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Abstract. Quaterns are introduced as a new measure of rotation. Rotation

in quaterns has an advantage in that only simple algebra is required to convert
back and forth between rectangular and polar coordinates that use quaterns as

the angle measure. All analogue trigonometric functions also become algebraic

when angles are expressed in quaterns. This paper will show how quatern
measure can be easily used to approximate trigonometric functions in the first

quadrant without recourse to technology, infinite sums, imaginary numbers,

or transcendental functions. Using technology, these approximations can be
applied to all four quadrants to any degree of accuracy. This will also be shown

by approximating π to any degree of accuracy desired without reference to any

traditional angle measure at all.

1. Introduction

DesCartes [1] invented Analytic Geometry by relating equations utilizing con-
stants and variables to diagrams in the cartesian plane. Since that time, math-
ematicians have developed many methods to convert back and forth between the
rectangular and polar coordinates of a point in the plane. Coolidge [2] documents
the history of polar coordinates. De Moivre’s formula [3] and Euler’s formula [4]
used the complex plane to make such calculations easier. Taylor [5] pioneered the
use of infinite sums. These were then used to provide approximations of the trigono-
metric functions to whatever desired degree of accuracy.

This paper will first present an alternative method of describing rotation that
is based upon the Manhattan distance. This new type of angle measure will then
be used in its own appropriate type of polar coordinate system. Describing polar
coordinates in this way has an advantage. The advantage is that one may then con-
vert between polar and rectangular forms using only algebraic expressions. In other
words, no imaginary or complex numbers are needed. No transcendental functions
are needed. No infinite sums are needed. All of the trigonometric functions become
algebraic rather than transcendental.

2. Method

This section introduces the method and uses it first to provide an approxima-
tion. Later sections of this paper will then develop this idea further such that the
method will produce exact values.
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Place a vector of magnitude 1 with its initial point at the origin, and its terminal
point at (1,0), rotating counter-clockwise such that a positive angle θ is formed
between the vector and the x-axis. As the terminal point of the vector completes
one rotation around the origin, three different distances are summed:

1: The distance traced along the unit circle will be Dc = 2π.
2: The total distance traced in the x dimension, from  = 1, to  = −1, and back
again, will be D = 4.
3: Likewise, the total distance traced in the y dimension, from y = 0, to y = 1, to
y = −1, and then back to 0, will be Dy = 4.

The sum of the total distance travelled in the x direction plus the total distance
travelled in the y direction has been called in the literature by many different
names: Some examples are the taxicab distance, the rectilinear distance, and the
Manhattan distance.

Assume that the proportion in equation 1 stays approximately constant over
0 ≤ θ ≤ 2π. This assumption will later be used in various approximations.

(1)
Dc

D + Dy
≈
π

4

On the other hand, the integral in equation 2, for 0 ≤ θ ≤ π
2 , will deliver the

exact sum Dy + D as a function of θ in the first quadrant.

(2)

∫ θ

0
| cosθ| + | − sinθ|dθ = sinθ − cosθ + 1

In the unit circle, sinθ = y and cosθ = . This means that the Manhattan
distance travelled in the y direction plus the Manhattan distance travelled in the
x direction along the unit circle from (1,0) is simply y −  + 1. This distance
is defined to be a new measure of rotation that has units of length. The ancient
letter koppa Ϟ will be used to signify this ”angle”. Ϟ will be measured in quaterns
where one quatern has a length of one unit, and one quatern also signifies a rotation
= 45◦, or π

4 radians. Thus, 8 quaterns would be a rotation of exactly 360◦, or 2π
radians.

For any given point on the unit circle within the first quadrant, ϟ is exactly
calculated using equation 3.

(3) Ϟ = y −  + 1

In the first quadrant for all distances, 3 can be modified thus:

(4) Ϟ =
y − 

r
+ 1

Given the rectangular coordinates (, y), θ ≈ 45Ϟ◦ or θ ≈ π
4Ϟ radians. EX-

AMPLE: If given the point (15,23) in rectangular coordinates, what is the ap-
proximation for θ?

https://en.wikipedia.org/wiki/Taxicab_geometry
https://en.wikipedia.org/wiki/Taxicab_geometry
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(5) r =
Æ

152 + 232 ≈ 27.46

(6) Ϟ ≈
23 − 15

27.46
+ 1 ≈ 1.29

(7) θ ≈ 45Ϟ ≈ 58.05◦ or θ ≈
π

4
Ϟ ≈ 1.01 radians

The true value for θ associated with the point (15,23) is 56.89◦, about a 2%
error.

3. Simple form within the first quadrant

In this section the simplest form represented by 4 will be used to conduct easily
calculated approximations back and forth between rectangular and polar coordi-
nates for any point in the first quadrant. Note that values converting between
quatern-analogue polar and rectangular coordinates are exact; they only become
approximations when converting to degrees or radians. When used as approxima-
tions, these simple formulas have errors of less than 3 percent.

