relatively globular polymer molecules f is
given by a hard-sphere Richardson-Zaki equation [16, 38]

f = (1− φ1)ks , (29)

where ks is the sedimentation concentration coefficient obtained in Section 4.1.2. Equation (29)
reduces to equation (11c) in the limit φ1 → 0.
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5.3 Tortuosity and reflection coefficient
The tracer diffusivity Dt can be written in the form

Dt = τD0
2, (30)

where τ is the diffusive tortuosity factor accounting for the hindrance effect on the tracer particle
diffusion within the host matrix [15, 39]. In the dilute limit φ1 → 0, comparison of (20d) with
(6d) gives

τ = 1− τ1φ1, (31)

where τ1 = −K ′21. Similarly, equation (20b) in the limit φ1 → 0 becomes D12 = D0
1σ, and

comparison with (6b) gives
σ = σ1φ1, (32)

where σ1 = b12 +K ′′12.
In the hard sphere case, constitutive equations for τ and σ in concentrated suspensions have

been obtained by using capillary flow models and a power-law equation for the hard-sphere
viscosity [15]. For unentangled polymer solutions the viscosity is more accurately described
by exponential functions [24, 25], as demonstrated for PEG in Section 4.1.2. By analogy with
equation (15) this suggests constitutive equations of the form

τ = e−τ1φ1 and σ = 1− e−σ1φ1 , (33a,b)

which reduce to (31) and (32) in the dilute limit.
The tortuosity τ and reflection coefficient σ measure the degree to which the salt ions can

diffuse and advect, respectively, through the host polymer matrix. In the dilute limit φ1 → 0,
τ = 1 and σ = 0, and there is no hindrance to the diffusion or advection of salt. At higher
polymer concentrations τ → 0 while σ → 1, and the motion of salt is significantly hindered
relative to the host matrix [15]. Finally, given σ and α the cross-diffusion factor ` = (σ+α−1)/α
in (20c) is

` = 1− e−K
′′
12φ1 . (34)

The cross-diffusion factor is a measure of the viscous momentum transfer between the tracer and
host particles, and is related to the Onsager phenomenological coefficients Lij by the relation
` = n1L12/(n2L11) [15]. Similarly to σ, `→ 0 as φ1 → 0 while `→ 1 as σ → 1.

5.4 Results
With (21)–(34), the diffusion coefficients in equations (20) take the form

D11 = D0
1(1− φ1)ks

[
1 + 4φe1 + 4φe 2

1 − 4φe 3
1 + φe 4

1

(1− φe1)4

]
, (35a)

D12 = iD0
1(1− φ1)ks

(
eb12φ1 − e−K

′′
12φ1

)
, (35b)

D21 =
φ2

φ1λ3

[(
1− e−K

′′
12φ1

)
D11 + φ1b12D22

]
, (35c)

D22 = D0
2e
K′

21φ1 , (35d)

where φe1 = φ1kΠ/4, i = 1.8 and b12, K
′′
12 and K ′21 are as given in Section 4.2:

b12 =

(
Re1
R1

+ λ

)3

, K ′′12 =

(
ks
4.5
− kη

5.5

)(
λ2

1 + λ3
− (1 + 3λ+ λ2)

)
and K ′21 =

−kη
1 + 0.16/λ

.

The solid blue curves in figure 1 show the Dij calculated from (35) using the coefficient values in
Table 1. The model shows good agreement with the data, and reproduces the nonlinear shape
of the PEG diffusiophoresis coefficient D12, including the observed maximum at φ1 ≈ 0.2. A
closer match to the D12 and D21 data can be obtained by using a best-fit value λ = 0.36 for the
particle size ratio, as shown by the dotted curves in figure 1.
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Figure 3: Cross-diffusion coefficients Dij in the system PEG–NaCl–H2O. The data are from
Vergara et al. [4] (PEG200, 0.5M NaCl, circles) and Vergara et al. [6] (PEG400, 0.78M NaCl,
crosses). Also included in (a) is mutual diffusion coefficient data from Vergara et al. [8]. The
solid curves are from (35) with the coefficient values in Table 1.

