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1 Introduction: towards a discrete revolution

Some of the most interesting pre-Socratic debates had their ori-

gin in the cultural precedents developed on the banks of the great

rivers of the Near East [202, 24, 207, 176, 222]. But it was the

pre-Socratic philosophers, among them Anaximander, Epimeni-

des, Parmenides, or Zeno of Elea, who posed in writing certain

problems that remain problems for contemporary philosophy and

science. Three of these problems deserve special attention: the pro-

blem of change, infinity, and self-reference. The problem of change

is undoubtedly the most difficult and significant of the problems

posed by man. We were able to raise it, but we have not been able

to solve it. And in the end, we have almost forgotten it. The vast

majority of humans have not even heard of the problem of change.

This book begins by reminding it because its content suggests a

new physical and mathematical scenario in which it could be re-

solved. The new scenario would also imply a profound revolution

in science and in our own conception of the physical world.

In spite of its apparent simplicity, no one has been capable of

explaining, for instance, how a simple change of position takes

place. Physics, the science of change, seems to have forgotten its

most basic problem. In their turn, some philosophers as Hegel

[115, 118, 161, 178, 193, 238] defended that change is an incon-

sistent notion, while others, as McTaggart, came to the same con-

clusion as Parmenides [179] on the impossibility of change [160].

Perhaps the (apparent) insolubility of the problem of change has

to do with the continuum spacetime framework where all solutions

have been tried, a continuum in which space and time can be infi-

nitely divided. For this reason, infinity is involved in the problem

of change. And the hegemonic infinitist stream in contemporary

7



8 Introduction: towards a discrete revolution

mathematics has its own responsibility in the fact that the problem

of change remains an unsolved problem; and a forgotten problem,

despite its extraordinary importance: if we do not resolve the pro-

blem of change we will not be able to explain the world, because

the world is an incessant succession of changes.

Although the relationship is not evident, the difficulties posed

by the problem of change could be related to the continuous per-

ception of the physical world that our brain elaborates from discon-

tinuous sequences of images. It takes approximately 0.013 seconds

to elaborate one of such images [183], so it can only process a

finite number of images per second (less than 77). From this dis-

continuous sequence of images, however, emerges our continuous

perception of the physical world (phi phenomenon [84]), the sa-

me as with the projection of the frames of a film. It is reasonable

to think that this sensory perception of the natural processes as

continuous processes inspired the interpretation of nature in conti-

nuous terms. Motion, for example, has always been considered (at

least since Aristotle [12, Books III-VI]), and continues to be con-

sidered, as a continuous process, not as a discontinuous process.

But being a change of position, motion remains unexplained, pre-

cisely because it is interpreted as a continuous process. The idea

of the continuum is an inheritance from pre-Socratic and classical

Greece that could become obsolete if the hypothesis of the actual

infinity is inconsistent. It is hard to imagine that motion, clearly

perceived as continuous, is actually discontinuous; but possibly it

is discontinuous.

Science has been warning us for several centuries that things

are not what they seem. Things for a living being are the things

that serve it to survive and reproduce. To perceive the intimate

physics of the universe is not necessary for life. In consequence,

life -natural selection- had not to deal with those issues. The con-

tinuous perception of the world is a deception of our brain that

has been good for us to survive, but very bad to understand na-

ture: it has not even occurred to us that nature could be discrete,

that it could be working in jumps, although at quite more than 77
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per second, and more than 77 quadrillion per second. Indeed, as

shown in Appendix A, motion, and all changes, could be discrete,

discontinuous, which in turn requires for space and time to be of

a discrete nature, not infinitely divisible but with indivisible units

(atoms of space and time in the terminology of L. Smolin [220]). In

this new discrete and finite scenario, the problem of change could

find its solution. If the hypothesis of the actual infinity were pro-

ved to be inconsistent, that would be the only available scenario

to explain the world in consistent terms.

While change is an evident and observable characteristic of our

continuously evolving universe, infinity is a theoretical notion of

metaphysical origin that became mathematical at the end of the

19th century, and that has no observable relationships with the

physical world. We use infinitist mathematics to explain the world,

but we have never observed or measured anything infinite. On the

contrary, every time the infinities appear in the equations of phy-

sics, physicists have to do algebraic juggling to get rid of them.

G. Cantor the prince of the mathematical infinity, was an enthu-

siastic theoplatonist with scarce devotion to experimental sciences

and of enormous influence in contemporary mathematics [68, 163].

To illustrate the profound Cantor’s theoplatonic convictions, let

us recall some of his words:

. . . in my opinion the absolute reality and legality of the natu-
ral numbers is much higher than that of the sensory world. This
is so because of a unique and very simple reason, namely, that
natural numbers exist in the highest degree of reality, both se-
parately and collectively in their actual infinitude, in the form of
eternal ideas in Intellectus Divinus. ([163]; reference and (Spa-
nish) text in [91])

. . . I am only an instrument of a higher power, which will con-
tinue to work after me in the same way as it manifested itself
thousands of years ago in Euclid and Archimedes . . . ([49, pp
104-105])

. . . I cannot regards them [the atoms] as existent either in con-
cept or in reality no matter how many useful things have up to
a certain limit been accomplished by means of this fiction. ([48,
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p 78], English translation of [40])

My theory stands as firm as a rock; every arrow directed against
it will return quickly to its archer. How do I know this? Because
I have studied it from all sides for many years; because I have
examined all objections which have ever been made against the
infinite numbers; and above all because I have followed its roots,
so to speak, to the first infallible cause of all created things. [78,
p. 283] (the italic is mine).

But neither theoplatonism nor twenty seven centuries of discus-

sions were sufficient to prove (or disprove) the consistency of the

basic hypothesis of infinitism: the hypothesis of the actual infinity.

A hypothesis according to which the incompletable can exist as

completed. For example, the endless list of the natural numbers

(the counting numbers) 1, 2, 3, . . . would exist as a finished, com-

plete whole, even though there is not a last number completing

the list. So complete is that list that it has a precise number of

elements: ℵo elements (ℵo, read aleph-null, aleph-naught, or aleph-

zero, is the first transfinite cardinal number). The alternative to

the hypothesis of the actual infinity is the hypothesis of the po-

tential infinity, which assumes the existence of the endless list of

the natural numbers, not as a completed totality but as an endless

and always incomplete list; a list that can be arbitrarily extended

but that can never be completed (the key distinction between the

actual infinity and the potential infinity will be introduced and

discussed in Chapter 4).

As it could not be demonstrated or refuted that such incomple-

table totalities exist as completed totalities, their existence had to

be established by law: the Axiom of Infinity of set theories. As will

be seen in detail in Chapter 4, the Axiom of Infinity states the

existence of an infinite and denumerable set (similar to the set of

the natural numbers: 1, 2, 3,. . . ), assuming that the involved infi-

nity is the actual infinity. Contemporary mathematics are founded

on the belief that infinite sets do exist as completed totalities. So-

me thinkers find it acceptable the completion of incompletable.

Some of us do not think so. It is ironic that it has been an es-
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sentially infinitist theory, set theory, that has finally provided us

with the instruments for a productive criticism of the actual in-

finity hypothesis, beyond the Byzantine nature of the preceding

discussions. One of those instruments is the number ω (omega),

the smallest of the infinite ordinal numbers. In this book we will

make an extensive use of the ω-ordered objects (sets, sequences,

lists, tables, procedures, etc.). And it will be proven over and over

again that they are inconsistent.

The third conceptual legacy of the Presocratics philosophers,

self-reference, is also a debatable notion that has been debated for

centuries. In addition to language and meta-language (language

on language) we would also have self-language, language autono-

mously speaking about itself. Self-reference paradoxes have been,

and continue to be, the source of interminable discussions. One of

those paradoxes, the Liar Paradox, (in informal terms: This sen-

tence is false) led (via Richard Paradox, as Gödel himself recog-

nized [102, p. 56]), to the celebrated Gödel’s first incompleteness

theorem. Many logicians consider it as the most important theo-

rem of all times. From the perspective of the natural sciences, this

statement often puzzles us. And as expected, the famous theorem

also finds support in the Cantorian infinitism [165, p. 116]. In fact,

these supports motivated the start of the investigations gathered

in this book, although this book does not deal with the motives

but with the results of those investigations.

Through self-reference, the theorems of incompleteness limit ra-

tional analysis: under a given axiomatic basis compatible with self-

reference, certain statements can be neither proved nor disproved.

Especially if the statement is self-referent, assuming that state-

ments can state about themselves, making use of a rational auto-

nomy that nobody has given them. As if words took on a life of

their own, beyond the mind that elaborates them; as if the ome-

let ate itself. It is significant that some authors try to camouflage

self-reference through what could be called self-reference enginee-

ring. However, when self-reference appeared in set theory, its use

had to be restricted because of the high number of inconsistencies
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derived from it. In fact, some well-known inconsistencies of the

naive stage of set theory, such as Russell’s Paradox of the set of

all sets not belonging to themselves, or the universal set itself (the

set of all sets), made use of self-reference and were inconsistent

(even if they were called paradoxical). It was necessary to impose

axiomatic restrictions to eliminate these sets from the set theory

scenario: not any predicate can define the elements that belong

to a set; not being a member of itself would be an example of an

invalid self-referent predicate. Self-reference on demand.

In short, we inherited from Presocratics a promising challenge

(the problem of change) and two debatable concepts (the actual in-

finity and self-reference). With the passage of time we have forgot-

ten the challenge while turning the actual infinity and self-reference

into two fundamental and unquestionable pillars of mathematics

and logic respectively, both incompetent to solve the problem of

change. Infinitism defines the main (and almost unique) stream

in contemporary mathematics. Not everyone feels comfortable in

the infinitist paradise (including authors such as Poincaré, Kro-

necker o Wittgenstein), although militant criticism is almost non-

existent. It is convenient to remember at this point that man tends

to be more religious than scientific, and that scientists can also be

self-reverent and scarcely self-critical. Putting personal convictions

and interests before the objective knowledge of the world is mo-

re common than one might expect in the scientific community.

There are main streams of scientific thought that are absolutely

intolerant of disagreement. Under these conditions, criticizing a

long-established foundational hypothesis becomes an almost im-

possible task. Even so, this book is dedicated to the critique of

one of those foundational hypotheses: the hypothesis of the actual

infinite.

The consequences of infinitist mathematics on experimental sci-

ences are disastrous because it promotes an analogue, and then

continuous, model for the physical world. A model that is clearly

in conflict with the discrete nature revealed until now by all physi-

cal observations and measurements: ordinary matter, elementary
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particles, energy, electric and non-electric charges, seem to be, all

of them, discrete entities, discontinuous entities with indivisible

minima. The war of physicists against the infinities is also stri-

king. They pay a high price in the form of interminable and te-

dious calculations for getting rid of them. Whereas, on the other

hand, they do not spend a single minute to call into question the

formal consistency of the hypothesis of the actual infinity that

lays the foundations of infinitist mathematics, at the moment the

only formal language available to express their theoretical and ex-

perimental analysis of the physical world. Physics, the science of

change, the science of the regular succession of events, as Maxwell

called it [155, p. 98], is trapped in infinitist mathematics, in the

spacetime continuum that makes it impossible to explain change,

its great unanswered question.

I am convinced (although my conviction is not as firm as a rock)

that mathematics needs its own Copernican revolution, the turn

from the infinitist continuity (which leads us from pre-Socratic

Greece) to the finitist discontinuity discovered by early 20th cen-

tury physicists (quantum mechanics). A turn that will be forced

by the inconsistency of the actual infinity in a world that seems

to be consistent in all of its details. That revolution will be more

intense than the Scientific Revolution itself. Not only because of

its brutal impact on physics, and through physics on the rest of

the experimental sciences, but also because it will mean a radical

change of paradigm in our understanding of the world and of our-

selves. The subject is so relevant that even in this introduction it

is worth anticipating its content somewhat, especially because of

the stimulus it can give to the reading of the book. It is something

similar to discover that the continuous movement we observe on a

screen is just an illusion, that the only reality is a discontinuous

sequence of images observed at a certain speed (about 24 frames

per second). The infinitist continuity represents that illusion, whi-

le the finitist discontinuity represents the only reality behind that

illusion: the discontinuous sequence of frames. In the case of the

physical world, that discontinuity would arise from the existen-



14 Introduction: towards a discrete revolution

ce of indivisible units of space, maybe of the order of 10−105m3

(Planck volume), whose content is updated at the successive indi-

visible units of time, maybe of the order of 10−43s (Planck time),

and remains unchanged during each of these tiny units of time. In

the Appendices A and B the details are expanded. And in the rest

of the book it is shown that this may be the only direction for a

consistent knowledge of the physical world.

In any case, the hypothesis of the actual infinity is just a hy-

pothesis, and we have the right and the duty to bring it into ques-

tion. That is the main objective of this book. A collection of critical

arguments on the hypothesis of the actual infinity developed for

the last twenty five years. The construction of that criticism was

riddled with errors. And it was the endless struggle against those

errors that made me understand that the strategy of trial and error

is the only viable strategy in this universe, from the formation of

galaxies to organic evolution, including the elaboration of scientific

theories. Errors are often hidden or simulated. We are educated to

be ashamed of errors, but errors are part of the scientific method.

And it should be a (positive) part of the professional curriculum

of all professions, including scientists. If one paradigm does not

work, it is changed for another, and we learn from the mistakes

made in the old paradigm. There is no science without errors and

corrections. Nor should there be room in science for dogmatism

and intolerance. Unfortunately, there is.

It is sure this book still contains errors, which should be a sti-

mulus for a critical reading. I hope it also contains some acceptable

conclusions. Most of its chapters are dedicated to the critique of

the numerable infinity (the smallest of the infinities, the infinity

of the set of the natural numbers) subsumed into the Axiom of

Infinity. But also the infinite that legitimizes the sequences of in-

creasing infinities: the sequence of alephs: ℵ0, ℵ1, ℵ2 . . . ; and the

sequence of powers ℵ0, 2ℵo, 22
ℵo

. . . Thus, to prove the inconsis-

tency of the first infinity implies to invalidate all the others. There

is a general agreement in that a contradiction suffices to prove the

inconsistency of the hypothesis from which the contradictory re-
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sults have been deduced. Except in the case of the hypothesis of

the actual infinity. And this is not a joke: in Cantor’s words, cer-

tain infinities are inconsistent because of their excessive infinitude

[40]. An additional reason to deal exclusively with the smallest of

them.

Some of the arguments included in this book were published in

2017 [134], as a chapter of the volume edited by F. Pataut in homa-

ge to P. Benacerraf, one of the great contemporary authors in the

philosophy of mathematics. There, the arguments were summari-

zed, here completely developed and rewritten with the intention of

making them accessible to any interested reader. In addition, so-

me other unpublished arguments are included. It is, therefore, an

informative book (at least it is not a typical textbook), although

certain knowledge (the content of Chapter 4) is necessary. It is

also a book of critical research, but without excessive academic

requirements. Discussions are rigorous, but without demands for

specialized knowledge, which is possible because it is discussed on

a basic fundament of mathematics, not on specialized aspects of its

development. It is therefore a peculiar text, which aims to dissemi-

nate a series of critical reflections on the mathematical infinity. A

matter which, as indicated above, transcends mathematics, even

science, and announces a pending revolution: the Discreet Revolu-

tion.

Chapters 2 and 3 establish the conventions and the basic prin-

ciples that are followed in the rest of the book. Therefore, it is

convenient to read them initially. They are also self-sufficient, re-

quiring no prior knowledge. Chapter 4 contains the basics about

the mathematical infinity. It is very advisable for readers without

any experience in that field, since it provides the necessary instru-

ments to follow the majority of the discussions developed in the

book. For the sake of completeness, the chapter includes some re-

sults that might not have been included. Pay attention, above all,

to the transfinite numbers ℵo and ω. The rest of the chapters can

be read in any order, although they are grouped by the type of

argument:
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Chapters 5-6: arguments on naif set theory.

Chapters 7-15: axiomatic set theory arguments.

Chapters 16-18: geometry arguments.

Chapters 19-22: transfinite arithmetic arguments.

Chapters 23-32: arguments on supertasks.

Chapters 33-36: synthesis arguments.

Chapters 37-41: appendixes and glossary:

A: The problem of change.

B: Infinity and physics.

C: Suggestions for a natural set theory.

D: Platonism and biology.

E: Glossary.

Evidently, the independence of the chapters imposes an inevitable

increase in repetitions, both in text and arguments.

The readers with some experience in the history of the mathe-

matical infinity will surely find the Spanish title of the book (El

fin del infinito) too pretentious. I think so, too. But I could not

avoid its expressive consistency with the content of the book. I

believe that the end of infinity will come, but not because it is

proved here that it should be so. As Planck said, new ideas break

through, not because their detractors are convinced but because

they die. Considering that many of them are my age, maybe the

announced end is already near.

—–

Note: This book is a revised and updated version (with the excep-

tion of most bibliographical references) of previous works (many

of them unpublished). Drafts and articles that match partial con-

tent in this book are circulating on the Internet outside of my

control and without my permission. Many of them contain errors

and I do not have the option to correct them. Others have been

manipulated. So try to avoid them. I only review those deposited

at Academia, General Science, Researchgate and ViXra. Although
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they are my originals, I do not review those deposited in ArXiv

and PhilSci for years. I take this opportunity to apologize for my

lack of activity in scientific social networks. I do not have time

anymore to attend to their requirements.

Antonio León Sánchez

Salamanca and Santiago del Collado (Ávila), Spain.

February 2021.
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2 Conventions and symbols

P1 To facilitate explanations and discussions, all paragraphs in

this book will be consecutively numbered (as this one). They will

be referred to by the number that appear at the beginning of each

paragraph, preceded by the letter P. For instance, P1 refers to this

paragraph, and P2 to next one. For the same reason, all equations

will also be consecutively numbered within each chapter, although

in this case the numbers will be put in brackets on the right side

of each equation:

f(i) = ai (example of equation) (1)

Equations will be referred to by their corresponding numbers in

brackets: the above equation would be referred to by (1). As usual,

numbers in straight parentheses will indicate bibliographical refe-

rences. In bibliographic references, the abbreviation p. will be used

to indicate page or pages.

P2 Theorems, definitions, corollaries, etc. will be numbered with

the same number of the paragraph where they are enunciated. If

a theorem is enunciated, for instance, in paragraph P153, it will

be referred to as Theorem P153. When more than one statement

of the same type are demonstrated in the same paragraph, they

will named with the same number plus a distinguishing letter, e.g.

P153a, P153b etc. In some cases they will be named by proper

names. The symbol “�” will be used to indicate the end of the

demonstration of a statement when the demonstration follows the

statement. To facilitate reading and minimize errors (related to

punctuation) the initial letter of all substantives in the proper

19
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names of theorems, corollaries, definitions, principles, axioms and

conclusions will be written in capital letters.

P3 When the same explanation serves to two different alternatives,

only one of the alternatives will be explained, adding in parentheses

the word, or words, that would have to be changed in the given

explanation to be the explanation of the other alternative. For

example: If the first (last) item in the list is an even (odd) number,

the list begins (ends) with an even (odd) number.

P4 All symbols used in the book are listed at the end of this

chapter. The ellipsis, symbolically represented by three dots . . . ,

will often be used to denote the rest of the elements of a set or

sequence that obviously follow the indicated elements. The logical

expression “if, and only if” will be written “iff” when convenient.

The expression “actual infinity” refers to one of the types of in-

finity, the other being the potential infinity. Both are introduced

and explained in Chapter 4.

P5 Chapter 4 explains the mathematical terms and concepts used

in the discussions and arguments developed in the rest of the book.

Appendix E includes other mathematical physical and logical con-

cepts that are occasionally used in some chapters of the book, but

that are not explained or defined in the book.

P6 It will be inevitable the use of a few number of primitive con-

cepts, i.e. concepts that cannot be defined in terms of other more

basic concepts. That is the case, for instance, of point, line or set.

The word “collection” will be used in a general sense to refer to

sequences, sets, lists, tables, etc.

P7 Most of the collections, mainly sequences and sets, will be ω-

ordered (as the sequence 1, 2, 3, . . . of the natural numbers). In

a few cases they will be ω∗-ordered (as in the case of the increa-

sing sequence of negative integers . . . -3, -3, -1). The sets used in

the demonstrations, for example the real interval (0, 1), or the set

Q+ of the positive rational numbers, will always be the simplest
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possible in each occasion.

P8 As usual, to put into a correspondence a set A with another

set B means to pair off each element of the A set with an ele-

ment of the set B. All correspondences will be injective, and in

most cases surjective (bijections or one-to-one correspondences).

Unless otherwise indicated, the sets N (natural numbers), Z (inte-

ger numbers), Q (rational numbers), A (algebraic numbers) and R

(real numbers), and any of their subsets, will always be considered

in their natural order of precedence, that is, ordered by their in-

creasing magnitudes or values. In the case of N, the natural order

of precedence is the ω-order (a case of well-order defined in Chap-

ter 4). In all the other cases, excluding Z, the order of precedence

is a dense order (see P11) that is not a well order.

P9 In most cases, we will use the word “denumerable” to refer

to the infinity of the set N of the natural numbers and to the in-

finity of any other set or sequence that can be put into a one to

one correspondence with N. The words “enumerable” or “numera-

ble” can also be used with the same meaning. Although the word

“countable” is also used to refer to finite or denumerable infinite

sets, it will not be used here in order to avoid confusions. Finally,

the terms “non-countable” or “non-denumerable” will be used to

denote the infinities greater than the denumerable infinity.

P10 Although formally unacceptable, Euclid defined two capital

concepts in geometry: the concept of line [117, Definition 2, p. 153]

and the concept of straight line [117, Definition 4, p. 153], being

the second a particular case of the first; and being both of them

currently assumed as primitive, undefinable, concepts. Languages

maybe evolving from their most popular use that, unfortunately

is not always the most correct one [103]. That could be the reason

why in English, line and straight line came to mean the same

thing, and now there is no English word to denote the original

Euclidean concept of line, a universal concept that applies to all

types of lines. For this reason, in the English edition of this book,

the word “line*” will be used to refer to the general geometric
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object that Euclid called line. Thus, and still being a primitive

concept, a line* (line in Spanish) can be understood as any uni-

dimensional continuum of points. Although it is possible to give

a formally productive definition of straight line [137], it will not

be necessary to do so in this book, so that they can continue to

be understood as a particular type of lines whose lengths are the

shortest of all possible lines joining any two given points. No matter

how redundant, straight lines will always be referred to by “straight

lines”. As usual, real and rational lines* and straight lines will be

used to denote lines* and straight lines whose points represent

respectively densely ordered sets (see P11) of real numbers and of

rational numbers.

P11 In all discussions and arguments, time, distances and lengths

will be assumed to be Euclidean and represented by real numbers

and intervals of real numbers. As usual, a finite interval (a, b) is

said finite if its extension b− a is finite, even if the interval is infi-

nitely dense, which means that between any two elements (points,

instants, numbers) of the interval, the interval contains infinitely

many different elements. This is the case of all intervals of rational

and real numbers in their corresponding natural order of preceden-

ce. An element inside an interval will be an element of the interval

different from its endpoints.

P12 Although supertasks will be introduced in Chapter 23, they

will start to be used from the first chapters. A supertask consists

of performing an infinite number of actions or tasks (for example

counting numbers, or removing balls from a box containing balls)

in a finite interval of time, which, unless otherwise indicated, will

be the real interval (ta, tb). The successive actions a1, a2, a3, . . . of

the infinite sequence of actions 〈ai〉 will be supposed to be carried

out in the successive instants t1, t2, t3, . . . of a strictly increasing

sequence of instants 〈ti〉 within the interval (ta, tb), being tb the

limit of the sequence 〈ti〉. Every action ai of 〈ai〉 will be assumed

to be performed in the precise instant ti from 〈ti〉, and all of them

will be instantaneous.
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P13 Needless to say, all arguments in this book are of a conceptual

nature, even when they make use of material artifacts as machines,

boxes, balls and the like, all of which have to be understood as

theoretical devices to illustrate the arguments and to facilitate

discussions.

P14 The followings symbols and notations will be used in what

follows:

MT: Modus Tollens

*: Thomson’ lamp on.

o: Thomson’s lamp off.

c: Thomson’s lamp clicked.

N: set of the natural numbers in their natural order of precedence.

Z: set of the integer numbers in their natural order of precedence.

Q: set of the rational numbers in their natural order of precedence.

Q+: set of the positive rational numbers in their natural order of

precedence.

A: set of the algebraic numbers in their natural order of prece-

dence.

R: set of the real numbers in their natural order of precedence,

and real straight line.

R+: set of the positive real numbers in their natural order of

precedence.

R3: Euclidean tridimensional space.

Rn: Euclidean n-dimensional space.

|A|: cardinal of the set A.

. . . : ellipsis.

∈: belongs.
/∈: does not belong.
⊂: subset.
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⊃: superset.
6⊂: not subset.
∪: union of sets.

∩: intersection of sets.

P (A): power set of the set A (set of all subsets of A).

ℵo: aleph-null, the smallest transfinite cardinal.

2ℵo : power of the continuum.

ω: omega, the smallest transfinite ordinal.

2ω, 3ω, ω1. . . : ordinals greater than ω.

22
ℵo
, ℵ1, ℵ2. . . : cardinals greater than ℵo.

∞: infinity, the improper real number.

(a, b): open interval or segment.

[a, b]: closed interval or segment.

(a, b]: right closed interval or segment.

[a, b): left closed interva or segmentl.

Io: 0-interval, interval whose left endpoint is 0.

〈qn〉, 〈qi〉 . . . : ω-ordered sequence q1, q2, q3, . . .

n∑

i=1

xi: sum of n terms: x1 + x2 + · · · + xn.

∞∑

i=1

xi: sum of infinite terms: x1 + x2 + x3 + . . .

ĺım
n→∞

an: limit of the sequence 〈an〉.

ĺım nan: limit of the sequence 〈an〉.
〈Dn(x)〉: ω-ordered sequence of definitions of x.

Di(x): ith definition of x.

〈Di(x)〉i=1,2,...n: first n definitions of x.
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kSi: ith element of a collection at the kth definition of the collec-

tion.

|x|: absolute value of x.

mı́n(a, b): least of the two values in brackets.

∀: for all.
∃: exists.
⇒: logic inference.

⇔: logic double inference.

iff: if, and only if.

¬: logic negation.

∨: logic or.

∧: logic and.

∴ therefore.

�: end of a proof.
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3 Three basic principles

Introduction

P15 The Principle of Invariance defined in this chapter is an im-

mediate consequence of the First Law of logic. It is so obvious that

it is unnecessary in scientific discussions, except (perhaps) in the

discussions on the actual infinity hypothesis. At least this is my

opinion after many years of discussions on that matter. Another

elementary principle that is implicitly assumed in all conceptual

discussions is what we will call here Principle of Autonomy. Basi-

cally it states that the logical consistency of an argument does not

depend on the actual existence (in material terms) of the interve-

ning objects, as supermachines, indexed balls, perfect lamps and

the like, used to illustrate the argument. A third basic principle

also assumed in all formal discussions will be explicitly assumed

in this book under the name of Principle of Execution, according

to which, and as long as they are possible, all possible steps of a

demonstration, procedure or definition can be carried out. For the

sake of clarity and simplicity and in order to avoid unnecessary

discussions, in this book it will be explicitly assumed the Princi-

ple of Invariance, the Principle of Autonomy and the Principle of

Execution. The next section introduces the three of them.

Invariance, autonomy and execution

P16 At least since Aristotle’s time, there is a general agreement

that all sciences (formal and experimental) have to be built on the

basis of the three fundamental laws of logic. [140]:

• Law of Identity.

• Law of Contradiction.

• Law of the Excluded Middle.

27
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In Aristotle words, the first of those laws (the Law of Identity)

states:

A thing is what it is, and it is not what it is not.

Or in more abstracts terms:

p⇒ p (1)

that reads: if p, then p. Where p is any declarative sentence. For

example, if I have a book in my hand, then I have a book in

my hand; if the number 29 is prime, then the number 29 is prime.

Implication (1) is a fundamental tautology whose universal validity

is independent of the finite or infinite number of times we make use

of it. As we will see, the Principle of Invariance we will introduce

here is an immediate consequence of the Law of Identity.

P17 Before introducing the Principle of Invariance, and by way

of illustration, let us consider the following sequence of recursive

definitions:

a Let 〈qn〉 = q1, q2, q3. . . be the sequence of all rational numbers

greater than zero and indexed by the successive natural numbers

(later in this book it is explained how this type of sequences can

be obtained), and let x be a rational variable whose domain

(the set in which it takes its numerical values) is the set of the

rational numbers greater than zero. Now consider the following

sequence 〈Dn(x)〉 of successive recursive definitions of x:

{
D1(x) = q1

Di(x) = mı́n
(
Di−1(x), qi

)
; i = 2, 3, 4, . . .

(2)

where Di(x) is the ith definition of x, and mı́n
(
Di−1(x), qi

)
is

the smaller of the two numbers in brackets: Di−1(x) and qi.

The successive definitions Di(x) compare the current value of x

with the successive elements qi of the sequence of rationals 〈qi〉
and defines x as qi if qi is less than the current value of x (the

value of x each time it is compared).
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P18 Once completed the sequence of definitions 〈Dn(x)〉, it could
be impossible to know the current value of x, but at least we can

ensure it will continue to be a rational number greater than zero,

simply because the domain of x has been defined as the set of the

rational numbers greater than zero, and each definition Di(x) of

the sequence 〈Dn(x)〉 has defined x as a rational number greater

than zero.

P19 With 〈Dn(x)〉 in mind, consider the following:

a)Principle of Invariance P19.-The completion of any finite or in-

finite sequence of steps of any argument, procedure, definition

or proof, as such a completion, is not a new additional step,

and cannot modify neither the properties nor the definitions

of the intervening objects.

P20 It is worth noting that without the Principle of Invariance

P19, formal sciences would turn out impossible: any invariant could

be arbitrarily modified after completing any procedure, proof, ar-

gument or definition composed of a finite or infinite sequence of

steps, and in these conditions any thing could be expected after

performing the sequence of steps. Or in other words, without the

Principle of Invariance P19 we would have to admit the existence

of an esoteric source of arbitrary changes incompatible with formal

inferences.

P21 The Principle of Invariance P19 implies that completing any

finite or infinite sequence of steps of any argument (procedure,

definition, proof) means to perform each and every step of the

sequence of steps, and only them. So that the completion, as such a

completion, is not an additional step, nor does it have consequences

on the intervening objects. This obviousness is exactly what the

Principle of Invariance P19 states. In our above example, after

completing the sequence of definitions 〈Dn(x)〉, even if we do not

know its current value, x will continue to be a rational variable

whose domain is the set of the rational numbers greater than zero,

and not, for example, a negative number or a red hat.
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P22 We will also assume the consistency of an argument does not

depend on the actual (physical, material) existence of the objects

that intervene in the argument. The consistency of an argument

that makes use of, for example, a lamp capable of being turned

on and off infinitely many times (Thomson’s lamp), does not de-

pend on the actual existence of the lamp but on the logical re-

lationships between the formal objects involved in the argument.

Many arguments in this book make use of this type of superlamps

or supermachines capable of performing infinitely many actions in

a finite time (supertasks). The only purpose of such artifacts is to

illustrate the arguments.

P23 We will assume, therefore, the following:

a)Principle of Autonomy P23.-The formal consistency of an ar-

gument does not depend on the actual, material, existence of

the intervening objects, whose formal definitions remain al-

ways unaltered.

It goes without saying this principle is always (implicitly) assumed

in infinitist mathematics. It is also assumed in all discussions in-

volving thought experiments. In these cases the formal consistency

of the argument does not depend on the possibilities of performing

the experiment in practice, but on the logical relationships between

the formal elements of the argument the experiment illustrates.

P24 Some arguments will make use of procedures or definitions

consisting of a conditional sequence of steps, so that each step of

the sequence will be carried out if, and only if, it satisfies a certain

condition, otherwise the procedure or definition will end. It will

be assumed that all steps satisfying the imposed condition can be

carried out. To suppose that it is impossible to carry out a sequence

of steps each of whose steps satisfies the imposed condition would

imply to assume the impossibility of a possibility, which is a basic

contradiction.

P25 In consequence, in this book it is also assumed the following:

a)Principle of Execution P25.-While being formally possible, all
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possible steps of a definition, procedure or proof can be carried

out in formal terms.

The Principle P25 simple legitimizes the possibility of carrying

out all possible steps of any definition, procedure or proof of any

argument, simply because they are possible.

P26 Although it may seem unnecessary, in the majority of the

arguments developed in the rest of the book, the use of the above

principles will be remembered writing them in parentheses whene-

ver they are legitimizing a step or conclusion of that argument.
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4 The Actual Infinity

Introduction

P27 This chapter contains the instruments that will be necessary

in order to follow the discussions on the mathematical infinity that

will be developed in the rest of the book. Many readers will know

them, others will need to review them, or to learn them (a basic

level of math is sufficient). In any case, and even being known

notions, it is always interesting to analyze the way each author

introduces and explains them.

P28 Although this book deals exclusively with the actual infinity,

references to the potential infinity will be inevitable. This is why it

begins by explaining the distinction between the potential infinity

and the actual infinity. Once this difference has been explained,

the Axiom of Infinity, order relations in sets, infinite cardinals and

ordinals, and ω-ordered objects will be introduced. This is all we

need to know in order to follow the arguments on the actual infinity

hypothesis that will be developed from the next chapter. Most of

those arguments will be related to ω, the least infinite ordinal; the

ordinal of, for example, the set of the natural numbers:

N = {1, 2, 3, . . . } (1)

a type of order that will be referred to as ω-order (it is explained

in P81).

P29 “Infinite” is a common ‘word we use to refer to the quality of

being huge, immense, unbounded etc. In this way, and according

to Gauss, the infinite is a manner of speaking (C.F. Gauss, Letter

to astronomer H.C. Shumacher, 12 July 1831). But the word “in-

finite” (“infinity”, “the infinite”) has also a precise set theoretical

33
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meaning according to the next:

aDefinition P29. A set is said infinite if it can be put into a one

to one correspondence with one of its proper subsets

This is the well known Dedekind’s definition of infinite set. It will

discussed in the next Chapter 5. Along with Cantor’s work on

transfinite numbers, Dedekind’s Definition P29 forms part of the

foundations of infinitist mathematics, which began to develop at

the end of the 19th century. Although the history of mathematical

infinity had begun twenty-seven centuries earlier.

P30 Fortunately there is an abundant and excellent literature on

the history of infinity (for instance: [251, 152, 210, 26, 199, 60, 142,

164, 168, 131, 132, 1, 169, 166, 57, 239, 15, 198]). The details of

that story will not be necessary here, although three of its most

relevant protagonists could be remembered as historical references:

a) Zeno of Elea (490-430 BC), a presocratic philosopher that ma-

de use for the first time of the mathematical infinity when de-

fending Parmenides’ thesis on the impossibility of change. We

know Zeno’s work (near forty arguments, including his famous

paradoxes against the possibility of change [2, 62]) through his

doxographers: Plato, Aristotle, Diogenes Laertius or Simpli-

cius. The infinite in Zeno’s arguments is the actual infinity,

although obviously Zeno is not doing infinitist mathematics

but logical argumentations in which appear infinite collections

of points and of instants. Zeno’s arguments work properly only

if those collections are considered as complete infinite totalities

(Zeno’s Dichotomies are discussed in Chapter 28).

b) Aristotle (384-322 BC), one of the most influential thinkers of

western culture. He introduced, in a broad sense, the notion of

one to one correspondence just when trying to solve some of

Zeno’s paradoxes [12, Books III-VII]. He also introduced the

basic distinction between the potential and the actual infinity.

A distinction that will be analyzed in the next section.

c) Georg Cantor (1845-1918), mathematician cofounder, together

with R. Dedekind and G. Frege, of set theory at the end of the

XIX century. His work on transfinite numbers [47] (cardinals
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and ordinals) lays the foundations of modern infinitist mathe-

matics. He inaugurated the so called paradise of the actual

infinity, where, according to D. Hilbert, infinitists will inhabit

forever [120, p. 170]:

Wherever there is the slightest prospect of fruitful concepts
and conclusions, we will carefully track them, cultivate them,
support them and make them usable. No one shall be able
to drive us out of the paradise that Cantor has created for
us.

P31 From Zeno to Aristotle the infinity involved in discussions

was usually the actual infinity, although that notion was far from

being clearly established before Aristotle. From Aristotle to Can-

tor, defenders of both types of infinity (actual and potential) exis-

ted, although with a certain hegemony of the potential infinity,

particularly since the 13th century, once Aristotle was christiani-

zed by the medieval scholastics. In those preinfinitist times, the

same arguments could be used in support of one or of the other

infinity (for instance the arguments based on the correspondence

between the points of a circle and the points of one of its diame-

ters). But there is not still a theory of the mathematical infinity.

The first mathematical theory of infinity appears at the end of the

XIX century, being Bolzano, Dedekind and, specially, Cantor its

most relevant founders. From Cantor to nowadays the hegemony

of the actual infinity has been almost absolute and, in addition,

free of serious criticism.

Actual and potential infinity

P32 As noted above, the distinction between the actual and the

potential infinity is due to Aristotle [12, 11, Books III, VIII]. We

will now explain it in modern terms related to set theory. It goes

without saying that the only infinity in modern infinitist mathe-

matics, including Dedekind’s Definition P29 of infinite set, is the

actual infinity.

P33 Consider the list of the natural numbers: 1, 2, 3,. . . According

to the hypothesis of the actual infinity that list exists as a complete

totality, i.e as a totality that contains, all at once, all natural num-
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bers. The ellipsis (. . . ) in 1, 2, 3, . . . stands for all natural numbers.

For all. The word “actual” in actual infinity means, therefore, that

all elements of an infinite collection exist all at once (in the act),

as a complete totality. Notice also the list of the natural numbers

is considered as a complete totality despite the fact that no last

number completes the list. To assume the hypothesis of the actual

infinity means, then, to assume that it is possible to complete the

incompletable, as Aristotle would surely say. [11, p. 291]. Or that

the incompletable exists as completed.

P34 To emphasize this sense of completeness, let us consider the

task of counting the successive natural numbers 1, 2, 3,. . . In agree-

ment with the hypothesis of the actual infinity we could count all

natural numbers in a finite time, for example in an hour, or in a

millisecond:

a) Count each of the successive natural numbers 1, 2, 3, . . . at each

of the successive instants t1, t2, t3, . . . of a strictly increasing

sequence of instants 〈ti〉 within the finite real interval (ta, tb),

being ta and tb any two instants, and tb the mathematical limit

of the sequence. For instance the classical sequence defined by:

tn = ta + (tb − ta)
2n − 1

2n
(2)

As we will have the opportunity to verify in the next chapters, at

tb all natural numbers would have been counted. All (!)

P35 The above task of counting all natural numbers in a finite

time, even in less than a second, is an example of supertask. They

will be discussed later in this book. Meanwhile note that the fact

of pairing the elements of two infinite sequences (in our case the

one of natural numbers and the other of instants) does not prove

both sequences exist as complete totalities. They could also be po-

tentially infinite, a possibility usually ignored in modern infinitist

mathematics.

P36 The alternative to the actual infinity hypothesis is the hy-

pothesis of the potential infinity, which rejects the existence of
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complete infinite totalities, and then the possibility to count all

natural numbers. From this perspective, the natural numbers re-

sult from the endless process of counting: it is always possible to

count numbers greater than any given number. But it is impossible

to complete the process of counting all of them, so that the comple-

te list of all natural numbers makes no sense. The word “potential”

in potential infinity means, therefore, that the elements of an infi-

nite collection do not exist all at once, but potentially, as possible.

The potential infinity is the unlimited, as the ordered list of the

natural numbers, but only finite collections can be considered as

complete totalities, as large as wished but always finite. Contrarily

to the actual infinity, the potential infinity assumes the incomple-

table cannot be completed, cannot exist as completed, precisely

because it is incompletable.

P37 In short, the actual infinite hypothesis states that the in-

finite collections are complete totalities, even if no last element

completes the totality, as in the case of the ordered list of the na-

tural numbers. The hypothesis of the potential infinite proposes

that the infinite totalities do not exist as complete totalities, the

only complete totalities are the finite totalities, though they can

be unlimited in the number of their possible elements. From the

perspective of the actual infinity it is possible to complete a se-

quence of steps in which no last step completes the sequence; or

even without a first step to start the sequence, as in the case of ω∗-

ordered sequences (see P82), for instance, the increasing sequence

of negative integers . . . , -4, -3, -2, -1. From the perspective of the

potential infinite none of those possibilities makes sense. From this

perspective the only complete totalities are the finite totalities, as

large as wished but always finite. For the potential infinite there is

not a last natural number (it is always possible to consider a num-

ber greater than any previously considered number), but neither

is there the complete collection of all natural numbers.

P38 The potential infinity (the improper or non-genuine infinity

as Cantor called it [48, p. 70]) has never deserved the attention

of contemporary mathematics. The infinity in Dedekind’s Defini-
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tion P29 of infinite set is the actual infinity. The infinitely many

elements of an infinite set exist all at once, as a complete totality.

Dedekind’s Definition P29 is, therefore, based on the violation of

the old Euclidean Axiom of the Whole and the Part (the whole

is greater than the part) [87]. Set theory has been built on that

violation.

P39 The hegemony of the actual infinity in contemporary mathe-

matics is absolute. As absolute as the submission of physics to

infinitist mathematics. Some authors proceed as if the existence of

complete infinite totalities had been formally demonstrated. Ob-

viously, if that were the case we would not need the Axiom of

Infinity to legitimize the existence of such totalities. The actual

infinity hypothesis is just a hypothesis.

P40 The three most important “proofs” of the existence of actual

infinite totalities (by Bolzano, Dedekind and Cantor) are illustra-

tive of what we could call naive infinitism. They also explain why

modern infinitist mathematics had finally to establish the existen-

ce of actual infinite sets by law, i.e. by means of an axiom (the

Axiom of Infinity, which is introduced in the next section).

P41 Bolzano’s proof goes as follow (taken from [166, p 112]):

One truth is the proposition that Plato was Greek. Call this
p1. But then there is another truth p2, namely the proposition
that p1 is true [But then there is another truth p3, namely the
proposition that p2 is true]. And so ad infinitum. Thus the set
of truths is infinite.

But the existence of an endless process (p1 is true, then p2 is true,

then p3 is true, then . . . ) does by no means prove the existence of

a final result as a complete totality. At best it proves the existence

of an endless (potentially infinite) process. But it does not prove

the existence of an actual infinite totality.

P42 Dedekind’s proof is similar (taken from [166, p 113]):

Given some arbitrary thought s1, there is a separate thought
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s2, namely that s1 can be object of thought [there is a separate
thought s3, namely that s2 can be object of thought]. And so
ad infinitum. Thus the set of thoughts is infinite.

The above comment on Bolzano proof also applies here. Dedekind

gave another proof a little more detailed, albeit with the same

formal defect, based on his definition of infinite set [70, p. 112].

P43 And finally, Cantor’s proof: ([114, p 25], [166, p. 117]):

Each potential infinite presupposes an actual infinity.

or ([46, p. 404] English translation [201, p. 3]):

... in truth the potential infinity has only a borrowed reality,
insofar as a potentially infinite concept always points towards
a logically prior actually infinite concept whose existence it de-
pends on.

It is now clear why the existence of an actual infinite set had to

be finally established by law, that is, by means of an axiom.

The Axiom of Infinity

P44 Nothing in nature seems to be actually infinite. Until now,

all things we have observed and measured are finite. Twenty seven

centuries of discussions, on the other hand, were not sufficient to

prove (or disprove) the existence of an actual infinity. Infinitists

had no other choice but to declare its existence in axiomatic terms

by means of the so called Axiom of Infinity, one of the foundatio-

nal axioms in all modern axiomatic set theories. Set theory is the

gateway of the actual infinity in contemporary mathematics.

P45 Since sets will be present in almost all of our arguments,

it seems appropriate to make the following consideration on the

different ways an element can belong to a set. We usually assume

that a particular element belongs or does not belong to a given set,

although we could also consider the so called fuzzy sets [248, 76],

whose elements have different degrees of membership. In this book,

however, we will exclusively deal with complete membership, i.e.

with sets whose elements belong completely to their corresponding
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sets.

P46 The Axiom of Infinity will be now introduced through three

stages of an increasing abstraction. The less formal version of the

Axiom of Infinity goes as follows:

There exists an infinite denumerable set (3)

where denumerable (or enumerable) means that it can be put into

a one to one correspondence with the set N = {1, 2, 3 . . . } of the

natural numbers, and infinite stands for the actual infinity: the

elements of that set exist all at once, as a complete totality. Two

sets that can be put into a one to one correspondence (said equi-

potents or equinumerous sets) either both are finite or both are

infinite. The second more abstract form of the Axiom of Infinity

is the following one:

∃N(0 ∈ N ∧ ∀x ∈ N(s(x) ∈ N)) (4)

that reads: there exist a set N [symbols: ∃N ] such that 0 belongs to

N [symbols: 0 ∈ N ] and for all element x in N [symbols: ∧ ∀x ∈ N ]

the successor of x, denoted by s(x), also belongs to N [symbols:

s(x) ∈ N ]. In arithmetical terms we could write:

s(0) = 1; s(1) = 2; s(2) = 3; . . . (5)

Therefore, the Axiom of Infinity establishes the existence of a set

comparable to the set of the natural numbers. And the third still

more abstract form of the Axiom of Infinity is:

∃N(∅ ∈ N ∧ ∀x ∈ N(x ∪ {x} ∈ N)) (6)

that reads: there exists a set N such that ∅ (the empty set) belongs

to N and for all elements x in N , the element x ∪ {x} (x and a

set whose unique element is x) also belongs to N . Though the

existence of an actual infinity can be inferred from both (4) and

(6), it would have been better a more explicit declaration that the

infinity implicated in the axiom is the actual infinity.
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P47 Unnecessary as it may seems, let us recall that an axiom

is just an axiom. That is to say, a statement whose veracity is

accepted without proofs. A statement that can be accepted or

rejected. Although the election will have important consequences

on the resulting theory. In the case of the actual infinity hypothesis

some relevant authors as L.E.J. Brouwer, C. Hermite, S. Kleene, J.