Once the principles are established, following sections will present the general
form, valid at all distances, and in all 4 quadrants.

Substituting
Æ

1 − y2 for , and then solving 4 for y gives equation 8. When
r = 1, this would be the sne function.

(8) y =
r

2
(
Æ

−ϟ2 + 2ϟ+ 1 + ϟ− 1)

By a similar process, solving equation 4 for  gives equation 9. When r = 1,
this would be the cosne function.

(9)  =
r

2
(
Æ

−ϟ2 + 2ϟ+ 1 − ϟ+ 1)

EXAMPLE: Given the standard polar point (r, θ) = (15,35◦, what would be
the Ϟ approximation for the  and y coordinates? First, equation 4 would be used
to find Ϟ:

(10) Ϟ ≈
35

45
≈ .778

Using .778 in equation 9 will give the approximate  coordinate:

(11)  ≈
15

2
(
q

−(.778)2 + 2(.778) + 1 − (.778) + 1) ≈ 12.14

The true value for the  coordinate is ≈ 12.29, which is an error of about 1%.
Using equation 8 in the same way to find the y coordinate yields an approx-

imation of 8.81. Since the true value is about 8.60, this is an error of about
2.4%.
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4. General Forms

A major issue in applying these principles to the other three quadrants is deter-
mining an algebraic method to govern the changes in the signs of the coefficients
with step functions so as to be continuous while giving the correct sign at the cor-
rect time. In prior works this was accomplished using the imaginary plane, as in [3]
and [4]. This method shown here accomplishes all of this using following algebraic
step functions to govern the coefficients in the general equations:

4.1. The helper functions. The  function adjusts the constant of the M term,
and provides the 2 term beneath the radical.

(12)  = |4H − C| − 2H

The M step function adjusts the Ϟ input by quadrant:

(13) M = Ϟ− 8
�

Ϟ

8

�

The next three functions govern sign changes in all the quadrants:
Step function: the constant of π, P, for the coordinates functions

(14) H = −1
�

Ϟ
4

�

(15) T = −1
�

Ϟ
2

�

(16) C = −(−1)
�

Ϟ−2
4

�

4.2. The General Conversion Functions. These functions are continuous; they
work uniformly, unambiguously, and universally in all four quadrants, and at all
distances:

Equation 17 gives Ϟ from rectangular coordinates:

(17) Ϟ =

 
||y −

y
|y|

r

!

+
�

�

�

�

4y

|y|
−



||

�

�

�

�

−
2y

|y|

Equation 18 gives the  coordinate. If r = 1, then this is the analogue cosne
function.

(18)  =
� r

2

�

 p

−M2 + 2M + 2 − 2 + T( − M)

C

!

Equation 19 gives the y coordinate. If r = 1, then this is the analogue sne
function.

(19) y =
� r

2

�

 p

−M2 + 2M + 2 − 2 + T(M − )

H

!
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4.3. Other approaches approximating the trigonometric functions. The
approach to polar/rectangular conversion approximation presented in this paper is
interesting in that one can work with vectors in a purely algebraic way that is 100%
accurate so long as all angles remain in quaterns. These conversions only become
approximations when one converts back into degrees or radians.

The desire for an algebraic approach is not new; this is related to quests like
squaring the circle. Here are some other examples of various attempts at approxi-
mating the trigonometric functions.

Monks [6] explains an ancient method for approximating the sne function.
Azim [7] presents a more modern approach wherein one can also do the approxima-
tion without technology. Kusaka [8] seeks to increase computation speeds for low
performing computers, while Kumar [9] does the same thing for faster computers.

Because quaterns can be used with technology to produce approximations to
any degree of accuracy, it is possible that researching this method further might
supplant some other methods.

5. Websites to demonstrate conversions

This link, rotation in quaterns, uses the Desmos online graphing calculator. At
this site, one can calculate Ϟ exactly given (, y), and calculate (, y) exactly if
given (r,Ϟ). One can also approximate θ or approximate (, y) using only algebraic
expressions.

This paper thus far has shown that quatern measure can be used to easily ap-
proximate the trig and inverse trig functions. Using another link, Koppa π approx-
imation, one can show the validity of quatern measure by showing that an infinite
sum using quaterns can provide exact values. At this site, one can approximate π
to any degree of accuracy without referencing traditional angle measure in
any way.

The author demonstrates the Desmos calculations above, in the video accessed
with this link: A new type of angle measure.

6. Conclusion

The archaic Greek symbol for koppa, Ϟ, is suggested for use representing quaterns.
There are several reasons for this:
1: Quaternions are the best way to describe rotations, so an allusion is made to
that, as well as the phrase ”quarter turn.”
2: Ϟ was the archaic Greek letter ”q”. It also represented the number ”90”, which
recalls 90 degrees.
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