5.4.1 Molecular weight dependence

As a further test of the model, figure 3 shows the effect on the Dij of increasing the NaCl
concentration to 0.78M (φ2 = 0.0066) and increasing the molecular weight of the polymer
molecules to PEG400. The plus symbols are data from the experiments of Vergara et al. [6].
The solid green curves are from equation (35) using the coefficients for PEG400 in Table 1. The
model captures the concentration dependence of D11 and D22 quite well for PEG400, while
slightly over-predicting the PEG diffusiophoresis coefficient D12 and the NaCl osmotic-diffusion
coefficient D21 at low concentrations.

At low PEG concentrations (φ1 → 0) equation (35c) becomes

D21 =
φ2

λ3
[K ′′12D11 + b12D22] ≈ φ2

b12

λ3
D22,

which is similar to expressions for D21 obtained by Vergara et al. [6] and Annunziata [5], which
also predict that D21 is proportional to D22 in the dilute polymer limit. Since D22 decreases
with φ1, the models all predict that D21 decreases with increasing PEG concentration. The D21

data for PEG400 appears to be independent of φ1, in contrast to the models and the PEG200
data. The measurements of the osmotic diffusion coefficient D21 tend to have more experimental
uncertainty than the other coefficients [4, 6]. Further support for a decrease in D21 comes from
experiments on the system PEG2000–NaCl–H2O [5], which also also show D21 decreasing as the
polymer concentration is increased.

The model predictions for PEG2000 solutions (not shown) are qualitatively similar but not
as accurate as for the smaller molecular weights. This may reflect a breakdown of the effective
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hard-sphere model – PEG2000 molecules are much less spherical in solution than PEG200 [32],
and the PEG2000 particles are entangled at relatively low concentrations [9]. Both of these
effects negate the assumptions of the effective hard-sphere model developed here. Nevertheless,
the results in figure 3 suggest the model is able to predict with a fair degree of accuracy the
diffusion coefficients in low-molecular weight PEG solutions as functions of both concentration
and polymer size.

5.4.2 Breakdown of the Stokes-Einstein equation

For large tracer particles with λ� 1, the Fickian diffusivity D22 can be written in the form of a
Stokes-Einstein equation

D22 =
kBT

6πηR2
, (36)

where η is the viscosity of the polymer solution [40, 41]. Equation (36) is valid as λ → ∞
because for large tracer particles the polymer solution behaves like an effective continuum. For
small tracer particles with λ < 1, however, the tracer particles are significantly affected by the
molecular nature of the polymer molecules and the Stokes-Einstein relation (36) breaks down
[42–44]. Physically, the tracer particles experience a reduced effective viscosity ηe within the pore
space that is smaller than the macroscopic viscosity η [15, 45, 46]. Figure 4 shows D22 calculated
from (36) with equation (15) for the PEG viscosity (dotted curves), along with experimental
data for three polymer molecular weights (PEG200, λ = 0.44; PEG400, λ = 0.30; and PEG2000,
λ = 0.13). The Stokes-Einstein relation (36) tends to underestimate the NaCl diffusivity, and the
discrepancy becomes larger as λ decreases.

In order to account for pore-scale viscosity effects the tracer diffusivity can be written in the
form of an effective Stokes-Einstein equation

D22 =
kBT

6πηeR2
, (37)

where ηe is the effective viscosity experienced by the tracer particles within the pore space [15, 47].
Comparing (37) with (35d) gives an expression for the effective viscosity

ηe = η0 exp

[
kηφ1

(1 + 0.16/λ)

]
, (38)

which reduces to (15) as λ→∞. Equation (38) contains Batchelor’s viscous correction factor
(1 + 0.16/λ) [3]. When λ → ∞ (large tracer particles or small host particles), this factor is
equal to 1 and the effective viscosity ηe is equal to the solution viscosity η. For very small
tracer particles relative to the host molecules (λ→ 0) the viscous factor becomes large and ηe
approaches the solvent viscosity η0. The solid curves in figure 4 are from equations (37) and
(38), showing much better agreement with experiment. This suggests that the breakdown of the
Stokes-Einstein equation for NaCl diffusion in low molecular weight PEG solutions is caused
mainly by long-range hydrodynamic interactions between the salt ions and the polymer matrix
[48].