König, L. Kronecker, H. Poincaré, A. Robinson, L. Wittgenstein,

o H. Weyl, among others, rejected it, more or less explicitly.

P48 Other thing is the criticism against the actual infinity once

set theory was axiomatically established and formally developed.

This criticism has been basically non-existent for the last eighty

years, and the few attempts carried out were always naive and

frequently based on misconceptions of transfinite numbers. Con-

sequently, from now on the word “infinity” will always refer to

the actual infinity. And as long as nothing else is said, this ac-

tual infinity will also be the denumerable infinity. The potential

infinity will always be referred to by “potential infinity”. And the

non-denumerable infinity by “non-denumerable infinity”.

Order relations

P49 The most important objects that will be used in the next

chapters to discuss on the mathematical infinity will be ordered

objects with the same type of order as the set N = {1, 2, 3, . . . }
of the natural numbers. The elements of such sets can be indexed

by the totality of the natural numbers, and reordered by the order

of those natural indexes. It will be necessary, then, to recall the

foundations of the order relations in set theory.

P50 G. Cantor introduced the concepts of simply ordered set and

well-ordered set in his Beiträge (Contributions ot the founding of

the Theory of Transfinite numbers) [47]. According to Cantor [47,

p. 110]:

We call an aggregate [set] M “simply ordered” if a definite “or-
der of precedence” rules over its elements m, so that, of every
two elements m1 and m2 one takes the “lower” and the other
the “higher” rank, and so that, if of three elements m1, m2, and
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m3, m1, say, is of lower rank than m2 and m2 is of lower rank
than m3, then m1 is of lower rank than m3.

And also [47, p. 137]:

We call a simply ordered aggregate F “well-ordered” if its ele-
ments f ascend in a definite succession from a lowest f1 in such
a way that:

I. There is in F an element f1 which is lowest in rank.

II. If F ′ is any part of F and if F has one or many elements
of higher rank than all elements of F ′, then there is an
element f ′ of F which follows immediately after the to-
tality F ′ so that no element in rank between f ′ and F ′

occur in F.

P51 Modern set theories define the so called strict order (that

coincides with the above Cantor’s simple order). A relation (sym-

bolically “<”) is a strict order on a set A if it is:

a) Irreflexive: ∀a ∈ A : a < a does not hold.

b) Asymmetric: if a < b then b < a does not hold.

c) Transitive: if a < b and b < c then a < c.

where a < b means that, under that order relation, a precedes (is

a predecessor of) b; and b succeeds (is a successor of) a. If no other

element c exists such that a < c < b, then b is the immediate suc-

cessor of a; and a is the immediate predecessor of b. If an element

has not predecessors it is said the first (least) element of the set; if

an element has not successors, it is said the last (greatest) element

of the set. A strict order is a total order if:

d) ∀a, b ∈ A : either a < b; or b < a

Finally, a set A will be said well-ordered if:

e) A is totally ordered and every subset of A has a least ele-

ment.

where the first element of each subset is the predecessor of all its

elements in the order relation of A.
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P52 Ordered sets define different types of order, so it is important

to define what a type of order is:

a)Definition P52. Two ordered sets A and B are said to define a

type of order if there is a one to one correspondence f between

them so that f preserves the order in both sets:

∀x, y ∈ A : x < y ⇔ f(x) < f(y) (7)

The sets with the same type of order are classically said similar

[47, p. 112]. As we will see in the next section, the types of order

of the well-ordered sets are the ordinal numbers.

P53 It is now immediate to prove the following:

a)Theorem P53a. If an element of a well-ordered set has successors,

then it has an immediate successor.

Proof.-Let m be an element with successors in a well-ordered

set X. Let Xsm be the subset of X of all successors of m

ordered with the same order relation as X. Since Xsm is a

subset of X, it will have a first element n, and n will be the

first successor of m in that order relation. Therefore n is the

immediate successor of m in X. �

b)Theorem P53b, of the Natural Well-Order. The set N of the

natural numbers in their natural order of precedence, and any

of its subsets with the same type of order, are well-ordered

sets.

Proof.-With the natural order of precedence of the natural

numbers (their corresponding increasing magnitudes) any th-

ree natural numbers k, m and n satisfies a), b), c) and d) of

P51. So, the set N of the natural numbers is totally ordered.

Let A be any subset of N with the same natural order of pre-

cedence and assume it contains the natural number v. Since

N has a first element, the number 1, and each natural number

n has an immediate successor n + 1 (Peano’s Axiom of the

Successor [180, p. 1]), the set N contains a first element 1, the

immediate successor of each element less than v, and v itself.
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That is, N contains all elements 1, 2, 3, . . . , v − 1, v ... The-

refore, the subset A will also contain a first element: one of

elements 1, 2, 3,. . . , v − 1, v. Hence, the set N of the natural

numbers in their natural order of precedence is a well ordered

set. The same argument applies to any subset of N with the

same natural order of precedence of its elements. �

Cardinals and ordinals

P54 For the same reason we need axioms and fundamental laws in

science (the Aristotelian infinite regress of arguments [10]) we also

need primitive concepts in language, i.e. concepts that cannot be

defined in terms of other more basic concepts without falling into

circular definitions (dictionaries are finite). Most basic mathema-

tical concepts belong to this category: number, point, line, plane,

set, and others. Maybe that in some cases the necessary effort to

find a formally productive definition has not been made.

P55 There is not a formal definition of number, but we have a good

intuitive relationship with the finite numbers, i.e. with the counting

numbers 1, 2, 3... It is probable that humans (and primates) are

endowed with neural networks to deal with numbers [71, 72, 116].

Everyone knows what we mean when we say there are five pencils

on the table. Even what we mean when we say that the number

of pencils on the table can be increased by adding a new pencil.

And that this process is unlimited (potential infinity): It is always

possible to add one more pencil (enlarging the table if necessary).

Things began to get complicated when it occurred to some people,

and to many others the idea seemed fine, that the elements of an

unlimited list of numbers exist all at once, as a completed totality

(actual infinity). From there, the concept of number began a long

process of abstraction and complexification from which emerged

a transfinite multitude of numbers increasingly transfinite and in-

creasingly unconnected to our natural intuitive perception of the

finite natural numbers, the counting numbers.

P56 In this section we will have to visit the lush tangle (semantic

and semiotic) of the transfinite numbers that inhabit the infinitist
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paradise inherited from Cantor. Fortunately, it will be a quick visit

so that we will not have to get lost in its twisted details. And at

the end of the chapter we will be able to return to the numerical

sanity, reducing to the maximum the numerical arsenal with which

we will face the hypothesis of the actual infinity that fundaments

the Cantorian paradise. If it can be shown that this hypothesis is

inconsistent, the infinitist paradise would have to be closed. And

we would have to regret having wasted so much time and effort in

exploring its endless labyrinths.

P57 Returning to the primitive nature of the concept of number,

to say the cardinal of a set is the number of its elements is to

say nothing (from a strictly formal perspective). Notwithstanding,

everyone knows what we mean when we say the set {a, b, c} has

three elements, or that its cardinal is three. Even what we mean

when we say the cardinal of a denumerable set, as the set N of the

natural numbers, is an infinite number whose symbol (numeral) is

“ℵo” (that read aleph null, aleph naught, or aleph zero). Although

in this case what we mean is not as clear as in the first one (an

issue discussed in Chapter 19).

P58 ) With this formal limitation, we will say the cardinal C of a

set X is the number of its elements, a measure of the size of the

set independent of the possible ordering of those elements in the

set. In symbols C = |X|. For obvious reasons, the cardinals of the

finite sets are said finite, and the cardinals of the actually infinite

sets are said infinite. Although we will not do it here, it can easily

be proved that if the cardinal of a set is C, then the number of

subsets of that set is just 2C (including the set itself and the empty

set).

P59 The successive finite cardinals 1c, 2c, 3c, 4c, . . . are recursively

defined as the cardinals of the successive finite sets of the infinite

sequence S of sets defined exclusively in terms of the empty set ∅:

1c =
∣∣{ ∅

}∣∣ (8)

2c =
∣∣{ ∅, {∅}

}∣∣ (9)
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3c =
∣∣{ ∅, {∅}, {∅, {∅}}

}∣∣ (10)

4c =
∣∣{ ∅, {∅}, {∅, {∅}}, {∅, {∅}, {∅, {∅}}}

}∣∣ (11)

. . . (12)

where the unusual subindex “c” has been provisionally used to

emphasize the fact that the finite cardinals are conceptually dif-

ferent from the counting numbers, i.e. from the natural numbers.

Note that each set has one more element than the previous one,

and that the new element is precisely the set whose unique ele-

ment is the previous set. This is the abstract way of defining the

successive finite cardinals: we recursively define the successive sets

of the sequence S and assume each one of those sets has a pro-

perty called size, or number of elements, or cardinal, and we assign

a number and its corresponding symbol (numeral) to that pro-

perty. For example, the number assigned to that property of the

set {∅, {∅}, {∅, {∅}}} is 3c. On the other hand, two sets that can

be put into a one to one correspondence have the same cardinal,

and they are said to be equipotent.

P60 The sequence S of sets defined by (8)-(12) is infinite. In spite

of the fact that each set of the sequence S has one more element

than the previous one, and that the sequence is infinite, we will not

finally reach a set with infinitely many elements, but a sequence

of infinitely many finite sets, each with one more element than

the previous, and without a last set completing the sequence. Now

then, assume that each time we add a new element to the last

defined set of the sequence (8)-(12) we also add one ball to a box

initially empty, as the initial empty set of the sequence S. Each

time we add a new ball to the box, the box contains the same

number of balls as the number of elements of the last set defined

by (8)-(12). But, will we finally have a box with a finite number, or

with an infinite number of balls? If you think the box will finally

contains an infinite number of balls, when the symmetry between

both additions get broken? Trivial as it may seems, the question

is anything but trivial. We will address it, and many others, in the

next chapters.
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P61 All the finite sets that can be put into a one to one corres-

pondence with each other have the same finite cardinal; they are

equipotent. If instead of pairing off the elements of a finite class

of equipotent sets we directly count their elements by means of

the natural numbers, we will get a number that coincides with

the cardinal number of that class of sets, because the cardinal is

the property of that class of sets that represents the amount of

elements of each set of that class. So, the above provisional subin-

dex “c” can be remove, and the sequence S of all finite cardinals

defined by (8)-(12)) can be written directly as:

1 =
∣∣{ ∅

}∣∣ (13)

2 =
∣∣{ ∅, {∅}

}∣∣ (14)

3 =
∣∣{ ∅, {∅}, {∅, {∅}}

}∣∣ (15)

4 =
∣∣{ ∅, {∅}, {∅, {∅}}, {∅, {∅}, {∅, {∅}}}

}∣∣ (16)

. . . (17)

and also as:

1 = |{0}| (18)

2 = |{0, 1}| (19)

3 = |{0, 1, 2}| (20)

4 = |{0, 1, 2, 3}| (21)
. . . (22)

As P62 shows, the set of all finite cardinal numbers and the set

of all natural numbers have the same cardinal. For this reason,

and although the concept of cardinal number (and cardinality)

is broader than that of natural number, in the arguments and

discussions developed in the next chapters we will use the set N

of all natural numbers, being the consideration of its elements as

a complete totality (actual infinite) versus its consideration as an

unlimited and incompletable totality (potential infinity), the great

background debate in the rest of the book.
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P62 As expected, things are different with the infinite sets, whose

cardinality must be established with the aid of an additional as-

sumption: the hypothesis of actual infinity subsumed in the Axiom

of Infinity. Although initially this assumption was not considered

necessary, as such an assumption: Cantor took for granted the exis-

tence of the totality of the finite cardinals. Indeed, in Cantor’s own

words (italics are mine) [47, pgs. 103-104]:

The first example of a transfinite aggregate is given by the to-
tality of finite cardinal numbers v; we call its cardinal number
Aleph-zero and denote it by ℵo; thus we define

ℵo = {v} (23)

where {v} is Cantor’s notation for the cardinal of the set {v} of all
finite cardinals. According to the notation used in this book (P58),

the cardinal of Cantor’s set {v} of all finite cardinals will be written
|{v}|. Obviously ℵo is an infinite cardinal. Cantor proved it is the

smallest cardinal greater than all finite cardinals [47, §6] (chapters

19 and 20 are on ℵo).

P63 Let us now prove the following two basic results:
a)Theorem P63a. The cardinal of the set N of the natural numbers

is ℵo.
Proof.-Let f be the one-to-one correspondence between the sets

N of the natural numbers and the set {v} of all finite cardinals
(whose cardinal is ℵo) defined by:

f : N←→ {v} : (24)

f(n) = |{0, . . . n− 1}|, ∀n ∈ N (25)

The bijection f proves that both sets have the same cardinal

ℵo. �

b)Theorem P63b. For any natural number, the set of the first n

natural numbers in their natural order of precedence is finite.

Proof.-Let Nn be the set {1, 2, . . . , n} of the first n natural

numbers in their natural order of precedence. Consider the set

Cn = {0, 1, . . . n − 1} of the sequence (18)-(22) corresponding
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to the definition of the cardinal number n. The one to one

correspondence f between Nn and Cn defined according to:

Nn
f←→ Cn




f(1) = 0

f(i) = i− 1, i = 2, 3, . . . n
(26)

proves the cardinal of the set Nn of the first n natural numbers

is just the finite cardinal number n. �

P64 All denumerable sets (sets that can be put into a one to one

correspondence with the set of all natural numbers) have the same

cardinal ℵo. While the cardinal of the set N of the natural numbers

is ℵo, the cardinal of the set of all subsets of N, the so called power

set of N and usually denoted by P (N), is not ℵo but 2ℵo , which

is also the cardinal of the set R of the real numbers. The cardinal

of the set P (P (N)) of all subsets of P (N) is not 2ℵo but 22
ℵo
. The

same applies to the set P (P (P (N))) of all subsets of P (P (N)) and

son on. We have then an increasing sequence of infinite cardinals

(the power sequence):

ℵo < 2ℵo < 22
ℵo

< 22
2ℵo

< 22
22

ℵo

< . . . (27)

This book deals exclusively with ℵo, except in a small number of

arguments in which 2ℵo, called power of the continuum, will also

be involved.

P65 In common language, an ordinal number (or simply an ordi-

nal) denotes the relative position of an object in a finite list of n

objects: first, second, third,. . .nth. So, the ordinal numbers reflect

both the size of the list and the relative positions of its elements.

The extension of this concept so that it could also be applied to

the infinite sets motivated the process of abstraction that finally

led to the set theoretical concept of ordinal number, in which it

is difficult to recognize its original meaning. Indeed, in set theory

the ordinal numbers are classically defined in the following way:

a)Definition P65. The ordinals numbers are the types of order of
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the well-ordered sets.

For this reason, two sets A and B are said to have the same ordinal

number iff they are well-ordered and there is a bijection f between

them that preserves their respective orders (see P52):

f : A←→ B : (28)

∀x, y ∈ A : x < y ⇔ f(x) < f(y) (29)

Although they will not be used in this book, there are other mo-

re abstract and set theoretical definitions of ordinal numbers, for

instance: an ordinal number is a set which is well-ordered with

respect to membership relation (∈) and each of its elements is a

subset of the set.

P66 The elements of any set with a finite number n of elements can

only be ordered in a unique way: first, second, third,. . .nth, inde-

pendently of which element is in fact the first, second, third,. . .nth.

Since, according to the Theorem P53a, the set N of the natural

numbers and any of its subsets ordered by their natural order of

precedence (increasing magnitudes) are well-ordered, for every na-

tural number n the set of the first n natural numbers defines a type

of order, a finite ordinal. Therefore, as in the case of the finite car-

dinals, those finite ordinals depends only on the finite number of

elements of the sets that define them. For this reason, the fini-

te cardinals and the finite ordinals, though conceptually different,

share the same properties and are denoted by the same numerals

[47, p. 113, 159].

P67 Since we finally identify a type of order (an ordinal, or ordinal

number) with a set itself, and any finite set of natural numbers in

their natural order of precedence is well-ordered and defines a type

of order, the successive finite ordinals 1, 2, 3,. . . can be defined as

(the type of order of) the successive finite sets:

1 = {0} (30)

2 = {0, 1} (31)



Cardinals and ordinals 51

3 = {0, 1, 2} (32)

4 = {0, 1, 2, 3} (33)

5 = {0, 1, 2, 3, 4} (34)

. . . (35)

Note that each ordinal n is defined as the well-ordered set of the

first n − 1 ordinals. According to Cantor’s terminology, the finite

ordinals are called ordinals of the first class.

P68 It is important to emphasize at this point that for every

finite cardinal and every finite ordinal n there exists an immediate

successor n + 1 (Peano’s Axiom of the Successor [180, p. 1]), so

that both the set of all finite cardinals and the set of all finite

ordinals are infinite sets, which is axiomatically established by the

Axiom of Infinity, though in the more abstract and general terms

stated in (6). Needless to say that the involved infinity is the actual

infinity, even if no explicit declaration establishes that this is the

case. Cantor called fundamental series to the infinite sequences of

ordinals, whether finite or infinite ordinals.

P69 Things are quite different with the infinite sets. For exam-

ple, all denumerable sets have the same number of elements, the

same cardinal ℵo, but they can be well-ordered in infinitely many

different ways, each of which defines a different type of order, i.e.

a different infinite ordinal, for example:

{1, 2, 3, ...} : Cardinal ℵo. Ordinal ω (36)

{2, 3, 4, ..,1} : Cardinal ℵo. Ordinal ω+1 (37)

{3, 4, 5, ..,1, 2} : Cardinal ℵo. Ordinal ω+2 (38)

{1, 3, 5, ..,2, 4, 6, ...} : Cardinal ℵo. Ordinal ω2 (39)

{3, 5, 7..,2, 4, 6, ..,1} : Cardinal ℵo. Ordinal ω2+1 (40)

{1, 4, 7, ..,2, 5, 8, ..,3, 6, 9, ...} : Cardinal ℵo. Ordinal ω3 (41)

being:

ω < ω + 1 < ω + 2 < . . . < ω2 < ω2 + 1 < . . . < ω3 < . . . (42)
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where < represents the natural order of precedence of the ordi-

nal numbers, the order defined by their corresponding magnitu-

des, sizes or values (their natural order according to magnitude, in

Cantor’s words [47, p. 111]).

P70 The ordinal numbers of the denumerable sets are called ordi-

nals of the second class. Obviously, all of them are infinite. There

are two types of ordinals of the second class [47, p. 169]:

a) Ordinals of the first kind: ordinals α that have an immediate

predecessor α′ such that α = α′+1, where 1 is the first finite

ordinal. All ordinals of the first kind can then be written in

the form α+ n, being α infinite and n finite.

b) Ordinals of the second kind: these ordinals are limits of infi-

nite increasing sequences either of finite ordinals or of infinite

ordinals of the first kind. For example:

ω = ĺım
n
(n); n = 1, 2, 3, . . . (43)

ω2 = ĺım
n
(ω + n); n = 1, 2, 3, . . . (44)

ω7 = ĺım
n
(ω6 + n); n = 1, 2, 3, . . . (45)

P71 Regarding the existence of ordinals of the second class, Can-

tor proved the following results (rewritten in modern language)

[47, p. 158, 160]:

Theorem §14 I. Every infinite sequence of ordinals has a limit,
which is the least ordinal that follows in order of magnitude all
ordinals of the sequence. [47, p. 158].

Theorem §15 A. The infinite ordinals have a least element ω,
the limit of all finite ordinals. [47, p. 160].

Theorem §15 B. If α is any infinite ordinal, the ordinal α+1
is the least ordinal greater than α. [47, p. 161].

Theorem §15 H. Si α is an infinite ordinal, then the set of
all ordinals less than α in their order of magnitude is a well
ordered set whose ordinal is α. [47, p. 165].

Theorem §15 K. Every infinite ordinal is either the limit of an
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infinite sequence of ordinals, or the immediate successor α + 1
of another ordinal α. [47, p. 167].

Note that the Theorem §15 B extends Peano’s Axiom of the Suc-

cessor [180, p. 1] to the infinite ordinals; while the Theorem §15 H

can also be applied to the finite ordinals.

P72 From Cantor’s Theorem §15 H, it immediately follows:

a)Corollary P72, of Cantor’s Theorem §15 A. If the ordinal of

a set is ω, that set has not a last element.

Proof.- A set X whose ordinal is ω has the same type of order

as the set Oω whose ordinal is ω (Definition 65) and contains all

finite ordinals in their natural order of precedence, and only

them (Cantor’s Theorem §15 H [47, p. 165]). So Oω cannot

have a last element, because that last element could only be the

impossible last finite ordinal (Peano’s Axiom of the Successor

[180, p. 1]). In consequence, X cannot have a last element z

either, otherwise, and being f the bijection that preserves the

order in X and Oω, we would have:

∀x ∈ X : x < z (46)

∀f(x) ∈ Oω : f(x) < f(z) (47)

and there would be an impossible last element f(z) in Oω. So

X has not a last element. �

P73 Almost all arguments in this book will be arguments on ω:

• the limit of all finite ordinals.

• the least ordinal after all finite ordinals.

• the least ordinal greater than all finite ordinals.

• the smallest of the infinite ordinals.

• the least ordinal with infinitely many predecessors and no

immediate predecessor.

We only need to prove that ω is also the ordinal of the set N of the
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natural numbers in their natural order of precedence. The proof is

given in the next P74

P74 The theorem that follows is a trivial result of infinitist mathe-

matics that will be of capital importance in the majority of argu-

ments that will be developed in the next chapters:

a)Theorem P74, of the ω-order. The ordinal of the set N of the

natural numbers in their natural order of precedence is ω.

Proof.-The set N is well ordered (Theorem P53a). And there

is a bijection f between the set N and the set Oω of all finite

ordinals that preserve their respective orders:

f : N←→ Oω

{
f(n) = {0, 1, 2, . . . n− 1}, ∀n ∈ N

m < n⇔ f(m) < f(n)
(48)

where:

f(m) < f(n) ≡
{0, 1, 2, . . . m− 1} < {0, 1, 2, . . . m− 1,m, . . . n− 1}

(49)

Therefore, Oω and N have the same ordinal (Definitions 52 and

65). And according to Cantor’s Theorem §15, A [47, p. 160]

(see P71), that ordinal is ω. The set N is, then, ω-ordered.

P75 The ordinals of the second class define a new set: the set of

all ordinals whose sets have the same cardinal ℵo. The cardinal

of this new set is the next aleph: ℵ1 [47, Theorem §16 F]. In its

turn, the set of all ordinals whose sets have the same cardinal ℵ1
is another set whose cardinal is ℵ2. The set of all ordinals whose

sets have the same cardinal ℵ2 is another set whose cardinal is ℵ3.
And so on. Thus, according to Cantor, there are two increasing

sequences of infinite cardinals (the power sequence and the alephs

sequence):

ℵo < 2ℵo < 22
ℵo

< 22
2ℵo

< . . . (Power sequence) (50)

ℵo < ℵ1 < ℵ2 < ℵ3 < . . . (Aleph sequence) (51)
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The famous hypothesis of the continuum asserts: ℵ1 = 2ℵo . The

generalized version asserts that, for all i, the ith term of the first

sequence is equal to the ith term of the second one. Between 1938

and 1963, it was proved that the hypothesis of the continuum is an

undecidable proposition (one that cannot be proved or disproved)

within the axiomatic framework of set theory. Fortunately we will

not have to address that question in this book, except the short

revision of the hypothesis of the continuum that will be carry out

in Chapter 22.

Sequences

P76 Assuming that the concepts of set, collection and the like are

primitive concepts, the concept of indexed set will be now defined,

and after proving two basic results, the concept of sequence will

also be defined.

a)Definition P76a. A set is said to be indexed by another set, said

set of indexes, if there is a bijection between both sets, and all

elements of the indexed set are represented by the same symbol

plus a symbol different for each element, called subindex, which

represents the element of the set of indexes paired with that

element by the bijection between the two sets.

b)Theorem P76. If a set is indexed by a well-ordered set of indexes,

then the set can be well-ordered by the indexes with the same

type of order as the set of indexes.

Proof.-Let A be a set indexed by a well-ordered set of indexes

I = {i, j, k, . . . }. There is a bijection f between I and A (Defi-

nition P76a), so that each element a of A can be written f(k)k,

where k is the element of I paired off with the element a of

A by the bijection f . Since all indexes are different from one

another, any two elements f(k)k, f(n)n of A indexed respec-

tively by k, n ∈ I, can also be written ak, an. Let now define

a set A′ so that being i the first element of I, ai is also the

first element of A′; and so that every element ai of A
′ has as

immediate successor the element ak if, and only if, k is the

immediate successor of i in I (Theorem P53a). The set A′ =
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{ai, aj , ak, . . . } so defined satisfies:

∀i, k ∈ I : ai < ak ⇔ i < k (52)

ai ∈ A⇒ i ∈ I ⇒ ai ∈ A′

ai ∈ A′ ⇒ i ∈ I ⇒ ai ∈ A

}
(53)

where < is the order of precedence in both sets A′ and I. The

set A′ is totally ordered by <, otherwise at least one of the

properties a), b), c), d) defined in P51 would not be satisfied

by its elements, and according to (52), the same would apply

to the elements of I, which is not the case because I is well-

ordered. The bijection g between I and A′ defined by g(i) =

ai,∀i ∈ I, and (52) prove both sets have the same ordinal

(Definitions P52 and P65). On the other hand, (53) proves

A′ contains all elements of A, and only them. Therefore, the

elements of A can be reordered with the same type of order

as the set of indexes I, and the reordered set and the set of

indexes have the same ordinal (Definition P65). �

a)Corollary P76a. A set whose elements are indexed by the set of

all ordinals in their natural order and precedence and less than

a given ordinal α can be well-ordered as set whose ordinal is

the given ordinal α

Proof.-According to Cantor’ Theorem §15 H [47, p. 165], the

set of all ordinals in their natural order of precedence and less

than a given ordinal α is a well-ordered set whose ordinal is α.

So, and according to the above Theorem P76, if the elements

of a set A are indexed by the set of all ordinals in their natural

order of precedence and less than α, then the set A can be

ordered as a well-ordered set whose ordinal is α. �

b)Definition P76b. A sequence is a well-ordered set indexed by a

well ordered set of ordinals in their natural order of precedence.

If the ordinal of the set of indexes is α the sequence is said α-

ordered or α-sequence.

Note that the well order of a sequence is legitimated by the

Corollary P76a. It is then clear that a sequence is a particular
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type of set, and that not all sets are sequences. Unless other

thing indicated, the words “table” and “ordered list” will be

used with the meaning of ω-ordered sequence.

b)Corollary P76b. An element of a sequence indexed by an ordinal

of the second kind cannot have immediate predecessor.

Proof. An ordinal of the second kind is the limit of an infinite

sequence either of finite ordinals, or of ordinals of the first kind

[47, p. 167, Theorem §15 K]. So, if an element of a sequence

is indexed by an ordinal of the second kind, it cannot have an

immediate predecessor because this predecessor would have to

be indexed by the impossible last ordinal of an infinite sequen-

ce of ordinals for each of whose elements αv there is a successor

ordinal αv +1 (Peano’s Succesor Axiom for finite ordinals and

Cantor’s Theorem §15 B for infinite ordinals) [180, p. 1] [47,

p. 161]. �

P77 For the infinite sequences, the set of indices is usually the

set of all finite ordinals (ordinals of the first class). For the finite

sequences of n elements the set of indexes is the set of the first n

finite ordinals. Both sets coincide in their type of order respectively

with the set N of the natural numbers and with the set of the first

n natural numbers.

P78 Note that the above Definition P76b extends the definition

of sequence that usually appears in mathematical textbooks, so

that, in our case, the ordinals that index a sequence can be equal

or greater than ω. Although the “extended” sequences will only

be used to discuss on the possibility of non-denumerable segmen-

tations (divisions) in the real straight line (Chapter 13), and also

to discuss the supposed infinite divisibility of the linear intervals

(Chapter 17). Thus, the set of ordinals (indexes) of an ω-ordered

sequence is {1, 2, 3, . . . }, and the elements of the sequence will be

written:

〈ai〉 = a1, a2, a3, . . . (54)

If the set of ordinals of a sequence is, for example, {1, 2, 3, . . . , ω},
the corresponding sequence 〈ai〉 will be said (ω + 1)-ordered and
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its elements would be:

〈ai〉 = a1, a2, a3, . . . aω (55)

And the following will not be sequences indexed by that set of

indexes:

a1, a2, a3, . . . (56)

a1, a2, . . . aω, aω+1 (57)

aω, a2, a3, a4, . . . a1 (58)

For simplicity, the word “sequence” will also be used to refer to

the ω∗-ordered collections (see P82), even if they are neither well-

ordered sets nor true sequences in the sense defined in P76b.

P79 As noted above, most of the theoretical objects we will use

here to analyze the formal consistency of the hypothesis of the

actual infinity will be well-ordered sets with its corresponding or-

dinal number. Although the issue that interests us most here is not

the ordinal itself but the possibility to consider successively and

one by one (one after the other) all elements of the set.

P80 We will finish this instrumental introduction to the mathe-

matical infinity by proving four basic results on well-ordered sets.

They will be used occasionally in some of the arguments developed

in the rest of the book.

aTheorem P80a, of the Indexed Sets. If a set can be put into

a one to one correspondence with the set N of all natural num-

bers, then the set can be reordered as an ω-ordered set.

Proof.-If a set X can be put into a one to one correspondence

with the set N of the natural numbers, then it can be indexed

by all elements of this set (Definition P76a). According to the

Theorem P74, of the ω-Order, the ordinal of the set N of the

natural numbers is ω. Hence, the elements of X can be reor-

dered by means of their corresponding indexes as an ω-ordered

set (Theorem P76). �

bTheorem P80b, of the ωth Term. If a sequence has an infinite
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ordinal α greater than ω, then the sequence has an ωth term.

Proof.-Let X be a sequence whose ordinal is α > ω.X is indexed

by a set Oα of ordinals in their natural order of precedence

whose ordinal is α (Definition P76b). According to Cantor’s

Theorem §15 H [47, p. 165], Oα contains all ordinals less than

α, so that it contains the ordinal ω. Therefore, X must contain

an ωth term. �

cTheorem P80c, of the Finite Sets. If a set has a first element,

a last element, and each element, except the last, has an imme-

diate successor and, except the first, an immediate predecessor,

the set has a finite number of elements.

Proof.-Let X = {a, b, c, . . . v} be a set with a first element a,

a last element v and such that every element, except v has an

immediate successor and, except a, an immediate predecessor.

The immediate successor of a has a finite number of predeces-

sors: 1 predecessor, just the element a. Suppose that, being h

any element of X different from a and v, that element h has a

finite number n of predecessors. The immediate successor of h

has one more predecessor than h, the element h itself. There-

fore, it also has a finite number n+1 of predecessors. (Peano’s

Axiom of the Successor [180, p. 1]). Since the immediate succes-

sor of a has a finite number of predecessors, we can inductively

conclude that, except a and b, every element of X has a finite

number of predecessors. And since a has no predecessors and v

has one predecessor more than its immediate predecessor, the

number of predecessors of v is also finite (Peano’s Axiom of the

Successor [180, p. 1]). Therefore, the number of elements of X,

which is 1 plus the number of predecessors of its last element

v, is finite (Peano’s Axiom of the Successor [180, p. 1]). �

dCorollary P80, of the Finite Ordinals. If a sequence X has

a last term and each element has an immediate successor and

an immediate predecessor, the sequence has a finite number of

elements.

Proof.-It is an immediate consequence of the Definition P76b

and of the Theorem P80 �
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Sumary

P81 Obviously this has been only a schematic introduction to

Cantor’s theory of transfinite numbers [47]. But it is more than we

need to know in order to follow the arguments developed in this

book. As noted above, we will focus our attention on ω-ordered

objects (sets, sequences, tables, lists, etc.), i.e on objects whose

elements are ordered in the same way as the natural numbers in

their natural order of precedence. Objects as, for instance, the

sequence 〈ai〉 = a1, a2, a3, . . . This type of ordering (ω-order from

now on) is characterized by:

a) There is a least element a1.

b) Each element an has an immediate predecessor an−1, except

the least one a1.

c) Each element an has an immediate successor an+1.

d) Between any two successive elements an, an+1, no other ele-

ment exists.

e) There is not a last element, in spite of which ω-order objects

are considered as complete totalities.

P82 Although only very occasionally, we will also deal with ω∗-

ordered objects, i.e. objects whose elements are ordered in the same

way as the increasing sequence of negative integers . . . , -3, -2,-1,

which is not well-ordered. In this type of ordering we will use the

notation an∗ to refer to the last but n − 1 element. ω∗-Order is

characterized by:

a) There is a last element a1∗.

b) Each element an∗ has an immediate successor a(n−1)∗, except

the last one a1∗.

c) Each element an∗ has an immediate predecessor a(n+1)∗.

d) Between any two successive elements a(n+1)∗, an∗ no other

element exists.

e) There is not a first element, in spite of which ω∗-ordered ob-

jects are considered as complete totalities.
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Evidently, an ω∗-ordered sequence 〈ai∗〉 defines an ω-ordered se-

quence 〈ai〉 in which every ai is ai∗ . For instance the above sequence

〈ai∗〉 of increasing negative integers defines the ω-ordered sequence

〈ai〉 of decreasing negative integers −1,−2,−3, . . .

P83 Consequently, the main protagonists of this book, the ω-

ordered objects exhibit:

• ω-successiveness: each element ai has an immediate successor

ai+1.

• ω-discontinuity: between an element ai and its immediate

successor ai+1 no other element exists.

• ω-asymmetry: each element ai is preceded by a finite number

i− 1 of predecessors, and succeeded by an infinite number, ℵo,
of successors.

It is worth paying attention to the above ω-asymmetry of the ω-

ordered objects (note the italics in its definition). No matter how

much one advances over the successive terms of an ω-ordered se-

quence, it is impossible to reach a term with an infinite number

of predecessors, despite the fact that the sequence contains an in-

finite number of terms. This infinite asymmetry makes impossible

the existence of elements with an infinite number of predecessors

and elements with a finite number of successors. The ω-asymmetry

will be one of the most important instruments in the critique of

the hypothesis of the actual infinity that will be developed from

Chapter 7. As you will see, ω-asymmetry is a relentless detector of

infinitist inconsistencies.

P84 In Chapter 28 , on Zeno’s paradoxes, we will make use of an

ω∗-ordered sequence. These sequences exhibit:

• ω∗-precedence: each element ai∗ has an immediate predeces-

sor a(i+1)∗ .

• ω∗-discontinuity: between an element ai∗and its immediate

predecessor a(i+1)∗ no other element exists.
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• ω∗-asymmetry: each element ai∗ is preceded by an infinite

number, ℵo, of predecessors, and succeeded by an finite number

i− 1 of successors.

P85 Unless otherwise indicated, all sequences are henceforth as-

sumed to be well-ordered objects defined according to the above

Definition P76b. In addition, it will be said that a set, or a se-

quence, is α-ordered to express it is a well-ordered set (or sequen-

ce) whose ordinal is α, being α any finite or infinite ordinal, that

almost always will be ω.

P86 As noted above, Cantor took it for granted the existence of

the set of all finite cardinals in their natural order of precedence (ω-

order). Though not explicitly declared as such an assumption, this

was the only assumption founding his work on transfinite numbers,

in which he proved the existence of other infinite cardinals and

ordinals greater respectively than ℵo and ω. So, if it were possible

to prove that ω-ordered objects are inconsistent, the whole edifice

of infinitist mathematics would fall down like a house of cards. This

is why most of the following arguments will deal with ω-ordered

sets and sequences.

P87 Among other sets, the set Q of the rational numbers in their

natural order of precedence is densely ordered (between two diffe-

rent rationals there are always infinitely many different rationals),

but not well ordered. And it is also a denumerable set, as was

proved by Cantor[47] [37, p. 123]. Although we will not use it he-

re, Cantor called η to the order type of the set Q of the rational

numbers in their natural order of precedence [47, p. 122-123], and

proved that any simply (strictly) ordered set M satisfying:

(a) |M | = ℵo.
(b) M has neither first nor last element.

(c) M is densely ordered.

is also η-ordered [47, p. 124].
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P88 Being Q denumerable, a one to one correspondence f bet-

ween between the ω-ordered set of the natural numbers N and

Q can be established. The bijection f allows to consider all ele-

ments of Q one by one, by following the ω-order of N: f(1), f(2),

f(3),. . . . From Chapter 7, this strategy will be used in different

demonstrations.
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5 The Paradoxes of Reflexivity Revisited

Introduction

P89 If after pairing each element of a set A with a different element

of another set B all elements of B result paired, it is said both sets

have the same number of elements (the same cardinality). But if

one or more elements of B result unpaired and B is infinite, it

is not always allowed to say both sets have a different number of

elements, a different cardinality. In this chapter we discuss why it

is not.

P90 An injection is a correspondence between the elements of

two sets A and B such that each element of A is paired off with

a different element of B. If all elements of B are also paired, the

injection is said exhaustive or surjective (it is also said a bijection

or one to one correspondence); otherwise it is said non-exhaustive,

or non-surjective. As we will see, the existence of both exhaustive

and non-exhaustive injections between two infinite sets could be

indicating they have and have not the same cardinality. Thus, the

arbitrary distinction of the exhaustive injections to the detriment

of the non-exhaustive ones could be concealing a fundamental con-

tradiction in set theory.

P91 Most of the paradoxes related to the actual infinity result

from the violation of the Axiom of the Whole and the Part (the

assumption that the whole is greater than the part), one of the

Common Notions assumed in the First Book of Euclid’s Elements

[87, p 19]. Among the paradoxes resulting from that violation are

the so called paradoxes of reflexivity in which the elements of a

whole are paired off with the elements of one of its proper parts

65
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[210, 73]. A well-known example of this kind of paradox is Galileo

Paradox: the elements of the set of the natural numbers can be

paired with the elements of one of its proper subsets, the subset

of their squares [98]):

f(n) = n2, ∀n ∈ N : 1↔ 12, 2↔ 22, 3↔ 32 . . . (1)

Authors as Proclus, J. Filopón, Thabit ibn Qurra al-Harani, R.

Grosseteste, G. of Rimini, W. of Ockham etc. found many other

examples [210].

P92 The strategy of pairing off the elements of two sets is not

just a modern invention. In a certain way, Aristotle used it when

trying to solve Zeno’s Dichotomy in its two variants [12, 11]. And

since then, it has been frequently used by different authors with

different level of formalism and different purposes, although, before

Dedekind and Cantor, they were never used (including the case of

Bolzano [30]) as an instrument to consummate the violation of

the old Euclidean axiom. Of course, the existence of a one to one

correspondence between two infinite sets does not prove both sets

are actually infinite because they could also be potentially infinite.

P93 Things began to change with Dedekind, who stated the de-

finition of infinite set (Definition P29) just on the basis of that

violation. Dedekind and Cantor inaugurated the so called paradi-

se of the actual infinity, where exhaustive injections (bijections or

one to one correspondences) play a major role.

Paradoxes or contradictions?

P94 As indicated above, an exhaustive injection of a set A into

another set B is a correspondence between the elements of both

sets in which each element of A is paired off with a different element

of B, and all elements of A and B result paired. When at least one

element of the set B results unpaired the injection is said non-

exhaustive. Exhaustive and non-exhaustive injections can be used

to compare the cardinality of the finite sets. But if the compared

sets are infinite, then only exhaustive injections are permitted. An

inevitable consequence of assuming that the infinite sets violate,
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by definition, the Axiom of the Whole and the Part.

P95 But definitions can also be inconsistent. Specially when the

definition is based on the violation of a basic axiom, as is the ca-

se of Dedekind’s Definition P29 of infinite set. The infinite sets

could have been defined inconsistently on the basis of one of the

terms of a contradiction: there is an exhaustive injection between

a set A and one of its supersets B. The other part of the con-

tradiction would be: there is a non-exhaustive injection between

the set and the same superset. No one has ever explained why to

have an exhaustive injection with a superset (|A| = |B|) and at

the same time to have a non-exhaustive injection with the same

superset (|A| < |B|) is not contradictory. The problem has simply

been ignored (justifying it with Dedekind’s Definition P29), and

set theory has been raised on the basis of that ignorance.

P96 If the notion of set is primitive (undefinable), as it seems to

be, then only operational definitions of set could be given. And

if sets may have different cardinalities, then an appropriate basic

method for comparing cardinalities should be established before

defining the types of sets that could be defined according to their

cardinals, especially if the comparing method has to form part of

the definition, as is the case of the Definition P29 of infinite set.

P97 To pair off the elements of two sets is a basic and legitimate

method for comparing their respective cardinalities, being unne-

cessary any other arithmetical or set theoretical operation. It is at

this foundational level of set theory where it would have to be dis-

cussed if exhaustive and non exhaustive injections are appropriate

operations to get conclusions on the cardinality of any two sets.

So, this question should be elucidate before trying any definition

involving cardinalities, as the definition of infinite set.

P98 It seems reasonable to assume that if after pairing every ele-

ment of a set A with a different element of a set B, all elements

of B result paired, then A and B have the same number of ele-

ments. But it seems also reasonable, and for the same elementary
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reasons, to assume that if after pairing every element of a set A

with a different element of a set B one or more elements of the

set B remain unpaired, then A and B do not have the same num-

ber of elements. It is worth noting that both exhaustive and non-

exhaustive injections make use of the same basic method of pairing

elements, without carrying out any finite or transfinite arithmetic

operation. We are not counting but pairing, we are discussing at

the most basic foundational level of set theory.

P99 It should be recalled at this point that the arithmetic pecu-

liarities of transfinite cardinals, as ℵo = ℵo+ℵo and the like (some

of them are discussed in Chapter 20), are of all them derived from

the hypothetical existence of the infinite sets (Axiom of Infinity),

i.e. of sets whose elements can, by definition, be paired with the

elements of some of their proper subsets. So, under penalty of

circular reasoning, we cannot infer from the deduced existence of

those arithmetical peculiarities the existence of just the sets from

which those arithmetic peculiarities of infinite cardinals have been

deduced (peculiarities that could be used to justify the existence

of exhaustive and non exhaustive injections between an infinite

set and some of its supersets). This is an unacceptable circular

argument. Here, we are simply discussing if the method of pairing

the elements of two sets is appropriate to compare their respec-

tive cardinalities; and if it is, why non-exhaustive injections are

rejected, because that rejection could be concealing a fundamental

contradiction.

P100 For example, consider the set N of the natural numbers,

the sets E and O of even and odd numbers respectively, and the

injection f from E to N defined by:

f(e) = e; ∀ e ∈ E (2)

The injection f is non-exhaustive since all odd numbers in O ⊂ N

remains unpaired. Assume that, consequently, we write:

|E| < |N| (3)
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On the other hand, the injection g of E in N defined by:

g(e) = e/2; ∀ e ∈ E (4)

is exhaustive. Therefore, and according to Dedekind’s Definition

P29, N is infinite, and E has the same cardinality as N. In conse-

quence:

|E| = |N| (5)

that contradicts (3). In consequence, to say that (5) invalidates

(3) because (5) is Dedekind’s Definition P29, can be legitimately

interpreted as if one term of a contradiction (|P| = |N|) is used to

define a class of objects (the infinite sets), then the other term of

the contradiction (|P| < |N|) is invalidated. We would have finally

found the ultimate way to end all contradictions.

P101 Exhaustive and non-exhaustive injections should have the

same validity as instruments to compare the cardinalities of the

infinite sets just because they use exactly the same comparison

method: to pair elements. However, only exhaustive injections can

be used with that purpose. But why? Why some pairings are valid

while some others are not, if all of them have the same basic legi-

timacy? The problem here is that the existence of both exhaustive

and non-exhaustive injections between two infinite sets could be

indicating the existence of an elementary contradiction (that both

infinite sets have and have not the same cardinality). In this case

the distinction of the exhaustive injections would be the distin-

ction of a term of a contradiction (|E| = |N|) to the detriment of

the other (|E| < |N|). Or in other words, one term of a contra-

diction (|E| = |N|) would be being used to define an object (the

infinite sets), while ignoring the other term of the contradiction

(|E| < |N|).

P102 At the very least, the alternative to consider a set as in-

consistent because of the existence of both exhaustive and non-

exhaustive injections with the elements of the same superset is

as legitimate as the alternative to consider it as consistent. Thus,
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at the very least, the arbitrary election of the second alternative

should be explicitly declared at the foundational level of the theory,

which is not the case in current set theories. Current set theories

systematically ignore the first alternative. It could be argued that

Dedekind’s Definition P29 implies to assume the existence of sets

for which there exist both exhaustive and non-exhaustive injec-

tions with at least one of its supersets. But, for the reason given

in P100, a simple definition does not guarantee the defined object

is consistent, and then the alternative of the inconsistency has al-

so to be considered. To propose such an alternative is the main

objective of this chapter. An alternative that, for all I know, has

never been proposed.

Figura 5.1 – The suspicious power of the ellipsis: the sets S and N
have (left) and not have (right) the same number of elements.

P103 Assume, only for a moment, that exhaustive and non exhaus-

tive injections were valid instruments to compare the cardinality

of any two sets. In these conditions, let N be an infinite set (Fi-

gure 5.1). By definition, there exists a proper subset S of N and

an exhaustive injection f from S to N proving both sets have the

same number of elements. Consider now the injection g from S to

N defined by:

g(x) = x, ∀x ∈ S (6)

which evidently is non-exhaustive (the elements of the nonempty

setN -S remain unpaired). The injections f and g would be proving

that S and N have (f) and not have (g) the same number of

elements, i.e. that the infinite sets are inconsistent.
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P104 We must therefore decide if exhaustive and non-exhaustive

injections do have the same validity as instruments to compare the

number of elements of any two sets. If they do, then the actually

infinite sets are inconsistent. If they do not, at least one (non-

circular, not related to the definition of infinite set) reason should

be given to explain why they do not. And, if no reason can be given,

then the arbitrary distinction in favor of the exhaustive injections

should be declared in an appropriate ad hoc axiom. Until then,

the foundation of set theory rests on the basis of one of the terms

of a contradiction. Unbelievable as it may seem, the axiomatic

foundation of set theory has always ignored this problem.

P105 As could be expected from a theory with such initial foun-

dations, inconsistencies appeared immediately: the set of all or-

dinals and the set of all cardinals were proved to be inconsistent

by Burali-Forti [33] and Cantor respectively. According to Can-

tor, those sets are inconsistent because of their excessive infinitu-

de (letter to Dedekind quoted in [68, pag. 245], [99, 90]). A set

can be infinite but not too infinite. By the appropriate axiomatic

restrictions, it was finally stated that some infinite totalities, as

the totality of cardinals or the totality of ordinals, do not exist

because they lead to contradictions. It can easily be proved, as we

will see in the next chapter, that in a set theory without axioma-

tic restrictions, as Cantor’s set theory, each (finite or infinite) set

of cardinal C originates nothing less than 2C inconsistent infinite

totalities. Even Riemann’s Series Theorem can be reinterpreted

as the proof of the existence of another infinitude of inconsistent

infinite totalities (Chapter 34)
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6 Paradoxes in Naive Set Theory

Paradoxes in naive set theory

P106 The so-called Cantor Paradox is not a paradox but a true

inconsistency, a pair of contradictory results deduced from an in-

finite set: from the set of all cardinals (or from the universal set,

the set of all sets). For this reason, these sets are rejected in mo-

dern axiomatic set theories. This chapter demonstrates, however,

the existence of an uncountable infinitude of inconsistent infinite

sets. It will be proved that, within the framework of the naive set

theory, each set with a cardinal number C gives rise to at least 2C

inconsistent infinite sets.

P107 Although Burali-Forti was the first to publish [33] the proof

of a paradox related to an infinite set (the set of all ordinals)

[32, 99], Cantor was the first to discover one of those paradoxes,

now known as Paradox of the Maximum Cardinal, or Cantor Pa-

radox [99, 68, 92], though the discovery was not published. There

is no agreement regarding the date Cantor discovered his para-

dox [99] (the proposed dates range from 1883 [190] to 1896 [106]).

There is also no agreement on whether he discovered one paradox

or more than one paradox, or even on the precise content of the

paradoxe(s). Fortunately, the goal of this chapter is not to uncover

the history of those discoveries. The main objective of this chapter

is to prove, within the framework of the naive set theory, the exis-

tence of a non-denumerable infinitude of inconsistent infinite sets.

Although before developing this objective, it is convenient to recall

those first paradoxes in set theory, which were discovered almost

at the same time that set theory itself was beginning to develop.

And two of the best known of them are Burali-Forti Paradox of the

Maximum Ordinal and Cantor Paradox of the Maximum Cardinal.

73
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P108 Burali-Forti Paradox of the Set of All Ordinals and Cantor

Paradox of the Set of All Cardinals are both related to the size

of the considered totalities, perhaps too big as to be consistent,

according to Cantor. At this stage of his life, Cantor followed a

direction in set theory more theoplatonic than logic [92], so that

an inconsistent totality for him would be a totality that cannot be

considered as a (human) set due to its divine nature. Although for

other reasons more theological than logical, Cantor was following

the same strategy that the axiomatization of set theory would later

follow: putting restrictions on the existence of sets.

P109 At the beginning of the development of set theory, the so-

called Principle of Comprehension was used indiscriminately to

define sets. This principle states that given a condition expressible

by a formula f(x), it is possible to form a set with all the elements

x that satisfy that formula f , the set {x | f(x)}. Under these condi-
tions it was possible to define sets as the universal set: {x | x = x}.
And once the concepts of cardinal and ordinal were defined, the

respective sets of all cardinals and all ordinals were also possible.

A possibility that, almost immediately, led respectively to Cantor

Paradox and to Burali-Forti Paradox.

P110 On the other hand, it is worth noting the euphemism of

calling paradox what really is an inconsistency, i.e. a pair of con-

tradictory terms that surely derive from a common precedent hy-

pothesis. From which precedent hypothesis? Perhaps from the only

previous hypothesis (explicitly recognized or not) that establishes

the existence of Dedekind’s infinite sets as complete totalities? In-

deed, the simplest explanation of both paradoxes is that they are

inconsistencies derived from the hypothesis of the actual infinity,

i.e. from assuming the existence of the infinite sets as complete

totalities. But no one has dared to analyze this alternative. As is

well known, and has just been indicated, the infinitist alternative

was to restrict the existence of sets by means of the appropriate

axioms, in such a way that the above conflicting sets, and many

others, can no longer be considered legal sets.
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Cantor and Burali-Forti Paradoxes

P111 The following is a short version of Cantor Paradox (for a

detailed analysis see [99, p. 66-74], [92]): In Cantor’s naive set

theory, let U be the set of all sets, the so called universal set, and

P (U) its power set, the set of all its subsets. Let us denote by |U |
and |P (U)| their respective cardinals. Being U the set of all sets

it must contain all sets and its cardinal must be the maximum

cardinal. Then we can write:

P (U) ⊆ U (1)

|P (U)| ≤ |U | (2)

On the other hand, and according to Cantor’s Theorem on the

Power Set [43], it holds:

|U | < |P (U)| (3)

which contradicts (2). Equations (2)-(3) represent Cantor Para-

dox, which is a true contradiction, i.e. a couple of contradictory

conclusions:

Cantor Paradox




|P (U)| ≤ |U |

|P (U)| > |U |
(4)

P112 As is well known, Cantor gave no importance to that incon-

sistency [90] and clinched the argument by assuming the existence

of two types of infinite totalities, the consistent and the inconsis-

tent ones [40]. As noted above, in Cantor’s opinion the inconsis-

tency of those inconsistent infinite totalities would be due to their

excessive infinitude as well as to its divine nature. In fact, we would

be in the face of the mother of all infinities, the absolute infinity

which, according to Cantor, leads directly to God, being just the

divine nature of this absolute infinitude what makes it inconsistent

for our poor human minds [40].

P113 Burali-Forti Paradox is similar, although it is deduced from
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the set O of all ordinals. According to the description given in [99]

(taken from [63]), the paradox results from the following argument.

The set O of all ordinals is well-ordered, so it has a defined ordinal

Ω. Therefore, Ω ∈ O. On the other hand, any ordinal a ∈ O
satisfies:

∃(a+ 1) ∈ O (5)

a ≤ Ω (6)

a < a+ 1 (7)

and since Ω is an element of O, it must satisfy (5)-(7). Hence, if

we replace a with Ω in (5) we get:

∃(Ω + 1) ∈ O (8)

Now by replacing a with Ω+ 1 in (6); and a with Ω in (7), we can

write:

Ω + 1 ≤ Ω (9)

Ω < Ω+ 1 (10)

And we come to Burali-Forti Paradox:

Burali-Forti Paradox

{
Ω+ 1 ≤ Ω

Ω+ 1 > Ω
(11)

Which is another undoubted contradiction, a new pair of contra-

dictory results.

P114 Finally, we could recall the well-known Russell’s Paradox,

of the set R of all sets that do not belong to themselves [99]. In this

case we will obtain a true paradox, a self-contradictory statement:

a part of a statement denies the other part of the statement, and

vice versa: it is clear that if R belongs to R, then it does not belong

to R; and if it dos not belongs to R, then it belongs to R.

P115 The three set theoretical paradoxes we have just recalled

have one word in common, the word “all”:
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• Set of all cardinals.

• Set of all ordinals.

• Set of all sets.

• Set of all sets that do not belong to themselves.

where the word “all” refers to the elements of particular infinite

totalities, and in order to be able to consider all of its elements,

those totalities have to be considered as complete totalities. Tota-

lities whose infinitude is actual, not potential. In the case of finite

totalities, the only legitimate totalities according to the alternative

hypothesis of the potential infinity, none of the above paradoxes

(contradictions) occurs. From the next chapter, it will be shown

over and over again that the only consistent totalities are the finite

totalities.

P116 In the next section we will see that, within the same frame-

work of the Cantorian set theory, it is possible to extend Cantor’s

Paradox to other sets much more modest than the set of all sets,

or the set of all cardinals. And it will be shown that the number of

inconsistent infinite totalities is infinitely greater than the number

of consistent ones: each denumerable set gives rise to nothing less

than 2ℵo inconsistent infinite sets. That is, an uncountable infinity

of inconsistent infinite sets. We will always be in doubt about what

would have happened with the development of set theory and in-

finitist mathematics, if that uncountable infinitude of inconsistent

infinite sets had been discovered when the theory was beginning

its development.

An extension of Cantor’s Paradox

P117 To illustrate what could have been but was not, the following

discussion will take place within the framework of the Cantorian

(naive) set theory. To begin with, let us define two types of disjoint

sets:

a) Sets relatively disjoints. Two sets are said relatively disjoint if

they have no common element, but at least one element of one

of them is part of the definition of at least one element of the

other.
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b) Sets absolutely disjoints. Two sets are said absolutely disjoint

if they have no common element, and no element of any of

them is part of the definition of any element of the other.

Consider, for example, the following three sets:

A = {{a, {b}}, c, d, {e}, f} (12)

B = {1, 2, b} (13)

C = {11, 22, 33} (14)

According to the above definitions, A and B are relatively disjoint

because they have no common element, but the element b of the

set B is part of the definition of the element {a, {b}} of the set A.

On the other hand, A and C are absolutely disjoint because they

have no common element and no element of any of them is part of

the definition of any element of the other. For the same reason, B

and C are also absolutely disjoint.

P118 Consider also the recursive sequence 〈Si(X)〉 of the succes-

sor sets of a given set X, whose first term is X and whose nth

(n > 1) term is the set whose elements are the elements of the

(n − 1)th term plus a new element which is the set whose unique

element is the (n− 1)th term:

S1(X) = X (15)

S2(X) = {X, {X}} (16)

S3(X) = {X, {X}, {X, {X}}} (17)

S4(X) = {X, {X}, {X, {X}}, {X, {X}, {X, {X}}}} (18)

. . .

If X is the empty set, the above sequence is the well-known se-

quence used to define the successive finite cardinals and ordinals

(see Chapter 4).

P119 Let X be any non empty set; Y any of its subsets; and

DY the set of all sets absolutely disjoint with the set Y . If Y

is the empty set, then DY would be the universal set, which is
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inconsistent according to (2)-(3). In any other case, it is immediate

to prove that DY is infinite. In fact, let n be any natural, and

then finite, number and assume the cardinal |DY | of DY satisfies

|DY | = n. Let A be any element of DY . Since A is absolutely

disjoint with Y , the successor sets S1(A), S2(A) . . . , Sn+1(A) of the

set A are also absolutely disjoint with Y , and they are elements

of DY . Therefore, the cardinal |DY | is greater than any natural

number n. In consequence DY cannot be finite but infinite.

P120 Consider now the set P (DY ) of all subsets of DY , i.e. the

power set of DY . The elements of P (DY ) are all of them subsets

of DY and therefore sets of sets that are absolutely disjoint with

the set Y . Consequently, it holds:

∀A ∈ P (DY ) : A ∈ DY (19)

And then:

P (DY ) ⊆ DY (20)

Accordingly, we can write:

|P (DY )| ≤ |DY | (21)

P121 On the other hand, and in accordance with Cantor’s Theo-

rem of the Power Set it holds:

|P (DY )| > |DY | (22)

Again a contradiction. But nowX is any non empty set, and Y any

of its subsets. Therefore, and taking into account that every set of

cardinal C has 2C different subsets, we have proved the following:

a)Theorem P121, of Cantor Paradox. In Cantor’s set theory,

every set whose cardinal is C gives rise to at least 2C incon-

sistent infinite sets.

Each of the sets of that uncountable infinitude of inconsistent in-

finite sets could only be an absolute and divine infinity, according

to Cantor. Or simply a proof of the inconsistency of a concept, the
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concept of the actual infinity.

P122 The above argument not only proves the number of incon-

sistent infinite totalities is infinitely greater than the number of

consistent ones, it also suggests the excessive size of the sets could

not be the cause of the inconsistency. Consider, for example, the

set X of all sets whose elements are exclusively defined by means

of the natural number 1:

X =
{
1,{1}, {1, {1}, {1, {1}}}, {{{1}}}, {{1, {1}}} . . .

}
(23)

An argument similar to P119-P121 would immediately prove it

is an inconsistent infinite totality, although compared with the

universal set (which contains X as a tiny part of its elements)

it is an insignificant totality. As a comparative reference, let us

remember that, for example, between any two real numbers an

uncountable infinitude (2ℵo) of other different reals numbers do

exist. What makes one feel dizzy, as Wittgenstein would surely

say [244, p. 110]

P123 Notice that the sets as the set X defined by (23) are incon-

sistent only when considered from the perspective of the actual

infinity, i.e. when considered as complete totalities. And recall that

from the potential infinite point of view those sets make no sense

because from this perspective the only complete totalities are the

finite totalities, as large as wished but always finite.

P124 Had we known the existence of so many inconsistent infinite

sets, and not necessarily as gigantic as the absolute infinity, and

perhaps Cantor transfinite set theory would have been received

in a different way. Perhaps the very notion of the actual infinity

would have been put into question just in set theoretical terms; and

perhaps we would have found the way to prove it is an inconsistent

notion. But, as we know, this was not the case. The case was the

platonic infinitism, increasingly intolerant of disagreement.

P125 The history of the reception of set theory and the way to
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deal with its inconsistencies (most of them promoted by the actual

infinity hypothesis and by self-reference) is well known. From the

beginnings of the XX century a great deal of effort has been carried

out to found set theory on a formal basis free of inconsistencies.

Although the objective could only be accomplished with the aid of

the appropriate axiomatic patching. At least half a dozen of axio-

matic set theories have been developed ever since. There are also

some contemporary attempts to recover naive set theory [124]. So-

me hundreds of pages are needed to explain in detail all axiomatic

restrictions of contemporary axiomatic set theories. Just the con-

trary one could expect from the axiomatic foundation of a formal

science as set theory.

P126 As noted above, the simplest explanation of Cantor and

Burali-Forti inconsistencies is that they are true contradictions

derived from the inconsistency of the hypothesis of the actual in-

finity. The same applies to the set of all sets that are not member

of themselves (Russell Paradox). All sets involved in the parado-

xes of naive set theory were finally removed from the theory by

the opportune axiomatic restrictions. No one dared to suggest the

possibility that some of those paradoxes were in fact contradic-

tions derived from the hypothesis of the actual infinity; i.e. from

assuming the existence of infinite sets as complete totalities.

P127 What is really true is that Cantor set of all cardinals, Burali-

Forti set of all ordinals, the set of all sets, and Russell set of all

sets that are not members of themselves, are all of them inconsis-

tent totalities when considered from the perspective of the actual

infinity hypothesis. Even Turing’s famous halting problem is rela-

ted to the hypothesis of the actual infinity because it also assumes

the existence of all pairs programs-inputs as a complete infinite

totality [231]. Under the hypothesis of the potential infinity, on

the other hand, none of those totalities makes sense because from

this perspective only finite totalities can be considered, indefinitely

extensible, but always finite.

P128 As indicated above, Cantor Paradox and Burali-Forti Pa-
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radox are not paradoxes but inconsistencies, i.e. two couples of

contradictory results:

Cantor Paradox

{
|U | ≥ |P (U)|
|U | < |P (U)|

(24)

Burali-Forti Paradox

{
Ω+ 1 ≤ Ω

Ω+ 1 > Ω
(25)

Recall that we are discussing within the framework of Cantor’s

naive set theory, where axiomatic restrictions had not yet been es-

tablished. In those conditions, the contradictory terms of (24) and

(25) can only derive from some previous inconsistent assumption.

And the only assumption to get (24) and (25) is the hypothesis

of the actual infinity, implicitly assumed by Cantor when he es-

tablished the existence of the set of all finite cardinals [47, pgs.

103-104] (italic is mine):

The first example of a transfinite aggregate is given by the to-
tality of finite cardinal numbers v; we call its cardinal number
Aleph-zero and denote it by ℵo [...]

His theoplatonic convictions “as firm as a rock” [78, p.283] preven-

ted him from considering the possibility that his statement about

the totality finite cardinals could only be a hypothesis. And much

less the possibility that this hypothesis were the cause of the con-

tradiction derived from the set of all cardinals, or from the set of

all sets, found by himself.

P129 What is extraordinary about this case is that for more than

a century no one has questioned Cantor’s claim of the existen-

ce of “the totality of the finite cardinal numbers.” No one has

seriously considered that Cantor’s or Burali-Forti’s inconsistencies

were consequences of that initial Cantor statement. Instead, it was

converted in one of the fundamental axioms of set theory. But if

that axiom is finally proved to be inconsistent, it will have set back

the progress of humanity for more than a century. Convictions as
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firm as a rock could be valid for religions, not for science. Science

is the place for hypotheses, errors and corrections, not for dogmas.

P130 In any case (24) and (25) are not paradoxes but true incon-

sistencies. And tracing their origins, we come to the only hypothe-

sis that supports them: the hypothesis of the actual infinity. But

instead of considering the possible inconsistency of that hypothe-

sis, Cantor’s successors chose another path: to set the foundation

of set theory in such a way that it were possible to avoid all conflic-

ting sets as U, while subsuming the hypothesis the actual infinity

into the Axiom of Infinity. By the way, an axiom not sufficiently

transparent with respect to that hypothesis. Certainly, it would ha-

ve been more transparent to explicitly declare the infinity involved

in the axiom is the actual infinity, so that the infinite sets exist as

complete totalities. Maybe an explicit reference to the completion

of incompletable could have motivated the criticism of the actual

infinity: completing what cannot be completed does not seem very

reasonable. Or maybe human reason is not reasonable enough: The

idea that the exotic and incomprehensible adds value to scientific

theories has been gaining ground since the last century. Conside-

ration should be given to the possibility that such eccentricities

were symptoms of a bad foundation of some areas of science.
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7 A rational inconsistency

Introduction

P131 The set Q of the rational numbers, in their natural order

of precedence, is densely ordered: between any two rational num-

bers infinitely many different rational numbers do exist. But, being

denumerable [47, p. 123] [37], Q can also be reordered by a one

to one correspondence with the set N of the natural numbers, so

that between any two successive rational numbers no other ratio-

nal number does exist. The following argument makes use of this

double quality of the rational numbers, and proves for the first

time in the book the inconsistency of the actual infinity. Several

dozen more proofs will follow.

Discussion

P132 For the sake of simplicity, we will deal with the set Q+

Figura 7.1 – Reordering the positive rational line.

of the positive rational numbers greater than zero, which is also

denumerable and densely ordered. Let then f be a one to one

correspondence between the set N of the natural numbers and Q+.
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It is evident that f makes it possible to reorder the elements of Q+

so that they can be written as {q1, q2, q3, . . . }, being qi = f(i), ∀i ∈
N (Theorem P80a), which allows to consider successively and one

by one, all of them (Figure 7.1).

P133 Let x be a rational variable whose domain is the rational

interval (0, 1) and let xo be any rational number within (0, 1).

Consider the following sequence 〈Di(x)〉 of recursive definitions of

the rational variable x:



D1(x) = xo

Di(x) = mı́n
(
Di−1(x), |qi − q1|

)
, i = 2, 3, 4, . . .

(1)

where Di(x) is the ith definition of x; |qi − q1| is the absolute

value of qi− q1; and mı́n
(
Di−1(x), |qi− q1)|

)
is the smallest (in the

natural dense ordering of Q) of the two values in brackets. So, the

successive recursive definitions 〈Di(x)〉 define x as |qi − q1| if, and
only if, |qi − q1| is less than Di−1(x); or as Di−1(x) if it is not.

P134 Definitions, procedures and proofs consisting of infinitely

many successive steps, as definition (1), are usual in infinitist

mathematics (see, for instance, Cantor 1874 argument, or Cantor

ternary set, later in this book). Unnecessary as it may seem, we

will impose to the successive definitions 〈Di(x)〉 the following:

a)Restriction 134-Each successive definition Di(x) will be carried

out if, and only if, x results defined as a positive rational num-

ber within its domain (0, 1).

P135 By induction, it is immediate to prove that for each natural

number v, the first v successive definitions 〈Di(x)〉i=1,2,...v accor-

ding to Restriction P134, can be carried out. Evidently D1(x) can

be carried out according to Restriction P134 since D1(x) = xo, and

xo ∈ (0, 1). Assume that, being n any natural number, the first n

successive definitions 〈Di(x)〉i=1,2,...n can be carried out according

to Restriction P134, which means x is defined with a certain value

Dn(x) within its domain (0, 1). Since |qn+1 − q1| is a well defined



Discussion 87

positive rational number it will be, or not, less than Dn(x). Con-

sequently Dn+1(x) defines x as |qn+1 − q1| if this number is less

than Dn(x) or as Dn(x) if it is not. In any case Dn+1(x) defines

x within its domain (0, 1). Therefore, the first (n + 1) successive

definitions 〈Di(x)〉i=1,2,...n+1 according to Restriction P134 can be

carried out. Hence, and according to the Principle of Mathematical

Induction, for any natural number v, the first v successive defini-

tions 〈Di(x)〉i=1,2,...v can be carried out according to Restriction

P134.

P136 Note that if it were not possible to carry out all possible

definitions 〈Di(x)〉 in accordance with the Restriction P134, and

there being no reason for such an impossibility, we would be fa-

ced with the elementary contradiction of an impossible possibility

(Principle of Execution P25). The same impossibility would have

to apply to any other finite or infinite sequence of possible steps

of any other definition, procedure or proof. In such conditions,

infinite mathematics would be impossible.

P137 We will begin by proving that once performed all the succes-

sive definitions 〈Di(x)〉 according to Restriction P134, the rational

number q1+x is not the smallest rational greater than q1. Indeed,

whatsoever be the value of x once performed all possible succes-

sive definitions 〈Di(x)〉 (Principle of Execution P25), the rational

number q1 + 0,1× x, for instance, is greater than q1 and less then

q1+x. Notice this argument is a consequence of the natural dense

ordering of Q+.

P138 We will prove now, however, that once performed all succes-

sive definitions 〈Di(x)〉 according to Restriction P134, the rational

number q1+x is the smallest rational number greater than q1. In ef-

fect, assume that once performed all successive definitions 〈Di(x)〉
according to Restriction P134, the rational number q1 + x is not

the smallest rational greater than q1. In such a case there would

be a positive rational qv greater than q1 and less than q1 + x:

q1 < qv < q1 + x (2)
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and then, by subtracting q1 to the three members (all of them

proper rational numbers) of the above two inequalities, we will

have:

0 < qv − q1 < x (3)

which is impossible because:

a) The index v of qv is a natural number.

b) In accordance with P135, it is possible to perform the first

v successive definitions 〈Di(x)〉i=1,2,...v according to Restric-

tion P134.

c) All possible successive definitions 〈Di(x)〉 according to Res-

triction P134 have been carried out (Principle of Execution).

d) So, at least the first v successive definitions 〈Di(x)〉i=1,2,...v

according to Restriction P134 have been carried out.

e) As a consequence of Dv(x), we can assert that x ≤ qv − q1.

f) It is then impossible that x > qv − q1.

In consequence our initial hypothesis must be false and q1 + x is

the smallest rational number greater than q1. Notice this amazing

conclusion is a legitimate consequence of the reordering of Q+ in-

duced by the one to one correspondence f defined in P132. Indeed,

it is that correspondence and the hypothesis of the actual infinity

what makes it possible to consider in a successive way, and one by

one, all rational numbers qi in Q+ and then to calculate, one by

one, all |qi − q1|.

P139 Once completed the sequence of all definitions 〈Di(x)〉 ac-
cording to Restriction P134, the defined variable x could have been

defined an infinite number of times, each with a different value and

without a last definition. For this reason it will be impossible to

know the current value of x once completed the sequence of defi-

nitions 〈Di(x)〉 according to Restriction P134. But, in any case, x

will continue to be a rational variable properly defined within its

domain (0, 1) (Principle of Invariance P19). Thus, indeterminable

as its current value may be, x will continue to be a rational va-
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riable properly defined within its domain (0, 1). And this is all we

need in order to make the above argument conclusive.

P140 Otherwise, if after completing the sequence of definitions

〈Di(x)〉 according to Restriction P134, the rational variable x had

lost its condition of being a rational variable defined in its domain

(0, 1), we would have to admit that the completion of an infinite

sequence of successive definitions, as such a completion, has ad-

ditional and arbitrary effects on the defined object, which goes

against the Principle of Invariance P19. But if that were the ca-

se, the same additional arbitrary effects could be expected from

any other definition, procedure or proof consisting of an infinite

sequence of successive steps, and then anything could be expected

from infinitist mathematics.

P141 We could even timetable the sequence of definitions 〈Di(x)〉
by performing each definition Di(x) at the precise instant ti of

the ω-ordered and strictly increasing sequence of instants 〈tn〉 =
t1, t2, t3. . . within the finite interval (ta, tb), whose limit is tb. In

these conditions, x could only lose its condition of rational variable

defined within its domain (0, 1) at the precise instant tb, the first

instant after having completed the sequence of definitions 〈Di(x)〉.
In fact, being tb the limit of 〈tn〉 we will have:

∀t ∈ (ta, tb) : ∃v : tv ≤ t < tv+1 (4)

and then, at every instant t within (ta, tb), x is a well defined

rational variable within its rational domain (0, 1).

P142 Therefore, if T is the set of all instants within the interval

(ta, tb] at which x is a rational variable defined within its domain

(0, 1), the complement T of T in (ta, tb] is just tb. In consequence

only at the precise instant tb, the first instant after having comple-

ted the sequence of definitions 〈Di(x)〉, could x lose its condition of

being a rational variable properly defined within its domain (0, 1).

P143 Thus, we would have to admit not only that the completion,

as such a completion, of a sequence of infinitely many successive
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definitions, all of them possible, has additional and arbitrary ef-

fects on the defined object, but also that those arbitrary effects

unexpectedly appear after completing the sequence of definitions.

And the same would apply to any other definition, procedure or

proof composed of infinitely many successive steps.

P144 We can, therefore, conclude that once performed all defini-

tions 〈Di(x)〉 according to Restriction P134, the rational variable

x is a rational variable defined within its rational domain (0, 1),

whatever its value. And the rational number q1 + x is, and is not,

the least rational number greater than q1.



8 Inconsistent bubbles

Introduction

P145 In accordance with the hypothesis of the actual infinity, the

infinite sets, including densely ordered sets, exist as complete to-

talities. A little-discussed consequence of this hypothesis is that a

denumerable and densely ordered set can be disordered but cannot

be reordered. This chapter discusses the disordering and ordering

of denumerable sets, either ω-ordered or densely ordered. The basis

of the discussion will be a well-known computer method commonly

used for sorting unsorted lists: the bubble method described in the

next section. Although the method works with any finite list of

any type of numbers either natural, or rational, or irrational, if

the list is infinite and denumerable it only works with the natural

numbers, not with densely ordered sets as the set of the rational

numbers. So that an interval of rational numbers can be disordered

but cannot be reordered. These kinds of extravagances are assu-

med, and even enjoyed, in the infinitist paradise. Although, as will

be seen in this chapter, and has already been seen in the previous

one, some of those extravagances are inconsistencies derived from

the hypothesis of the actual infinity.

The bubble method

P146 A classic method used in computer science to sort the ob-

jects of unordered lists is the bubble method. Its logical basis could

not be simpler: each item of the unordered list is compared with

the successive items of the list, and it is exchanged with the first of

those items that must precede the compared item in the order of

the ordered list. The procedure is repeated until exchanges are no
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longer necessary. In a symbolic programming language (so symbo-

lic that it’s practically English), the algorithm for ordering a list

of n disordered elements is written:

a) Switch = true

b) While Switch

a) Switch = False

b) For n =1 To List.Length-1

a) If List (n) > List (n+1) Then

a) temp = List(n)

b) List(n) = List (n+1)

c) List(n+1) = temp

d) Switch = True

b) End If

c) Next n

c) End While

P147 The bubble method works with any finite list of numbers

of any type (or with any list of non-numerical objects whenever

they can be ordered according to some criteria), for example with

lists of numbers that are disordered with respect to their increasing

numerical values. It also works with any infinite and disordered list

of natural numbers, although now we should abandon the field of

computer science and make use of supertask theory (see Chapter

23).

P148 In effect, let List(i) be a disordered list of natural numbers

that includes all natural numbers. To order the list we would have

to execute each of the comparisons of the above bubble method

in each of the instants of an ω-ordered sequence of instants 〈ti〉 in
the real interval (ta, tb) whose limit is tb, and repeat the supertask

(bubble supertask hereafter) until there are no unordered numbers

left (Principle of Execution P25).

P149 Let now f be a one to one correspondence between the ω-

ordered set N of the natural numbers, and the rational interval
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(0, 1). The rational numbers in (0, 1) are densely ordered: between

any two of them there are infinitely many different rationals. But

the bijection f disorders them (from the point of view of their

corresponding numerical value) in the sequence 〈qi〉 = q1, q2, q3 . . .

in which each f(i) = qi,∀i ∈ N (Theorem P80a). The advantage

of this unordered list is that it makes it possible to consider one

by one all rational numbers within (0, 1).

P150 The unordered list (in relation to their corresponding nu-

merical values) of rational numbers 〈qi〉 has the same number of

elements, ℵo, as the unordered list of natural numbers List(i) con-

sidered in P148. As in the case of the List(i), each element of 〈qi〉
has a different numeric value, and the different numeric values of

each couple of its elements can be compared and swapped accor-

ding to the bubble method, exactly the same as in the previous

case of the natural numbers. Therefore the bubble supertask can

be apply to 〈qi〉 any finite or infinite number of times.

P151 But while the unordered list of natural numbers List(i) can

be reordered by performing the bubble supertask a finite or infi-

nite number of times, the unordered list of rational numbers 〈qi〉
cannot be reordered, no matter the infinite number of times the

bubble supertask is applied to its elements. Not only can it not

be reordered, but its disorder does not diminish no matter how

many times the bubble super task is applied to its elements: bet-

ween any two of its successive elements qi, qi+1 there are infinite

elements that should be between qi and qi+1, but are not between

qi and qi+1. They will be anywhere else in the list. As in the worst

nightmares, no matter how much you try to run, it is not possible

to advance in the ordering of the disordered list 〈qi〉.

P152 The above impossibility of reordering the list 〈qi〉 of rational
numbers is a tribute to be paid for assuming that densely ordered

sets exist as complete totalities. To some, the inhabitants of the

infinitist paradise, it may be an acceptable tribute. For others it

is not. And the discrepancy should at least deserve the respect of

being considered a discrepancy, which is not currently the case.
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The next section proves the discrepancy is quite justified.

Double Bubble Supertask

P153 Consider again the one to one correspondence f between N

and the rational interval (0, 1) which makes it possible, in turn, to

consider one by one the elements of that interval:

〈f(i)〉 = 〈qi〉 = q1, q2, q3 . . . (1)

Choose at random two elements of 〈qi〉. Call x the smallest and b

the greatest; consider the rational interval (x, b), and the following

supertask 〈ai〉:
a) At each instant ti of the sequence 〈ti〉 of instants of the real

interval (ta, tb) whose limit is tb, execute the task ai which

consist of comparing x with the element qi of 〈qi〉, and make

x equal to qi if, and only if, qi ∈ (x, b); i.e. if, and only if,

x < qi < b.

P154 Being tb the limit of 〈ti〉, at the instant tb all actions ai of

the supertask 〈ai〉 will have been carried out. Therefore, at the

instant tb the rational number x will have been compared with

all the rational numbers in the sequence 〈qi〉. With all. And it will

have been successively replaced by all those rationals numbers that

verify the given condition (Principle of Execution P25).

P155 Note that in this supertask it is not even necessary to put

conditions on the successive tasks 〈ai〉 that must be carried out

in the successive instants 〈ti〉. The only necessary condition is to

have an ω-ordered list of all rational numbers within the rational

interval (0, 1), the list 〈f(i)〉 defined by the bijection f in (1), so

that x can be compared, one by one, with the successive elements

of that list, and replaced with the compared element each time the

compared element is within the rational interval (x, b).

P156 In P154 it has been proved that at the instant tb the rational

number x has been compared with all the rational numbers 〈qi〉
and, in its case, replaced by those qi that verified x < qi < b.
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However, it is also immediate to prove that at the instant tb the

rational x has not been compared with all rationals of 〈qi〉. Indeed,
at tb the rational number x will continue to be a rational number,

whatever its value (Principle of Invariance P19). And there will

still be an infinite number of rationals between x and b, that is,

rationals greater than x and less than b. If qv is one of them, it

is clear that x has not been compared with qv, because in such a

case it would have been defined as qv, which is not the case. So, at

the instant tb the rational x has been and has not been compared

with all elements of 〈qi〉. And this is a contradiction.
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9 Cantor’s 1874 argument revisited

Introduction

P157 In 1874, 17 years before the publication of his famous dia-

gonal argument, Cantor proved for the first time the set of the

real numbers cannot be denumerable. That early Cantor’s proof is

one of the objectives of this chapter. The other is the analysis of

the conditions under which that proof could also be applied to the

set of the rational numbers. It will necessary, therefore, to prove

such conditions can never be satisfied in order to ensure the im-

possibility of a contradiction on the cardinality of the set of the

rational numbers, which was proved to be numerable by Cantor

himself in the same publication [37]. A conflicting rational variant

of Cantor’s argument is also discussed at the end of the chapter.

Cantor’s 1874-argument

P158 This section explains in detail the first Cantor’s proof of the

uncountable nature of the set R of the real numbers, published in

the year 1874 in a short paper [37] that also included a proof of

the denumerable nature of the set A of the algebraic numbers and

then of the set of the rational numbers Q, a subset of A (English

edition [36], French edition [41], Spanish edition [50]).

P159 Assume the set R is denumerable. In such a case, there would

be at least one bijection between the ω-ordered set N of the natural

numbers and R. Let f be any of such bijections. The elements of

R would be reordered by f in the sequence 〈ri〉 (Theorem P80a):

〈ri〉 = r1, r2, r3, . . . (1)

being ri = f(i),∀i ∈ N. Obviously, the sequence 〈ri〉 defined by
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f would contain all real numbers if R were actually denumerable,

and it would be possible to consider all of them successively and

one by one. This one by one consideration is the basis of Cantor’s

proof.

P160 Consider now any real interval (a, b). Cantor’s 1874 argu-

ment consists in proving the existence of a real number s in (a, b)

which is not in the sequence 〈ri〉. The existence of s would prove

that 〈ri〉 does not contain all real numbers. Therefore, the one to

one correspondence f, whatsoever it be, would be impossible. And

the initial assumption on the denumerable nature of R would be

false. The proof goes as follows.

P161 Starting from r1, find the first two elements of 〈ri〉 within
(a, b). Denote the smaller of them by a1 and the greater by b1.

Define the real interval (a1, b1) (see Figure 9.1). Starting from r1,

Figura 9.1 – Definition of the first two intervals (a1, b1), (a2, b2).

find the first two elements of 〈ri〉 within (a1, b1). Denote the smaller

of them by a2 and the greater by b2. Define the real interval (a2, b2).

Evidently it holds:

(a1, b1) ⊃ (a2, b2) (2)

Starting from r1, find the first two elements of 〈ri〉 within (a2, b2).
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Denote the smaller of them by a3 and the greater by b3. Define the

real interval (a3, b3). Evidently it holds:

(a1, b1) ⊃ (a2, b2) ⊃ (a3, b3) (3)

The continuation of the above Procedure P161 defines a sequence

of real nested intervals (R-intervals):

(a1, b1) ⊃ (a2, b2) ⊃ (a3, b3) ⊃ . . . (4)

whose left endpoints a1, a2, a3,. . . form a strictly increasing se-

quence of real numbers, and whose right endpoints b1, b2, b3,. . .

form a strictly decreasing sequence also of real numbers, being

every element of the first sequence smaller than every element of

the second one.

P162 It is important to highlight the fact that an element rn of

〈ri〉 cannot belong to the successive nested real intervals (an, bn) ⊃
(an+1, bn+1) ⊃ (an+2, bn+2) ⊃ . . . Indeed, the first time the Proce-

dure P161 considers rn, a maximum of n/2 of those intervals will

have been defined. Therefore either rn is used to define an endpoint

of a new real interval (ai<n, bi<n), or it does not belong to the last

defined interval. In consequence, rn cannot belong to the successive

nested real intervals (an, bn) ⊃ (an+1, bn+1) ⊃ (an+2, bn+2) ⊃ . . .

P163 The number of R-intervals will be finite or infinite, and both

possibilities have to be considered. Assume in the first place the

number of R-intervals is a finite natural number n. In this case, the-

re will be a last R-interval (an, bn) in the sequence of R-intervals,

because the successive R-intervals have been indexed by the suc-

cessive finite natural numbers. This last R-interval will contain,

at most, one element rv of 〈ri〉, otherwise it would be possible to

define at least a new R-interval (an+1, bn+1). Let, therefore, s be

any element within (an, bn), different from rv, if rv does exist. Evi-

dently s is a real number within (a, b) which does not belong to the

sequence 〈ri〉. Consequently, the sequence 〈ri〉 does not contain all
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real numbers, and the one to one correspondence f is impossible.

P164 Consider now the number of R-intervals is infinite (note

this case implies the completion of a procedure of infinitely many

successive steps). The sequence 〈ai〉 is strictly increasing and upper

bounded by any bi, therefore the limit La of 〈ai〉 exists. On its

part, the sequence 〈bi〉 is strictly decreasing and lower bounded

by any ai, in consequence the limit Lb of this sequence also exists.

Taking into account that every ai is less than every bi it must hold:

La ≤ Lb (Figure 9.2).

Figura 9.2 – Convergence of 〈ai〉 and 〈bi〉.

P165 Assume that La < Lb. In this case, any of the infinitely many

elements within the real interval (La, Lb) is a real number s within

(a, b) which does not belong to the sequence 〈ri〉 because, according
to P162, if it were an element rv of 〈ri〉 it could not belong to the

successive (av, bv) ⊃ (av+1, bv+1) ⊃ (av+2, bv+2) ⊃ . . . , while s

belongs to all of them. Therefore, the one to one correspondence

f is impossible.

P166 Finally, assume that La = Lb = L. It is immediate to prove

that L is a real number within (a, b) which is not in 〈ri〉. Indeed,
assume that L is an element rv of 〈ri〉. According to P162, rv does

not belong to the successive R-intervals (av, bv) ⊃ (av+1, bv+1) ⊃
(av+2, bv+2) ⊃ . . . , while L belongs to all of them. Therefore, L

cannot be rv. The limit L is a real number in (a, b) which is not

in 〈ri〉. So, the bijection f is impossible.

P167 According to P159-P166, and being f any supposed bijec-

tion between N and R, it must be concluded that a bijection (one
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to one correspondence) between the set N of the natural numbers

and the set R of real numbers is impossible. Therefore, R is not

denumerable.

Rational version of Cantor’s 1874-argument

P168 The argument that follows is identical to the previous one,

except in that it applies to the set Q of the rational numbers.

P169 Assume the set Q of the rational numbers is denumerable.

In such a case, there would be at least one bijection between the

ω-ordered set N of the natural numbers and Q. Let f be any of

such bijections. The elements of Q would be reordered by f in the

sequence 〈qi〉:
〈qi〉 = q1, q2, q3, . . . (5)

being qi = f(i),∀i ∈ N (Theorem P80a). Obviously, the sequence

〈qi〉 defined by f would contain all rational numbers if Q were

actually denumerable, and it would be possible to consider all of

them successively and one by one

P170 Consider any real interval (a, b). Starting from q1, find the

first two elements of 〈qi〉 within (a, b). Denote the smaller of them

by a1 and the greater by b1. Define the real interval (a1, b1). Star-

ting from q1, find the first two elements of 〈qi〉 within (a1, b1).

Denote the smaller of them by a2 and the greater by b2. Define the

real interval (a2, b2). Evidently it holds:

(a1, b1) ⊃ (a2, b2) (6)

Starting from q1, find the first two elements of 〈qi〉 within (a2, b2).

Denote the smaller of them by a3 and the greater by b3. Define the

real interval (a3, b3). Evidently it holds:

(a1, b1) ⊃ (a2, b2) ⊃ (a3, b3). (7)

P171 The continuation of the above Procedure P170 defines a

sequence of real nested intervals (R’-intervals):

(a1, b1) ⊃ (a2, b2) ⊃ (a3, b3) ⊃ . . . (8)
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whose left endpoints a1, a2, a3,. . . form a strictly increasing se-

quence of rational numbers, and whose right endpoints b1, b2,

b3,. . . form a strictly decreasing sequence of rational numbers,

being every element of the first sequence smaller than every ele-

ment of the second one.

P172 It is important to highlight the fact that an element qn of

〈qi〉 cannot belong to the successive nested real intervals (an, bn) ⊃
(an+1, bn+1) ⊃ (an+2, bn+2) ⊃ . . . Indeed, the first time the Proce-

dure P170 considers qn, a maximum of n/2 of those intervals will

have been defined. Therefore either qn is used to define an endpoint

of a new real interval (ai<n, bi<n), or it does not belong to the last

defined interval. In consequence, qn cannot belong to the successive

nested real intervals (an, bn) ⊃ (an+1, bn+1) ⊃ (an+2, bn+2) ⊃ . . .

P173 The number of R’-intervals will be finite or infinite, and

both possibilities have to be considered. Assume in the first place

that the number of R’-intervals is a finite natural number n. In

this case, there will be a last R’-interval (an, bn) in the sequence

of R’-intervals, because the successive R’-intervals have been inde-

xed by the successive finite natural numbers. This last R’-interval

will contain, at best, one element qv of 〈qi〉, otherwise it would be

possible to define at least one new R-interval (an+1, bn+1). Let,

therefore, s be any rational number within (an, bn), different from

qv, if qv does exist. Evidently s is a rational number within (a, b)

which does not belong to the sequence 〈qi〉. Consequently, the se-

quence 〈qi〉 does not contain all rational numbers, and the one to

one correspondence f is impossible.

P174 Consider now the number of R’-intervals is infinite (note

this case implies the completion of a procedure of infinitely many

successive steps). The sequence 〈ai〉 is strictly increasing and upper

bounded by any bi, therefore the real limit La of 〈ai〉 does exist. On

its part, the sequence 〈bi〉 is strictly decreasing and lower bounded

by any ai, in consequence the real limit Lb of this sequence also

exists. Taking into account that every ai is less than every bi it must

hold: La ≤ Lb, being La and Lb two real (rational or irrational)
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numbers.

P175 Assume that La < Lb. In this case, any of the infinitely

many rationals within the real interval (La, Lb) is a rational num-

ber s within (a, b) which does not belong to the sequence 〈qi〉,
because according to P172, if it were an element qv of 〈qi〉 it could
not belong to the successive R’-intervals (av, bv) ⊃ (av+1, bv+1) ⊃
(av+2, bv+2) ⊃ . . . , while s belongs to all of them. Therefore 〈qi〉
does not contain all rational numbers, and the one to one corres-

pondence f is impossible.

P176 Finally, assume that La = Lb = L. It is immediate that

L is a real number within the real interval (a, b) which is not in

〈qi〉. In fact, if L is irrational then it is clear that it is not in 〈qi〉;
assume then L is rational, and assume also it is an element qv
of 〈qi〉. According to P172, qv does not belong to the successive

R’-intervals (av, bv) ⊃ (av+1, bv+1) ⊃ (av+2, bv+2) ⊃ . . . , while L

belongs to all of them. Therefore, L cannot be qv. The limit L is a

real number (rational or irrational) in the real interval (a, b) which

is not in 〈qi〉. Thus, if L were rational then 〈qi〉 would not contain

all rational numbers, and the one to one correspondence f would

be impossible.

P177 We have just proved that, as in Cantor’s 1874 argument,

the bijection f , which is any assumed bijection between the sets

N and Q, is impossible in all cases, except that the sequences 〈ai〉
and 〈bi〉 have a common irrational limit. Thus, except in that case,

and for the same reasons as in Cantor’s 1874 argument, we would

have proved the set Q of the rational numbers is non-denumerable.