5.5 Discussion
The effective hard-sphere model developed here relies on hydrodynamic results obtained for
impermeable spherical particles with no-slip boundary conditions [3]. The mobility coefficients
have been modified using viscosity data leading to good results for relatively low molecular weight
PEG solutions, but likely limit the model to systems in which the polymers are unentangled and
roughly spherical in shape. A more general model of the hydrodynamics for polymer molecules
may be porous particles with slip or partial slip boundary conditions [50] or dumbell chain models
[51, 52]; however, expressions forK ′ij andK ′′ij for these cases are not at present available. Equations
(20) may still apply even in solutions of entangled or charged macromolecules given appropriate
expressions for the thermodynamic and transport coefficients. For example, Cohen et al. [53] have
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Figure 4: NaCl main diffusion coefficient D22 in the system PEG–NaCl–H2O. The data were
obtained using three molecular weights: (a) PEG200 (circles) [4]; (b) PEG400 (crosses) [6]; and
(c) PEG2000 (squares) [49]. The dash-dot curves are from the Stokes-Einstein equation (36) and
the solid curves are from equation (37).

shown that a des Cloizeaux osmotic pressure of the form Π = C1RT [1 + αC (C1/C
∗
1 )5/4] gives

good agreement with experimental data in entangled PEG solutions, where αC is a coefficient that
depends on the molecular weight [54]. Similarly, Ullmann et al. [48], Holyst et al. [44] and Kohli
and Mukhopadhyay [55] have shown that the tracer diffusivity and viscosity of entangled PEG
solutions can be modelled via stretched exponential functions of the form D22 = D0

2 exp(−βφν1)
and η = η0 exp(aφb1), where β, ν, a and b are constants. An extension of the present model to
entangled solutions could potentially be developed using these and similar expressions for the
coefficients σ, α and f , and will be explored in future work.

6 Conclusion
An effective hard-sphere model of salt diffusion in uncharged, unentangled hydropolymer solutions
has been developed. Given the viscosity, sedimentation coefficient and osmotic pressure of the
polymer, the model predicts the ternary diffusion coefficients as functions of polymer size and
concentration. The model uses hydrodynamic results obtained for hard spherical particles,
modified using the viscosity and osmotic pressure of the polymer. This leads to good results for
NaCl diffusion in low molecular weight polyethylene glycol solutions. It is anticipated the model
will apply more generally to crowded solutions in which the host molecules are inert, unentangled
and roughly spherical in shape.
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A Osmotic virial coefficients
Depending on the concentration variable used, the dilute-limit osmotic pressure of a binary
solution, equation (11d), is given in the literature in several equivalent forms, including

Π = n1kBT (1 +B11n1)

= n1kBT (1 + kΠφ1)

= C1RT (1 +B∗11C1)

= ρ1RT (1/M1 +A11ρ1),

(39)

https://www.kingjamesbibleonline.org/become-a-christian.php
https://www.kingjamesbibleonline.org/become-a-christian.php
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where C1 = n1/Na is the molar concentration (mol/L), ρ1 = M1C1 = M1n1/Na is the mass
concentration (g/L), R = kBNa is the gas constant and Na is Avogadro’s constant. Here B11

is the second virial coefficient, B∗11 is the mole-based second virial coefficient (L/mol) and A11

is the mass based second virial coefficient (mol L/g2). They are related to each other by the
equations B∗11 = B11Na = kΠv1Na = M2

1A11.
Yasukawa et al. [26] measured A11 for several PEG molecular weights at T = 298K and

obtained RTA11 = 1.11× 10−4 bar L2/g2 for PEG200, where R = 0.08314 Lbar/K/mol is the
universal gas constant, giving A11 = 4.48 × 10−9molm3/g2 and kΠ = M2

1A11/(Nav1) = 1.81.
Gaube et al. [56] also measured A11 for PEG200, at a slightly lower temperature of 293K, and
obtained a larger value A11 = 7.16×10−9molm3/g2, giving kΠ = 2.92. Here the data of Yasukawa
et al. [26] has been used, as the experiments were conducted at the same temperature as the
PEG cross-diffusion experiments [4].

For PEG600 Yasukawa et al. [26] obtained RTA11 = 5.86× 10−5 bar L2/g2; extrapolation
between the PEG200 and PEG600 values gives RTA11 ≈ 8.48 × 10−5 bar L2/g2 for PEG400,
yielding kΠ = 1.85. Finally, for PEG2000 RTA11 = 4.00× 10−5 bar L2/g2 [26] giving kΠ = 1.98.
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