P178 Evidently, If Cantor’s 1874-argument could be extended to

the rational numbers we would have a contradiction: the set Q

would and would not be denumerable. In consequence, and in order

to ensure the impossibility of that contradiction, it must be proved

that whatsoever be the rational interval (a, b) and the reordering

of 〈qi〉, the number of R’-intervals can never be finite and the se-

quences of endpoints 〈ai〉 and 〈bi〉 have always a common irrational

limit. Until then, the consistency of transfinite set theory will be at
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stake. However, 146 years after the publication of Cantor’s article,

the problem has not even been raised. The following chapter deals

with that problem.

A variant of Cantor’s 1874 argument

P179 The argument that follows is a variant of the above Cantor’s

first proof of the uncountable nature of the set of the real numbers,

though applied to the set of the rational numbers Q.

P180 Since, according to Cantor, the setQ of the rational numbers

is denumerable we can consider a one to one correspondence f

between the ω-ordered set N of the natural numbers and Q. Let

〈qi〉 be the reordered sequence (Theorem P80a) of rational numbers

defined by:

f(i) = qi, ∀i ∈ N (9)

Obviously 〈qi〉 contains all rational numbers, so that it is possible

to consider all of them successively and one by one

P181 Let x be a rational variable whose domain is any rational

interval (a, b), and let xo be any element within (a, b). Now consider

the following sequence of successive recursive definitions 〈Di(x)〉
of x:




D1(x) = xo

Di(x) = mı́n
(
{Di−1(x), qi} ∩ (a, b)

)
, i = 2, 3, 4, . . .

(10)

where mı́n stands for the smallest (in the natural order of prece-

dence of Q) of the two numbers in brackets, or the only number

in bracket if qi /∈ (a, b). 〈Di(x)〉 compares x with the successive

elements of 〈qi〉 that belong to (a, b), and defines x as the compa-

red element each time the compared element is smaller than the

current value of x.

P182 Unnecessary as it may seem, we will impose the following

restriction to the successive definitions 〈Di(x)〉:

a)Restriction P182.-Each successive definition Di(x) will be ca-



A variant of Cantor’s 1874 argument 105

rried out if, and only if, x results defined as a rational number

within its domain (a, b).

We will prove now that for any natural number v, the first v suc-

cessive definitions (10) can be carried out according to Restriction

P182.

P183 The first definition D1(x) can be carried out according

to Restriction P182 because D1(x) = xo, and xo ∈ (a, b). As-

sume that, being n any natural number, the first n definitions

〈Di(x)〉i=1,2,...n can be carried according to Restriction P182, so

that Dn(x) ∈ (a, b). Since qn+1 is a well defined rational number,

we will know if, being in (a, b), it is less than Dn(x). If this is the

case Dn+1(x) = qn+1; otherwise Dn+1(x) = Dn(x). In both cases

x results defined within its domain (a, b). This proves Dn+1(x) can

also be performed according to Restriction P182. Consequently, for

any natural number v, the first v definitions 〈Di(x)〉i=1,2,...v can be

carried out according to Restriction P182.

P184 Assume that all definitions 〈Di(x)〉 that observe Restriction
182 are carried out (Principle of Execution P25). The value of x

once performed all of them, whatsoever be the finite or infinite

number of times it has been defined with a different value, will

be a rational number within its domain (a, b) just because it was

always defined within its domain (a, b). Thus, we can affirm:

a) Undeterminable as the current value of x may be once per-

formed all definitions 〈Di(x)〉 according to Restriction 182, it

will be a certain rational number r within its domain (a, b)

(Principle of Invariance P19).

P185 Obviously a variable can be properly defined within its do-

main even if we cannot know its current value. Some infinitists

argue, however, that although Restriction 182 applies to each of

the infinitely many successive definitions of x, once completed the

infinite sequence of those definitions we cannot ensure x continue

to be a rational variable defined within its domain (a, b), despi-

te the fact that each of those definitions defined x as a rational
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number within its domain (a, b). As if the completion of an in-

finite sequence of definitions had arbitrary additional effects on

the defined object, as losing the condition of being a rational va-

riable defined within its domain. Obviously this goes against the

Principle of Invariance P19.

P186 The same unknown additional effects on the defined objects

could, then, be expected in any other definition, procedure or proof

consisting of infinitely many successive steps, in which case infini-

tist mathematics would have no sense. For instance, in Cantor’s

1874 argument if the number of R-intervals is infinite, and due to

those unknown additional effects of the completion on the defined

object, we could not ensure these intervals continue to be the real

intervals within (a, b) they were defined to be.

P187 Thus, if to complete the infinite sequence of definitions (10)

means to perform each and every definition of the sequence, and

only them, each of which defines x within its domain (a, b), and

if the completion of the sequence, as such a completion, has not

unknown arbitrary effects on x, then, once performed all possible

definitions (Principle of Execution P25), x can only be defined as

a certain rational number r (whatsoever it be) within its domain

(a, b) (Principle of Invariance P19).

P188 Consider the rational interval (a, r) and any element s within

(a, r). It is quite clear that s ∈ (a, b) and s < r. We will prove s

cannot belong to 〈qi〉. In fact, assume s belongs to 〈qi〉. In such a

case there will be an element qv in 〈qi〉 such that qv = s, and being

s in (a, r), we will have qv ∈ (a, r), and therefore qv < r. But this

is impossible because:

a) The index v of qv is a natural number.

b) According to 183, for each natural number v, it is possible

to carry out the first v definitions 〈Di(x)〉i=1,2,...v satisfying

Restriction P182.

c) All definitions 〈Di(x)〉 satisfying Restriction P182 have been

carried out.
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d) At least the first v definitions 〈Di(x)〉i=1,2,...v satisfying Res-

triction P182 have been carried out (Principle of Execution

P25).

e) Dv(x) = mı́n
(
{Dv−1(x), qv} ∩ (a, b)

)
and then Dv(x) ≤ qv.

Therefore r ≤ qv

f) It is then impossible that qv < r.

In consequence s cannot be an element of 〈qi〉.

P189 The rational number s proves, therefore, the existence of

rational numbers within (a, b) that are not in 〈qi〉, which in turn

proves the falseness of the initial assumption on the denumerable

nature of Q. Now then, taking into account that Cantor proved Q

is denumerable, the final conclusion can only be that Q is and is

not denumerable.

P190 The sequence of definitions 〈Di(x)〉 leads to some other

contradictory results the reader can easily find. Evidently, contra-

dictory results do not invalidate one another, they simply prove

the existence of contradictions (this obviousness is often ignored

in the discussions on the actual infinity). If, starting from the sa-

me hypothesis, two independent arguments lead to contradictory

results they prove the inconsistency of the initial hypothesis. It is

quite clear, then, that an argument cannot be refuted by another

argument even if this last argument comes to conclusions that con-

tradict the conclusions of the first one. An argument can only be

refuted by indicating where and why that argument fails. These

obviousness are not necessary to be recalled in other areas of dis-

cussion, but they do if the area is that of the hypothesis of the

actual infinite. Or that of any other hypothesis or axiom used to

support a hegemonic stream of scientific thought, as if hegemony

were synonymous with truth. Hegemony, almost always hostile to

disagreement, takes for granted that its foundational assumptions

are indisputable.
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10 Cantor versus Cantor

Introduction

P191 Cantor proved in a short paper published in 1874 that the

set of the algebraic numbers, and then the set of the rational num-

bers, are both denumerable. He also proved in the same paper that,

on the contrary, the set of the real numbers is non-denumerable. In

the previous chapter it was proved that two of the three alterna-

tives of Cantor’s proof on the cardinality of the real numbers can

be directly applied to the set of the rational numbers. Therefore,

to ensure the impossibility of a contradiction on the cardinality of

the set of the rational numbers, it is necessary to prove that Can-

tor’s third alternative is the only alternative that can be applied

to the set of the rational numbers, which means to prove that for

any real interval (a, b) and any bijection f between the set of the

natural numbers and the set of the rational numbers, the sequence

of real intervals 〈(ai, bi)〉 defined by following Cantor procedure is

always infinite, and the sequences of rational numbers 〈ai〉 and 〈bi〉
of their corresponding rational endpoints have always a common

irrational limit. However, 146 years after Cantor’s publication, and

as far as I know, that need has not even been raised. This chap-

ter reexamines that Cantor’s third alternative, proving it can be

easily converted in a variant of the second one. Thus, by comple-

ting Cantor argument in this way, Cantor’s 1874 paper would have

proved the set of the rational numbers is and is not denumerable.

A rational extension of Cantor’s 1874 theorem

P192 Assume the set Q of the rational numbers is denumera-

ble, and let f be any injective function of the set N of the natural

numbers in Q. Assume also f is a bijection, i.e. a one to one corres-

109
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pondence. The elements of Q are reordered by f in the sequence

〈qi〉 = q1, q2, q3..., being qi = f(i),∀i ∈ N (Theorem P80a), which

makes it possible to consider them successively and one by one, as

Cantor did in 1874 with the real numbers.

P193 Let (a, b) be any open real interval of R+. Starting from

q1, and following the order q1, q2, q3... of 〈qi〉, find the first two ele-

ments of 〈qi〉 inside (a, b). Denote the smaller of them by a1 and

the greater by b1. Define the real interval (a1, b1). Starting from

q1, and following the order q1, q2, q3... of 〈qi〉, find the first two

elements of 〈qi〉 inside (a1, b1). Denote the smaller of them by a2
and the greater by b2. Define the real interval (a2, b2). The con-

tinuation of this procedure, that will be referred to as Procedure

P193, defines a (finite or infinite) sequence of nested real intervals

S = (a1, b1) ⊃ (a2, b2) ⊃ (a3, b3) ⊃ . . . whose left endpoints a1,

a2, a3,. . . form a strictly increasing sequence of rational numbers;

and whose right endpoints b1, b2, b3,. . . form a strictly decrea-

sing sequence of rational numbers, being every element of the first

sequence smaller than every element of the second one.

P194 It is important to highlight the fact that an element qn of

〈qi〉 cannot belong to the successive nested real intervals (an, bn) ⊃
(an+1, bn+1) ⊃ (an+2, bn+2) ⊃ . . . Indeed, when the Procedure

P193 considers qn for the first time, a maximum of n/2 of those in-

tervals will have been defined. Therefore either qn is used to define

an endpoint of a new real interval (ai<n, bi<n), or it does not be-

long to the last defined interval. In consequence, qn cannot belong

to the successive nested real intervals (an, bn) ⊃ (an+1, bn+1) ⊃
(an+2, bn+2) ⊃ . . .

P195 Assume first that S has a finite number n of intervals. In this

case, there will be a last interval (an, bn) in S. None of the infinitely

many rationals inside (an, bn), except at most one of them, can be

in 〈qi〉, otherwise it would possible to define at least a new real

interval (an+1, bn+1) of S. In this case, therefore, the injective

function f of N in Q would not be a bijection.
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P196 Consider now S is infinite. The sequences 〈ai〉 and 〈bi〉 are
convergent, because 〈ai〉 is strictly increasing and upper bounded

by any bi; and 〈bi〉 is strictly decreasing and lower bounded by any

ai. So, their respective limits La and Lb exist inside (a, b), being

La ≤ Lb.

P197 If La < Lb, any of the infinitely many rationals inside the

real interval (La, Lb) is a rational number s that is not in 〈qi〉
because, according to P194, if it were an element qv of 〈qi〉 it

could not belong to the successive nested real intervals (av, bv) ⊃
(av+1, bv+1) ⊃ (av+2, bv+2) ⊃ ..., while s belongs to all of them.

In this case, therefore, the injective function f of N in Q would

not be a bijection. Up to this point, the above argument coincides

basically with Cantor’s 1874 argument about the cardinality of the

real numbers, except that in this case it has been applied to the

rational numbers.

P198 The third alternative in Cantor’s 1874 argument is the case

La = Lb = L. Since L is a real number, it will be rational or

irrational. If it were rational, it could not be an element qv of 〈qi〉
because, according to P194, qv cannot belong to the successive

nested intervals (av , bv) ⊃ (av+1, bv+1) ⊃ (av+2, bv+2) ⊃ . . . , while

L belongs to all of them. Therefore, if L were rational the real

interval (a, b) would contain rational numbers that are not in the

sequence 〈qi〉, in which case the initial injection f of N in Q would

not be a one to one correspondence.

P199 We will now examine the case in which L is an irrational

number by following a strategy similar to that used in other ar-

guments developed in previous chapters. A strategy, legitimized

by the hypothesis of the actual infinity subsumed in the Axiom of

Infinity, that allows us to consider infinite collections as complete

totalities.

P200 Let x be a rational variable whose initial value is any ratio-

nal number in the real interval (a, L), and 〈ti〉 a strictly increasing

sequence of instants in the real interval (ta, tb) whose limit is tb.
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Suppose that at each instant tn of 〈ti〉 the current value of the

variable x is compared with the value of the nth element qn of the

sequence of rationals 〈qi〉, and it is changed with the value of qn
whenever x < qn < L.

P201 The one to one correspondence g between 〈ti〉 and 〈qi〉 de-
fined by g(ti) = qi proves that, being tb the limit of 〈ti〉, at the

instant tb the variable x will have been compared one by one with

all rationals numbers of the sequence 〈qi〉, and it will have been de-

fined as each of those rationals qn of 〈qi〉 whenever that x < qn < L.

P202 Once completed the sequence of comparisons and redefini-

tions of the variable x (Principle of Execution P25), we will have a

real interval (x,L). Whatever be the value of the variable x, it will

be a rational number (Principle of Invariance P19), and since L is

an irrational number it will be x 6= L. The real interval (x,L) will

therefore contain an infinite number of rational numbers. Let s be

one of those rationals. Being s ∈ (x,L), it must hold x < s. It is

evident that s does not belong to 〈qi〉, because if it were an element

qv of 〈qi〉, x would have been compared with qv and defined as qv.

So we would have qv ≤ x, which is impossible if qv ∈ (x,L). Thus,

in the case of the third alternative of Cantor’s 1874 argument, if L

is an irrational number, it is also possible to prove that there are

elements of (a, b) which are not in 〈qi〉.

P203 In agreement with the above three conclusions of the th-

ree alternatives of Cantor 1874 argument applied to the rational

numbers, the initial injective function f of N in Q, that was assu-

med to be surjective, i.e. a one to one correspondence, cannot be

surjective. And being f any injective function of N in Q, we must

conclude that one to one correspondences between N and Q are

impossible. Therefore, Q cannot be denumerable.

P204 For the same reasons as in Cantor’s 1874 argument for the

real numbers, the above instance for the rational numbers must

conclude Q is not denumerable. Though, on the other hand, and in

the same Cantor’s 1874 paper [37], Cantor proved Q (as a subset of
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the algebraic numbers) is denumerable. Thus, Cantor would have

almost demonstrated the two terms of a contradiction: The set Q

is and is not denumerable. By this contradiction, Cantor would

have almost demonstrated that the only hypothesis supporting his

transfinite arithmetic is inconsistent. That initial hypothesis is the

hypothesis of the actual infinity, the existence of the set “of the

totality of the finite cardinals” in Cantor’s words [47, p. 103]. A

hypothesis that Cantor did not consider a hypothesis but as an

irrefutable fact, given his infinitist convictions “as firm as a rock”

[77, p. 283]. Thus, Cantor’s transfinite construction contains the

necessary elements for his own self-destruction. Convictions as firm

as a rock might be good for religion, but not for science. Science

should be the place for trial and error; for error and correction.
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Introduction

P205 This chapter proves a result on the decimal expansion of

the rational numbers in the rational open interval (0, 1), which is

subsequently used to discuss on a reordering of the rows of a table

T that is assumed to contain all rational numbers within (0, 1). A

reordering such that the diagonal of the reordered table T could be

a rational number from which different rational antidiagonals (ele-

ments of (0, 1) that cannot be in T ) could be defined. If that were

the case, and for the same reason as in Cantor’s diagonal argu-

ment, the rational open interval (0, 1) would be non-denumerable,

and we would have a contradiction in set theory, because Cantor

also proved the set of the rational numbers is denumerable.

Theorem of the nth Decimal

P206 Let Q01 be the set of all rational numbers in the rational

open interval (0, 1) expressed in decimal notation and completed,

in the cases of finitely many decimal digits, with a denumerable

infinite number of 0’s in the right side of their corresponding de-

cimal expansions (numerical expressions that include all decimals

digits of the number). According to the hypothesis of the actual in-

finity, those decimal expressions exist as complete totalities. Some

infinite decimal expressions of rational numbers as, for instance,

0, 30000000 . . . and 0, 299999999 . . . are different when considered

as strings of numerals (symbols), although they can also be consi-

dered as representing the same number. Here, we are not conside-

ring all strings of numerals that represent rational numbers in Q01

but all rational numbers in Q01 each with a unique decimal expres-

sion, the one just indicated. On the other hand, and for the reasons

115



116 Cantor diagonal argument

given in P217, the consideration of those double expressions has

no consequences on the main argument of this chapter.

P207 Let d be any decimal digit, n any natural number, and q0
any element of Q01 whose nth decimal digit is just d, for instance:

q0 = 0,11(n−1). . . 1d000 . . . (1)

From q0 it is possible to define different sequences of different ele-

ments of Q01, all of them with the same nth decimal digit d. For

example the sequence 〈qn〉:

q1 = 0,11(n−1). . . 1d1000 . . . (2)

q2 = 0,11(n−1). . . 1d11000 . . . (3)

q3 = 0,11(n−1). . . 1d111000 . . . (4)

q4 = 0,11(n−1). . . 1d1111000 . . . (5)

q5 = 0,11(n−1). . . 1d11111000 . . . (6)

. . .

qi = 0,11(n−1). . . 1d111 (i). . . 1000 . . . (7)

. . .

The bijection (one to one correspondence) f between the set N of

the natural numbers and 〈qn〉 defined by

∀i ∈ N : f(i) = qi (8)
proves the following:

a)Theorem P207, of the nth Decimal.-For any given decimal

digit and any given position in the decimal expansion of the

elements of Q01, there exists a denumerable subset of Q01,

each of whose different elements has the same given decimal

digit in the same given position of its corresponding decimal

expansion.
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A rational diagonal argument

P208 Let Qdn be the subset of Q01 each of whose elements has

the same decimal digit dn in the same nth position of its decimal

expansion. According to the Theorem P207 of the nth Decimal,

Qdn is denumerable. So, its superset Q01 will be infinite, either

denumerable or non-denumerable. Let g be any injective function

of N in Q01. This function makes it possible to define a table T

whose successive rows r1, r2, r3 . . . are just the successive images

g(1), g(2), g(3) . . . of the elements of N in Q01.

P209 Since the successive rows 〈rn〉 of T are indexed by the whole

set N of the natural numbers, T is ω-ordered (Theorem P80a, of

the indexed collection). In addition, to assume the existence of the

set of all finite natural numbers as a complete infinite totality, as

Cantor did in 1883 [47, p. 103-104], means to assume the rows

of T also exist as a complete infinite totality. According to this

Cantor’s assumption (hypothesis of the actual infinity subsumed

into the Axiom of Infinity in modern set theories), every row rn of

T will be preceded by a finite number, n−1, of rows and succeeded

by an infinite number, ℵo, of such rows. We will now examine a

conflicting consequence of this case of ω-asymmetry.

P210 The diagonal D = 0.d11d22d33 . . . of T is a real number

within (0, 1) whose nth decimal digit dnn is the nth decimal digit

of the nth row rn of T . As in Cantor’s diagonal argument [43], it

is possible to define another real number A, said antidiagonal, by

replacing each of the infinitely many decimal digits of D with a

different decimal digit. By construction A cannot be in T because

it differs from each row ri of T at least in its ith decimal digit.

Since A is a real number within (0, 1), it will be either rational or

irrational. If it were rational, and for the same reason as in Cantor’s

diagonal argument, g would not be a one to one correspondence

P211 A row ri of T will be said n-modular if its nth decimal digit

is n(mod 10). This means that a row is, for instance, 2348-modular

if its 2348th decimal digit is 8; or that it is 45390-modular if its

45390th decimal digit is 0. If a row rn is n-modular (being n in
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n-modular the same number as n in rn) it will be said d-modular.

For instance, the rows:

r1 = 0,1007647464749943400034577774413 . . .

r2 = 0,2200045667778943000000000000000 . . .

r3 = 0,0033333333333333333333333333333 . . .

r7 = 0,1001007000111111114444444444433333 . . .

r20 = 0,1234567890123456789011111111111111 . . .

are all of them d-modular. It is clear that certain rational numbers

as 0.4̂3 or 0.3353333333 cannot be d-modular, whatever be their

corresponding rows in T . As will be seen in Chapter 30, these type

of numbers pose new problems to the hypothesis of the actual

infinity.

P212 Consider now the following permutation D of the rows 〈rn〉
of T :

a) For each of the successive rows ri of T :

• If ri is d-modular then let it unchanged.

• If ri is not d-modular then exchange it with any following

i-modular row rj, j>i, provided that at least one of the suc-

ceeding rows rj, j>i be i-modular. Otherwise let it unchan-

ged.
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Figura 11.1 – The fourth row of T before being d-exchanged (Left);
and after having been d-exchanged (right). Note that only the digits of
the decimal expansions are represented, not including the initial 0 or
the subsequent decimal separator.
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The exchange of a non-d-modular row ri with a following i-modular

row will be referred to as d-exchange (see Figure 11.1). Thanks to

the condition j > i (in rj, j>i), once a row ri has been d-exchanged,

it becomes d-modular and will remain d-modular and unaffected

by the subsequent d-exchanges. On the other hand, the succes-

sive d-exchanges do not change the type of order of T but the

rational numbers indexed by the same successive indexes. Or in

other words, d-exchanges interchange the content of some couples

of rows of T , but not its type of order.

P213 The permutation D could even be considered as a supertask

[188]. Indeed, let 〈tn〉 be an ω-ordered sequence of instants within

a finite interval of time (ta, tb), being tb the limit of the sequence.

Assume that D is applied to each row ri just at the precise instant

ti. The bijection f(ti) = ri proves that at tb the d-exchanges of the

permutation D will have been applied to all rows of T .

P214 It can be proved that all rows of T become d-modular as a

consequence of the permutation D. In effect, assume that a row rn
did not become d-modular as a consequence of the permutation D.

This means that rn is not d-modular and could not be d-exchanged

with a n-modular row ri,i>n. Now then, all n-modular rows have

the same digit n(mod 10) in the same nth position of its decimal

expansion, and according to the Theorem P207 of the nth Decimal

there are infinitely many rational numbers with the same digit

in the same position of its decimal expansion, whatever be the

digit and the position. Accordingly, since n is finite, the row rn
is preceded by a finite number k (0 ≤ k < n) of n-modular rows,

and succeeded by an infinite number, ℵo, of n-modular rows. Any

of these infinitely many n-modular rows succeeding rn had to be

d-exchanged with rn. It is then impossible for rn not to become

d-modular as a consequence of D. Therefore, each and every row

rn of T becomes d-modular as a consequence of D.

P215 Let us remark the basic formal structure of the above argu-

ment P214 (a simple Modus Tollens). Consider the following two
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propositions p1 and p2 about the permutation D:

p1: Not all rows of T becomes d-modular because of D.

p2: At least one non-d-modular row rn of T could not be d-

exchanged.

It is quite clear that p1 implies p2: if not all rows of T becomes d-

modular because of D, then at least one non-d-modular row rn of

T could not be d-exchanged. Now then, being all natural numbers

finite, n is finite; and taking into account the Theorem P207 of the

nth Decimal, there is a finite number, k (0 ≤ k < n), of n-modular

rows preceding rn and an infinite number, ℵo, of n-modular rows

succeeding rn, one of which had to be d-exchanged with rn. In

consequence proposition p2 is false and so will be p1. In symbols:

p1⇒ p2 (9)

¬p2 (10)

—————
∴ ¬p1 (11)

P216 The result proved in P214 is a formal consequence of both

the Theorem P207 of th nth Decimal and the fact that every row

rn of T is always preceded by a finite number, k (0 ≤ k < n), of

n-modular rows and succeeded by an infinite number, ℵo, of such
n-modular rows (ω-asymmetry). Recall that this ω-asymmetry is

an inevitable consequence of assuming, as Cantor did in 1883, the

existence of the ω-ordered set N as a complete infinite totality, a

hypothesis subsumed into the Axiom of Infinity.

P217 Let Td be the table resulting from the permutation D.

Since all of its rows are d-modular, its diagonal D will be the

periodic rational number 0.1234567890 . It is now immediate to

define infinitely many rational antidiagonals from D. Indeed, let

us consider periods of ten decimal digits none of which coincide

in position with the ten decimal digits of the period 1234567890

of the diagonal D. The number of those periods is 910. From any

two of them, for instance, q1 = 0123456789 and q2 = 0321456789,

it is possible to define different ω-ordered sequences of rational
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antidiagonals 〈An〉, for instance:

∀n ∈ N : An = 0.q1q1
(n). . . q1q2 (12)

whose elements cannot be in Td for the same reason as in Can-

tor’s diagonal argument. Being periodic rational numbers with a

period of nine different digits, the antidiagonals 〈An〉 cannot be

redundant decimal expressions of elements of Td that are not in Td

just because of their redundancy with the decimal expressions that

are in fact in Td. Indeed, these redundant expressions are periodic

expressions whose periods have always the same and unique digit:

the digit 9. If, on the contrary, those redundant expressions were

not considered redundant but representing each of them a different

rational number, they would be in Td, and the same argument abo-

ve would prove they are different from the antidiagonals 〈An〉. In
consequence, and since all those antidiagonals are rational numbers

which are not in Td, we must conclude that the injective function

g between N and Q01 defining T , is not surjective, i.e. it is not a

bijection.

P218 Since the injective function g defining T is any injecti-

ve function between N and Q01 and it cannot be surjective, we

must conclude it is impossible to define a bijection between N and

Q01. Consequently, Q01 is non-denumerable. Although the abo-

ve inference suffices to conclude that Q01 is non-denumerable, it

could be (inappropriately) argued, as against Cantor’s diagonal

argument, that a new table T ′ could be defined so that r′1 = A

and r′i+1 = ri, ri ∈ T, ∀i ∈ N. The new table T ′ would be de-

numerable, but through the same diagonal argument, the same

conclusion on the impossibility of a bijection between N and Q01

would be reached. And the same recursive argument could be ap-

plied to any table defined in terms of any other previous table and

its corresponding antidiagonal, while the new table continue to be

denumerable. A bijection between N and Q01 is impossible. So,

Q01 is non-denumerable, and we have a contradiction in set theory

because Cantor proved Q is denumerable [47, p. 123] [37].
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P219 the Permutation D makes it possible to develop other ar-

guments whose conclusions also point to the inconsistency of the

hypothesis of the actual infinity. For instance, it is clear that cer-

tain elements of Q01 as, 0.21, 0.35421, 0.2111111111 and many

others cannot become d-modular if they were in the table T . This

problem will be analyzed in Chapter 30, although for the case of

a table of natural numbers.

A final remark

P220 As with all discussions on the hypothesis of the actual infi-

nity, the above one is a conceptual discussion unconcerned, as Can-

tor’s diagonal argument, with the physical possibilities of carrying

out all the involved operations. The formal inconsistency of a hy-

pothesis does not depend on those possibilities, but on the fact

of deducing from it a contradiction (Principle of Autonomy P23).

And recall that from an inconsistent hypothesis anything can be

deduced, from apparently reasonable assertions to any absurdity.

It seems convenient to end by recalling again that an argument

cannot be refuted by other different argument simply because it

reaches an opposite conclusion. In W. Hodges words [121, p. 4]:

How does anybody get into a state of mind where they persuade

themselves that you can criticize an argument by suggesting a

different argument which doesn’t reach the same conclusion?

This inadmissible strategy is frequently used in the discussions

related to the actual infinity hypothesis (and in general in any

discussion involving a “main stream” of thought). But to refute an

argument means to indicate where and why that argument fails. If

two correct arguments based on the same set of hypotheses lead to

contradictory conclusions, they are simply proving the existence of

a contradiction. And, therefore, the inconsistency of at least one

of the assumed hypotheses. In our case, the only hypothesis is the

hypothesis of the actual infinity, according to which the infinite

sets and sequences exist as complete totalities. The alternative is

the hypothesis of the potential infinity, according to which only

finite sets and sequences can be considered as complete totalities,
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unlimited and as large as wished, but always finite if they have to

be considered as complete totalities. From this finitist perspective

it is not possible to deduce the above contradictions because every

row is preceded and succeeded by a finite number of rows.
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12 Rational intervals

Introduction

P221 This chapter contains three arguments on the cardinality

of the set Q of the rational numbers. In the first one, a partition

of a real interval of positive real numbers is defined by means of

a sequence that contains all positive rational numbers. It is then

shown that the partitioned interval contains positive rational num-

bers that are not in the initial sequence that contains all positive

rational numbers. The second argument, which is similar to the

first one, deduces a contradiction related to the assumed existen-

ce of a denumerable sequence of rational numbers within the real

interval (0, 1], being the denumerable nature of the sequence (con-

sidered as a complete totality) the only cause of the contradiction.

In the third argument, the right endpoint of a rational interval is

successively redefined so that each redefinition shortens the length

of the interval. The result is a new contradiction related to the

cardinality of the set Q of the rational numbers.

P222 In this and in some other of the following chapters, we will

use the concept of partition of a linear (real or rational) interval,

which is defined as follows:

a)Definition P222. A sequence of adjacent and disjoint intervals

P = A1, A2..., An is a partition of another interval A if, and

only if: {
A = A1 ∪A2 ∪ ... ∪An

Ak ∩An = ∅, ∀Ak, An,n 6=k ∈ P
(1)

For instance:

(a, b) = (a, x1] ∪ (x1, x2] ∪ (x2, x3] ∪ · · · ∪ (xn, b) (2)

125
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is a partition of the interval (a, b). Note that, as indicated, the in-

tervals of a partition are disjoint (they have no common elements)

and adjacent (the right endpoint of any of them coincides with the

left endpoint of the next one, if any). A partition is, therefore, a

sequence of adjacent and disjoint intervals, so that every interval,

except the first one, has an interval disjoint and adjacent to the

endpoint of smaller index, which is its immediate predecessor; and,

except the last, each interval has an interval disjoint and adjacent

to the endpoint of greater index, which is its immediate successor.

A consequence of Definition P222 is the following

a)Corollary P222. A point belong to a partitioned interval if and

only if it is a point of one of the intervals of the partition.

Proof.-It is an immediate consequence of (1). �

For the partition to include only one time each point of the par-

titioned interval, the successive intervals of the partition must be

open at the same endpoint and closed at the other, except the first

and the last interval of the partition, which can also be open or

closed. Any interval can also be considered as a partition of itself

of just one element.

P223 Since a partition has a first element, a last element, and

each element has an immediate predecessor (except the first) and

an immediate successor (except the last), the number of parts in

the partition can only be finite (Theorem P80c, of the Finite Sets).

On the other hand, it is immediate to prove the following:

a)Theorem P223.-If an interval of a partition of a given interval is

divided into two adjacent and disjoint intervals, the new two

intervals and the remaining ones form a partition of the given

interval.

Proof.-The first (second) of the new intervals has an immediate

successor (predecessor): the second (first) of the new intervals.

If the partitioned interval is the first (last) interval, then the

first (second) of the new intervals will be the new first (last)

interval of the partition. In other case, the first (second) of the

new interval has an immediate predecessor (successor): the
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immediate predecessor (successor) of the partitioned interval.

So, the new intervals and the remainder ones define a partition

of the given interval (Definition P222). �

P224 It is possible to consider infinite sequences of numbers 〈xi〉 in
any real or rational interval (a, b), and every two of those successive

numbers xi, xi+1 define a (sub)interval within (a, b), for example

the open-closed interval (xi, xi+1]. The following concept is then

defined, which generalizes the concept of partition:

a)Definition P224. A segmentation of a given interval in a real or

rational line* is a sequence of points within the given interval,

so that they define a sequence of disjoint (sub)intervals within

the given interval. If the ordinal of the sequence of points is α,

the segmentation will be said α-ordered.

P225 Unlike finite partitions, in a ω-segmentation of an interval,

for example (a, b], there is not a last part, and the right endpoint b

of the ω-segmented interval does not belong to the intervals defined

by the ω-segmentation. In this sense, and with those differences

with respect to partitions, infinite segmentations of any real or

rational intervals can be considered. It is even possible to discuss,

as Cantor did in 1882 [38], on the existence of non-denumerable

partitions in the continuum. A problem that is analyzed in Chapter

13.

P226 The above Definition P224 of segmentation can be comple-

ted by means of the analytic concept of length. In the case of a

straight line AB, its length L is given by:

L =
√

(a1 − b1)2 + (a2 − b2)2 + (a3 − b3)2 (3)

where a1, a2, a3 and b1, b2, b3 are the respective Cartesian coor-

dinates of A and B in the Euclidean space R3. In the case of a

continuous line* f(x) the length AB is given by:

L =

∫ b

a

√
1 + f ′(x)dx (4)
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In these conditions, to each point xi within a real interval (a, b), a

real number Li can be assigned that corresponds to the length of

the segment axi. Therefore, although the segment (a, b) is densely

ordered and non-well-ordered, it is possible to define a set S of

points in (a, b) ordered by their strictly increasing (decreasing)

lengths with respect to the point a (or b):

xi < xj ⇔ axi < axj , ∀xi, xj ∈ S (5)

xi 6= xj ⇔ axi 6= axj , ∀xi, xj ∈ S (6)

The above order relation < is a total order because it satisfies a),

b) c) and d) of P51. If there is a first element x1 in S, and S

contains all the predecessors of any of its elements but the first,

then < is a well order, because any subset S′ of S containing, say,

xm, will also contain a first element: one of the elements x1, . . . xm.

A partition a la Cantor

P227 As is well known, the set of the rational numbers in their

natural order of precedence is densely ordered. So, if a and b are

any two different rational numbers such that a < b, then the inter-

val (a, b) contains infinitely many different rational numbers, no

matter how close a and b are. Or in other words (and contrary

to what happens with any natural number in the sequence of the

natural numbers 1, 2, 3. . . ), no rational number has an immediate

successor in the natural order of precedence of the rational num-

bers. This trivial property of the rational numbers will be of capital

importance in the following argument.

P228 Let f be a one to one correspondence between the set N of

the natural numbers and the denumerable set Q+ of all positive ra-

tional numbers. Consider the sequence 〈qn〉 defined by f (Theorem

P80a):

〈qi〉 = q1, q2, q3, . . . ; qi = f(i),∀i ∈ N (7)

Since f is a one to one correspondence, it is quite clear the sequence

〈qn〉 contains all positive rational numbers. Obviously, the ω-order

of the indexes of 〈qn〉 makes it possible to consider successively and
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one by one all elements q1, q2, q3 . . . of Q+, which in turn makes

it possible the following Procedure P229.

P229 Let (a, b] be any left open and right closed interval of real

numbers. The successive elements q1, q2, q3 . . . of the sequence 〈qn〉
defined in (7) will now be used to define a sequence of disjoint and

adjacent intervals within (a, b] by means of the following:

a)Procedure P229.-Consider successively the elements q1, q2, q3,...

of 〈qn〉. For each successive qi: If, and only if, qi belongs to

an interval (x, y] previously defined, including the initial (a, b],

and qi is not an endpoint of (x, y], then divide (x, y] into two

adjacent and disjoint intervals (x, qi] and (qi, y].

Obviously:

(x, y] = (x, qi] ∪ (qi, y] (8)

(x, qi] ∩ (qi, y] = ∅ (9)

As will be shown, we will finally have a sequence S of adjacent and

disjoints intervals:

S = (a, x1], (x1, x2], (x2, x3] . . . (10)

where each xi is a certain element of 〈qn〉.

P230 It can easily be proved that for any natural number v, the

above Procedure P229 defines a partition of the interval (a, b] with

the first v elements of 〈qi〉. It is clear that P229 defines a partition

of (a, b] with q1: either the partition (a, b] if q1 /∈ (a, b], or the par-

tition (a, q1](q1, b] if q1 ∈ (a, b]. Assume that, being n any natural

number, P229 defines a partition of (a, b] with the first n elements

of 〈qi〉. If qn+1 ∈ (a, b], it will belong to an interval of the partition

defined by the first n elements of 〈qi〉 (Corollary P222), and it will

be different from the endpoints of that interval because all rational

numbers are different from one another and the endpoints of that

interval has been defined by two elements qi<n+1, qj<n+1 of 〈qi〉.
Therefore, in this case P229 divides that interval in two disjoint

and adjacent intervals. So, and, according to the Theorem P223,
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the Procedure P229 defines a new partition of (a, b] with the n+1

first elements of 〈qi〉. Otherwise, if qn+1 /∈ (a, b] then P229 defines

the same partition in (a, b] with the first n+ 1 elements of 〈qi〉 as
with the first n elements of 〈qi〉. In consequence, for any natural

number v, the Procedure P229 defines a partition of the interval

(a, b] with the first v elements of 〈qi〉.

P231 The following are immediate consequences of the above de-

finition of the Procedure P229:

a) When considering an element qi, if qi is in the interior of an

interval (x, y] previously defined, including the initial inter-

val (a, b], then qi divides that interval into two disjoint and

adjacent intervals (x, qi], (qi, y] whose union is the previous

interval, being qi the common endpoint of both intervals. The-

refore, the two new intervals (x, qi], (qi, y] define a partition of

the interval (x, y] (Theorem P223).

b) The successive S intervals are defined two by two, being each

new pair of intervals the result of dividing a previously defined

interval, including the initial interval (a, b], into two disjoint

and adjacent intervals whose union is the previous interval.

Consequently, and according to the Theorem P223, the defined

intervals at each step of the Procedure P229 form a partition

of the initial interval (a, b].

c) When the Procedure P229 considers the element qv of 〈qn〉,
only a finite number, at most v + 1, of disjoint and adjacent

intervals will have been defined. According to Corollary P222,

if qv ∈ (a, b] then qv must belongs to one of those intervals,

because those intervals form a partition of (a, b].

d) Each time an element qv of 〈qn〉 divides an interval (xi, xj ], the

endpoints of this interval continue to be endpoints in the new

intervals: xi in (xi, qv] and xj in (qv, xj ], and the new intervals

continue to be densely ordered, otherwise the divided interval

would not be densely ordered. The same applies to the intervals

(a, xi] and (xk, b].

e) As a consequence of the above four points, once an element qv
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of 〈qn〉 has been used to divide an interval into two new inter-

vals, this element qv will continue to be the common endpoint

of two disjoint and adjacent intervals.

f) As a consequence of P231d, there will always be a first open-

closed interval whose left endpoint is a, and a last open-closed

interval whose right endpoint is b.

P232 According to P231f, the sequence S defined by the Procedu-

re P229 will necessarily contain a first interval whose left endpoint

is a. Let (a, x] be that first interval, where x is a certain element

of 〈qn〉. Since all real intervals are densely ordered, between a and

x infinitely many different rational numbers do exist. Let s be any

rational element within the interval (a, x] different from x. As we

will see now, s cannot be an element of the sequence 〈qn〉.

P233 Assume s is a certain element qv of 〈qn〉. According to P231c,
when the Procedure P229 considers qv only a finite numbers k ≤
v+1 of disjoint and adjacent intervals will have been defined. Since

qv belongs to (a, x) it will also belong to (a, b], and then to one of

the k intervals, say (xd, xh], already defined when P229 considers

qv, because those intervals form a partition of (a, b] (Corollary

222). Obviously, qv cannot be an endpoint of that interval because

all rational numbers in 〈qi〉 are different, and (xd, xh] has been

defined before the Procedure P229 considers qv. So qv will be used

to defined two new intervals (xd, qv], (qv, xh], and in accord with

P231e, it will continue to be the common endpoint of two disjoint

and adjacent intervals. So, it is impossible for qv to be a point in the

interior of the first interval (a, x]. We must conclude the rational

number s ∈ (a, x] cannot be a member of 〈qn〉. A similar argument

would prove that the last interval (y, b] of the partition, where y is

an element of 〈qi〉, also contains infinitely many rational numbers

that are not in the sequence 〈qi〉. This proves the following:

a)Conclusion P233.-The sequence 〈qn〉, that contains all positive

rational numbers, does not contain all positive rational num-

bers.
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P234 It is remarkable the fact that, in order to draw the above

Conclusion P233, we do not need to know if the Procedure P229

defines a finite or an infinite number of intervals. The conclusion

P233 is an inevitable consequence of assuming the setQ+ is densely

ordered and at the same time denumerable, which allows us to

reorder its elements and consider all of them successively, one by

one.

P235 The above Conclusion P233 is not the only contradiction

that can be deduced from the partition defined by the Procedure

P229. But its discovery is left to the curiosity of the reader.

A denumerable partition

P236 Let us now consider the real interval (0, 1] and the set Q01

of all rational numbers in the real interval (0, 1). Since Q01 is de-

numerable, there is a one to one correspondence f between N

and Q01 which allows to consider one by one the successive ele-

ments of Q01 by means of the sequence 〈qi〉 = q1, q2, q3, . . . being

qi = f(i),∀i ∈ N (Theorem P80a).

P237 As we will see, a procedure similar to the above one P229

makes it possible to define, in accordance with the Corollary 222

and the Theorem P223, a partition of the real interval (0, 1] by

means of the successive rational numbers of the sequence 〈qi〉. Since
q1 ∈ (0, 1], q1 defines the partition (0, q1](q1, 1] of (0, 1]. Since q2 ∈
(0, 1], q2 belongs to one of the intervals of the partition defined by

q1 (Corollary 222), for example to (0, q1], then q2 define a partition

(0, q2](q2, q1] of (0, q1]. And then, q1 and q2 define the partition

(0, q2](q2, q1](q1, 1] de (0, 1]. For the same reason q1, q2 and q3 define

a partition of (0, 1], say (0, q2](q2, q1](q1, q3](q3, 1]. It is immediate

to demonstrate by induction, or by Modus Tollens, that for every

natural number v, the first v rational numbers of 〈qi〉 define a

partition of the real interval (0, 1].

P238 The inductive proof is as follows. We have just seen that

q1 defines a partition of (0, 1]. Assume that, being n any natural

number, the first n elements of 〈qi〉 define a partition of (0, 1].



A denumerable partition 133

According to the Corollary P222, since qn+1 belongs to (0, 1], it

will belong to an interval, say to (qh<n+1, qj<n+1], of the partition

defined by the first n elements of 〈qi〉 in (0, 1]. Hence, qn+1 defines

in (qh, qj ] a partition of two intervals (qh, qn+1](qn+1, qj], and since

(qh, qj ] is a part of the partition defined by the first n elements of

〈qi〉 in (0, 1], its replacement by the partition (qh, qn+1] (qn+1, qj]

defined by qn+1 in (qh, qj] continue to be, according to the Theorem

223, a partition of (0, 1]. Hence, for each natural number v, the first

v rational numbers of 〈qi〉 define a partition of the real interval

(0, 1].

P239 It will now be proved that all rational numbers of 〈qi〉 have
been used by the Procedure P237 to define a partition P of the

real interval (0, 1], so that each qn of 〈qi〉 is the common endpoint

of two disjoint and adjacent intervals of that partition. Indeed,

assume that this is not the case. There will be at least a qs in

〈qi〉 such that qs is not the common endpoint of two disjoint and

adjacent intervals defined by P237. But this is impossible because

s is a natural number and it has been proved in P238 that the first

s elements of 〈qi〉 used by the Procedure P237 define a partition

of the real interval (0, 1], with qs being the common endpoint of

two disjoint and adjacent intervals of that partition.

P240 Since 〈qi〉 is denumerable and each of its elements is the

common endpoint of two adjacent and disjoint intervals of the par-

tition P defined by 〈qi〉 in (0, 1], that partition will consist of an in-

finite number of parts each of whose successive common endpoints

are all of them elements of 〈qi〉. This is what the one to one corres-

pondence f between N and P defined by f(n) = (qh, qn],∀n ∈ N

proves. But this is impossible, because the partition P contains

a first element (0, qk], a last element (qr, 1], and all the intervals

being disjoint and adjacent, each element (qh, qn] has an imme-

diate predecessor (qp, qh] and an immediate successor (qn, qs], so

that the partition P can only contain a finite number of elements

(Theorem P80c, of the Finite Sets).

P241 The above contradiction P240 is a consequence of assuming
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the existence of a denumerable set, the set Q01 of the rational

numbers in the real interval (0, 1], as a complete totality. Indeed

it is that set that made it possible the definition of the impossible

denumerable partition P of (0, 1]. And since the only property of

the set Q01 involved in the definition of P is the number of its ele-

ments considered as a complete totality in which any element has a

finite number of predecessors and an infinite number of successors

(ω-asymmetry), it must be the cause of the contradiction proved

in P240. In which case, and since all denumerable sets can be put

into a one to one correspondence with each other, all denumerable

sets, including the set of the natural numbers, would be inconsis-

tent when considered as complete totalities, as the hypothesis of

the actual infinity considers.

P242 It is time to remember, as was done in P220, that an ar-

gument cannot be invalidated because another argument reaches

the opposite conclusion. In this case, the conclusion contrary to

P240. That is to say, the conclusion that the partition P defined

by the Procedure P237 is not possible because there is not a last

element in 〈qi〉 to end the definition of the partition P. But an ar-

gument can only be invalidated by indicating where and why that

argument fails. If two correct arguments reach two opposite con-

clusions, they do not invalidate each other; they demonstrate the

inconsistency of some common assumption. It happens, however,

that the existence of hegemonic streams of thought in the scienti-

fic world, mainly in formal sciences, provides its militants with the

deep conviction (as firm as a rock) that the conclusions of their

arguments do in fact invalidate the arguments that reach conclu-

sions contrary to their own. They do not consider the possibility

that their stream of thought could be wrong, as if hegemonic and

true were the same thing. It seems that the longer and stronger

the hegemony of the hegemonic current, the more persistent this

unacceptable attitude becomes.

A shrinking rational interval

P243 Since the set Q+ of the rational numbers greater than zero

is denumerable, there is a one to one correspondence f between
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the set N of the natural numbers and Q+. Therefore, the sequence

〈f(i)〉 = f(1), f(2), f(3),. . . contains all rational numbers grea-

ter than zero and makes it possible to successively consider all of

them, and one by one. Let us now define the concept of 0-interval

as any open interval of rational numbers whose left endpoint is the

rational number 0 (the argument can immediately be extended to

any other rational number). Let Io = (0, a) be anyone of those 0-

intervals and consider the following sequence 〈Dn(Io)〉 of recursive
definitions of Io:



D1(Io) = Io

Di(Io) = Di−1(Io) ∩ (0, f(i)), i = 2, 3, 4 . . .
(11)

It is clear that Di(Io) defines Io as (0, f(i)) if this interval is a

0-subinterval of Di−1(Io) or as Di−1(Io) if it is not.

P244 Let us now prove that for each natural number v it is

possible to perform the first v definitions 〈Di(Io)〉i=1,2,...v. Indeed,

it is quite clearD1(Io) = Io can be carried out. Assume that for any

natural number n it is possible to perform the first n definitions

〈Di(Io)〉i=1,2,...n, so that 〈Dn(Io)〉 = (0, x) and x is either one of

the first n elements of 〈f(i)〉 or a. Since f(n + 1) is a rational

number greater than zero it will belong, or not, to (0, x). In the

first case Io can be defined as (0, f(n+1)); in the second as (0, x).

So the first n+1 definitions 〈Di(Io)〉i=1,2,...n+1 can also be carried

out. This proves that for any natural number v it is possible to

perform the first v definitions 〈Di(Io)〉i=1,2,...v.

P245 Assume now that while the successive definitions 〈Dn(Io)〉
can be carried out, they are carried out. Once performed all possi-

ble definitions 〈Dn(Io)〉 (Principle of Execution P25), the 0-interval

Io will continue to be a 0-interval. Otherwise we would have to

accept that the completion of a finite or infinite sequence of defini-

tions, as such a completion, has unexpected arbitrary consequences

on the defined object, as losing the quality of being a 0-interval.

The same would apply to any other definition, procedure or proof

consisting of infinitely many successive steps, in whose case infi-
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nitist mathematics would no longer make sense (Principle of In-

variance P19). We then conclude that once performed all possible

definitions Di(Io) of Io, and indeterminable as it may be its right

endpoint z, Io will be a certain 0-interval (0, z). And this is all we

need to know in order to continue our argument.

P246 Let s be any element within (0, z). Obviously, s is a rational

number different from 0 and z, but it cannot be an element of the

sequence 〈qn〉. Indeed, assume s is a certain element qv of 〈qn〉.
Since qv ∈ (0, z), this would imply Dv(Io) has not been carried

out because Dv(Io) would have defined Io as (0, qv) and then it

would be impossible that qv ∈ (0, z) because (0, z) is the interval

that results from completing all definitions (11). But, on the other

hand, v is a natural number and, in agreement with P244, the first

v definitions 〈Di(Io)〉i=1,2,...v have been carried out. This proves

our assumption on s is false. Consequently s is not a member

of 〈qn〉. The problem is that, being Q+ a denumerable set, 〈qn〉
contains all rational numbers greater than zero. We must conclude

〈qn〉 contains and does not contain all rational numbers greater

than zero.

Discussion

P247 Cantor’s Beiträge (English translation [47]), published in

1895 and 1897 (Part I, [44] and Part II, [45] respectively) contains

the fundaments of the theory of infinite cardinals and ordinals

numbers. Epigraph 6 of the first article begins by assuming the

existence of the set of all finite cardinals as a complete totality.

Although rather than as an explicit assumption it was introduced

as an example of transfinite aggregate whose existence as a com-

plete totality Cantor took for granted. This implicit assumption

(equivalent to our modern Axiom of Infinity) is the only assum-

ption in Cantor’s theory on transfinite numbers. From it, Can-

tor successfully derived the existence of increasing infinite ordinals

(Theorems §15 A-K) and cardinals (Theorems §16 D-F). The con-

sistency of Cantor theory rests, therefore, on the consistency of

that unique foundational assumption (although it was not inclu-

ded as a foundational hypothesis, but rather as an obvious and
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unquestionable truth).

P248 In 1874 Cantor proved for the first time the set of the real

numbers is not denumerable [37, 36, 41, 50]. Two of the three final

alternatives of Cantor’s proof can also be applied to the set of the

rational numbers. In consequence, it is necessary to prove the third

alternative is the only alternative that can be applied to the set of

the rational numbers. Otherwise that set would and would not be

denumerable. Until now, and as far as I know, this problem has not

even been raised. Chapter 10 of this book dealt with that problem

and proved that the third alternative of Cantor’s proof can be

easily converted in a variant of the second one, which implies the

set Q of rational numbers is non-denumerable.

P249 Some years after, from 1879 to 1882, Cantor published an

article, divided into four parts, on linear sets of points [39, 42]. In

the third part, he proved a theorem according to which, a conti-

nuum of points can only be divided into a denumerable number of

disjoint and continuous subsets. In the next chapter, the alternati-

ve of a non-denumerable infinitude of adjacent and disjoint set of

intervals in the real straight line will be discussed, together with

the inconsistencies related to that alternative.

P250 In 1891 Cantor proved for the second time that the set of

the real numbers (in their binary expression) is not denumerable,

now by his celebrated diagonal method, an impecable Modus To-

llens [43]. Cantor antidiagonal is the binary expression of a real

number in the real interval (0, 1), and being real it will be either

rational or irrational. If it were rational we would have the same

problem as with Cantor’s 1874 argument. So, it should be formally

proved that no permutation of the ℵo rows of Cantor’s table yields
a rational diagonal (rational antidiagonals are immediately deri-

ved from rational diagonals). Chapter 11 analyzed this problem,

demonstrating the existence of rational antidiagonals.

P251 On the other hand, the above three arguments on real and

rational intervals have demonstrated three contradictions related
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to the cardinality of the set of the rational numbers. According

to the first and third of those arguments, there would be sets of

rational numbers that are denumerable and non-denumerable. Ac-

cording to the second of these arguments, there would be denume-

rable sets of rational numbers that define denumerable partitions

that cannot be denumerable. Therefore, and according to P247,

the supposed existence of the infinite sets as complete totalities

would be inconsistent, because that hypothesis is the only one ne-

cessary for the construction of the mentioned three arguments of

this chapter.
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Introduction

P252 The set of the real numbers was proved to be non-denumera-

ble by Cantor’s 1874 argument and Cantor’s diagonal argument (in

the second case for the binary representation of the real numbers).

Although the diagonal argument has been contested, I think both

arguments are well founded and in fact they prove the set of the

real numbers cannot be denumerable. Both arguments, however,

could also be applied to the set Q of the rational numbers (see

Chapters 9 10 y 11). If that were the case, we would be in the face

of a fundamental contradiction: the set Q would and would not be

denumerable. And the cause of that contradiction could only be

the hypothesis of the actual infinity subsumed into the Axiom of

Infinity, the only hypothesis behind both Cantor’s arguments.

P253 Therefore, the Axiom of Infinity will be in question until it

be proved the impossibility of applying both Cantor’s arguments

to the set of the rational numbers. Notice this is a fact, not a more

or less debatable hypothesis. For over a century no one (within

the hegemonic infinitism) has noticed it is, in effect, necessary to

prove that impossibility in order to guaranty the consistency of the

Axiom of Infinity. This is also a fact. And a shocking one, taking

into account the high number of scholars who have examined both

arguments, particularly the diagonal argument.

P254 As we will see in this chapter, there is a third source of in-

consistencies related to the cardinality of the set Q of the rational

numbers. In this case the inconsistencies come from a result pro-

ved by Cantor according to which a continuum of points can only

139
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be divided into, at most, a denumerable infinitude of continuous

disjoint subsets. After analyzing Cantor’s argument, this chapter

will prove the opposite conclusion, i.e. that non-denumerable seg-

mentations in the real straight line are possible. This result not

only contradicts Cantor’s, but also has the side effect of a new

contradiction regarding the cardinality of the set of the rational

numbers.

P255 Before beginning, let us recall that a partition (see P222) in

the real straight line is any finite sequence of disjoint and adjacent

segments of the real straight line whose union is a segment of the

real straight line. For example, the sequence 〈(xi, xi+1]〉 of real

segments is a partition in the real straight line if:

(x1, x2] ∪ (x2, x3] ∪ (x3, x4] ∪ · · · ∪ (xn−1, xn] = (x1, xn] (1)

∀i ≤ j : (xi, xi+1] ∩ (xj+1, xj+2] = ∅ (2)

Remember also that segmentations of infinitely many parts can

also be defined in the real straight line, for instance ω-ordered seg-

mentations (see P224). We could even consider the possibility of

non-denumerable sets of disjoint segments (intervals) in the conti-

nuum of the real straight line, of in any other continuum of points,

whether linear, or bi-dimensional, or n-dimensional.

Cantor’s 1882 argument

P256 In a letter to R. Dedekind, dated on January 5, 1874, Cantor

wrote:[68, p. 54]

Is it possible to map uniquely a surface (suppose a square in-
cluding its boundaries) onto a line (suppose a straight line in-
cluding its endpoints) so that to each point of the surface one
point of the line and reciprocally to each point of the line one
point of the surface correspond?

Cantor comment the question to other friends, which found it ab-

surd because of the (apparent) impossibility of reducing two va-

riables to only one [68, p. 54].
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P257 Notwithstanding, in 1879 Cantor had found a way to prove

that an affirmative answer to his question was possible. Including

the general case of mapping any n-dimensional continuum of points

onto the real interval (0, 1). The key of the proof was the decimal

infinite expansions of the real numbers within (0, 1). He wrote to

Dedekind asking for his opinion on the proof:

What I have communicated to you recently is so unexpected,
so new to myself, that I cannot, as it were, achieve a certain
peace of mind until I have obtained from you, my dear friend,
a decision as to whether it is correct. Until you give me your
approval, I can only say: je le vois, mais je ne le crois pas [I see
it but I don’t believe it].

Dedekind discovered a flaw in Cantor’s proof, but Cantor was able

to fix it quickly. Since then it is possible, indeed, to affirm that a

segment of a straight line of a Planck’s length has the same number

of points as the entire three-dimensional universe we inhabit (or

any other imaginable n-dimensional universe). Obviously, thanks

to the ellipsis ...

P258 Between 1879 and 1882 Cantor published a work on infinite

sets of points divided into four parts [39]. In the third of those

parts, published in 1882 [38], Cantor used a one to one correspon-

dence between the points of an infinite n-dimensional space and

an n-dimensional figure of a finite volume, to prove that in an

n-dimensional infinite space there cannot exist a non-numerable

partition of disjoint and continuous parts, i.e. continuums that at

most have their boundaries in common. P259 summarizes Cantor’s

argument.

P259 In modern language and notation, Cantor’s 1882 argument

goes as follows [38, p. 366-367]. Let Rn be a continuous n-dimensio-

nal space infinite in all directions. Let 〈Aα〉 be any infinite set of

continuous subsets of Rn that are disjoint with one another, sha-

ring at most their boundaries. Let Sn be a continuous n-dimensio-

nal hyper-sphere of a finite hyper-radius equal to 1. A one to one

correspondence f between Rn and Sn can be established. The set
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Figura 13.1 – A bi-dimensional representation of Cantor’s 1882 argu-
ment on the impossibility of a non-denumerable partition of a conti-
nuum of points.

〈f(Aα)〉 of subsets of Sn is a replica of the set 〈Aα〉 of subsets

of Rn, although within the finite hyper-sphere Sn. Therefore, if

〈f(Aα)〉 were numerable, so will be 〈Aα〉; and vice versa (Figure

13.1). Now then, being n and the hyper-radius of Sn finite, the

volume V of Sn is also finite. Hence, the number of subsets f(Ai)

whose volume is greater than any given finite number v can only

be finite because all of them are within a finite volume V. In con-

sequence, Cantor infers that the infinitude of 〈f(Aα)〉, and then

that of 〈Aα〉, can only be denumerable. In the next section of this

chapter it will be proved, however, the opposite conclusion.

Cantor’s ternary set

P260 Cantor’s ternary set (also known as Cantor dust) is a well

known mathematical object usually introduced in first courses of

calculus, mathematical analysis or fractal geometry [151]. The de-

finition of Cantor ternary set is an appropriate example of a pro-

cedure with infinitely many successive steps that, in addition, re-

sembles the Procedure P264 (see P264) we will make use of in the

next argument, at least in the sense that both procedures define a
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non-denumerable set. Indeed, and as will be seen later, the Proce-

dure P264 allows to define a non-denumerable set, in this case of

disjoint and adjacent segments in the real straight line, with the

only aid of the elements of the real interval (0, 1).

P261 But let’s now recall the way Cantor’s dust can be construc-

ted. Consider the closed real interval [0, 1]. If we remove or delete

the open middle third (1/3, 2/3) of this interval we will get two

closed intervals

[0, 1/3], [2/3, 1] (3)

If we now remove the open middle third of each of these intervals,

(1/9, 2/9) and (7/9, 8/9), we will get four closed intervals:

[0, 1/9], [2/9, 1/3], [2/3, 7/9], [8/9, 1] (4)

If we now remove the open middle third of each of these four

intervals we will get eight closed intervals, whose open middle third

can be removed again, and so on. By continuing this procedure ad

infinitum we will get Cantor ternary set (Figure 13.2).

Figura 13.2 – The first six steps of the sequence of infinitely many
steps that define Cantor ternary set.

P262 Before beginning our discussion it seems convenient to recall

the above procedure of infinitely many successive steps is conside-

red as a complete totality of steps whose final result is a comple-

tely defined set: Cantor ternary set. Although this set can also be

defined in other non-constructive terms, infinitist mathematicians

believe the infinitely many steps of its construction can in fact be

(theoretically) carried out (Principle of Execution P25). Even in
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the Cantorian definition of the ternary set Z, it is assumed as a

totality of real numbers: the set of all real numbers satisfying:

Z =
c1
3

+
c2
32

+
c3
33

+ · · ·+ cv
3v

+ . . . (5)

where c can take, at will, any of the two integer values 0 or 2.

Segmentations in the real straight line

P263 In the next argument, and to avoid unnecessary discussions,

we will use standard mathematical notation in the place of com-

puter science notation, though this last would be simpler. Let us

consider two identical sets A = B = (0, 1) of real numbers, and

two identical sets I and J of indexes with the same cardinal 2ℵo

as (0, 1). The elements of I and of J will be referred to a, b, c, d,

e,. . . Since A, B, I and J have the same cardinal, the elements of I

(and the elements of J) can be put into a one to one corresponden-

ce with the elements of A and with the elements of B. Therefore,

the elements of A and the elements of B can be indexed (Definition

P76a) by the elements of I as ra, rb, rc, rd,. . .

P264 Consider the real variables u and v, whose initial values are:

u = v = 0, and the Procedure P264 which consists in repeating

the same biconditional step until one of the conditions is satisfied:

Step:

If A = ∅, or I = ∅ then end. Else:

Select any element k of J

I = J − {k}
J = I

Select any element of B and index it as rk
A = B − {rk}
B = A

If u+ rk is not a proper real number then end. Else:

v = u+ rk
(xk, yk] = (u, v]

Sk = {(xk, yk]}
u = v

Next step
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P265 Each step of the Procedure P264 consists in removing any

element k from I (via the intermediate set of indexes J) in order

to index and remove from A any of its elements rk (via the inter-

mediate set B), which is then used to define a new left open and

right closed segment (xk, yk] of real numbers whose left endpoint

xk is the current value of u and whose right endpoint yk is u+ rk.

The set Sk is then defined as a singleton whose only element is the

segment just defined. Finally u is redefined as u+rk in order to de-

fine the left open endpoint of the next segment that, consequently,

will be disjoint and adjacent to the one just defined. Since the sum

of two proper real numbers, as u and rk, is always a proper real

number, the Procedure P264 empties I, J , A, and B (Principle of

Execution P25).

P266 We now define the following set S of all segments of the real

straight line defined by the above Procedure P264.

S =
⋃

α

Sα =
⋃

α

{(xα, yα]} =

= {(xk, yk], (xh, yh],(xc, yc], (xn, yn], . . . }, (where xk = 0)

(6)

whose elements are adjacent and disjoint since xh = yk; xc = yh;

xn = yc. . . . Therefore, we will have:

∀h, s : h 6= s⇒ (xh, yh] ∩ (xs, ys] = ∅ (7)

∀h, s : yh = xs ⇒ (xh, yh] ∪ (xs, ys] = (xh, ys] (8)

being (xh, yh] and (xs, ys] adjacent and disjoint. In accordance with

their definition, and taking into account each element of (0, 1) is

different from each other, the segments of the set S also satisfy:

∀{(xh, yh], (xs, ys]} ⊂ S





yh − xh = rh ∈ (0, 1)

ys − xs = rs ∈ (0, 1)

rh 6= rs

(9)

which, on the other hand, means each segment of S has a different
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extension greater than zero.

P267 Each segment (xh, yh] of S defines the real number yh−xh =

rh within the real segment (0, 1), that obviously is the same real

number rh used to define the extension of (xh, yh], and only the

extension of (xh, yh] because it was removed from A once defined

(xh, yh]. Thus, it is immediate to define a one to one correspon-

dence between S and (0, 1). Indeed, consider the correspondence

f between S and (0, 1) defined by:

f : S ↔ (0, 1) (10)

f((xh, yh)) = yh − xh = rh, ∀(xh, yh) ∈ S (11)

Since, according to the definition of the Procedure P264, each

yh−xh is a different element of (0, 1), and taking into account (9),

the correspondence f is an injective function (injection). It is also

surjective (exhaustive), otherwise we would have found two proper

real numbers u and rk (see the above definition of the Procedure

P264) whose sum is not a proper real number, which is impossible

because the set of the real numbers is closed with respect to addi-

tion. In consequence f is a one to one correspondence (bijection).

Therefore the set S of real segments and the real segment (0, 1)

have the same cardinality: 2ℵo .

P268 Obviously, this conclusion contradicts Cantor’s on the same

subject, which has been summarized in P256-P259. Since both

arguments are built on the basis of a common hypothesis, the

hypothesis of actual infinity, it must be that hypothesis that causes

the contradiction.

P269 Apart from the above Cantor’s 1882 argument P256-P259,

(usually ignored in the secondary literature for this purpose) the

impossible existence of non-denumerable sets of disjoints segments

(intervals) in the real line is usually justified in the following way.

Assume that it were possible such a non-denumerable set S of
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disjoint segments in the real straight line:

(xa, ya](xb, yb](xc, yc] . . . , (12)

xb = ya, xc = yb, . . . (13)

Being each (xα, yα] a real segment, it contains infinitely many ra-

tional numbers. And being:

(xp, yp] ∩ (xu, yu] = ∅, ∀(xp, yp], (xu, yu] ∈ S; p 6= u : (14)

we could pick out a rational number qh within each segment (xh, yh]

of S and we will finally have a non-denumerable sequence of diffe-

rent rational numbers, which is impossible because the set of the

rational numbers was proved to be denumerable [37], [47, p. 123].

P270 As we have just seen, the above justification rest on a pre-

vious infinitist result, namely that the set Q of the rational num-

bers is denumerable, a result that had been previously proved by

Cantor [37], [47, p. 123]. Therefore, it is not an independent proof

in the sense that it does not prove the impossibility to define a

non-countable set of disjoint segments in the real straight line (as

is the case of Cantor’s 1882 argument P256-P259), it simple asserts

that such a set would be in conflict with the countable cardinality

of the set of the rational numbers previously proved by Cantor.

P271 On the other hand, and according to the argument P263-

P267, the above Procedure P264 defines a non-denumerable set of

disjoints segments in the real line. In these conditions, we could

pick out any rational number qh within each segment (xh, yh] of

the set S (any real segment contains an infinite subset of rational

numbers) and we would have a non-denumerable set of rational

numbers {qk, qh, qc,. . . }. Consequently, and taking into account

the set of the rational numbers Q was also proved to be denume-

rable ([37], [47, p. 123]), we have a new contradiction regarding

the cardinality of Q.

P272 For the third time, when completing an uncompleted Can-
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tor’s argument, we have found a fundamental contradiction invol-

ving the cardinality of the set Q of the rational numbers. As in

the precedent cases, this new contradiction points towards the in-

consistency of the hypothesis of the actual infinity subsumed into

the Axiom of Infinity. It is in fact this axiom that legitimizes the

existence of the infinite sets as complete totalities, and then the

completeness of procedures of infinitely many steps as the Proce-

dure P264 that defines the sequence of segments S, from which the

above contradiction has been drawn.

Final remarks

P273 Evidently, the claim that it is actually impossible to comple-

te in physical terms any infinite computation, as the above Proce-

dure P264, has no effect on the argument, mainly for the following

two reasons:

a) As most of the infinitist arguments, the argument P263-P267

is also a conceptual discussion unrelated to the physical world.

The formal consistency of the actual infinity hypothesis does

not depend upon the actual possibilities of performing this

or that procedure, but on the existence of contradictions for-

mally deduced from that hypothesis. When formally proved,

contradictory results in formal systems depend exclusively on

the consistency of the their foundational assumptions, regard-

less of the possibility of actually performing the finitely or in-

finitely many steps involved in the corresponding arguments

(Principle of Autonomy P23).

b) Infinitist mathematics takes it for granted the completion of

all definitions and procedures composed of infinitely many

steps (Principle of Execution P25) and consider the resulting

objects as complete infinite totalities, as in the introductory

example of Cantor ternary set. Argument P263-P267 cannot

be a (convenient) exception.

P274 As will have been observed, the use of the ellipsis in the

arguments about the mathematical infinity is practically unavoi-

dable. It is convenient to remember that all those arguments can
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also be developed under the hypothesis of the potential infinity.

Although with a very significant difference: in the case of the po-

tential infinity we cannot consider as complete a sequence of steps

ending in an ellipsis. From the perspective of the potential infi-

nity, ellipses always end in complete finite totalities. Although the

totality is unlimited in the number of the possible elements that

can still be included in the totality. In the case of the potential

infinity, infinite totalities do not exist. For this reason, none of the

contradictions that we have deduced up to this point (and none

of those that we will continue to deduce) under the hypothesis of

actual infinity appear under the hypothesis of potential infinity.
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n-Expofactorial numbers

P275 This chapter introduces the expofactorial and the n-expofac-

torial numbers, as well as the method of the successive decimal

expansions by means of which it is possible to define a different

rational number from the infinite decimal expansion of each irra-

tional number within the real interval (0, 1). In such a case, there

would be as many rational as irrational numbers within (0, 1). Evi-

dently, this conclusion goes against other well known results on the

cardinality of the set Q of the rational numbers.

P276 Although the method of the successive decimal expansions

we will make use of in the next section works with natural numbers

of any size, we will use natural numbers unimaginably large: the

n-expofactorials numbers defined in P279.

P277 The first time I considered the expofactorial of the natural

numbers (expofactorials for short), I didn’t know they have already

been defined by C. A. Pickover ([181] cited in [241]) with the name

of superfactorials and the symbols n$, the same name and symbols

used by Sloane and Plouffe to define n$ = Πn
k=1k! [241]. That said,

I will retain my original notation and name. The expofactorial of

a natural number n, written n! (note the factorial symbol “ ! ”

appears as exponent), is the factorial n! raised to a power tower of

order n! of the same exponent n!:

n!

( n!. . .)
n!

n!

n! = n!

151
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Or in Knuth’s notation:

n! = n! ↑↑ (1 + n!) (1)

P278 These numbers growth so rapidly that while the expofacto-

rial of 2 (in symbols 2!) is 16, the expofactorial of 3 (in symbols 3!)

is practically incalculable even with the aid of the most powerful

computers:

3! = 66
66

66
6

= 66
66

646656

= 66
66

265911977215322677968248940438791859490534220026992430066043278949707355...

where the incomplete exponent of the last equation (second step

of the calculation by the online calculator Big Number Calculator)

has nothing less than 36306 digits, a string of figures over seven

meters long, 11 pages, if each figure is 5 mm. And there still re-

mains four steps to go. Indeed, the expofactorial of any natural

number greater than 2 is so large that it is practically incalcula-

ble (it is not an anodyne power of ten but a precise sequence of

different figures).

P279 Expofactorials are insignificant compared with n-expofacto-

rials, recursively defined from expofactorials as follows: the 2-ex-

pofactorial of a natural number n, denoted by n ! 2, is the expofac-

torial n! raised to a power tower of order n! of the same exponent

n!; the 3-expofactorial of n, denoted by n ! 3, is the 2-expofactorial

of n raised to a power tower of order n ! 2 of the same exponent n ! 2;

the 4-expofactorial of n, denoted by n ! 4, is the 3-expofactorial of

n raised to a power tower of order n ! 3 of the same exponent n ! 3;

and so on:

n! n! 2 n! 3

( n!
. . .) (n

! 2
. . .) (n

! 3
. . .)

n! n! 2 n! 3

n! 2 = n! n! 3 = n! 2 n! 4 = n! 3 . . .
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Or in Knuth’s notation:

n!2 = n! ↑↑ (1 + n!) (2)

n!3 = n!2 ↑↑ (1 + n!2) (3)

n!4 = n!3 ↑↑ (1 + n!3) (4)

n!5 = n!4 ↑↑ (1 + n!4) (5)

. . .

The grandeur of, for example, 9 ! 9 (9-expofactorial of 9) is far be-

yond human imagination. Three standard arithmetic symbols, just

9 ! 9, is all we need to define a finite number so large that the stan-

dard writing of its precise sequence of figures would surely be a

string of numerals of a length millions of times greater than the

diameter of the visible universe. If we use the hexadecimal numeral

system, F !F would be inconceivable greater.

P280 The discussion that follows makes use of the 9-expofactorial

of 9. For simplicity, it will be denoted by the letter “h” (for huge).

So, in what follows “h” will stand for 9 ! 9.

An irrational source of rational numbers

P281 The real numbers within the interval (0, 1) with an infinite

decimal expansion are arithmetically defined as:

r = 0.d1d2d3 . . . (6)

= d1 × 10−1 + d2 × 10−2 + d3 × 10−3 + . . . (7)

where the sequence of decimals digits d1d2d3. . . is ω-ordered, as

the set N of the natural numbers 1, 2, 3, . . . that indexes them

(Theorem P80a, of the Indexed Sets).

P282 In accordance with the hypothesis of the actual infinity,

subsumed into the Axiom of Infinity, the infinite decimal expan-

sion 0.d1d2d3d4. . . of any real number (with an infinite decimal

expansion) within the real interval (0, 1) does exist as a complete

ω-ordered totality: it has a first decimal digit (decimal hereafter),

d1, and each decimal dn (except d1) has an immediate predeces-
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sor dn−1 and an immediate successor dn+1, so that no last de-

cimal exists (ω-successiveness), and where immediate predecessor

(successor) means that no other decimal exists between any two

successive decimals dn, dn+1 (ω-discontinuity). In addition, each

decimal digit dn is preceded by a finite number n − 1 of decimal

digits and followed by an infinite number, ℵo, of such decimal digits

(ω-asymmetry). Since the argument that follows deals exclusively

with ω-ordered infinities, from now on, and for simplicity, they will

be referred to simply as infinities.

P283 A point to note is that ω, the ordinal of the ω-ordered

sequences, is the smallest infinite ordinal. Therefore, if r and s are

two real numbers within the real interval (0, 1) and they coincide in

their first successive ω decimals, then both numbers are identical.

On the contrary, and taking into account that every ordinal less

than ω is finite, if r and s are different then they can only coincide

in a finite number of their first successive decimals.

P284 Let N be the ω-ordered set of the natural numbers, h the

9-expofactorial of 9 (in symbols 9 ! 9), and mα any element of the

set MI of the irrational numbers within the real interval (0, 1).

The exclusive decimal expansion of mα:

mα = 0.d1d2d3 . . . (8)

defines the following ω-ordered sequence 〈qα,nh〉 of rational num-

bers:

qα,h = 0.d1d2 . . . dh (9)

qα,2h = 0.d1d2 . . . dhdh+1 . . . d2h (10)

qα,3h = 0.d1d2 . . . dhdh+1 . . . d2hd2h+1 . . . d3h (11)

. . .

qα,nh = 0.d1d2 . . . dhdh+1 . . . d2hd2h+1 . . . d3hd3h+1 . . . dnh (12)

. . .

being qα,nh (for every n in N) the rational number within (0, 1)
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whose finite decimal expansion 0.d1d2 . . . dnh coincides with the

first nh decimals of mα. For this reason, mα will be said the source

of the sequence 〈qα,nh〉, and α will appear as a part of the subindex

of each qα,nh. The rational qα,(n+1)h will be said the h-expansion

of the rational qα,nh because qα,nh is expanded with the next h

successive decimals (starting from dnh+1) of the sourcemα in order

to define qα,(n+1)h. Don’t forget the unimaginable grandeur of h =

9 ! 9.

P285 From the perspective of the actual infinity hypothesis, the

result of defining the infinitely many natural numbers by adding to

the first natural number (the number 1) infinitely many successive

times one unit (1+1=2; 2+1=3; 3+1=4;. . . ), is a set of infinitely

many increasing finite numbers, without ever reaching an infini-

te number (the recursive definition of the natural numbers in set

theoretical terms leads to the same conclusion). Or in other words,

infinitists defend that by adding to a first unit an infinite number

of successive units we never reach an number of infinite size but

infinitely many finite numbers, each one unit greater than its im-

mediate predecessor. The same will happen if instead of one unit

we add any finite number of units. Even h units.

P286 Consequently, and being h a natural number, the result of

defining the infinitely many elements of 〈qα,nh〉 by adding infinitely

many successive times h new decimals to the decimal expansion

of qα,h, yields infinitely many decimal expansions, explosively in-

creasing but always finite: nh ∈ N for each n ∈ N because the

semiring (N,+, ∗) is closed with respect to addition and multipli-

cation. Therefore, all of those decimal expansions 〈qα,nh〉 will be
rational numbers.

P287 This infinitist consequence will be essential for the next ar-

gument since it legitimates the existence of the infinitely many

rational numbers in 〈qα,nh〉, all of them with finitely many deci-

mals, nh for each n in N. In the same way N contains infinitely

many finite natural numbers, each of them one unit greater than

its immediate predecessor, 〈qα,nh〉 contains infinitely many ratio-
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nal numbers with a finite decimal expansion, each with h decimals

more than its immediate predecessor. This is, in fact, infinitist

orthodoxy.

P288 Let P be the set of all pairs (mα, qα,h) whose first com-

ponent is a different element mα of the set MI of the irrational

numbers in (0, 1), and whose second component is the rational

number qα,h within (0, 1) defined by the first h successive deci-

mals d1, d2, . . . dh of mα:

(mα, qα,h) ∈ P ⇔
{
mα = 0.d1d2 . . . dhdh+1 · · · ∈MI

qα,h = 0.d1d2 . . . dh
(13)

Although the first element mα of each pair is a different irrational

number, the second one qα,h will be repeated a certain number of

times in the different pairs of P . Thus, P contains all irrational

numbers within (0, 1) as the first element of each of its couples

of numbers, the second element of each couple being the rational

number whose h digits are the first h digits of its irrational partner.

P289 Notice that if there are not irrational numbers in (0, 1) with

the same first h decimals, then the second element of each pair of

P would be a different rational number. In these conditions the

discussion that follows would be unnecessary: there would be as

many rationals as irrationals within (0, 1). We will assume this is

not the case and, as a consequence, that P contains couples of

irrationals/rationals whose rational components have the same h

decimal digits.

P290 Let then qα,h be any of the repeated rationals in P , and let

Pα be the subset of P of all pairs (mϕ, qϕ,h) whose second rational

component qϕ,h coincides with qα,h:

Pα = {(mϕ, qϕ,h) |(mϕ, qϕ,h) ∈ P ∧ qϕ,h = qα,h } (14)

For simplicity, the repeated rational numbers in Pα will be called

P-repetitions.
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P291 By definition, the irrational numbers of all pairs of Pα

are irrationals numbers within (0, 1) with the same first h deci-

mals. Obviously, some of these numbers will also have the first

2h decimals and some will not (change, for instance, any decimal

d(h+i)0<i≤h in any irrational in (0, 1) and you will get an irrational

with the same first h decimals but not with the same 2h decimals).

Of the first ones, some will have the first 3h decimals and some

will not. And so on.

P292 In accord with P291, if we replace each repeated rational

in Pα with its h-expansion, the number of P-repetitions will de-

crease. And if we replace the remaining repeated rationals with

their corresponding h-expansions, the number of P-repetitions will

decrease again. And so on. The problem is that after each of the-

se replacements, (h-replacement of Pα hereafter) we would have

a new set, and after a sequence of h-replacements we would ha-

ve a sequence of sets P ′
α, P

′′
α . . . and we could not demonstrate

if the repeated rationals disappear or not (see Chapter 15). To

avoid this problem we will have to redefine the set Pα after each

h-replacement.

P293 Each pair (mϕ, qϕ,h) of Pα defines a sequence 〈qϕ,nh〉 of

rational numbers similar to the sequence 〈qα,nh〉 defined in P284,

except in that the source is now the irrational number mϕ in the

place of mα. The assumed actual existence, all at once, of the

infinitely many decimals of the ω-ordered decimal expansion of

any irrational number in (0, 1) as a complete totality, legitimates

the definitions of the sets P , Pα, as well as the sequences 〈qϕ,nh〉,
all of them as complete totalities.

P294 Let A be any set of pairs of numbers (a, b) whose first com-

ponent a is a different irrational number within the real interval

(0, 1) and whose second component b is a rational number within

the same real interval (0, 1). Let us define the following two set

operators:

1) D(A) = set of all pairs of A whose rational components are
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different, not repeated.

2) R(A) = set of all pairs of A whose rational components are

repeated.

Evidently:

A = D(A) ∪R(A) (15)

D(A) ∩R(A) = ∅ (16)

P295 Consider now the following sequence of (re)definitions of the

set Pα:

n = 1, 2, 3, . . .




If R(Pα) = ∅ Then End. Else:

P d
α = D(Pα)

P r
α = {(mϕ, qϕ,(n+1)h) | (mϕ, qϕ,nh) ∈ R(Pα)}

Pα = P d
α ∪ P r

α

(17)

In each definition (17) of the set Pα, its repeated rationals are

replaced with their corresponding h-expansions. In agreement with

P291, in each h-replacement the number of repeated rationals in Pα

decreases. We will now prove that, by successive h-replacements, it

is possible to replace each repeated rational in Pα with a different

rational within the interval (0, 1).

P296 Let us assume that while R(Pα) 6= ∅ and Pα can be h-

replaced, it is h-replaced in accordance with (17). Once all possi-

ble h-replacements have been carried out (Principle of Execution

P25), there will be two exhaustive and mutually exclusive alterna-

tives regarding R(Pα) (the subset of Pα of all pairs with repeated

rationals):

1.- R(Pα) is not empty.

2.- R(Pα) is empty.

Consider the first alternative: R(Pα) is not empty. We know that



An irrational source of rational numbers 159

for each element (mλ, qλ,vh) in R(Pα) there is an ω-ordered se-

quence 〈qλ,nh〉 of rationals with a finite decimal expansion. So that

each (mλ, qλ,vh) in R(Pα) can be replaced with its h-expansion

(mλ, qλ,(v+1)h). Consequently a new h-replacement of Pα is possi-

ble, which contradicts the fact that, being R(Pα) 6= ∅, all possible
h-replacements of Pα have been carried out. Therefore, and by Mo-

dus Tollens, the first alternative is false and then, once performed

all possible h-replacements of Pα the set R(Pα) is empty.

P297 Note that the argument P296 has nothing to do with cons-

tructive reasonings based on the successively performed h-replace-

ments. It is a simple Modus Tollens: once performed all possible

h-replacements (Principle of Execution P25), the hypothesis that

R(Pα) is not empty leads to the contradictory conclusion that not

all possible h-replacements have been carried out. That hypothesis

must be, therefore, false.

No

No

Yes

Yes

STOP

Is a new
h-replacement

possible?

The rational q cannot

be h-expanded

j,nh False

There remain
repaeated numbers

in P ?a

New
h-replacement

Figura 14.1 – The consequences of being a complete sequence without
a last element completing the sequence.

P298 As Figure 14.1 illustrates, the argument P296 takes advan-

tage of the fact that, in accord with the hypothesis of the actual in-

finity, ω-ordered sequences do exist as complete totalities in which

each element has finitely many predecessors and infinitely many

successors (ω-asymmetry). This assumption, makes it possible to
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ensure that while Pα contains P-repetitions, i.e. while R(Pα) is not

empty, the repeated rational numbers can be replaced with their

corresponding successive h-expansions by means of successive h-

replacements of Pα. And that this sequence of h-replacements can

actually be completed because of the actual completeness of each

infinite sequence 〈qϕ,nh〉 and to the Principle of Execution P25.

Consequently, only when Pα no longer contains P-repetitions, i.e.

when R(Pα) is empty, it will be possible to ensure that all possible

h-replacements have been carried out (under penalty of contradic-

tion).

P299 By contrast, from the potential infinity perspective the exis-

tence of completed infinite totalities without a last element that

completes them, makes no sense. Thus, from this perspective we

are not legitimated to consider the completion of the sequence of

h-replacements if this sequence is potentially infinite.

P300 Once removed all P-repetitions, the resulting numbers can

only be rational numbers with a finite decimal expansion since all

elements of all sequences 〈qϕ,nh〉 are rational numbers with a finite

decimal expansion, for the same reason that each of the infinitely

many natural numbers is a finite number one unit greater than its

immediate predecessor.

P301 In accordance with the Definition P290 of Pα, the rational

numbers resulting from the removal of all P-repetitions cannot be

repeated in the set P − Pα because all rational numbers in this

last set differ from the rationals of Pα in at least one of their first

h decimals.

P302 The above argument P290-P301 can be applied to any other

repeated rational in the set P of all pairs (mα, qα,nh). In consequen-

ce, all repeated rationals can be replaced with a different rational

number derived from the decimal expansion of the first irrational

component of the pair. In these conditions each pair of P will be

formed by a different irrational number mα and a different ra-

tional number qα. The one to one correspondence f defined by
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f(mα) = qα would be proving the set of the rationals numbers in

(0, 1) and the set of irrationals numbers in (0, 1) have the same

cardinality.

Discussion

P303 The hypothesis of the actual infinity subsumed into the

Axiom of Infinity legitimizes the following line of reasoning on

which argument P288-P302 is grounded:

303-1. The infinitely many decimals of the decimal expansion of

any irrational number within (0, 1) do exist as an actual

complete totality.

303-2. The infinite decimal expansions of the irrational numbers

in (0, 1) are ω-ordered, being ω the smallest infinite ordi-

nal.

303-3. Two different irrational numbers in (0, 1) can only coincide

in a finite number of their first successive decimals.

303-4. The infinitely many h-expansions 〈qϕ,nh〉 defined from the

decimal expansion of each irrational mϕ in the real interval

(0, 1) do exist as an actual complete totality.

303-5. Each of the infinitely many h-expansions of 〈qϕ,nh〉 is a

rational number with finitely many decimals: nh for each

n in N.

303-6. In accordance with 303-4 and 303-5, the repeated rationals

of Pα can be successively replaced with their correspon-

ding successive rational h-expansions any finite or infinite

number of times.

303-7. In these conditions, and by Modus Tollens P296, all P-

repetitions can be removed from Pα, and then from P , so

that each pair will finally be composed of a different irra-

tional and a different rational derived from its irrational

partner.

303-8. Consequently each irrational number within (0, 1) defines

a different rational number within the same interval.



162 An irrational source of rational numbers

P304 Conclusion P3038 contradicts other well known results on

the cardinality of the set of the rational numbers.

P305 To define rational numbers, and ω-ordered sequences of ra-

tional numbers, from the decimal expansion of the irrational num-

bers leads to some other contradictory results we have not dealt

with here.

Epilog

P306 As it has been repeatedly said, from the perspective of the

actual infinity hypothesis, the infinitely many decimals of a real

number with an infinite decimal expansion do exist as a complete

ω-ordered totality. In consequence, to consider that a real number

does exist as the complete totality of its infinitely many decimals,

means to consider that number is either a mind-independent entity,

or an unverifiable assumption, because human mind cannot embra-

ce the actual infinity (we can not even imagine finite numbers as

9 ! 9, which are minuscule compared with the actual infinitude of

for instance ℵo). Thus, from the infinitist perspective, all irrational

numbers would be (platonic) mind-independent entities.

P307 From the hypothesis of the potential infinity, however, an

irrational number is not a mind-independent entity formed by a

complete ω-ordered sequence of decimals that exist all at once

and by themselves. From this hypothesis, irrational numbers result

from endless calculations that cannot be replaced with a division

between two integers, although at each stage of the calculation

the number coincides with a rational number of finitely many de-

cimals. In this sense the irrational numbers are also definable as

(potentially infinite) sequences of rational numbers, and therefore

as sequences of proportions between two integer numbers.

P308 In the case of the rational numbers the calculations can

be replaced with a division between two integers, which is not

necessarily endless. In its turn, integer numbers would result from

the endless process of counting. Naturally, the existence of endless

processes of counting and calculations does not necessarily mean
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the existence of their corresponding finished results as complete

totalities, as is assumed from the infinitist point of view.

P309 We must decide which of the two alternatives is the most

appropriate to found a theory of numbers. And the election is

not irrelevant: we need mathematics to explain the physical world.

Think, for example, of the problems posed by the actual infinity in

certain areas of physics, as quantum electrodynamics (renormali-

zation) or quantum gravity [221]. Or the assumed dense ordering

of the continuum spacetime (founded on the assumed uncountable

cardinality 2ℵo of the real numbers) versus the discontinuous na-

ture of ordinary matter, electric charge or energy. Some of these

problems are discussed in Appendix B.
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15 Inconsistency of the Nested Sets

A denumerable version of the Nested-Sets Theorem

P310 Let A = {a1, a2, a3 . . . } be any ω-ordered set and consider

the following recursive definition:

{
A1 = A− {a1}
Ai = Ai−1 − {ai}; i = 2, 3, 4, . . .

(1)

that yields the ω-ordered sequence S = 〈An〉 of nested sets A1 ⊃
A2 ⊃ A3 ⊃ . . . , being each set An = {an+1, an+2, an+3, . . . } a

denumerable proper subset of all its predecessors, as well as a su-

perset of all of its successors. Note that, in order to define the

numerable sequence of numerable sets 〈Ai〉, the possibility of re-

moving one by one all elements of A is assumed, even if there is

not a last element to be removed.

A1

A2

A3
...

?

Figura 15.1 – Venn diagram of the Empty Intersection Theorem: All
sets are nested and, being denumerable, each of them occupies a con-
centric area greater than zero. However the common concentric area is
null.

165



166 Inconsistency of the Nested Sets

P311 The following theorem is a denumerable version of the so ca-

lled Nested Sets Theorem (the original version, also called Cantor’s

Intersection Theorem, deals with compact sets, and the conclusion

is exactly the contrary, i.e. that the intersection is nonempty [138,

p. 98-99]).

a)Theorem P311, of the empty intersection.-The sequence S

of sets 〈An〉 defined in P310 satisfies:

⋂

i

Ai = ∅ (2)

Proof.-If an element ak would belong to the intersection then

only a finite number (equal or less than k) of sets would have

been defined by (1), since ak does not belong to Ak, Ak+1,

Ak+2, . . . .

P312 The Empty Intersection Theorem is a trivial result in mo-

dern infinitist mathematics. It simply states the sets 〈An〉 have no
common element. As far as I know, the consequences of the fact

that each set Ai is a denumerable proper subset of all its prede-

cessors have never been examined. This chapter discusses some of

those consequences.

t1ta t2 t3b1 b2 b3

À0 balls À0 balls À0 balls À0 balls

BX BX BX BX ...
Figura 15.2 – Removing, one by one, the balls of a box that contains
ℵo balls.

P313 Before starting the main discussion that will take place in

the next section, let us examine an elementary physical version

of the Empty Intersection Theorem. Let BX be a box containing

a denumerable collection 〈bi〉 of balls indexed as b1, b2, b3, . . . ,
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and let 〈tn〉 be a strictly increasing ω-ordered sequence of instants

within the real interval (ta, tb) whose limit is tb. Now consider the

following supertask: at each instant ti remove from the box the ball

bi, and only the ball bi. The one to one correspondence f between

〈ti〉 and 〈bi〉 defined by f(ti) = bi,∀ti ∈ 〈ti〉 proves that at tb all

balls will have been removed from BX.

P314 In accordance with the way of removing the balls, one by

one and in such a way that between the removal of a ball bn and the

removal of the next one bn+1 an interval of time tn+1 − tn greater

than zero always elapses, it could be expected that just before

completing the removal of all balls from the box, the box will

contain . . . 5, 4, 3, 2, 1 balls. Nothing further from the (infinitist)

truth: before it is empty, the box will never contain a finite number

n of balls, whatever n, simply because those n balls would be

the impossible last n balls of an ω-ordered collection of indexed

balls; and the successive instants at which the successive balls were

successively removed from the box would be the impossible last n

instants of an ω-ordered sequence of instants.

Àoballs 0 balls

Just at t bAt any t in [ta, tb)

BX BX

Figura 15.3 – The Aleph-zero or zero dichotomy

P315 Let f(t) be the number of balls within the box at any instant

t in [ta, tb], i.e. the number of balls to be removed at the precise

instant t. As a consequence of ω-order, we will have the following

inevitable dichotomy:

∀t ∈ [ta, tb] : f(t) =




ℵo if t ∈ [ta, tb)

0 if t = tb
(3)
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Otherwise, if for a t in [ta, tb) it holds f(t) = n, being n any natural

number, then there would exist the impossible last n terms of an

ω-ordered sequence.

P316 Taking into account the one to one correspondence f(ti) =

bi, all balls 〈bn〉 are removed one by one from the box BX, one

after the other and in in such a way that an interval of time ∆it =

ti+1 − ti greater than zero always elapses between the removal of

two successive balls bi, bi+1, ∀i ∈ N. But according to the above ℵo
or 0 dichotomy (3), this is impossible because the number of balls

to be removed from the box has to change directly from ℵo to 0

(without intermediate finite states at which only a finite number of

balls remain to be removed), and this is only possible by removing

simultaneously ℵo balls.

P317 The box BX plays the role of the set A and the successive

removals of the balls from BX represent the successive steps of the

recursive definition (1). Since the successive elements a1, a2, a3,

. . . of A are successively removed in order to define the successive

terms A1, A2, A2, . . . of the sequence S, we could write:

Ai = {a/1, a/2, . . . a/i, ai+1, ai+2, . . . } (4)

where a/1, a/2, . . . a/i simply indicate the successive elements a1, a2,

. . . ai, of A that have been successively removed in order to define

the successive sets A1, A2,. . .Ai, of the sequence S.

P318 As in the case of the box BX, and for the same reasons,

if we focus our attention on the number of elements that remain

unmarked in (4) as the recursive definition (1) progresses, then

we will immediately come to the conclusion that that number can

only take two values: ℵo and 0.

P319 The ℵo or 0 dichotomy implies the number of unmarked ele-

ments in (4) changes directly from ℵo to 0, and this is only possible

by marking ℵo elements at once, i.e. by defining simultaneously ℵo
sets of the sequence S, which evidently is not compatible with the
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recursiveness of that definition, in the same way that to remove

simultaneously ℵo balls from the box is not compatible with the

successiveness of the removals.

P320 There is, however, a significant difference between taking

away the balls from BX and the recursive definition (1): while the

box BX is always the same box BX as the balls are successively

removed from it (which makes it evident the fallacy of the removal),

the set A originates a sequence of sets: starting from A1, each set

Ai originates a new set Ai+1 when the element ai+1 is removed

from it in order to define the next term of the sequence. Thus, A

dissolves in a complete infinite sequence of sets without a last set

completing the sequence, which conceals the fallacy of removing

one by one all elements of a collection without ever resting . . . 3,

2, 1 elements to be removed.

P321 Faced with the evidence of the fact that by removing one by

one the infinitely many balls within the box BX you will inevitably

get a box BX that will successively contain . . . , 5, 4, 3, 2, 1, 0 balls,

some infinitists claim that you cannot remove one by one the balls

from that box because there is not a last ball to be removed. You

can remove one by one the elements of a set to define a numerable

sequence of sets, such as the above sequence 〈Ai〉, even if there is

no last element to be removed, but you cannot remove one by one

the infinitely many balls of a box because there is not a last ball

to be removed from the box. What to think of a formal theory

that allows to remove elements from a set, but not balls from a

box because this would call the theory into question? If that theory

assumes the hypothesis of the actual infinity, it is assuming that all

elements of an infinite collection exist as a complete totality, with

or without a last element. And if all elements of the collections

are removed from the collection, the result can only be the empty

set, otherwise not all elements of the collection would have been

removed from the collection. Be the collection a denumerable set

or a box that contains infinitely many balls. In consequence, if a

bijection as the above one proves that all elements of a collection

have been removed from the collection at a certain instant, at



170 Inconsistency of the Nested Sets

that instant the resulting collection can only be the empty set.

Not accepting this conclusion means accepting that after removing

all elements from a collection, not all elements of the collection

have been removed from the collection. And if the elements of

the collection are removed one by one, and all are removed, it is

difficult to explain that the container, be it a box or a set, never

contains a finite number of elements not yet removed.

Inconsistency of the nested sets

P322 The above discussion of the Empty Intersection Theorem

suggests that this theorem is not as trivial as it seems. It, in fact,

motivates the short discussion that follows, whose main objective

is to put into question the formal consistency of the actual infinity

hypothesis. It seems convenient at this point to recall that Cantor

took it for granted the existence of the set of all finite cardinals as

a complete infinite totality (a hypothesis now subsumed into the

modern Axiom of Infinity), and that from that initial assumption

he successfully derived the infinite sequence of the transfinite or-

dinals of the second class, the smallest of which is ω [47, p. 167,

Theorem §15 K]. Thus, any result affecting the formal consistency

of ω will affect the whole sequence of transfinite ordinals of the

second class as well as the formal consistency of the actual infinity

hypothesis. Let us just begin by assuming the Axiom of Infinity

and then the existence of ω-ordered sets and ω-ordered sequences

as complete infinite totalities.

P323 Consider again the above sequence of sets S = A1, A2, A3, . . .

From S, define the sequence S∗ of sets by successively adding to

S∗ (that is initially empty) the successive sets A1, A2, A3 . . . , of

S if, and only if, ∩ni=1Ai 6= ∅:

n = 1, 2, 3, · · · : add An to S∗ iff n = 1 or
i=n⋂

i=1

Ai 6= ∅ (5)

P324 As in previous arguments in this book, it could easily be

proved by induction or by Modus Tollens that for any natural

number v the first v successive additions (5) can be carried out.
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The inductive proof is as follows. According to (5) the set A1 can be

added to S∗. Suppose that for any natural number n it is possible

to add to S∗ the first n sets A1, A2, . . . An of the sequence S. We

will have:

A1 ∩A2 ∩ · · · ∩An = An 6= ∅ (6)

Since An+1 = {an+2, an+2, an+2, . . . } is a denumerable subset of

An we can write:

A1 ∩A2 ∩ · · · ∩An ∩An+1 = An+1 6= ∅ (7)

Hence, An+1 can also be added to S∗, which proves that for every

natural number v it is possible to add the first v elements of S

to S∗. And then, for any natural number v, the first v successive

additions (5) can be carried out.

P325 Assume that while the successive additions (5) can be ca-

rried out they are carried out. Once all possible successive addi-

tions (5) have been carried out (Principle of Execution P25), the

sequence S∗ will be formed by a certain (finite or infinite) number

of sets that by addition have a nonempty intersection. Let, the-

refore, av be any element of that intersection. Evidently it holds:

av /∈ Av. In consequence, Av is not a member of the sequence S∗.

P326 It is immediate to prove, however, Av is a member of S∗:

a) The subindex v in Av is a natural number.

b) According to P324, for each natural number v the fists v

successive additions (5) can be carried out.

c) All possible successive additions (5) have been carried out.

d) The first v successive additions (5) have been carried out

(Principle of Execution P25).

e) The vth addition (5) adds Av to S∗ because:

A1 ∩A2 ∩ · · · ∩Av = Av 6= ∅ (8)

f) In consequence Av is a member of S∗.
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P327 We have, therefore, derived a contradiction from our initial

assumption: the set Av is and is not in the sequence S∗.

P328 The alternative to the above contradiction is another con-

tradiction even more elemental: after having performed all pos-

sible successive additions (5) in accordance with the Principle of

Execution P25, not all possible successive additions (5) have been

performed.

P329 It could also be argued that S∗ is defined infinitely many

times and that although each and every addition (5) defines S∗ as a

sequence of sets whose intersection is nonempty, the completion of

the sequence of successive additions (5) converts S∗ into a sequence

of sets whose intersection is empty. As if the completion of an ω-

ordered sequence of additions, as such a completion, had additional

arbitrary consequences on the defined object. The same arbitrary

consequences could be expected in any other procedure or proof

consisting of an ω-ordered sequence of steps. In those conditions

any thing could be expected in infinitist mathematics because the

Principle of Invariance P19 could be violated.

P330 Moreover, by timetabling the sequence of additions (5) so

that each nth step takes place at the precise instant tn of a strictly

increasing sequence of instants 〈ti〉 within (ta, tb) whose limit is

tb, it could easily be proved that only at tb, once completed the

sequence of additions (5), could S∗ become a sequence of sets whose

intersection is empty. This would confirm, on the one hand that

the completion of an ω-ordered sequence of additions, as such a

completion, has additional arbitrary effects on the resulting object;

and on the other that those arbitrary effects takes place at the

instant tb, the first instant after completing the sequence S∗ of

additions; an instant in which no step of the addition is carried

out; an instant when nothing happens that can justify the empty

intersection of the sequence of sets S∗ defined by (5).
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Introduction

P331 This chapter makes use of a few number of basic concepts

of Euclidean geometry. Some of them, as point, line* or straight

line, are primitive concepts while other, as segment or distance,

can be defined in formally productive terms [137]. It is assumed

all of them are well known to the reader.

P332 Recall that an ω-segmentation of a line* AB is a well-

ordered set of points 〈xi〉 such that each xi,i>1 is the immediate

successor of xi−1 (see details in P224). The ω-ordered sequence

〈xn〉 of points within the real straight line interval (0, 1) defined

by:

xn =
(2n − 1)

2n
; n = 1, 2, 3, . . . (1)

is an example of ω-segmentation of a finite straight line segment.

Each pair of successive points xn, xn+1 defines a part (interval or

segment) of the ω-segmentation. The successive parts are disjoint

and adjacent, so that the right endpoint of any of them coincides

with the left endpoint of the following one:

(x1, x2](x2, x3](x3, x4] . . . (2)

P333 As is well known, at least since the 18th century, ω-segmen-

tations (then called simply divisions) of finite line* segments are

only possible if the successive adjacent and disjoint parts of the

ω-segmentation are of a decreasing length, otherwise the length of

the line* would have to be infinite [23]. This inevitable restriction

originates a huge asymmetry in the segmentation. Indeed, whate-

ver be the length of the ω-segmented line* AB, and whatever be

173
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the ω-segmentation, all of its parts, except a finite number of them,

will necessarily lie within a final segment CB arbitrarily small, so

small that it will always be smaller than any considered interval.

Figura 16.1 – Spatial ω-asymmetry in the ω-segmentation of a line*
AB whose length is the diameter of the visible universe.

P334 To illustrate the magnitude of the infinite asymmetry of ω-

asymmetry, consider an ω-segmentation of a straight line segment

AB whose length is 9,3×1010 light years, the assumed diameter of

the visible universe. Whatever be the ω-segmentation of this enor-

mous segment all its infinitely many parts, except a finite number

of them, will inevitably lie within a final segment CB inconceiva-

ble less than, for instance, Planck length (∼ 10−33 cm). There is

no way to define a less asymmetric ω-segmentation, the smallest

of the infinite segmentations (Figure 16.1). Thus, ω-segmentations

are infinitely asymmetrical. And being ω the smallest infinite or-

dinal, any transfinite segmentation has to contain at least one ω-

ordered segmentation (Theorem P80b, of the ωth Term). As the

next section shows, the unaesthetic consequence of the above asym-

metry becomes a little more controversial if the segments of the

segmentations are not of a decreasing length.

Euclidean lengths and distances

P335 In what follows, only lines* that do no intersect with them-

selves will be considered. A line* whose endpoints are A and B
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will be denoted by AB. The same notation AB will be used to re-

present the length of the line* and the distance from A to B if AB

is a straight line. Both, length and distance will be real numbers.

In these conditions, it is possible to prove, among many others,

the following results on lines*, lengths and distances.

Figura 16.2 – Any line* with two endpoints has a finite length.

a)Theorem P335, of the Finite Segments.-In the Euclidean spa-

ce R3, any line* with two endpoints has a finite length.

Proof.-(Figure 16.2) Let AB be any line* in the Euclidean spa-

ce R3, and λ > 0 any finite length. Assume it is possible to

define in AB an infinite partition P = AP1, P1P2, P2P3 . . .

whose parts have, all of them, the same length λ. A point x

such that xB < λ can only belong to a last part PφB of P.

A point Y of AP1<i<φ and a point Z of P1<i<φB such that

Y P1<i<φ < λ and P1<i<φZ < λ can only belong respectively

to Pi−1P1<i<φ and to P1<i<φPi+1. So, P has a first element

AP1, a last element PφB, and each element has an immediate

predecessor (except AP1), and an immediate successor (except

PφB). In addition, any subset P’ of P containing for instance

the element PvPv+1 will also contain a first element: one of the

elements AP1, P1P2 . . . PvPv+1. So, P is well ordered and has

an infinite ordinal α [47, p. 152]. Since P has a last element

PφB and ω-ordered sets do not have last element, if α is infinite

it must be greater than ω, in whose case P would have an ωth

element PωPω+1 (Theorem P80b, of the ωth Term). But any

point u such that uPω < λ can only belong to the impossible

immediate predecessor of PωPω+1. In consequence, AB cannot

be partitioned in a infinite number of parts of the same finite

length, whatsoever it be. Therefore, it can only be partitioned
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in a finite number of parts of the same finite length. And being

finite the sum of any finite number of finite lengths, AB has a

finite length. �

a)Corollary P335a, of the Closed Lines.-In the Euclidean space

R3, any closed line* has a finite length.

Proof.-(Figure 16.3) Let L be any closed line* in the Euclidean

Figura 16.3 – All closed lines* have a finite length in the Euclidean
space.

space R3, and A and B any two of its points. A and B define in

L, and in the same direction of rotation, two adjacent segments

AB and BA whose lengths sum the length of the whole line*

L. According to the Theorem P335 of the Finite Segments, AB

and BA have a finite length. So, L has also a finite length. �

b)Corollary P335b, of the Finite Distances.-In the Euclidean

space R3 the distance between any two of its points is always

finite.

Proof.-Let A and B be any two points in the Euclidean space

R3. Join them by a straight line AB. In accordance with the

Theorem P335 of the Finite Segments, AB has a finite length.

So, the distance from A to B, which is the length of the straight

line AB, is finite. �

c)Corollary P335c, of the Finite Polygons.-A polygon can only

have a finite number of sides and a finite perimeter.

Proof.-(Figure 16.4) In a polygon, each side has a clockwise

adjacent side (its immediate successor side) and a counter-

clockwise adjacent side (its immediate predecessor side). Let

P be any polygon. Index any of its sides as S1 and the sides ad-

jacent to S1 clockwise as S2, S3, . . . The side Sn adjacent to S1
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Figura 16.4 – A polygon can only have a finite number of sides and a
finite perimeter.

in the counterclockwise direction can only be the last indexed

side. Therefore, P has a first and a last side, and each side has

an immediate successor and an immediate predecessor. Conse-

quently, it has a finite number of sides (Theorem P80c of the

Finite Sets). And its perimeter will be finite (Theorem P335,

of the Finite Segments). �

d)Corollary P335d, of the Circumferences.-The length of the

circumference of a circle, its radius, its diameter, and its area

can only be finite.

Proof.-It is an immediate consequence of the corollaries P335a

and P335b. �

e)Corollary P335e, of the Infinite Lines 1.-In the Euclidean

space R3 it is impossible to join any two of its points by a

line* of infinite length.

Proof.-(Figure 16.5)Let A and B be any two points of R3. Join

Figura 16.5 – Two points of the Euclidean space can only be joined
by a line* of finite length.

them by any line* AB. The length AB will always be finite

(Theorem P335, of the Finite Segments). �

f)Corollary P335f, of the Infinite Lines 2.-In the Euclidean
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Figura 16.6 – In the Euclidean space all lines* have a finite length.

space R3 lines* of infinite length are inconsistent.

Proof.-(Figure 16.6) Let L be any line* in the Euclidean space

R3, and P any of its points. P divides L into two lines* L1 and

L2, in opposite directions. According to the Theorem P335 of

the Finite Segments, no point Q of L1 exists such that the

segment PQ has an infinite length. In consequence, if all points

Q of L1 such that PQ has a finite length are removed from

L1 the result is an empty set of points. Therefore, L1 can only

have a finite length, except that an empty set of points can

have an infinite in length, which is not the case. For the same

reason, L2 has also a finite length. Consequently, L has a finite

length. �

Infinitism rejects the above proof of the Corollary P335f by arguing

that even if no point Q of L1 defines a finite segment PQ, the

line* L1 has an infinite length because it does not have an end

(see P321).

A geometrical supertask

P336 As just indicated, Chapter 15 discussed the (inappropriate)

objection of infinitism to arguments similar to the proof of the

above Corollary P335f. This section adds another proof of that

corollary unrelated to the proof given in P335.

P337 Let r be a straight line and c a circle of a finite diameter

d whose center is placed on a point xa of r. Assume that, in the

direction from xa to the right, the straight line r has an infinite

length. And let 〈tn〉 = t1, t2, t3. . . be an ω-ordered and strictly

increasing sequence of instants within the finite interval of time
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(ta, tb), whose limit is tb. Assume that at each instant ti of 〈tn〉,
and only at each instant ti of 〈tn〉, the circle c is translated along

the straight line r in the same direction from left to right and by a

distance equal to its diameter d, so that its center its placed on a

point xi of the straight line r (Figure 16.7). Obviously, this is a su-

pertask (see Chapter 23), a thought experiment independent of the

physical possibilities to carried out in the practice the successive

translations.

Figura 16.7 – Translating a circle along an infinite straight line

P338 At tb the circle c will have been translated infinitely many

times in the same direction and by the same finite distance d along

the straight line r. So, at tb, and wherever it is, the circle c will

continue to be a circle of a diameter d whose center will be a certain

point xb of r (Principle of Invariance P19).

P339 We can consider, therefore, two points of the straight line

r: the center xa of c at the instant ta and the center xb of c at

instant tb, after having been translated infinitely many times along

the straight line r. According to the Theorem P335 of the Finite

Segments, the length L of the segment xaxb will be finite. And

being d and L two finite numbers, the number n = L/d is also
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finite.

P340 So, at tb, and after having been translated an infinite number

of times, the circle c has only been translated a finite number n

of times. This contradiction proves the inconsistency of the initial

assumption on the infinite length of r.

P341 The above argument can be applied to any type of line* and

figure (replacing distance by length in the successive translations).

We must therefore conclude that all distances, lines and figures

we can consider within a given space will always be finite, which

suggests that space itself is finite in all of its dimensions, otherwise

it would be hard to explain the impossibility of lines* with an

infinite length.
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Introduction

P342 In Chapter 16 it was proved that in the Euclidean space

R3 any line* with two endpoints can only be divided into a finite

number of parts of equal finite length. As a consequence, it was also

proved that in the same Euclidean space the distance between any

two of its points is always finite, and that all lines, whether open or

closed, have a finite length. This chapter discusses the possibility

of dividing any finite interval (of space or time) into an infinite

number of parts of decreasing lengths (durations), which is the only

way in which a finite length (duration) can presumably be divided

into infinitely many parts. This would be the Aristotelian infinity

by division [12, Books 3 and 6], and the result of the discussion is

also the inconsistency of such infinite divisions.

P343 Dividing an interval (a, b) into a given (finite or infinite)

number of parts is to define a sequence of adjacent and disjoint

parts such that:

(a, b) = (a, x1)[x1, x2)[x2, x3) . . . [xn, b) (1)

(a, b) = (a, y1)[y1, y2)[y2, y3) . . . (2)

In the first case, equation (1), the division is finite (Theorem P80c,

of the Finite Sets). It would be a partition of the interval (see

P222). In the second, equation (2), the division would be infinite,

without a last interval. It would be an ω-ordered segmentation (see

P224). In such a case, the sequence of points 〈xi〉 defining the ω-

segmentation will also be ω-ordered, and its limit will be the right

endpoint b of the interval (a, b).

181
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P344 In the case of the ω-ordered segmentations of an open in-

terval (a, b), the limit of the increasing (decreasing) sequence of

points defining the partition is the right endpoint b (left endpoint

a) of the interval. We know that between each of the points of the

sequence and its limit there is always the same infinite number ℵo
of points of the sequence (ω-asymmetry). Moreover, although the

successive points approach their limit, none of them reach it. The

limit point is not a point of the sequence.

P345 Recall that, according to the definitions given in P222-P224,

the collection of intervals:

[x1, x2)[x2, x3)[x3, x4) . . . [xω, xω+1) (3)

is not a partition because the left endpoint xω of the last interval is

not common to any other interval. It is also not a ω-segmentation

because its ordinal is ω+1. Therefore it is a (ω+1)-segmentation.

An example of ω-segmentation would be:

[x1, x2)[x2, x3)[x3, x4) . . . (4)

Divisibility of real intervals

P346 In P236-P241 of Chapter12 a real interval (the real interval

(0, 1]) was divided into an infinite sequence of parts with a first

and a last part, each part (except the first) having an immedia-

te predecessor and an immediate successor (except the last). Of

course, that division is impossible (Corollary P80, of the Finite

Ordinals). The impossible partition was made possible by a de-

numerable collection of points considered as a complete totality.

And since the only property of the collection of points used to

define that impossible partition was its supposed denumerability,

it was concluded that denumerable collections of points, and in

general denumerable sets are inconsistent objects when considered

as complete totalities, which is the way they are considered under

the hypothesis of the actual infinite.

P347 A proof independent of P236-P241 about the inconsistency



Divisibility of real intervals 183

of the ω-segmentations of any real interval (a, b) will now be given.

Let 〈xi〉 be an ω-ordered sequence of points in the real interval

(a, b), which defines an ω-segmentation of (a, b):

(a, x1](x1, x2](x2, x3](x3, x4] . . . (5)

If the point x1 is removed from 〈xi〉, the remaining points continue

to define an ω-segmentation of (a, b):

(a, x2](x2, x3](x3, x4](x4, x5] . . . (6)

If the point x2 is also removed from 〈xi〉, the remaining points

continue to define an ω-segmentation of (a, b):

(a, x3](x3, x4](x4, x5](x5, x6] . . . (7)

If the point x3 is also removed from 〈xi〉 the remaining points

continue to define an ω-segmentation of (a, b):

(a, x4](x4, x5](x5, x6](x6, x7] . . . (8)

It is immediate to prove that for any natural number v it is pos-

sible to remove from 〈xi〉 the first v elements of 〈xi〉 so that the

remaining points of 〈xi〉 continue to define an ω-segmentation of

(a, b). It has been just proved that this is what happens when

the first element x1 is removed from 〈xi〉. Suppose that, with n

being any natural number, this is also what happens when the

first n elements of 〈xi〉 are removed from 〈xi〉. We will have the

ω-segmentation of (a, b):

(a, xn+1](xn+1, xn+2](xn+2, xn+3](xn+3, xn+4] . . . (9)

Therefore, if the (n+1)th term is also removed from 〈xi〉, we will

also have an ω-segmentation of (a, b):

(a, xn+2](xn+2, xn+3](xn+3, xn+4](xn+4, xn+5] . . . (10)

So, for every natural number v it is possible to remove from 〈xi〉
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its first v elements, and the remaining elements continue to define

an ω-segmentation of (a, b).

P348 Suppose that all points that can be removed from 〈xi〉 while
the remaining ones define an ω-segmentation of (a, b), are removed

from 〈xi〉 (Principle of Execution P25). With respect to the number

of non-removed points, we will have the following two exhaustive

and mutually exclusive alternatives:

a) p1: All elements of 〈xi〉 are removed from 〈xi〉.
b) p2: Not all elements of 〈xi〉 are removed from 〈xi〉.
c)Consider also the proposition:

d) p3: At least one element xs of 〈xi〉 was not removed from 〈xi〉.

It is clear that p2 ⇒ p3, because if not all elements of 〈xi〉 have
been removed from 〈xi〉, at least one element xs of 〈xi〉 has not

been removed from 〈xi〉. But this is impossible because s is a na-

tural number and, according to the inductive argument P347, for

all natural numbers s it is possible to remove from 〈xi〉 its first

s elements, and the remaining ones define an ω-segmentation of

(a, b). So, it holds:

p2⇒ p3 (11)

¬p3 (12)

————
∴ ¬p2 (13)

Hence, the proposition p2 is false, and p1 must be true. Conse-

quently, all elements of 〈xi〉 can be removed and still have an ω-

segmentation of (a, b)

P349 The problem is that if all points are removed from the se-

quence 〈xi〉, the result can only be an empty set of points. This ab-

surdity is a consequence of the actual infinity hypothesis, according

to which all points of 〈xi〉 exist as a complete and ω-asymmetric

totality, whose elements can be considered successively and one by

one. The hypothesis of the potential infinity does not lead to the

above absurdity, because from this perspective (a, b) can only be
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divided into a finite number of parts, which can be increased by

adding new points, but always having a finite number of parts.

P350 It has just been proved that it is possible to remove all points

from the sequence of points that defines an ω-segmentation of any

real interval (a, b) and still have an ω-segmentation of (a, b). But if

all points of a sequence of points are removed from the sequence,

the resulting set can only be the empty set. So the absurdity that

the empty set of points defines an ω-segmentation of any real in-

terval (a, b) has just been demonstrated. Which allows us to prove

the following:

a)Theorem P350, of the Divisibility.-The division of a real in-

terval into an infinite number of parts is inconsistent.

Proof.-According to P348, ω-segmentations are inconsistent.

Since, according to P82, every ω∗-ordered sequence 〈x∗i∗〉 de-
fines the ω-ordered sequence 〈xi〉, ω∗-segmentations are also

inconsistent. And since every α-segmentation whose ordinal α

is greater than ω contains an ω-segmentation (Theorem P80b,

of the ωth Term), every α-segmentation is inconsistent. In ad-

dition, any non-denumerable segmentation would include infi-

nitely many numerable segmentations, all of them inconsistent.

Therefore, the division of a real interval into a numerable or

non-numerable infinite number of parts is inconsistent. �

Dividing intervals of space and time

P351 Supertask theory will be used in this section to confirm

Theorem P350. As is well known, space in physics and geometry,

and time in physics, are constructions based on the continuum

of the real numbers. Let, then, (a, b) be any space interval and

(ta, tb) any time interval, both open, finite and parts of R. Let also

〈xi〉 and 〈ti〉 be two ω-ordered sequences, the first one of points

within the interval (a, b) and the second of instants in the interval

(ta, tb), being b the limit of the sequence 〈xi〉, and tb the limit of

the sequence 〈ti〉.

P352 According to the hypothesis of the actual infinity subsumed
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into the Axiom of Infinity, the infinitely many elements of the

sequence 〈xi〉 exist all at once, as a complete totality And the

same applies to the infinitely many elements of 〈ti〉. We can, then,

consider one by one the successive elements of 〈xi〉 and of 〈ti〉.
And on that consideration will be based the argument that follows.

Indeed, let us consider the following procedure P352:

a)Procedure P352. At each of the successive instants of 〈ti〉 mark

each of the successive points of 〈xi〉, so that each point xi is

marked at ti, and only at ti.

P353 Let us now prove the following two theorems

a)Theorem P353a At instant tb all instants of 〈ti〉 have passed and

all points of 〈xi〉 have been marked.

Proof.-Being tb the limit of the sequence 〈ti〉, the instant tb is

the first instant after all instants of the sequence 〈ti〉. There-
fore, at tb all instants of 〈ti〉 have passed. On the other hand,

the one to one correspondence f between 〈xi〉 and 〈ti〉 defined
by xi = f(ti) proves that at tb all points of 〈xi〉 have been

marked. �

b)Theorem P353b At instant tb not all instants of 〈ti〉 have passed,
and not all points of 〈xi〉 have been marked

Proof.-Let T be the set of all instants within the interval (ta, tb)

at which only a finite number of instants of the sequence 〈ti〉
have passed. And let T be the complement set of T with res-

pect to (ta, tb). It must hold: T= ∅, otherwise there would be

at least one t in T and then in (ta, tb) at which an infinite num-

ber of instants of 〈ti〉 have passed, which is impossible because

being tb the limit of 〈ti〉, it holds:

∀t ∈ (ta, tb),∃v ∈ N : tv < t < tv+1 (14)

so that at instant t only a finite number v of instants of the

sequence 〈ti〉 have passed. In consequence, and being t any

instant of (ta, tb), the set of instants of the interval (ta, tb) at

which an infinite number of instants of the sequence 〈ti〉 have
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passed is the empty set. And since tb is the first instant after all

instants of the interval (ta, tb), at the instant tb not all instants

of the sequence 〈ti〉 have passed, nor all points of the sequence
〈xi〉 have been marked. �

P354 The contradiction between the theorems P353a and P353b

confirms the Theorem P350 on the inconsistency of dividing a real

interval into a denumerable infinitude of parts. Since the conti-

nuum of the real numbers is the usual model for space and time,

we can generalize the above conclusions in the form of the follo-

wing:

a)Theorem P354 A finite interval of space, or time, cannot be

divided into a numerable or non-numerable infinite number pf

parts.

And if it is not possible to divide a finite interval of space, or

of time, into an infinite number of parts, it seems reasonable to

consider the possibility of the existence of indivisible minimal units

of space and time.

Towards a discrete theory of space and time

P355 The concepts of point, line, straight line, plane, and angle

(and a few more) remain primitive concepts in contemporary geo-

metries, whether Euclidean or non-Euclidean. Although for the

last three of them formally productive definitions can be given

[137]. Contemporary geometries are also continuous geometries:

between any two points of any line* there is always the same num-

ber of points: 2ℵo (the power of the continuum). The same number

of points that also exist in any two-dimensional surface and in any

three-dimensional solid. A line* of one trillionth of a millimeter,

for example, has the same number of points as the whole known

three-dimensional universe, exactly 2ℵo points.

P356 Although they are continuous geometries, all objects in

Euclidean and non-Euclidean geometries are made up of points,

which are indivisible units. From this perspective, these geome-

tries could be considered as discrete, discontinuous. The problem
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is that points, whatever they are (if they are anything at all), have

no extension. Length is a property of lines, not of points. When two

points are joined by a line, the length emerges as a property of the

line. Lines can have very different lengths, from ultra-microscopic

to intergalactic, although they all have the same number of points.

Thus, it could be inferred that the lengths of lines have nothing to

do with the number of their corresponding points, although lines

have only points, and points, as such points, do not have intrinsic

properties. Points only have relative positions in arbitrary referen-

ces frames.

P357 Being made up of 2ℵo points, any line* contains an un-

countable infinity of ω-ordered sequences of points, each of which

defines a ω-segmentation in the line* or in any interval of the li-

ne. According to the Theorem P354, all of them are inconsistent.

Consequently, lines, as objects formed by a continuum of points,

are inconsistent objects. Since every two-dimensional surface and

every three-dimensional solid is made up of the same uncountable

infinitude of points, exactly 2ℵo points, they all are inconsistent

objects. And for the same reason, it can be said that the Eucli-

dean space R3, as defined by a three-dimensional continuum of

points, is also inconsistent. A conclusion that is confirmed by the

contradictions analyzed in Chapter 13 in relation to the existence

of uncountable partitions in the n-dimensional spaces and in the

real line.

P358 In this chapter and the previous one, it has been proved

that:

a) A line with two endpoints can only be divided into a finite

number of parts with the same finite length.

b) The (Euclidean) distance between two points is always finite.

c) The length of a (closed or open) line* is always finite.

d) lines* of infinite length are inconsistent.

e) The division of a finite interval of space (time) into an infinite

number of parts of a decreasing length (duration) is inconsis-

tent.
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f) lines*, as a continuum of points, are inconsistent.

g) Two-dimensional and three-dimensional continuums of points

are inconsistent.

Therefore, it seems reasonable to propose the consideration of a

discrete geometry in substitution of the geometries based on conti-

nuums of points. Although discrete geometries already exist, they

exist for particular purposes, for example the combinatorial analy-

sis of the relationships between geometric elements [25], or the de-

velopment of computational algorithms for the representation of

geometric objects [74, 54]. There are even general discrete geome-

tries, whether or not related to quantum gravity [19, 95, 97, 173],

but not independent of infinitist mathematics. This chapter points

to a discrete geometry that has nothing to do with the existing dis-

crete geometries, and that it will surely require the development of

a discrete and finitist mathematics, free from the inconsistencies

caused by the hypothesis of the actual infinity. The discrete and

finite nature of space and time will surely bring about an unpre-

cedented revolution in mathematics and physics (see Appendices

A and B).

P359 In certain discrete geometries, such as the geometries of

CALMs (see Appendix A), the hypotenuse of the right triangles

has the same number of indivisible units of space (geons) as the

largest of the legs. The factor that converts between discrete hy-

potenuses and continuous hypotenuses has the same form as the

relativistic factor γ of Lorentz transformation. The special theory

of relativity could then be interpreted in terms of a discrete geo-

metry, and the interpretation would be compatible with the expe-

rimental support of special relativity, a theory of the space-time

continuum. Furthermore, the oddities of relativity could be explai-

ned and simplified in the new framework of a discrete geometry.
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18 Koch’s fractal

Introduction

P360 Koch’s fractal, or Koch’s curve, was described for the first

time by Helge von Koch in 1904 [236, 237], before the concept of

fractal were formalized and popularized in the last half of the XX

century, particularly by Benoit Mandelbrot [150, 151]. There are

some variants of Koch’s fractal, of which we will used the closed-

line* version known as Koch’s snowflake.

...

K1

P1

K3

P3

K2

P2

3 sides
of length 1

12 sides
of length 1/3

48 sides
of length 1/9

Figura 18.1 – The first three steps of the construction of Koch’s snow-
flake (the original curve described by Koch was constructed on only one
of the sides of the triangle). Notice that at each step the number of sides
increases by a factor of 4 while their length decrease by a factor of 3.

P361 As Figure 18.1 illustrates, the first step P1 in the construc-

tion of Koch’s snowflake is a closed line* K1 of three straight sides

of the same length (an equilateral triangle). In the second step P2,

the central third of each side is replaced by two identical straight

segments of the same length as the replaced one and so that they

form an angle of 60◦ outward. The result is a new closed line* K2.

In the third step P3, the central third of each side is replaced by

two identical straight segments of the same length as the replaced

one and so that they form an angle of 60◦ outward. The result is a

191
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new closed line* K3. By continuing this procedure (KP hereafter)

ad infinitum we would “finally get” Koch’s snowflake K.

P362 Notice each step Pi of KP originates a closed line* Ki com-

posed of a certain number of sides (that will be referred to as iS),

being all of them straight segments of the same length. Notice also

that each iS is adjacent to other two iS: the one in the clockwise

direction and the other in the anticlockwise direction. For the sa-

ke of clarity, we will also say that each side iS has an immediate

successor (its adjacent segment in the clockwise direction) and an

immediate predecessor (its adjacent segment in the anticlockwise

direction). The successive lines* 〈Kn〉 are discrete in the sense that

they are composed of a certain finite number of identical parts (the

sides iS) that are adjacent and discontinuous to each other.

P363 For obvious reasons, the words “and so ad infinitum” (or the

inevitable ellipsis “. . . ”) are omnipresent in infinitist mathematics.

Although they not always lead to satisfactory results. As we will

see, this is the case of the above introduction to Koch’s fractals,

which is the usual way Koch’s fractals are introduced in text books

and secondary literature on the subject. In fact the reader could

come to the conclusion that by continuing this process ad infinitum

one finally reaches Koch’s curve K. Nothing is further from the

truth.

P364 The successive lines* K1, K2, K3,. . . defined by KP form an

ω-ordered sequence 〈Kn〉 whose limit is Koch’s curve K. Therefore
you can never reach K through the successive terms of the sequence

〈Kn〉 because the limit K does not have an immediate predecessor

in the sequence 〈Kn〉 (Corollary P72). Recall ω-asymmetry: each

term of 〈Kn〉 has a finite number of predecessors and an infinite

number of successors.

P365 Thus, although some metric characteristics of the lines*

〈Kn〉 approaches to the corresponding metric characteristics of K
as much as you wish, the number of terms between any Kn and K
is always the same: ℵo. So, from the point of view of the number
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of terms of the sequence, it is impossible to approach to K, to get

close of K. Similarly, if you go back from K towards the element

of 〈Kn〉, you will always come to a term separated from K by

infinitely many other terms of the sequence. Backward steps will

always be steps over infinitely many terms of the sequence. From

the limit of an ω-ordered sequence, backward jumps are always

over an infinite number of terms of that sequence (ω-asymmetry).

P366 In consequence, the above expression: “by continuing this

procedure (KP) ad infinitum we will finally get Koch’s fractal K”
is erroneous. By continuing that procedure you will never get K.
Koch’s curve K can only be defined as the limit of the sequence of

lines* 〈Kn〉 defined by KP. Moreover, some significant characteris-

tics of the lines* 〈Kn〉, as their discreteness, could not be present

in K. The limit of a sequence is independent of the terms of the

sequences of which it is a limit.

P367 It is clear on the other hand that as KP progresses:

a) The length Ln of the successive lines* Kn increases with

n:

Ln = L1

(
4

3

)n−1

(1)

where L1 is the length of K1 in a certain metric (as the

euclidean metric of R2).

b) The number Nn of sides of the successive Kn increases

with n:

Nn = 3× 4n−1 (2)

c) The length ln of the sides nS of the successiveKn decreases

with n:

ln = L1

(
1

3

)n−1

(3)
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P368 In the limit we will have:

ĺım
n→∞

Ln = ĺım
n→∞

L1 ×
(
4

3

)n−1

=∞ (4)

ĺım
n→∞

Nn = ĺım
n→∞

3× 4n−1 =∞ (5)

ĺım
n→∞

ln = ĺım
n→∞

L1 ×
(
1

3

)n−1

= 0 (6)

P369 Koch’s snowflake K is the limit approached by the succes-

sive terms of 〈Kn〉. Therefore, and in accordance wit the above

limits, K will have an infinite length and infinitely many sides of

length 0 (both in the same metric as Ln and ln), which could be

interpreted as not having sides anyway. To prove other features of

Koch snowflake is not so immediate (see for instance [232]). We

know it is a closed continuous, although nowhere differentiable,

function whose fractal dimension D is:

D =
log 4

log 3
= 1,261859507 (7)

P370 If K were a closed line* of infinite length, it would be an

inconsistent line* according to the Corollary of the Closed Lines

proved in Chapter 16. In the last section of this chapter we will

develop another argument on the sequence of closed lines* 〈Kn〉
whose conclusion points to the same inconsistency.

Conditional Koch’s snowflake

P371 Let us impose the following restriction to the above proce-

dure KP:

a)Restriction P371.-Each step Pi of KP will be carried out if, and

only if, the resulting line* Ki is a closed line* composed of

3 × 4i−1 sides iS of identical length greater than zero, and so

that each side has an immediate successor and an immediate

predecessor.
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P372 Let us now prove that for every natural number v the first

v steps 〈Pi〉i=1,2,...v of KP can be carried out without violating

Restriction P371. It is quite clear that the equilateral triangle of P1

satisfies all requirements of the Restriction P371. Now, and being

n any natural number, assume the first n steps 〈Pi〉i=1,2,...n can

be carried out without violating Restriction P371. The resulting

closed line* Kn will consist of 3× 4n−1 sides nS each with a length

L1/3
n−1 > 0. It is then possible to replace the central third of each

side nS with two straight segments of length L1/3
n > 0 forming an

angle of 60◦ outwards. The resulting line* is a closed line* Kn+1

with 3×4n sides n+1S of length L1/3
n > 0 and each new side has an

immediate predecessor and an immediate successor. So it satisfies

Restriction P371v. Thus the first n+ 1 steps 〈Pi〉i=1,2,...n+1 of KP

could also be carried out without violating Restriction P371. This

proves that for any natural number v the first v steps 〈Pi〉i=1,2,...v

of KP can be carried out without violating Restriction P371.

P373 Assume now that while the successive steps Pi of KP can

be carried out, they are carried out (Principle of Execution P25).

Let K′ be the resulting line*. It is immediate to prove the following

two theorems:

a)Theorem P373a, of Koch a.-The number of sides of K′ is finite.

Prof.-Let r be the number of sides of K′. We can index the sides

of K′ by indexing any one of them as the first side S1 and the

successive adjacent sides in the clockwise sense as S2, S3, S4 . . .

The side Sr adjacent to S1 in the anticlockwise sense can only

be the last (indexed) side of K′. In addition, each side of K′

has an immediate successor and an immediate predecessor. So,

the number of sides of K′ is finite (Theorem P80c of the Finite

Set). �

b)Theorem P373b, of Koch b.- The number of sides of K′ is not

finite.

Prof.-Assume the number of sides of K′ is finite. It will be a

certain natural number n. From the inequality:

n < 3× 4n−1 (8)
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and taking into account the number of sides nS ofKn is 3×4n−1

we immediately deduce that the nth step Pn of KP has not

been carried out, which is impossible according to P372. �

P374 As always, the above contradiction between Koch a and

Koch b theorems can only be a consequence of the hypothesis of

the actual infinity, of the hypothesis that infinite sets do exist as

complete totalities. This is in fact the only hypothesis in the above

conditional construction of K′. From the perspective of the poten-

tial infinity, on the other hand, that contradiction never appears

because the number of sides of K′ is always finite, as greater as

you wish but always finite.
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Introduction

P375 To name an object we only need to invent an arbitrary

term (word(s) or symbol(s)) to denote the object. But to name an

object is not the same as to define the object in terms of other

previously defined objects. In this last case, we would also have to

define those previously defined objects in terms of other previously

defined objects, and these lasts objects in terms of other previously

defined objects, and so on and on. We would finally fall into a

potentially infinite regression of definitions.

P376 For this reason we are forced to accept primitive concepts we

use without having been previously defined. Most basic concepts

in both formal and experimental sciences belong to this category:

number, set, space, point, time, mass, etc. In some cases, as with

the concept of mass or number, operational definitions are availa-

ble. In other cases (set, point, instant, etc.) not even that.

P377 For the same reason as in the case of primitive concepts, we

also need axioms (formal sciences) and fundamental laws (experi-

mental sciences). Although in this case to avoid an infinite regres-

sion of arguments. While axioms may be arbitrary, most of the

fundamental laws of experimental sciences are inductive conclu-

sions derived from experimental observations and measurements.

P378 Euclid’s Elements is perhaps the first axiomatic system

in the history of Mathematics. Notwithstanding, the history of

mathematics until the beginning of the XX century is full of works

no so formalized as it could be expected. This is the case of Can-

tor’s foundational works on transfinite numbers, his famous Beiträ-

197



198 Aleph-null

ge [44, 45] (English translation [47]). Cantor made no assumption

about the existence of infinite sets, he simply took it for granted

the existence of transfinite aggregates (transfinite sets). In parti-

cular, the existence of the “aggregate [set] of all finite cardinals”

(natural numbers), whose cardinal is Aleph-null. The next sec-

tion discusses some inconveniences of Cantor definition of the first

transfinite cardinal.

The smallest transfinite cardinal

P379 ’Contributions to the founding of the theory of Transfinite

numbers (Beiträge zur Begründung der transfiniten Mengenlehre)

is the most important Cantor’s work on the foundation of transfi-

nite arithmetic. It resumes and refines most of his previous works

on sets and transfinite cardinals and ordinals published since 1870.

Beiträge’s Section 6 begins as follows [47, p. 103-104]:

Aggregates with finite cardinal numbers are called “finite ag-
gregates,”all other we will call “transfinite aggregates” and their
cardinal numbers “transfinite cardinal numbers.” The first exam-
ple of a transfinite aggregate is given by the totality of finite
cardinal numbers ν; we call its cardinal number “Aleph zero”
and denote it by ℵo; thus we define:

ℵo = {ν} (1)

It is then clear that Cantor defined ℵo as the cardinal of the set of

all finite cardinals. In modern notation it can be written:

ℵo = |{1, 2, 3, . . . }| = |N| (2)

P380 Next, Cantor proved that ℵo is not a finite cardinal [47, §6].

For this he proved that ℵo = ℵo + 1, while for every finite cardinal

n it holds n 6= n+ 1. So, ℵo cannot be a finite cardinal. As could

not be otherwise, the proof that ℵo = ℵo + 1 is based on a one to

one correspondence. In effect, consider the sets:

N = {1, 2, 3, . . . } (Cardinal ℵo) (3)

A = N ∪ {0,333} (Cardinal ℵo + 1) (4)
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The one to one correspondence f between N and A defined by:

f(1) = 0,333 (5)

f(i+ 1) = i, ∀i ∈ N (6)

proves that both sets are equipotent (equivalent), and then that

ℵo = ℵo + 1.Obviously, n 6= n + 1 because all finite sets satisfy

the Euclidean Axiom of the Whole and the Part. And ℵo = ℵ0 +
1 because transfinite sets violate, by definition, that Euclidean

axiom.

P381 Cantor also proved [47, §6] that:

a) ℵo is greater than all finite cardinals.

Cantor’s Proof : Every finite cardinal is the cardinal of a

set that is a proper part of the set of all finite cardinals and

that part is not equivalent to the set of all finite cardinals.

b) ℵo is the smallest transfinite cardinal number.

Cantor’s Proof : On the one hand, every transfinite set

has proper parts of cardinal ℵo, and of the other if a set

has cardinal ℵo any of its transfinite parts has also the

cardinal number ℵo.

Thus, these properties of ℵo are formal consequences of its defini-

tion as the cardinal of the set of all finite cardinals. They are not

part of the definition of ℵo.

P382 We will now examine in which way, if any, the definition

of ℵo is related to the operational definition of finite cardinals.

Finite cardinals may be operationally defined in different ways, for

instance by recursive definitions (see Chapter 4), as the following

one:

1 = |{∅}| (7)

2 = |{∅, {∅}}| (8)

3 = |{∅, {∅}, {∅, {∅}}| (9)

4 = |{∅, {∅}, {∅, {∅}}, {∅, {∅}, {∅, {∅}}}| (10)

. . .
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or even:
1 = |{0}| (11)

2 = |{0, 1}| (12)

3 = |{0, 1, 2}| (13)

4 = |{0, 1, 2, 4}| (14)

. . .

P383 The sequence of the above recursive definitions, and many

similar others, is considered as a complete sequence that origina-

tes the complete totality of the natural numbers in agreement with

the hypothesis of the actual infinity. Notwithstanding, and in spite

of the fact that it consists of infinitely many steps and each step

defines a number greater than its immediate predecessor, no infini-

te number is reached. According to infinitism, it yields an infinite

sequence of finite numbers, each one unit greater than its imme-

diate predecessor, but always finite. As could not be otherwise, ℵo
cannot be recursively defined from the sequence of finite cardinals,

ℵo is unrelated to this operational sequence.

P384 Being the smallest infinite cardinal greater than all fini-

te cardinals, ℵo could be considered as the limit of the strictly

increasing sequence of the finite cardinals. But while the distance

between the successive terms of a convergent sequence and its limit

always decreases, in the case of ℵo that distance is either undefined
or always the same (just ℵo). Chapter 21 discusses the subtraction

of cardinals and the singularities of that operation when there are

infinite cardinals involved.

P385 It is easy to see that the successive natural numbers do

not approach ℵo as the successive terms of a convergent sequence

to their limit do. Let n1 and n2 be two natural numbers such

that n1 < n2, being n2 − n1 = a. Suppose the successive natural

numbers approach ℵo. We would have:

ℵo − n2 < ℵo − n1 (15)

ℵo < ℵo − n1 + n2 (16)
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ℵo < ℵo + a (17)

which is not the case. Thus, whether or not finite cardinals can

be subtracted from ℵo, the successive natural numbers do not ap-

proach to ℵo. Therefore, ℵo is not the limit of the strictly increasing

sequence of the natural numbers. It is the smallest of the infinite

cardinals greater than all finite cardinals, but it is not their limit.

P386 We lack of a formal definition of number. But we know what

we mean when we say the set A = {a, b, c, d, e} has five elements:

we can count them; we can consider them successively; we dispose

of operational instruments to identify them. But none of those ope-

rational instrument is applicable to the case of ℵo. Therefore, we
must assume not only that the set of all finite cardinals does exist

as a complete totality, but also that this set has a precise cardinal

number, were number, in this case, is a primitive notion unrela-

ted to any of the operative definitions available for the concept of

number.

P387 On the other hand, Cantor’s definition of ℵo could be equi-

valent to a circular definition. In effect, assuming the cardinal of

the union of two disjoint sets is the sum of their respective cardi-

nals we will have:

ℵo = |{1, 2, 3, . . . }| (18)

= |{1} ∪ {2} ∪ {3} ∪ . . . | (19)

= |{1}| + |{2}| + |{3}| + . . . (20)

= 1 + 1 + 1 + . . . (21)

and the last sum is defined only if we know the number of sum-

mands, and that number is just the number being defined by the

sum.

P388 Let us consider again Cantor original definition of ℵo:

ℵo = |{1, 2, 3, . . . }| (22)
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and let us call defining set to the set {1, 2, 3, . . . } used to define

the cardinal ℵo. Consider also the following conditioned supertask:

at each of the successive instants tn of the ω-ordered sequence of

instants 〈tn〉 within the finite real interval [ta, tb) and whose limit

is tb, take away the first element of the defining set of ℵo if, and

only if, the resulting set remains a defining set of ℵo:

t1 : defining set {2, 3, 4, . . . } : ℵo = |{2, 3, 4, . . . }|
t2 : Defining set {3, 4, 5, . . . } : ℵo = |{3, 4, 5, . . . }|
t3 : Defining set {4, 5, 6, . . . } : ℵo = |{4, 5, 6, . . . }|
. . .

Let v be any finite cardinal and assume that at tb, once completed

the supertask, we have:

tb : ℵo = |{v, v + 1, v + 2, . . . }| (23)

Since

ℵo = |{v + 1, v + 2, v + 3, . . . }| (24)

the number v had to be removed from the defining set at the

instant tv. So definition (23) is impossible for any finite number v.

We would have to conclude that, at tb, definition (23) is impossible

for every finite cardinal v. In these conditions we can only have:

tb : ℵo = |∅| = 0 (25)
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Introduction

P389 This chapter will be concerned with the transfinite cardi-

nals ℵo and 2ℵo , as well as with the elements of the ω-ordered set

of the natural numbers N = {1, 2, 3, . . . }. It will also make use of

the basic arithmetic operations between finite and infinite cardi-

nals introduced by Cantor in his foundational work on transfinite

numbers [47]. Operations that continue to be applicable in modern

infinitist mathematics.

P390 Once assumed the existence of the set N of all finite cardi-

nals (natural numbers) as a complete totality (in modern terms:

the actual infinity hypothesis subsumed in the Axiom of Infinity),

Cantor defined ℵo as its cardinal. He then proved ℵo is the smallest

infinite cardinal greater than all finite cardinals [47, §6].

P391 Arithmetic operations of infinitely many operands are usual

in infinitist arithmetic. So, not only the operands but also the

number of arithmetic operations can be of any finite or infinite

size. In what follows, and for reasons of clarity, we will index the

successive operands of the arithmetic operations even when non

strictly necessary.

Is Aleph-null a prime number?

P392 Axiomatic set theories (for instance ZFC-axiomatic) legi-

timize the possibility to dissociate any finite or infinite set into

two or more disjoint sets. For example, the set N of the natural

numbers can be written as:

N = {1, 2, 3, . . . } = {1}∪{2, 3, 4, . . . } = {1}∪{2}∪{3, 4, 5 . . . } . . .

203
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Thus, if |X| denotes the cardinal of a set X, and taking into ac-

count the cardinal of the union of two disjoint sets is the sum of

the cardinal of each set, we will have:

ℵo = |{1, 2, 3, . . . }| (1)

= |{1} ∪ {2, 3, 4, . . . }| (2)

= |{1}| + |{2, 3, 4, . . . }| (3)

= 11 + |{2, 3, 4, . . . }| (4)

where the natural number 1 is written as 11 to indicate it stands

for the cardinal of the set {1} whose unique element is the natural

number 1; the same will apply to the successive cardinals 12, 13,

14 . . . of the successive singletons (sets with a unique element) {2},
{3}, {4},. . . . Recall that Cantor used equation (4) to prove ℵo is

not a natural number (see Chapter 19 on Aleph-null).

P393 By successive dissociations (S-dissociations from now on) of

N we will obtain:

ℵo = |{1, 2, 3, . . . }| (5)

= |{1} ∪ {2, 3, 4, . . . }| (6)

= |{1}| + |{2, 3, 4, . . . }| (7)

= 11 + |{2, 3, 4, . . . }| (8)

= 11 + |{2} ∪ {3, 4, 5, . . . }| (9)

= 11 + |{2}| + |{3, 4, 5, . . . }| (10)

= 11 + 12 + |{3, 4, 5, . . . }| (11)

= 11 + 12 + |{3} ∪ {4, 5, 6, . . . }| (12)

= 11 + 12 + |{3}| + |{4, 5, 6, . . . }| (13)

= 11 + 12 + 13 + |{4, 5, 6, . . . }| (14)

. . .
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It is worth noting that a S-dissociation simply dissociates a set

into two disjoint sets, so that the cardinal of the original set is the

sum of the cardinals of the resulting two sets.

P394 Infinitist mathematics assumes that procedures of infinitely

many steps as the above S-dissociation can in fact be carried out.

On the other hand, it can easily be proved, by induction or by

Modus Tollens (MT), that for each natural number v it is possible

to perform the first v successive S-dissociations.

P395 The MT proof goes as follows: Assume it is false that for

every natural number v the first v successive S-dissociations can

be carried out. If that were the case, there would exist at least a

natural number n ≤ v such that it is impossible to perform the nth

S-dissociations. That is to say, there would exist at least a natural

number n such that:

ℵo = 11 + 12 + · · ·+ 1n−1 + |{n, n + 1, n+ 2, . . . }| (15)

and {n, n+ 1, n + 2, . . . } can no longer be S-dissociated. But this

is false because:

ℵo = 11 + 12 + · · ·+ 1n−1 + |{n, n+ 1, n + 2, . . . }| (16)

= 11 + 12 + · · ·+ 1n−1 + |{n} ∪ {n+ 1, n+ 2, n + 3, . . . }| (17)

= 11 + 12 + · · ·+ 1n−1 + |{n}|+ |{n + 1, n + 2, n + 3, . . . }| (18)
= 11 + 12 + · · ·+ 1n−1 + 1n + |{n+ 1, n + 2, n + 3, . . . }| (19)

Our initial assumption must therefore be false, and then we can

assert that for every natural number v the first v successive S-

dissociations can be carried out.

P396 The inductive proof is as follows:

a) It is quite clear the first S-dissociation can be carried out be-

cause:

ℵo = |{1, 2, 3, . . . }| (20)

= |{1} ∪ {2, 3, 4, . . . }| (21)
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= |{1}| + |{2, 3, 4, . . . }| (22)

= 11 + |{2, 3, 4, . . . }| (23)

b) Assume that, being n any natural number, the first n succes-

sive S-dissociations can be carried out. We would have:

ℵo = 11 + 12 + · · · + 1n + |{n + 1, n + 2, n + 3, . . . }| (24)

and then we can write:

ℵo = 11 + 12 + · · · + 1n + |{n + 1} ∪ {n + 2, n+ 3, . . . }| (25)

= 11 + 12 + · · · + 1n + |{n + 1}|+ |{n+ 2, n + 3, . . . }| (26)

= 11 + 12 + · · · + 1n + 1n+1 + |{n+ 2, n + 3, . . . }| (27)

which means the first n+1 successive S-dissociations can also

be carried out.

We have then proved the first S-dissociation can be carried out

and if, for any n in N, the first n successive S-dissociations can be

carried out, then the first n+1 successive S-dissociations can also

be carried out. This proves that for any v in N the first v successive

S-dissociations can be carried out.

P397 Assume now that while the successive S-dissociations can

be carried out, they are carried out. Once performed all possible

successive S-dissociations (Principle of Execution P25) we would

have one of the following two exhaustive and mutually exclusive

alternatives:

ℵo = 11 + 12 + · · ·+ 1v + |{v + 1, v + 2, v + 3, . . . }| (28)

ℵo = 11 + 12 + 13 + . . . (29)

where v is a certain natural number. Since v + 1 is also a natural

number, the first alternative must be false according to P395 and

P396. Notice this is not a question of indeterminacy but of impos-

sibility: the set of natural numbers for which the first alternati-

ve is true is the empty set, while if v were indeterminable there
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would exist a nonempty set of possible solutions. Consequently,

once performed all possible successive S-dissociations (Principle of

Execution P25) we will have:

ℵo = 11 + 12 + 13 + . . . (30)

Let S = {11, 12, 13, . . . } be the set of all summands of the sum

(30). The one to one correspondence f between N and S defined

by f(i) = 1i, proves that the successive elements of the set S

can be indexed by the totality of the successive natural numbers.

Hence, that set is ω-ordered (Theorem P80a, of the Indexed Sets).

Therefore, the set S defines the ω-ordered sequence 〈1i〉, being

each 1i of 〈1i〉 the cardinal |{i}|, which is equal to 1.

P398 According to (30), and taking into account the associativity

of cardinals addition and the fact that, as Cantor himself proved

[47, p. 94-97, §4], ax × ay = ax+y being a, x and y any three finite

or infinite cardinals, we can write:

2ℵo = 211+12+13+... (31)

= 211+(12+13+... ) (32)

= 211 × 212+13+14+... (33)

where each 1i represent the cardinal of the singleton {i}, which is

1.

P399 The successive power dissociations of 2ℵo (P-dissociations

hereafter) would be:

2ℵo = 211+12+13+... (34)

= 211+(12+13+... ) (35)

= 211 × 212+13+14+... (36)

= 211 × 212+(13+14+... ) (37)

= 211 × 212 × 213+14+15+... (38)

= 211 × 212 × 213+(14+15+... ) (39)
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= 211 × 212 × 213 × 214+15+16+... (40)

= 211 × 212 × 213 × 214+(15+16+... ) (41)
. . .

Notice a P-dissociation is a simple application of the associative

property of addition and of a standard property of the product of

powers.

P400 Let us prove by MT (an inductive proof is also possi-

ble) that for every natural number v the first v successive P-

dissociations can be carried out. Assume it is false that for every

natural number v the first v successive P-dissociations can be ca-

rried out. In such a case there would exist at least a natural number

n ≤ v such that:

2ℵo = 211 × 212 × · · · × 21n−1 × 21n+1n+1+1n+2+... (42)

and 21n+1n+1+1n+2+... cannot be P-dissociated. But this false be-

cause:

2ℵo = 211 × 212 × · · · × 21n−1 × 21n+1n+1+1n+2+... (43)

= 211 × 212 × · · · × 21n−1 × 21n+(1n+1+1n+2+... ) (44)

= 211 × 212 × · · · × 21n−1 × 21n × 21n+1+1n+2+1n+3+... (45)

Therefore our initial assumption must be false and we can as-

sert that for every natural number v the first v successive P-

dissociations can be carried out.

P401 Assume that while the successive P-dissociations can be

carried out, they are carried out. Once performed all possible suc-

cessive P-dissociations (Principle of Execution P25) we will have

one of the following two exhaustive and mutually exclusive alter-

natives:

2ℵo = 211 × 212 × · · · × 21v−1 × 21v+1v+1+1n+3+... (46)

2ℵo = 211 × 212 × 213 × . . . (47)
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where v is a certain natural number. According to P400, and being

v a natural number, the first alternative must be false. Notice

again this is not a question of indeterminacy but of impossibility:

the set of natural numbers for which the first alternative is true is

the empty set, while if v were indeterminable there would exist a

nonempty set of possible solutions. Consequently, once performed

all possible successive P-dissociations (Principle of Execution P25)

we will have:

2ℵo = 211 × 212 × 213 × . . . (48)

Let F = {211 , 212 , 213 . . . } be the set of all factors of the product

(48). The one to one correspondence g between N and F defined by

g(i) = 21i ,∀i ∈ N, proves that the successive elements of the set F

can be indexed by the totality of the successive natural numbers.

Hence, that set is ω-ordered (Theorem P80a, of the Indexed Sets).

So then, the set F defines the ω-ordered sequence 〈21ii 〉, being each

21ii of 〈21ii 〉 an indexed factor equal to 2.

P402 Equation (48) is taken for granted and, as Cantor did, it

can be immediately derived from Cantor’s definition of cardinal

exponentiation [47, §4].

P403 An immediate consequence of (48) is that ℵo cannot be

expressed by a product of finite cardinals greater than 1. In fact, if

the number of factors is finite the product will also be finite. If the

number of factors is infinite the product will be equal or greater

than 2ℵo , which in turn is greater than ℵo (Cantor Theorem of the

Power Set [43]). Thus, as in the case of prime numbers, ℵo must

always form part of its own factorizations:

ℵo = 1× 2× · · · × n× ℵo (49)

= 3× 333 × 3333 × ℵo × ℵo (50)

= 103456789 × ℵ123234346543598923693492984120423456789o (51)

= ℵ9!9o × ℵ9
!9

o × ℵ9
!9

o × (9!9). . . × ℵ9!9o (52)

etc.
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P404 Let us write the first factor 211 in (48) as 11 + 12. We will

have:

2ℵo = (11 + 12)× 212 × 213 × 214 × . . . (53)

P405 Taking into account the associativity of cardinal multiplica-

tion as well as the distributive property of cardinal multiplication

over cardinal addition, we can successively duplicate the number

of summands in the first factor of (53) by multiplying it by the suc-

cessive second factors of (53), and splitting each product 1i × 21j

as 12i−1 + 12i:

2ℵo = (11 + 12)× 212 × 213 × 214 × . . . (54)

= [(11 + 12)× 212 ]× 213 × 214 × . . . (55)

= (11 + 12 + 13 + 14)× 213 × 214 × 215 × . . . (56)

= [(11 + 12 + 13 + 14)× 213 ]× 214 × 215 × . . . (57)

= (11 + 12 + · · ·+ 18)× 214 × 215 × 216 × . . . (58)

= [(11 + 12 + · · ·+ 18)× 214 ]× 215 × 216 × . . . (59)

= (11 + 12 + · · ·+ 116)× 215 × 216 × 217 × . . . (60)

= [(11 + 12 + · · ·+ 116)× 215 ]× 216 × 217 × . . . (61)

= (11 + 12 + · · ·+ 132)× 216 × 217 × 218 × . . . (62)

. . .

These successive duplications of the first factor of (53) will be refe-

rred to as F-duplications. It is clear that in each new F-duplication

the number of summands of the first factor is doubled, so that if

the previous sum has been multiplied by 21n , the indexes i of the

successive new summands verify:

1 ≤ i ≤ 2n (63)

In accordance with P401, the sequence of the successive factors of

the successive F-duplications is the ω-ordered sequence of factors
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〈21ii 〉. In consequence, only an ω-ordered sequence of successive F-

duplications could be carried out, and in each of them the index

i of the corresponding factor 21i that doubles the summands, is a

natural number i. Therefore, and according to (63), the successive

summands of the successive duplications will be indexed by the

successive natural numbers.

P406 Let us prove, by MT (an inductive proof is also possi-

ble), that for every natural number v the first v successive F-

duplications can be carried out. For this, assume it is false that for

every natural number v the first v successive F-duplications can

be carried out. There would exist at least a natural number n ≤ v

such that it is impossible to perform the nth F-duplication. That

is to say, there would exist at least a natural number n such that:

2ℵo = (11 + 12 + · · · + 12n−1)× (21n × 21n+1 × 21n+2 × . . . ) (64)

cannot be F-duplicated. It is immediate to prove this is false be-

cause:

2ℵo = (11 + 12 + · · ·+ 12n−1)× (21n × 21n+1 × 21n+2 × . . . ) (65)

= (11 + 12 + · · ·+ 12n−1)× (21n)× (21n+1 × 21n+2 × . . . ) (66)

= [(11 + 12 + · · ·+ 12n−1)× 21n ]× 21n+1 × 21n+2 × . . . ) (67)

= (11 + 12 + · · ·+ 12n)× (21n+1 × 21n+2 × 21n+3 × . . . ) (68)

Our initial assumption is, then, false. Therefore, for every natural

number v the first v successive F-duplications can be carried out.

P407 Assume now that while the successive F-duplications can

be carried out (Principle of Execution P25), they are carried out.

Once performed all possible successive F-duplications we would

have one of the following two exhaustive and mutually exclusive

alternatives:

2ℵo = (11 + 12 + · · ·+ 12v−1)× (21v × 21v+1 × 21v+2 × . . . ) (69)

2ℵo = 11 + 12 + 13 + . . . (70)
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where v is a certain natural number. Being v a natural number,

the first alternative must be false according to P406. Once again,

this is not a question of indeterminacy but of impossibility: the

set of natural numbers for which the first alternative is true is

the empty set, while if v were indeterminable there would exist a

nonempty set of possible solutions. Consequently, once performed

all possible successive F-duplications (Principle of Execution P25)

we will have:

2ℵo = 11 + 12 + 13 + . . . (71)

P408 The sequence of summands 〈1i〉 (71) must be ω-ordered,

otherwise, and considering that ω is the least infinite ordinal, that

sequence would contain at least a term indexed by ω (Theorem

P80b, of the ωth Term), which could only have been originated in

a previous duplication of the ω-ordered sequence of F-duplications,

in which the duplication factor would have to be an element 21v

of the ω-ordered sequence of factors 〈21i〉, and the resulting sum-

mands would be indexed by the successive indexes i satisfying

1 ≤ i ≤ 2v (63), all of them finite. It is then impossible the exis-

tence of such an ωth term.

P409 Taking into account (71) and (30) we can write:

2ℵo = 211 × 212 × 213 × · · · = 11 + 12 + 13 + · · · = ℵo (72)

On the other hand, ℵo is the cardinal of the set N while 2ℵo is the

cardinal of its power set P (N). And according to Cantor’s Theorem

of the Power Set [43], it must hold:

ℵo < 2ℵo (73)

which contradicts (72)

P410 It seems convenient to recall that the above argument P404-

P409 is exclusively based on well established definitions, operations

and properties of transfinite arithmetics. It simply takes advantage

of a consequence of the hypothesis of the actual infinity: the exis-
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tence of ω-ordered sequences as complete totalities, in spite of the

fact that no last element completes them. The argument is, there-

fore, a formal consequence of assuming the completion of incom-

pletable. This infinitist assumption makes it possible to complete

any definition or procedure composed of an ω-ordered sequence of

steps in which no last step completes the sequence.
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Introduction

P411 Contrary to what happens with transfinite ordinals, the

subtraction of cardinals in transfinite arithmetics is not always de-

fined, not even permitted. Notwithstanding, some indirect defini-

tions and results on the subtraction involving transfinite cardinals

have been given [212, p. 161-173]. For instance, in ZFC (in some

cases without the aid of the Axiom of Choice) the following results,

among others, can be proved:

• If a and b are two cardinals, we will say that a − b exists if

there is one, and only one, cardinal c so that a = b+ c. We

then write: c = a− b (Tarski-Bernstein Theorem).

• If a is an infinite cardinal and b a (finite or infinite) cardinal

then there exists a third cardinal c such that:

b+ c = a⇔ b ≤ a (1)

If b = a then c can take infinitely many values (ℵo + n = ℵo
and the like). If not, we will have c = a.

• If a is an infinite cardinal and ℵo ≤ a then 2a − a = 2a

(Tarski-Sierpinski Theorem).

• If a and b are two cardinals and a − b does exists, then for

any other cardinal c, the difference (c+a)− b also exists and

is equal to c+ (a− b)

But, in general, specially if the involved cardinals are alephs, we

cannot write things as:

a− c = b (2)

215
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a− a = 0 (3)

P412 We have just seen some examples in which subtracting

transfinite cardinals is permitted, in the last section of this chapter

we will see an example in which it is not. Thus, the status of the

subtraction of cardinals in transfinite arithmetic is really peculiar.

Although it seems reasonable to declare undefined the subtraction

of two cardinals when nothing can be said on the result of the sub-

traction, what about the subtraction of two cardinals when it leads

to a contradiction? To be defined or undefined could be reasona-

ble, but to be defined, or undefined, or inconsistent, depending on

the case, is unusual from a formal point of view. How on Earth

can be consistent an arithmetic operation that in some cases leads

to contradictions without having previously determined which are

those cases and why they are inconsistent?

P413 At the foundational level of set theory, we will now analyze

the reasons for which transfinite subtraction have to be prohibited

in most cases. Obviously, at this foundational level of discussion we

can only establish correspondences between sets. To make use of

transfinite arithmetic would inevitably lead to circular arguments

because transfinite arithmetic derives from the foundational defi-

nitions and assumptions we will concerned with. As we will see,

those reasons are immediate consequences of the foundational de-

finition of the infinite sets, which, as we know, is based on the

violation of Axiom of the Whole and the Part. In effect, the sub-

traction of finite cardinals (all of which observe the old Euclidian

axiom) pose no problem, the problem of cardinal subtraction only

appears when at least one of the operands is infinite. And as has

just been indicated, sometimes it appears and sometimes it does

not, without being able to establish the precise reasons why it does

or does not appear.

Problems with cardinal subtraction

P414 If A and B are any two finite sets such that |B| ≤ |A| and
f is an injective function from B to A, we will have:

(A− f(B)) ∩ f(B) = ∅ (4)
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A = (A− f(B)) ∪ f(B) (5)

|A| = |A− f(B)|+ |f(B)| (6)

|A| = |A− f(B)|+ |B| (7)

So, it could be expected that the subtraction of the cardinals |A|
and |B| were something similar to:

|A| − |B| = |A− f(B)| (8)

because, being B and f(B) equipotent, A − f(B) is the set that

results by taking away (subtracting) from A as many elements as

|B|. It could be proved that definition (8) always works with finite

cardinals.

P415 As we will now see, in the case of the infinite sets, and

due to the violation of the Axiom of the Whole and the Parts, the

definition (8) of cardinal subtraction does not work. In fact, let A =

{a1, a2, a3, . . . } and B = {b1, b2, b3, . . . } be any two denumerable

and ω-ordered sets. Consider the following injective functions from

B to A:

∀i ∈ N





f(bi) = ai

g(bi) = ai+n, ∀n ∈ N

h(bi) = a2i

(9)

where n is any natural number. We would have:

|A| − |B| = |A− f(B)| = |∅| = 0 (10)

|A| − |B| = |A− g(B)| = |{a1, a2, . . . an}| = n, ∀n ∈ N (11)

|A| − |B| = |A− h(B)| = |{a1, a3, a5, . . . }| = ℵo (12)

Thus, the subtraction of the same two infinite cardinals |A| and |B|
yields infinitely many different results, depending on the particular

way of pairing the elements of both sets: the elements of B can

be paired either with the elements of A (f , for instance) or with

the elements of a proper part of A (g or h), as if the part and the

whole were the same thing.
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P416 We could even prove a set theoretical version of Riemann’s

Series Theorem: If A and B are any two ω-ordered sets then

the subtraction of their respective cardinals |A| and |B| can be

made equal to any given natural number or to ℵo. Indeed, let

A = {a1, a2, a3, . . . } and B = {b1, b2, b3, . . . } be any two ω-ordered

sets and n any natural number. Consider now the injections f and

g of B in A defined by:

f(bi) = an+i, ∀bi ∈ B (13)

g(bi) = a2i, ∀bi ∈ B (14)

It can be written:

f(B) = {an+1, an+2, an+3, . . . } (15)

A− f(B) = {a1, a2, . . . an} (16)

|A| − |B| = |A− f(B)| = |{a1, a2, . . . an}| = n,∀n ∈ N (17)

g(B) = {a2, a4, a6, . . . } (18)

A− g(B) = {a1, a3, a5 . . . } (19)

|A| − |B| = |A− g(B)| = |{a1, a3, a5 . . . }| = ℵo (20)

P417 As in the case of Riemann’s Series Theorem, that will be

reinterpreted in Chapter 34, the above conclusion can also be re-

interpreted as a contradiction derived from the formal foundations

of set theory. In effect, let us denote by:

D: Dedekind’s definition of infinite set.

A: Axiom of Infinity.

Ho: Two sets have the same number of elements if they can be

put into a one to one correspondence.

In accord with P416 we can write:

D ∧A ∧Ho ⇒ (|A| − |B| = n) ∧ (|A| − |B| 6= n) (21)

which has all the hallmarks of a contradiction.
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P418 The possibility to get the same result when operating on

different operands (as is the case of the transfinite cardinals addi-

tion, multiplication or exponentiation) may be admissible. But the

possibility to get infinitely many different results when operating

exactly on the same two operands (as the above case of cardinal

subtraction) is more debatable. However, the second possibility is

a consequence of the first one. In fact, if we accept that:

b+ c = a (22)

b+ d = a (23)

b+ e = a (24)

. . .

then we should also accept that:

b− a = c (25)

b− a = d (26)

b− a = e (27)

. . .

The preferred solution to this problem has been, notwithstanding,

the (more or less explicit) ignorance of cardinal subtraction.

Faticoni argument

P419 In [88, pgs. 150-151], we can read the following argument

on the impossibility of subtracting infinite cardinals (by the way,

a typical argument on this issue):

a) H1: Assume we can define the subtraction ℵo − ℵo (as the

opposite of the addition) so that:

ℵo − ℵo = 0 (28)

b) We would have:

1 + ℵo = ℵo (29)

1 + (ℵo − ℵo) = ℵo − ℵo (30)
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1 + 0 = 0 (31)

1 = 0 (32)

c) In consequence H1 is impossible.

P420 As it could not be otherwise, Faticoni’s argument is groun-

ded on the same basic definitions and assumptions of modern axio-

matic set theories. It could be, therefore, completed as follows:

a) D: a set is actually infinite if there exists a one to one corres-

pondence between the set and one of its proper subsets.

b) A: there exist an actual infinite set (Axiom of Infinity).

c) H0: two sets have the same number of elements if they can be

put into a one to one correspondence.

d) H1: assume we can define the subtraction ℵo - ℵo (as the op-

posite of the addition) so that:

ℵo − ℵo = 0 (33)

e) We would have:

1 + ℵo = ℵo (34)

1 + (ℵo − ℵo) = ℵo − ℵo (35)

1 + 0 = 0 (36)

1 = 0 (37)

f) In consequence H1 is impossible.

Notice that D and A state the existence of a set that violates the

Euclidean Axiom of the Whole and the Parts [87]. It is now evident

that absurdity (37) could also be caused by the inconsistency of D

and A, i.e. we could write:

D ∧A ∧H0 ∧H1 ⇒ (1 = 0) (38)
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P421 Perhaps cardinal subtraction is an impossible operation. Let

us then consider the possibility of taking away balls from a box

that contains balls. Let BX be a box containing a denumerable

collection of black balls. Now add to BX a denumerable collection

of white balls. At this moment BX will contain ℵo black ball plus

ℵo white balls, i.e. ℵo balls (ℵo + ℵo = ℵo). Now take away from

BX all white balls, i.e. remove ℵo balls from a box that contains

ℵo balls. The result will be a box that contains ℵo balls (all black

balls). Finally remove all black balls, i.e. remove ℵo balls from a

box that contains ℵo balls. The result now is a box that contains

no balls. Thus, by removing ℵo balls from a box that contains ℵo
balls, we can get either a box that contains ℵo balls or a box that

contains no balls, a conclusion that is in agreement with P418.

Figura 21.1 – Adding and removing balls from a box
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Introduction

P422 In the year 1900, at the second International Congress of

Mathematics held in Paris, David Hilbert gave a lecture in which

he proposed a list of 23 unsolved mathematical problems as a cha-

llenge for the mathematicians of the new century. The first of tho-

se problems was the so called problem of the continuum, that had

been posed some years before by G. Cantor. The problem in ques-

tion consists in proving (or disproving) the equality:

2ℵo = ℵ1 (1)

where 2ℵo is the cardinal of the set of the real numbers (the con-

tinuum) and ℵ1 is the cardinal of the set of all ordinals of the

second class [47, p. 173, Theorem §16 F] (in modern terms, ℵ1
is the cardinal of the set ω1 (also denoted by Ω) of all countable

ordinals).

P423 For over thirty years the problem was much discussed, until

it was finally demonstrated the impossibility to prove or disprove

the hypothesis of the continuum (1) within the current framework

of axiomatic set theories, assuming they are consistent theories.

Recall the Axiom of Infinity is one of the axiomatic fundaments of

all current axiomatic theories.

On the brink of the abyss

P424 At the third International Congress of Mathematics, now

held in Heidelberg in the year 1904, Julius König, a physician and

mathematician at the University of Budapest, read an article in

223
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which he proved the power of the continuum 2ℵo cannot be an aleph

and that the continuum could never be a well-ordered set. These

conclusions were incompatible with one of the most firm infinitist

Cantor’s convictions: that every infinite cardinal is a member of

his list of alephs.

P425 The paper presented by König proved that if ℵµ is the su-

premum of a sequence of cardinals, it holds:

ℵℵo
µ > ℵµ (2)

If the power of the continuum 2ℵo is an aleph, for instance ℵβ,
the supremum of the sequence ℵβ,ℵβ+1,ℵβ+2, . . . is ℵβ+ω, and it

holds:

ℵℵo

β+ω > ℵβ+ω (3)

Making then use of an earlier theorem proved by Felix Bernstein

in his doctoral thesis: :

ℵℵo
α = ℵα × 2ℵo , for all ordinal α (4)

it could be written:

ℵℵo

β+ω = ℵβ+ω × 2ℵo (5)

= ℵβ+ω × ℵβ (6)

= ℵβ+ω (7)

which contradicts (3).

P426 The news spread beyond the Third International Mathema-

tics Congress and the scientific community itself. The internatio-

nal press made the discovery of König public with great headlines.

Cantor, shocked and enraged by the humiliation, did not accept

König’s results, although he found no fault in his demonstration.

He was convinced that God would not allow his possible mistakes

to be revealed in that way [68, pgs. 247-250].

P427 Immediately afterwards, Ernst Zermelo proved that Berns-



On the brink of the abyss 225

tein’s theorem was not valid for all ordinals; not for those who have

no immediate predecessor, as was the case of the ordinal used by

König. It seems that before Zermelo, Felix Hausdorff had disco-

vered Bernstein’s failure. Hausdorff wrote to Bernstein informing

him of the discovery of the ruling, but Bernstein never replied [83].

König ended up withdrawing his argument. But the infinitists un-

derstood the importance of solving the continuum problem in order

to avoid new shocks related to the actual infinity hypothesis that

is the basis of infinitist mathematics.

P428 In the year 1938 K. Gödel proved that the falsity of the

hypothesis of the continuum (equation 1) cannot be deduced from

the axioms of set theory [101]. In 1963 P. J. Cohen proved the

complementary result, i.e. that the its veracity cannot be deduced

either from the axioms of set theory [59]. The hypothesis of the

continuum is, therefore, undecidable in the axiomatic framework

of set theory.

P429 As it with all undecidable propositions, the hypothesis of

the continuum is undecidable within a particular axiomatic sce-

nario. In other scenarios, the proposition could be demonstrable

or refutable. Remember the Axiom of Infinity (questioned in this

book), is one of the axioms of that particular scenario in which the

hypothesis of the continuum is undecidable.

P430 In the preceding pages of this book some contradictory re-

sults involving the Axiom of Infinity have been proved (and some

other will be demonstrated in the remainder ones). If that were

the case, it would also have been proved that:

2ℵo = ℵ1 (8)

and that:

2ℵo 6= ℵ1 (9)

since once proved a contradiction in a formal system, any other

contradiction can also be proved.
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P431 According to Cohen and Gödel, the hypothesis of the con-

tinuum cannot be proved or disproved within the framework of

current axiomatic set theories (as ZFC). According to the pages of

this book the hypothesis of the actual infinity subsumed into the

Axiom of Infinity would be an inconsistent hypothesis. A conclu-

sion that dynamites the entire building of infinitist mathematics,

including its famous hypothesis of the continuum.
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Introduction

P432 To perform an ω-supertask (supertask hereafter) means to

perform an ω-ordered sequence of actions (tasks) in a finite in-

terval of time. Supertasks are useful theoretical devices for the

philosophy of mathematics, particularly for the discussions on cer-

tain problems related to infinity [230, 31, 56, 188, 18, 242, 188].

Although their physical possibilities and implications have also

been discussed [182, 184, 188, 203, 111, 113, 112, 184, 185, 186,

82, 187, 175, 6, 7, 189, 242, 123, 80, 81, 175, 79, 213]. In this book

all supertasks will be conceptual.

Figura 23.1 – God performing Gregory’s supertask.

P433 Probably Gregory of Rimini was the first to propose how a

supertask could be accomplished ([166], p. 53):

If God can endlessly add a cubic foot to a stone -which He can-
then He can create an infinitely big stone. For He need only add
one cubic foot at some time, another half an hour later, another
a quarter of an hour later than that, and so on ad infinitum.

227
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He would then have before Him an infinite stone at the end of
the hour.

But the term “supertask” was introduced by J. F. Thomson in

his seminal paper of 1954 [230]. Thomson’s paper was motivated

by Black’s argument [28] on the impossibility to perform infinitely

many successive actions and by the discussions of Black’s argument

by R. Taylor [229] and J. Watling [240]. In his paper Thomson

tried to prove the impossibility of supertasks. Thomson argument

was, in turn, criticized in another seminal paper, in this case by P.

Benacerraf [17]. Benacerraf’s successful criticism finally motivated

the foundation of a new infinitist theory independent of set theory:

supertask theory.

P434 The basic idea of Benacerraf’s criticism of Thomson’s argu-

ment is the impossibility to derive formal conclusions on the final

state of the supermachine that performs the supertask from the se-

quence of states the machine traverses as a consequence of perfor-

ming the supertask. Although Benacerraf’s criticism of Thomson’s

lamp argument is well founded (see below), it is far from being

complete. As we will see here, it is possible to consider a new line

of argument, which Benacerraf only incidentally considered, based

on the formal definition of the lamp. That line of argument leads

to a contradiction that put into question the formal consistency of

the ω-order involved in supertasks.

P435 In fact, if the world continues to be the same world it was

before the execution of a supertask, and one is still allowed to think

in rational terms in the same framework of the laws of logic, then

Thomson’s argument can be reoriented towards the formal defini-

tion of the machine that performs the supertask. A definition that

is assumed to be independent of the number of performed tasks

with that machine, and then a definition that holds before, during

and after performing the supertask, whenever the completion of a

supertask, as such a completion, does not arbitrarily change a legi-

timate definition previously established (Principles of Invariance

P19 and of Autonomy P23).
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P436 The possibilities to perform an uncountable infinitude of

actions were examined, and ruled out, by P. Clark and S. Read

[56]. Supertasks have also been considered from the perspective of

nonstandard analysis [159, 158, 4, 145], although the possibilities

to perform a hypertask along a hyperreal interval of time have not

been discussed, despite the fact that finite hyperreal intervals can

be divided into hypercountably many successive infinitesimal in-

tervals (hyperfinite partitions) [226, 104, 127, 119], etc. But most

of the supertasks are ω-supertasks, i.e. ω-ordered sequences of ac-

tions performed in a finite (or perceived as finite) interval of time.

Thomson’s lamp

P437 As Thomson did in 1954 ([230], p. 5), in the following dis-

cussion we will make use of one of those:

... reading-lamps that have a button in the base. If the lamp is
off and you press the button the lamp goes on, and if the lamp
is on and you press the button the lamp goes off.

Figura 23.2 – Thomson’s lamp has two, and only two, states: off and
on. The state of Thomson’s lamp changes if, and only if, its button is
pressed.

Let us complete Thomson’s definition by explicitly declaring the

following conditions regarding the (theoretical) functioning of the

lamp:

a) Thomson’s lamp has two, and only two, states: on and off.

b) The state of the lamp (on/off ) changes if, and only if, its

button is pressed down.

c) Each change of state takes place at a precise and definite ins-

tant.
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d) The pressing down (clicking) of the button and the correspon-

ding lamp change of state are both instantaneous and simul-

taneous events.

e) Thomson’s lamp remains unaltered after performing any finite

or infinite number of clickings.

P438 Assume now the button of Thomson’s lamp is clicked at each

of the infinitely many successive instants ti, and only at them, of a

strictly increasing and ω-ordered sequence of instants 〈tn〉 defined
within a finite interval of time (ta, tb), being tb the limit of the

sequence 〈tn〉. In these conditions, at the instant tb the button of

the lamp will have undergone an ω-ordered sequence 〈cn〉 of clicks
(each click ci performed at the precise instant ti) and, consequently,

the state of the lamp will have changed an ω-ordered infinitude of

times. Or in other words, at tb Thomson’s supertask will have been

completed. Don’t forget this is a purely conceptual argument, so

that we are not concerned here with the physical details.

P439 Thomson tried to derive a contradiction from his supertask

by speculating on the final state of the lamp at the instant tb in

terms of the sequence of switchings completed along the supertask

([230], p. 5):

[The lamp] cannot be on, because I did not ever turn it on
without at once turning it off. It cannot be off, because I did
in the first place turn it on, and thereafter I never turned off
without at once turning it on. But the lamp must be either on
or off. This is a contradiction.

P440 It is worth noting, as we have just seen, that Thomson based

his argument on the sequence of actions carried out on the lamp:

it was never turned on without turning it off after, and viceversa.

What Thomson tried to do is to derive the final state of the lamp,

the state of the lamp at tb, from the successive changes of state the

lamp underwent during the supertask: The reason why the lamp

cannot be on is because it was always turned off after turning it

on. And for the same reason it cannot be off either. This way of

arguing was severely criticized by Benacerraf
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P441 Benacerraf argued against Thomson’s argument as follows

([17], p. 768):

The only reasons Thomson gives for supposing that his lamp
will not be off at tb are ones which hold only for times before
tb. The explanation is quite simply that Thomson’s instructions
do not cover the state of the lamp at tb, although they do tell
us what will be its state at every instant between ta and tb
(including ta). Certainly, the lamp must be on or off (provided
that it hasn’t gone up in a metaphysical puff of smoke in the
interval), but nothing we are told implies which it is to be.
The arguments to the effect that it can’t be either just have no
bearing on the case. To suppose that they do is to suppose that
a description of the physical state of the lamp at tb (with respect
to the property of being on or off ) is a logical consequence of a
description of its state (with respect to the same property) at
times prior to tb. [ta and tb appears respectively as t0 and t1 in
Benacerraf’s paper].

P442 In short, according to Benacerraf, the problem posed by

Thomson is not sufficiently described since no constraint have been

placed on what happens at tb [3]. But the only constraint on what

happens at tb is that Thomson’s lamp continue to be Thomson’s

lamp. Or in other words, that the execution of a supertask does

not change the formal definitions of the involved theoretical ar-

tifacts (Principle of Invariance P19). As we will see, the state of

Thomson’s lamp at tb is not “a logical consequence of a descrip-

tion of its state (with respect to the same property) at times prior

to tb”, it is a logical consequence of remaining a Thomson’s lamp

after performing Thomson’s supertask (Principle of Invariance).

And this is pertinent to the case. It will be the key of the next

argumentation.

P443 Consider the instant tb, the limit of the sequence 〈tn〉 of
instants at which the successive clicks 〈cn〉 have been performed.

That instant is, therefore, the first instant after completing the

sequence of switchings. The first instant at which the button of

the lamp is no longer clicked. Let now Sb be the state of the lamp
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at instant tb. Being the state of a Thomson’s lamp, it can only

be either on or off. And this conclusion has nothing to do with

the number of previously performed switchings. The lamp will be

either on or off because, being a Thomson’s lamp, it has only two

states: on and off, and it is not affected by the number of times it

has been turned on and off (Principle of Invariance P19). Therefore

the sate Sb of the lamp at the instant tb can only be either on or

off, regardless of the number of times it has been turned on or off.

P444 Some infinitist claim, however, that at tb, after performing

Thomson’s supertask, the lamp could be in any unknown state,

even in an exotic one. But a lamp that can be in an unknown

state is not a Thomson’s lamp: the only possible states of a Thom-

son’s lamp are on and off. No other alternative is possible without

arbitrarily violating the formal legitimate definition of Thomson’s

lamp. And we presume no formal theory is authorized to violate ar-

bitrarily a formal definition, nor, obviously to change, in the same

arbitrary terms, the nature of the world (Principle of invariance).

It goes without saying that if that were the case any thing could

be expected from that theory, because the case could be applied

to any other argument.

P445 Others claim the state Sb is the consequence of completing

the ω-ordered sequence of clicks 〈cn〉, since that sequence, and

only that sequence, has been carried out. But if to complete the

sequence of clicks 〈cn〉 means to perform each and every of the

infinitely many clicks c1, c2, c3, . . . of 〈cn〉, and only them, then we

have a problem. The problem that no click ci of 〈cn〉 originates Sb.

None. Indeed, if cv is any element of 〈cn〉 it cannot originates Sb

because in such a case the button would have been clicked only a

finite number v of times. That is to say, if we remove from 〈cn〉 all
clicks that do not originate Sb, then all of them would be removed.

Or in other, set theoretical, words, if from the set of performed

clicks 〈ci〉 we remove all clicks that do not originate Sb, all clicks

would be removed and we would get the empty set (see P321). It

is not, therefore, a question of indeterminacy but of impossibility:

no click of the sequence 〈ci〉 originates Sb. None.
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P446 In those conditions, how can it be claimed that the comple-

tion of the sequence of clicks 〈cn〉, none of whose elements origi-

nates Sb, originates just Sb? Is the completion of the sequence an

additional click different from all elements of 〈cn〉? If that were the
case the sequence of performed clicks would be (ω + 1)-ordered in

the place of ω-ordered, but ω-supertasks are ω-ordered sequences

not (ω + 1)-ordered sequences.

P447 At this point some infinitists claim the lamp could be at

Sb by reasons unknown. But, once again, that claim violates the

definition of the lamp: the state of a Thomson’s lamp changes

exclusively by pressing down its button, by clicking its button.

So a lamp that changes its state by reasons unknown is not, by

definition, a Thomson’s lamp (Principles of Invariance P19 and of

Autonomy P23).

P448 It makes no sense to argue about the last term of an ω-

ordered sequence because such a last term does not exist. By con-

trast, it is always possible to argue about the limit of an ω-ordered

sequence, whenever that limit exists, because it is a well defined ob-

ject, though it is not an element of the sequence. Similarly, whilst it

makes no sense to argue about the last instant at which the button

of Thomson’s lamp is clicked, the instant tb is plenty of meaning:

it is limit of the sequence of instants at which the successive swit-

chings are carried out. It is the first instant after completing the

sequence of switchings. It is the first instant at which the button of

the lamp is no longer clicked. It is the first instant after all instant

of (ta, tb).

P449 And the relevant question on the state Sb is: at which instant

Thomson’s lamp becomes Sb? It is immediate to prove that instant

can only be the precise instant tb. We know the state of the lamp is

Sb at instant tb, but assume there exist an instant t within (ta, tb)

at which the lamp becomes Sb. Since tb is the limit of the sequence

〈tn〉, we will have:

∃v : tv ≤ t < tv+1 (1)



234 Thomson’s lamp revisited

which means that at t only a finite number v of clicks have been

carried out, and then that infinitely many clickings still remain to

be carried out. Therefore, no instant t exists in (ta, tb) at which

the lamp becomes Sb. None. The precise instant at which the lamp

becomes Sb is not within the interval (ta, tb). Therefore, the state

Sb can only originate at the first instant after all instants of (ta, tb).

And that instant is just tb, because the state of the lamp in tb is

the state Sb.

P450 But at tb the button of the lamp is not clicked. At tb nothing

happens that can cause a change in the state of the lamp. Conse-

quently, the state Sb, which according to P448 can only originate

at the instant tb, cannot originate at the instant tb. The state Sb

is, therefore, an impossible state. It is the consequence of assu-

ming that it is possible to complete an incompletable sequence

of actions, incompletable because there is not a final element to

complete the sequence.

P451 The fact that the elements of two incompletable sequences

can be paired off by a one to one correspondence, as in the case of

the above sequences of clicks and of instants, does not prove both

sequences exist as complete infinite totalities: they could also be

potentially infinite. The possibility of pairing off the elements of

two impossible totalities does not make them possible

P452 At this point, all that one can expect from infinitists is to

be declared incompetent to understand the meaning of the sen-

tence: “the state of the lamp at tb is the result of completing the

ω-ordered sequence 〈cn〉 of clicks, a result that manifests for the

first time just at tb”. But, wait a moment, is not Sb the result of a

pressing down the button of the lamp? Do not forget that Thom-

son’s lamp can only change its state if, and only if, its button is

clicked. And that both events, the clicking and the corresponding

lamp change of state, are instantaneous and simultaneous by defi-

nition. Furthermore, the lamp is not altered by pressing its button

any finite or infinite number of times. So, if Sb appears for the first

time at the precise instant tb and at tb the button of the lamp is
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not clicked, then Sb is impossible.

P453 In short, Sb must of necessity be originated just at the ins-

tant tb, otherwise only a finite number of clicks would have been

performed, according to [P448-P449]. But, on the other hand, it

cannot be originated at tb because:

1.- The state of the lamp changes only by clicking its button.

2.- The clicking of the button and the corresponding lamp chan-

ge of state are instantaneous and simultaneous events that

takes place at a definite and precise instant.

3.- Being the clicking of the button and the corresponding lamp

change of state instantaneous and simultaneous events, and

being the state Sb originated at the precise instant tb, the

button must be clicked at that precise instant tb.

4.- But at tb the button of the lamp is not clicked.

Therefore, it has to be concluded that the state Sb originates and

does not originate at the instant tb. Or what is the same, in the

instant tb the button of the lamp is pressed and it is not pressed.

And this is a contradiction.

P454 Sb could only be, therefore, the impossible last state of an ω-

ordered sequence of states in which no last state exists. The imprint

of an inconsistency. The consequence of assuming the hypothesis of

the actual infinity from which derives the existence of ω-ordered

sequences as complete totalities, in spite of the fact that no last

element completes them. The state Sb forces the actual infinity to

leave a trace of its existence and what it leaves is an inconsistency.

P455 Thomson’s lamp is a theoretical device intentionally inven-

ted to facilitate a formal discussion on the actual infinity hypothe-

sis that legitimizes the existence of ω-ordered sequences as com-

plete totalities [45], [47, p. 160, Theorem §15 A]. Supertasks are

an example of such sequences, and contradiction [P453] clearly in-

dicates the hypothesis on which they are founded is inconsistent.
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The counting machine

P456 The Counting Machine (CM) we will examine in this section

poses a problem similar to the one posed by Thomson’s lamp we

have just examined. As its name suggests, CM counts natural

numbers, and it does it by counting the successive numbers 1,

2, 3. . . at each of the successive instants t1, t2, t3. . . of the above

sequence 〈tn〉. CM counts each number n at the precise instants

tn. In addition, the machine has a red LED L that turns on if, and

only if, the machine counts an even number; and the LED turns

off if, and only if, the machine counts an odd number, and so

that the counting of the number and the change of state of L are

simultaneous and instantaneous events. Obviously, L is a perfect

LED that never fails.

P457 The one to one correspondence f between 〈i〉 and 〈ti〉

f : 〈ti〉 7→ N (2)

f(tn) = n, ∀tn ∈ 〈ti〉 (3)

proves that at tb our machine will have counted all natural num-

bers. All. The conclusions on the state of L at tb will not be de-

duced from its successive states while performing the supertask

of counting all natural numbers, as Thomson did with his lamp,

otherwise Benacerraf’s criticism would be inevitable. They will de-

duced from the fact that the LED of CM has two, and only two,

states, on and off, so that no other alternative exist. Thus, if after

performing the supertask, CM continues to be the same counting

machine it was before beginning the supertask, i.e. if performing

a supertask does not arbitrarily violate a legitimate formal defi-

nition, as that of CM , then its LED L can only be either on or

off, simply because, according to its legitimate definition, L can

only be either on or off, and it will always be either on or off,

independently of the number of times it has been turned on and

off.

P458 Assume then that at tb the red LED of CM is on (a similar

argument would apply if it were off ). One of the following two
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exhaustive and mutually exclusive alternatives must be true:

a) The red LED L is on because CM counted a last even number

that left it on.

b) The red LED L is on because of any other reason.

The first alternative is impossible if all natural numbers have been

in fact counted: each even number has an immediate odd successor

and then there is not a last natural number, neither even nor odd.

The second alternative would imply the formal definition of CM

has been arbitrarily violated: its red LED L turns on if, and only if,

the machine counts an even number, which excludes the possibility

of being turned on by any other reason (Principle of Invariance

P19).

P459 Since the same argument applies if L is off at tb, we must

conclude that if the ω-ordered list of the natural numbers exists

as a complete infinite totality, then, once completed the supertask

of counting all of them, L can be neither on nor off ; though,

by definition, it will be either on or off. The alternative to this

contradiction is the arbitrary violation of a legitimate definition

with the only purpose to justify that L can change its state by

reasons different from the reason defined as the unique reason why

L can change its state: if, and only if, CM counts a natural number,

being both events simultaneous and instantaneous. But assuming

the arbitrary violation of a definition when convenient means any

thing can be proved. So this alternative is formally unacceptable.

P460 Notice again that, as in the case of Thomson’s lamp, the

above contradiction on the state of L at tb has not been drawn from

its successive states while performing the supertask, but from the

fact of being a LED with two definite, precise and unique states:

on and off, and so that it turns on if, and only if, CM counts an

even number; and it turns off if, and only if, CM counts an odd

number. Thus, as in the case of Thomson’s lamp, CM definition

forces the actual infinity to leave a track of its existence through

the state of L at tb, and what it leaves is an inconsistency. By
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contrast, from the hypothesis of the potential infinity, only finite

totalities of numbers can be counted, as large as wished but always

finite, and depending of the parity of the last counted number, L

will be either on or off, in agreement with the definition of CM .
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Introduction

P461 The discussions on Thomson’s lamp analyzed in the prece-

dent chapter can be formalized (at least up to a certain point) by

introducing a simple symbolic notation that allows to define the

lamp and its functioning in abstract terms. The symbolic defini-

tion can then be used to develop formulas that represent the laws

of functioning of Thomson’s lamp. Being independent of the num-

ber of times the lamp is turned on/off, these laws represent the

universal attributes and the universal behaviour of a Thomson’s

lamp. As we will see, some of those laws are not compatible with

the assumption that a Thomson’s lamp can be switched infinitely

many times during a finite interval of time. It will be proved that

to perform Thomson’s supertask implies the violation of at least

one of the laws the define the functioning of the lamp, a law that is

independent of the number of times the lamp is turned on and off.

This conclusion will prove that, as its author defended, Thomson’s

supertask is inconsistent.

Symbols and definitions

P462 The symbols “*” and “o” will be used to represent the

lamp is on and off respectively. The clicks will be represented

with the letter “c”. We will also use standard symbols of logic and

mathematics. So, being TL Thomson’s lamp, we will write:

TL is on at instant t: *[t] (1)

TL is off at instant t: o[t] (2)

TL is on along the interval (ta, tb): *(ta, tb) (3)

TL is off along the interval (ta, tb): o(ta, tb) (4)

239
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Click at instant t, being TL on: c{[t], ∗} (5)

Click at instant t, being TL off : c{[t], o} (6)

Click at least one time in (ta, tb), being TL on: c{(ta, tb), ∗} (7)

Click at least one time in (ta, tb), being TL off : c{(ta, tb), o} (8)

TL is not clciked since tb: ¬c{[tb,∞)} (9)

Note the expressions “Being on at instant t” and “Being off at

instant t”, and recall that in the spacetime continuum no instant

has an immediate preceding (or succeeding) instant: between any

two instants, however close they may be, there are another 2ℵo

instants, the same number of instants as in the entire history of

the universe (≈ 13800 millions years)

P463 We can now formalize the definition of Thomson’s lamp by

means of the following four axioms:

Thomson’s lamp





c{[t], o} ⇒ ∗[t]
c{[t], ∗} ⇒ o[t]

∗[t] ∨ o[t]

¬(∗[t] ∧ o[t])

(10)

P464 Some basic laws of Thomson’s lamp can now be immediately

deduced, for example:

c{(ta, tb), o} ⇒ ∃t ∈ (ta, tb) : ∗[t] (11)

c{(ta, tb), ∗} ⇒ ¬ ∗ (ta, tb) (12)

o[tb]⇒ ¬ ∗ [tb,∞) (13)

∗ [ta, tb]⇒ ¬c{(ta, tb)} (14)

c{[t], o} ⇒ ¬o{[t,∞)} (15)

etc. (16)

Discussion

P465 This section proves the following two laws of Thomson’s

lamp:

BT1: c{(−∞, tb), ∗} ∧ ∗[tb,∞)⇒ ∃t ≤ tb : c{[t], o} ∧ ¬c{(t,∞), ∗}



Discussion 241

BT2: c{(−∞, tb), o} ∧ o[tb,∞)⇒ ∃t ≤ tb : c{[t], ∗} ∧ ¬c{(t,∞), o}

The first law (BT1) reads: if the lamp’s button has been clicked at

least once within the interval (−∞, tb), the lamp being previously

on, and the lamp stays on from tb, then there is an instant t equal

or prior to tb such that the button is clicked at t, the lamp being

previously off, and the button is no longer clicked from t. The

second law (BT2) reads equal except we must replace on with off

and vice versa.

P466 BT1 is proved as follow (BT2 would be proved in a similar

way). Assume that:

¬∃t ≤ tb : c{[t], o} (17)

We can write:

¬c{(−∞, tb], o} (18)

Taking into account the antecedent of BT1 we have:

c{(−∞, tb), ∗} ⇒ ∃t < tb : c{[t], ∗} (19)

and then:

o[t] (20)

From (18) and (20), and taking into account that t < tb we deduce:

o[tb] (21)

and then:

¬ ∗ [tb,∞) (22)

which goes against the second term of the antecedent of BT1.

Therefore if that antecedent is true then assumption (17) is false.

P467 Assume now that it holds:

¬∃t ≤ tb : ¬c{(t,∞), ∗} (23)
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In other words, suppose that there is no instant before or equal to

tb such that, being the lamp on, no click has ever been perform

from that instant onwards. We will have:

c{[tb,∞), ∗} (24)

which goes against the second term ∗[tb,∞) of BT1 antecedent.

Consequently, if this antecedent is true then assumption (23) must

be false.

P468 The falsehood of assumptions (17) and (23) proves BT1. It

is worth noting that BT1 is not derived from the successively per-

formed clicks but from the laws defining Thomson’s lamp. Thus, if

we assume the Principle of Invariance P19, BT1 must always hold:

before, during and after the performing of any finite or infinite

sequence of clicks.

Thomson’s supertask

P469 Let 〈cn〉 be the ω-ordered sequence of clicks of Thomson’s

supertask, being each click ci performed at the precise instant ti
of the strictly increasing and ω-ordered sequence of instants 〈tn〉
within (ta, tb) and whose limit is tb. According to its definition,

Thomson’s lamp has two, and only two, states: on and off. So, it

can only be either of or off, independently of the number of times

it has been clicked. Assume, then, the state Sb of the lamp at tb is

on (a similar argument could be developed if it were off though

making use of BT2 in the place of BT1). In these conditions the

antecedent of BT1 would be true: the lamp has been clicked at

least once along the interval (∞, tb) being the lamp on, and it is

on from tb. Therefore, the consequent of BT1 must also be true.

We will now prove, however, it is not.

P470 Indeed, on the one hand, if t < tb, and being tb the limit

of the sequence 〈tn〉, there would exist a tv in the sequence 〈tn〉
such that tv ≤ t < tv+1, so that at t only a finite number v of

clicks would have been performed. On the other hand, the instant

t cannot be the limit tb either, because at tb the button of the

lamp has not been clicked. Consequently, t cannot be an element
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of (ta, tb]. Therefore, to perform Thomson’s supertask implies the

violation of BT1, which goes against the Principle of Invariance

P19. Hence, Thomson’s supertask is inconsistent.
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Hilbert’s Hotel

P471 In the next discussion we will make use of a supermachine

inspired by the emblematic Hilbert’s Hotel. But before beginning,

let us relate some of the prodigious, and suspicious, abilities of the

illustrious Hotel.

4
5

6

1

Hilbert Hotel
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa

Figura 25.1 – The power of the ellipsis: An infinitist way of making
money.

P472 Its director, for example, has discovered a fantastic way of

getting rich: he demands one euro to R1 (the guest of the room

1); R1 recovers his euro by demanding one euro to R2 (the guest

of the room 2); R2 recovers his euro by demanding one euro to R3

(the guest of the room 3); and so on. Finally all guests recover his

euro, because there is not a last guest losing his money. Our crafty

director then demands a second euro to R1 which recovers again

his euro by demanding one euro to R2, which recovers again his

euro by demanding one euro to R3, and so on and on. Thousands

of euros coming from the (infinitist) nothingness to the pocket of

the fortunate director.
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P473 Hilbert’s Hotel is even capable of violating the laws of ther-

modynamics by making it possible the functioning of a perpetuum

mobile: in fact we would only have to power the appropriate ma-

chine with the calories obtained from the successive rooms of the

prodigious hotel in the same way its director gets the euros.

P474 Incredible as it may seem, infinitists justify all those absurd

pathologies, and many others, in behalf of the peculiarities of the

actual infinity. They prefer to assume any pathological behaviour

of the world before examining the consistency of the pathogene. In

the next discussion, however, we will come to a contradiction that

cannot be easily justified by the picturesque nature of the actual

infinity.

...

s'5 s'4 s'3 s'2 s'1 s1 s2 s3 s4 s5... ...

...

...

B1 B2 B3 B4 B5

Left sections Right sections

Wire
Beads

L-sliding mechanism

...

Figura 25.2 – Hilbert’s machine just before performing the first L-
sliding.

Hilbert machine

P475 In the following conceptual discussion we will make use of a

theoretical device, inspired by the emblematic Hilbert Hotel, that

will be referred to as Hilbert machine, composed of the following

elements (see Figure 25.2):

a) An infinite horizontal wire divided into two infinite parts, the

left and the right side:

1) The right side in turn is divided into an ω-ordered sequen-

ce of disjoint and adjacent sections 〈Si〉 of equal length
indexed from left to right as S1, S2, S3, . . . . They will be

referred to as right sections.
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2) The left side is also divided into an ω-ordered sequence

of disjoint and adjacent sections 〈S′
i〉 of equal length, the

same length as the right sections, and indexed now from

right to left as . . . , S′
3, S

′
2, S

′
1; being S′

1 adjacent to S1.

They will be referred to as left sections.

b) An ω-ordered sequence of indexed beads 〈bn〉 strung on the

wire, so that they can slide on the wire as the beads of an

abacus, being the center of each bead bi initially placed on

the center of the right section Si.

c) All beads are mechanically linked by a sliding mechanism that

slides simultaneously all beads the same distance along the

wire.

d) The sliding mechanism is adjusted in such a way that it slides

simultaneously each bead exactly one, and only one, section

to the left (L-sliding).

P476 Obviously, Hilbert’s machine is a theoretical artifact, and its

functioning is a simple thought experiment that illustrates a for-

mal argument to test ω-order, the type of order of the well-ordered

set N of the natural numbers, whose ordinal number is ω, the least

transfinite ordinal [47, p. 160, Theorem §15 A]. This is not, there-

fore, a discussion on the physical restrictions and consequences of

performing a particular sequence of physical actions.

P477 Since the sections 〈S′
i〉 of the left side of the wire are ω-

ordered, each section S′
n has an immediate successor section S′

n+1

just on its left (ω-successiveness). In accord with the hypothesis

of the actual infinity all those infinitely many left sections exist

as a complete totality in spite of the fact that there is not a last

section completing the sequence. The same applies to the right

sections 〈Si〉.

P478 We will assume Hilbert’s machine always works according

to the following:

a)Restriction P478.-An L-sliding will be carried out if, and only

if, after being performed all beads remain strung on the wire.
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Otherwise, the L-sliding will be undone so that every bead

recover its previous position and then the machine stops.

P479 Let us begin by proving that for each v ∈ N the first v L-

slidings can be carried out according to Restriction P478. Assume

this assertion is not true. There will be a natural number n ≤ v

such that it is impossible to perform the nth L-sliding according to

Restriction P478. But this is impossible because whatsoever be the

left section occupied by b1 just before performing the nth L-sliding,

there always be a left section contiguous to that section, otherwise

b1 would be in the impossible last left section (ω-successiveness).

So, b1 can L-slide to that contiguous left section, and every ball

bi,i>1 can move to the section previously occupied by bi−1. There-

fore, the nth L-sliding can be carried out according to Restriction

P478. Consequently our assumption is not true, and for each v ∈ N

it is possible to carry out the first v L-slidings according to Res-

triction P478.

P480 The following inductive argument leads to the same conclu-

sion as the previous one P479 (Modus Tollens). It is clear that the

first L-sliding can be performed: b1 slides to S′
1 and every bi;i>1

to the section previously occupied by bi−1. Suppose that, for any

natural number n, the first n L-slidings can be carried out. Since

each L-sliding moves each ball one section to the left, all balls will

have been moved n sections to the left, so that b1 will be in the left

section S′
n, since S′

n is n sections to the left of the S1, the section

initially occupied by b1. And since S′
n has an adjacent left section

S′
n+1 (ω-successiveness), b1 can slide to S′

n+1 and each bi;i>1 to

the section previously occupied by bi−1. So, if for any n the first

n L-slidings can be carried out, the first n+ 1 L-slidings can also

be carried out. And since the first L-sliding can be carried out, we

conclude that for any v ∈ N the first v L-slidings can be carried

out.

Hilbert machine contradiction

P481 Assume that while the successive L-slidings can be carried

out, they are carried out (Principle of Execution P25). It is imme-



Hilbert machine contradiction 249

diate to prove the following:

a)Theorem P481a.-Once performed all possible L-slidings all balls

remain strung on the wire.

Proof.-It is an immediate consequence of Restriction P478: if

an L-sliding removes a bead from the wire, that L-sliding would

be undone and the machine stops with every ball strung on

the wire in the section occupied just before that L-sliding. In

addition, since an L-sliding simultaneously moves each ball one

section, and only one section, to the left, and the first ball to

the left of all balls is b1, it had to be b1, and only b1, the

ball that came out of the wire by one L-sliding. Otherwise, if

the first n balls were simultaneously removed from the wire

by one L-sliding, then each ball bi>1 would have been moved

i sections to the left by one L-sliding, which is impossible. In

consequence, if b1 is removed from the wire, b2 would have to

be in the impossible last section of an ω-ordered collection 〈S′
i〉

of sections. So, once all possible L-slides have been done, all

the balls remain strung on the wire. �

b)Theorem P481b.-Once performed all possible L-slidings no bead

remains strung on the wire.

Proof.-Let bv be any bead and assume that once performed all

possible L-slidings (Principle of Execution P25) it is strung on

the right section Sk. It must be k < v because all L-slidings

are towards the left, the direction towards which the indexes

of 〈Si〉 decrease. Since bv was initially placed on Sv only a

finite number v − k of L-slidings would have been performed,

and then it would not have been possible to perform the the

first v − k + 1 L-slidings, which goes against P479 and P480,

because v−k+1 is a natural number. A similar reasoning can

be applied if bv were finally strung on a left section S′
n, being

now the number of performed L-slidings exactly v+n− 1 and

then it would not have been possible to perform the first v+n

L-slidings, which also goes against P479 and P480, because

v + n is also a natural number. Thus, since bv is any bead,

if all possible L-slidings have been performed, then no bead

remains strung on the wire. Note this is not a question of
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indeterminacy but of impossibility: the set of possible sections

any ball bv could be finally occupying is the empty set. �

P482 It is remarkable the fact that in the demonstration P481 of

Hilbert’s contradiction it has only been assumed that, under the

hypothesis of the actual infinity, all possible L-slidings have been

performed (Principle of Execution P25). The reader can easily pro-

ve a corollary of the Theorem P481b: all balls stop being inserted

in the wire at the same instant, an instant at which L-slidings are

no longer performed.

Discussion

P483 Let us compare the functioning of the above Hilbert ma-

chine (Hω from now on) with the functioning of a finite version

of the machine (symbolically Hn). This finite machine has a finite

number n of both right and left sections (Figure 25.3). A finite se-

quence of n beads are initially strung on the right side of the wire,

the center of each bead bi placed on the center of the right section

Si. It is immediate to prove that Hn can only perform n L-slidings

because not having a left section S′
n+1, Restriction P478 will stop

the machine with each left section S′
i occupied by the bead bn−i+1

and all right sections empty, and this is all. No contradiction is de-

rived from the functioning of Hn. Thus for any natural number n,

the corresponding machine Hn is a consistent theoretical artifact.

Only the infinite Hilbert’s machine Hω is inconsistent.

s1s'5 s2s'4 s3s'3 s5s'1 s4s'2

StartStop

B1 B2 B3 B4 B5

B1 B2 B3 B4 B5

Figura 25.3 – A finite machine of five sections.
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P484 What contradiction P481a-P481b proves is not the incon-

sistent functioning of a supermachine. What it proves is the in-

consistency of ω-order itself (Principle of Autonomy P23) because

of ω-successiveness. Perhaps we should not be surprised by this

conclusion. After all, an ω-ordered sequence is one which is both

complete (as the actual infinity requires) and incompletable (there

is not a last element that completes the sequence). On the other

hand, and as Cantor proved [47, p. 160, Theorem §15 A], ω-order

is an inevitable consequence of assuming the existence of infinite

sets as complete totalities. An existence axiomatically stated in our

days by the Axiom of Infinity, in all axiomatic set theories inclu-

ding its most popular versions as ZFC [227, 225]. It is, therefore,

that axiom the ultimate cause of contradiction P481a-P481b.
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Introduction

P485 This chapter examines the consistency of ω-order by means

of a supertask that works as a sort of trap for the assumed existen-

ce of ω-ordered collections, which are simultaneously complete (as

is required by the Actual infinity) and incompletable (because no

last element completes them). Cantor himself proved [47, P. 160,

Teorema §15 A], that ω-order is a formal consequence of assuming

the existence of denumerable sets as complete totalities. Although

it is hardly recognized, to be ω-ordered means to be both com-

plete and incompletable. In fact, the Axiom of Infinity states the

existence of complete denumerable totalities, the most simple of

which are ω-ordered, i.e. with a first element and such that each

element has an immediate successor. Consequently, there is not a

last element that completes ω-ordered totalities. To be complete

and incompletable is a modest eccentricity in the highly eccentric

infinite paradise of our days, but its simplicity is just an advan-

tage if we are interested in examining the formal consistency of

ω-order. In addition, ω is the first transfinite ordinal, the one on

which all successive transfinite ordinals are built up. This magni-

fies the interest of its formal analysis, because if the basis of the

construction is inconsistent, all constructions built on that basis

will also be inconsistent. The short discussion that follows is based

on a supertask conceived to put into question just the ability of

being complete and incompletable that characterizes ω-order.

The last disk

P486 Consider a hollow cylinder C and an ω-ordered collection

of identical disks 〈di〉 such that each disk di fits exactly within

253
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the cylinder (Figure 26.1). Let a1 be the action of placing the disc

d1 completely inside the cylinder C, and let ai>1 be the action of

replacing the disk di−1 inside the cylinder by its immediate suc-

cessor the disk di, which is accomplished by placing di completely

within the cylinder. Consider the ω-ordered sequence of actions

〈ai〉 and assume that each action ai is carried out at the instant

ti, being ti an element of the ω-ordered sequence of instants 〈ti〉
in the real interval (ta, tb) such that tb is the limit of 〈ti〉. Let Sω

be the supertask of performing the ω-ordered sequence of actions

〈ai〉

Figura 26.1 – The hollow cylinder C and the ω-ordered collection of
discs 〈di〉.

P487 Let us impose to Sω the following:

a)Restriction P487.-Each action ai of 〈ai〉 will be carried out if,

and only if, it leaves the cylinder completely occupied by the

disc di.

P488 It is immediate to prove that all actions 〈ai〉 observe res-

triction P487: in fact it is clear that a1 observes restriction P487

because it leaves the cylinder completely occupied by the disk d1.

Assume the first n actions observe Restriction P487. It is quite

clear that an+1 also observes Restriction P487: it leaves the cylin-

der completely occupied by the disk dn+1 because, by definition, it

consists just in placing dn+1 completely inside the cylinder. Con-

sequently all actions 〈ai〉 observe restriction P487.

P489 Consider now the one to one correspondence f between 〈ti〉
and 〈ai〉 defined by f(ti) = ai. Since tb is the limit of 〈ti〉 (the first
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Figura 26.2 – The action an of supertask Sω about to be carried out.

instant after all instants of 〈ti〉), at tb all actions 〈ai〉 will have
been carried out (Principle of Execution P25), and supertask Sω

will have been completed.

Discussion

P490 With respect to the possibilities of being occupied by the

disks 〈di〉, the cylinder C can exhibit one, and only one, of the

following three alternative states:

1. Empty, occupied by no disk.

2. Partially or completely occupied by one disk.

3. Partially or completely occupied by two disks.

According to the way the successive actions 〈ai〉 are carried out,

the third state is impossible because each action ai,i>1 consists

in removing from the cylinder C the disk di−1 by introducing the

disk di completely inside C. So, once performed the infinitely many

actions 〈ai〉 of the supertask Sω, the cylinder C can only be either

empty or (partially or completely) occupied by one disk of the

collection 〈di〉.

P491 At instant tb the cylinder C cannot be occupied by a disk

dv, whatsoever it be, because in such a case only a finite number

v of disks would have been introduced inside the cylinder and the

supertask Sω would not have been completed. In consequence, at

tb once the supertask Sω has been completed, C must be empty.

P492 The problem is: how C becomes empty if none of the per-

formed actions leaves it empty? Infinitists claim that although, in
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fact, no particular action ai leaves the cylinder empty, the com-

pletion of all of them does it. The Principle of Invariance P19

adequately answers this claim. But, in addition, another type of

answer will be given in the discussion that follows.

P493 There are two alternatives regarding the completion of the

ω-ordered sequence of actions 〈ai〉 of the supertask Sω:

a) The completion is an additional (ω+1)-th action.

b) The completion is not an additional (ω+1)-th action. It simply

consists in performing each one of the infinitely many actions

〈ai〉, and only them.

P494 Let us examine the first alternative (which obviously goes

against the Principle of Invariance P19). The supposed (ω+1)-th

action can only occurs at tb because, being tb the limit of 〈ti〉, for
any instant t prior to tb there is an instant tv of 〈ti〉 such that t <

tv and there still remain infinitely many actions av, av+1, av+2 . . .

of 〈ai〉 to be performed. Whatever be the instant we consider, if

it is prior to tb, there will remain infinitely many actions to be

performed and only a finite number of them will have been carried

out. Therefore, the assumed (ω + 1)-th action must occur at the

precise instant tb. In consequence, at tb the cylinder has to be

occupied by a disk, otherwise, if the cylinder were empty at tb,

the supposed (ω+1)-th action, which occur at tb and consists just

in leaving the cylinder empty, would not be the cause of leaving

the cylinder empty as it is assumed to be, because it is already

empty. We will have, therefore, a disk dv inside the cylinder at tb.

And, for the reasons given in P491, this is impossible if Sω has

been completed: the disk dv within the cylinder would be proving

that only a finite number v of actions would have been carried out.

Thus, the first alternative is impossible.

P495 We will examine, then, the second alternative. According to

it, the cylinder becomes empty as a consequence of having comple-

ted the countably many actions a1, a2, a3,. . . and only them. Thus,

either the successive actions have an accumulative effect capable
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of leaving finally the cylinder empty, or the completion has a sort

of sudden final effect on the cylinder as a consequence of which

it results empty. We can rule out this last possibility for exactly

the same reasons we have ruled out the above (ω+1)-th additio-

nal action: that additional action would have to take place at tb,

and then at tb there would be a disk dv inside the cylinder pro-

ving that at tb only a finite number v of actions would have been

performed. The only possibility is, therefore, that the cylinder C

becomes empty as a consequence of a certain accumulative effect

of the successively performed actions.

P496 Let vi be the volume inside the cylinder which is not oc-

cupied by the disk di once di is placed inside the cylinder by the

action ai, i.e. the empty volume inside C once di has been placed

in C. According to the above definition of ai we will have:

vi = 0, ∀i ∈ N (1)

Let us then define the series 〈si〉 as:

si = v1 + v2 + · · ·+ vi, ∀i ∈ N (2)

The ith term si of this series represents, therefore, the empty vo-

lume inside the cylinder once performed the firsts i actions of 〈ai〉.
Evidently we will have:

si = 0, ∀i ∈ N (3)

〈si〉 is therefore a series of constant terms. Thus it can be written:

ĺım
i→∞

si =

∞∑

1

vi = 0 (4)

Therefore, once completed the ω-ordered sequence of actions 〈ai〉,
and having each ai left an empty volume vi = 0 inside the cylinder,

the resulting empty volume inside the cylinder is also null. The

cylinder C cannot, therefore, results empty as a consequence of

an accumulative effect of the successively performed actions ai.



258 A Disturbing Supertask

Therefore, the completion of the ω-ordered sequence of actions

〈ai〉 does not leave the cylinder empty.

P497 In consequence, it must be concluded that supertask Sω

leads to a contradiction: the completion of 〈ai〉 leaves and does

not leave the cylinder empty of disks.

P498 We will consider now the finite versions of Sω. For this let

n be any natural number and 〈di〉i=1,2...n the finite collection of

the first n disks of 〈di〉. As in the case of Sω, let a1 be the action

of placing the disc d1 inside the cylinder C, and let ai,i>1 be the

action of replacing the disk di−1 of 〈di〉 within C with its imme-

diate successor the disk di at the instant ti. Let n be the task of

performing the finite sequence of actions 〈ai〉1,2,...n. It is immedia-

te to prove that at tn all these actions will have been performed

and the cylinder will finally contain the last disk dn placed within

it. No contradiction arises here. And this holds for every natural

number: Sn is consistent for every n ∈ N. Only Sω is inconsistent.

But the only difference between Sω and Sn,∀n ∈ N is just the ω-

order of Sω. The contradiction with Sω can only derive from this

type of infinite ordering, and then from the Axiom of Infinity, of

which it is a formal consequence. Thus, the argument above is not

on the impossibility of a particular supertask, but on the incon-

sistency of ω-order. Being complete and incompletable could be,

after all, a formal inconsistency rather than an eccentricity of the

first transfinite ordinal.
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Introduction: sets and boxes

P499 From the platonic point of view (the dominant perspective

in contemporary mathematics), all attempts to define the concept

of set have been circular, so that it is now considered a primitive

notion, a concept that cannot be defined in terms of other more

basic concepts.

P500 From a non-platonic point of view, however, it is possible to

define the notion of set as a mental construct. For instance, Charles

Dogson (better known as Lewis Carroll) proposed the following

concept [51, p. 31]:

Classification, or the formation of Classes, is a Mental Process,
in which we imagine that we have put together, in a group,
certain Things. Such a group is called a Class.

Carroll’s notion of class leads immediately to the following defini-

tion:

a) A set is a theoretical object that results from a mental process

of grouping arbitrary objects previously defined.

It could be proved this definition is not compatible with self-

reference, one of the main sources of inconsistency in naive (Can-

torian) set theory. But this type of non-platonic definitions are

ignored in contemporary mathematics. Some of them will be in-

troduced in Appendix C.

P501 We could imagine a set as a sort of box that contains ob-

jects. And while the number of objects is finite the comparison will

always be consistent. But when the number of objects is infinite

259
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some significant differences appear between sets and boxes. As we

will see in this chapter the consideration of an infinite set as a box

that contains infinitely many objects leads to contradictions.

Emptying sets and boxes

P502 Consider a box BX containing an ω-ordered collection 〈bi〉
of identical balls indexed as b1, b2, b3, . . . And consider also an

ω-ordered set B = {b1, b2, b3 . . . } whose elements are also a denu-

merable collection of identical balls indexed as b1, b2, b3, . . . .

P503 From the set B let us define the following ω-ordered sequen-

ce of sets 〈Bn〉:
{
B1 = B − {b1}
Bi = Bi−1 − {bi}, i = 2, 3, 4, . . .

(1)

〈Bn〉 is, therefore, the sequence of nested sets:

B1 ⊃ B2 ⊃ B3 ⊃ . . . (2)

each of whose members Bn = {bn+1, bn+2, bn+3, . . . } is a denume-

rable set.

P504 Let now (ta, tb) be a finite interval of time and 〈tn〉 an ω-

ordered and strictly increasing sequence of instants within (ta, tb)

whose limit is tb. Assume that at each instant ti of 〈tn〉 the ball bi
is removed from the box BX. Let BX(ti) be the state of the box

(the remaining collection of balls within the box) at the instant

ti, just the instant at which the ball bi has been removed from

the box. The successive states 〈BX(ti)〉 of the box BX can be

symbolically expressed in a form similar to (1):

{
BX(t1) = BX(ta)− b1

BX(ti) = BX(ti−1)− bi, i = 2, 3, 4, . . .
(3)

P505 The one to one correspondence f(ti) = bi proves that at
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tb all balls will have been removed from the box, and BX will be

empty. By comparing (1) with (3) we will have:

BX(ti) = Bi,∀i ∈ N (4)

P506 There is, however, a fundamental difference between the

sequence of sets 〈Bn〉 and the sequence of states 〈BX(ti)〉 of the
box BX: in each of the successive states BX(ti) defined by (3),

the box BX is always the same box BX, while the successive sets

Bi defined by the successive definitions (1) are different from one

another. As a consequence we will have a final empty box BX but

not a final empty set. How is this possible? Why and when the

symmetry between both sequences of definitions (sets and boxes)

get broken?

P507 On the other hand, and regarding the sequence of states

〈BX(ti)〉 of the box BX defined by (3), it is worth noting that at

each instant t in (ta, tb) the box BX contains ℵo balls, whereas at

tb it is empty. In fact, since tb is the limit of the sequence 〈tn〉, we
will have:

∀t ∈ (ta, tb) : ∃v : tv ≤ t < tv+1 (5)

Therefore, at t only the first v balls b1, b2, . . . bv have been remo-

ved from BX, and BX still contains infinitely many balls bv+1,

bv+2, bv+3,. . . So then, at each instant t within (ta, tb) the box BX

contains ℵo balls. Or in other words, if T is the set of all instants

of the interval of time (ta, tb) at which the box BX contains ℵo
balls, the complement T of T in (ta, tb] can only be the singleton

{tb}.

P508 In these conditions, the only way for the box BX to become

empty at tb would be by removing simultaneously infinitely many

balls just at tb. How is this possible if at tb no ball is removed from

the box? How is this possible if all balls have been removed one by

one, and with an interval of time greater than zero between any two

successive removals? How is it possible that, in those conditions,

and for any natural number n, the box never contains n . . . , 3, 2,
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1 balls? And recall we are not subtracting cardinals (Chapter 21)

but removing one by one the balls from a box that contains balls

(see P321).

P509 Let us go a step further in this discussion. Consider the

following sequence of definitions of the sets X and Y by means of

the above ω-ordered sequence of sets 〈Bn〉:

i = 1, 2, 3 . . .

{
Bi 6= ∅ ⇒ X = Bi

Y = B2

(6)

While the sequence of definitions (6) of the set Y poses no problem

and we will finally have Y = B2, the successive definitions (6) of

the set X poses the following problem: Definitions (6) can only

leave X defined as the empty set, otherwise only a finite number

of definitions would have been performed, because any element

bn in X would be proving the nth redefinition (that defines X

as {bn+1, bn+2, bn+3, . . . }) would not have been carried out. The

problem is that no definition (6) definesX as the empty set, simple

because all sets Bi of 〈Bn〉 are denumerable. All.

P510 An interesting variant of the above argument is the following

one. Let A1 = {a1, a2, a3, . . . } be a denumerable set and consider

the following sequence of definitions of the set B:

i = 1, 2, 3 · · · : iff |Ai| > 1 then





Ai+1 = Ai − {ai}
Ai = Ai+1

B = Ai

(7)

According to (7), B is defined as Ai if, and only if, the cardinal

of Ai is equal or greater than 1. Therefore, (7) can only define B

as a singleton {aν}. But this is impossible because, having being

successively defined according to the ω-order of the successive in-

dexes 1, 2, 3, . . . , the index ν of aν could only be an impossible last

natural number.
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The last ball supertask

P511 The above set theoretical argument P510 can be reanalyzed

by means of a conditional supertask Sbx. Indeed, consider again

the same above box BX with the same collection of indexed balls

〈bn〉, and the same sequence of instants 〈tn〉 within (ta, tb). Let the

conditional supertask Sbx be defined according to:

a) At each precise instant ti of 〈tn〉, remove from BX the ball bi
if, and only if, the box BX contains at least two balls.

Note, the successive balls are removed from BX one by one, one

after the other, and in such a way that a time greater than zero

always elapses between two successive removals: ∆t = ti+1 − ti >

0,∀i ∈ N. And note also the balls are successively removed from

BX according to the ω-order of their respective indexes 1, 2, 3,. . .
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Figura 27.1 – The last ball supertask Sbx: remove from BX the ball
bi at ti if, and only if, BX contains at least two balls.

P512 The one to one correspondence f between 〈tn〉 and 〈bn〉
defined by f(ti) = bi proves that, being tb the limit of 〈tn〉, at tb the
supertask Sbx has been completed. Indeed, for all i ∈ N, it is always

possible to remove from BX the ball bi at the instant ti iff BX

contains at least two balls. But, on the other hand, the completion

of Sbx is impossible because it can only left one ball within BX,

and that ball could only be a ball indexed by an impossible last

natural number. Sbx leads, then, to a contradiction: it can, and

cannot, be completed.

P513 Consider now the following variant S′
bx of Sbx:
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a) At each successive instant ti of 〈tn〉 remove from BX any ball

bk.

In this case, it is immediate to prove that at tb the supertask S′
bx

has been completed, leaving one ball bp within BX, where the

index p is any natural number (in the place of the impossible last

natural number of Sbx). That BX contains the unique ball bp is,

in fact, a possible result for S′
bx. Therefore, in this sense S′

bx is not

contradictory.

P514 In consequence, we must conclude that it is possible, and

it is not possible, to remove from BX one by one all balls but

one of 〈bn〉, depending on the order they are removed: if they are

removed at random, the removal is possible; if they are removed

following the ω-ordered sequence of their respective indexes, the

removal is impossible. It is hard to accept that, being it possible a

random removal, the removal is impossible if the balls are removed

by following the ω-order of their respective indexes.

P515 The supertask S′
bx poses an additional problem related to

the instant at which it takes place the removal of the last ball that

leaves BX with only one ball. Indeed, let t be any instant within

the finite interval of time (ta, tb). Being tb the limit of the sequence

〈tn〉, it holds:
∃tv ∈ 〈tn〉 : tv < t < tv+1 (8)

So that, at t only a finite number v of balls have been removed

from BX. Consequently, if T is the set of all instants of (ta, tb)

at which BX contains infinitely many balls, then the complement

T of T in (ta, tb) can only be the singleton {tb}. Hence, the last

removal that left BX with only one ball inside it, could only take

place at tb, just the first instant at which no removal takes place;

and that removal had to remove from BX infinitely many balls

at once, which obviously goes against the own definition of the

supertask S′
bx.

P516 As in previous chapters of this book, the above contradictory

results deduced from the supertasks Sbx and S′
bx point to the same
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suspicious hypothesis: the hypothesis of the actual infinity; the

belief that an infinite list exist as a complete totality without a

last element completing the list; the believing that it is possible to

complete the incompletable, as Aristotle would surely say [11, p.

291]. A hypothesis, on the other hand, subsumed into the Axiom

of Infinity founding infinitist mathematics, the main, and almost

unique, stream in contemporary mathematics.

Catching a fallacy

P517 Consider again the collection of indexed balls 〈bn〉. We can

consider a denumerable set B whose elements are the collection

of balls 〈bn〉. We can also consider a box BX that contains all of

them. But could we consider a hollow cylinder AB, with the same

diameter as the balls, that contains the same collection of balls

〈bn〉? Obviously, in this case the balls could only be aligned in

straight line, one after the other, just as the sequence of the natural

numbers 1, 2, 3,. . . Naturally, both the box and the cylinder would

have to have infinite sizes, but the existence of such objects can

be assumed without that assumption affecting the arguments that

such containers illustrate (Principle of Autonomy P23).

A
1

A BB
... ...1 2 3

Figura 27.2 – The hollow cylinder AB containing the collection of
balls 〈bn〉 as a complete totality. The cylinder appears occupied when
observed from its end A with the ball b1 at sight. But it appears empty
when observed from its end B, otherwise we would be observing the
impossible last ball of an ω-ordered collection of balls.

P518 From the point of view of the hypothesis of the actual infi-

nity, the answer to the question posed in P517 can only be negative:

the cylinder AB would appear occupied when observed from its

end A with the ball b1 at sight, and empty when observed from its

end B, otherwise the impossible last ball of an ω-ordered sequence

of balls (the collection 〈bn〉) would be at sight.

P519 In consequence, while we can consider the set B of the ω-
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ordered collection of balls 〈bn〉, and the box BX with the ω-ordered

collection of balls 〈bn〉 inside it, we cannot consider the hollow

cylinder AB with the same ω-ordered collection of balls 〈bn〉 inside
it. Or in other more general words, the possibility to consider an

ω-ordered collection of objects inside a container depends on the

shape of the container. Some shapes, as the hollow cylinder AB,

cannot be permitted under penalty of inconsistency.

P520 Ridiculous as it may seem, axiomatic set theories should face

the above inconsistency [P519]. They would have to include a new

axiom restricting the shapes of the containers capable of containing

ω-ordered sequences of objects. For example, the hollow cylinder

above would have to be declared inconsistent as a container of the

balls 〈bi〉.

P521 Or, alternatively, the hollow cylinder AB could be conside-

red a trap to catch a fallacy: the fallacy of completing the incom-

pletable; the fallacy of the existence of ω-ordered lists of elements

as complete totalities without a last element completing the lists.
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Introductory definitions

P522 This chapter introduces a formalized version of Zeno’s Di-

chotomy in its two variants (here referred to as Dichotomy I and II)

based on the successiveness and discontinuity of ω-order (Dicho-

tomy I) and of ω∗-order (Dichotomy II). Each of these formalized

versions leads to a contradiction pointing to the inconsistency of

the hypothesis of the actual infinity (the existence of the ‘totality

of finite cardinal numbers”, in Cantor’s words [47, p. 103]) from

which the first transfinite ordinal number ω is deduced [47, p. 160,

Theorem §15 A].

P523 In the second half of the XX century, several solutions to

some of Zeno’s paradoxes were proposed with the aid of Can-

tor’s transfinite arithmetic, topology, measure theory and, more

recently, internal set theory (a branch of non-standard analysis)

[109, 110, 249, 111, 113, 112, 159, 158]. It is also worth noting

the solutions proposed by P. Lynds [143, 144] within classical and

quantum mechanics frameworks. Some of these solutions, however,

have been contested. And in most cases, the proposed solutions do

not explain where Zeno’s arguments fail. Moreover, some of the

proposed solutions gave rise to a new collection of problems so

exciting as Zeno’s paradoxes [177, 4, 188, 203, 126, 213]. In the

discussion that follows I propose a new way to discuss Zeno’s Di-

chotomies based on the notion of ω-order, the type of order of the

well-ordered sets whose ordinal number is ω, the least transfini-

te ordinal [47, p. 160, Theorem §15 A]. The set N of the natural

numbers is an example of ω-ordered set.

P524 A sequence 〈ai〉 indexed by the ω-ordered set N of the natu-

267
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ral numbers is also ω-ordered by the relation of precedence of their

indexes (Theorem P80a, of the Indexed Sets), which can be the sa-

me, or not, as their natural precedence, if any. As is well known, in

an ω-ordered sequence there is a first element but not a last one,

and each element has an immediate successor and an immediate

predecessor, except the first one, which has no predecessor. So, as-

suming the set of the natural numbers exist as a complete infinite

totality (hypothesis of the actual infinity subsumed into the Axiom

of Infinity) means that any ω-ordered sequence can also exist as

a complete infinite totality, despite the fact that no last element

completes the sequence.

P525 An ω∗-ordered sequence is one in which there exists a last

element but not a first one, and each element has an immedia-

te predecessor and an immediate successor, except the last one

that has no successor. Since there is not a first element these se-

quences are non-well-ordered. From the same infinitist perspective,

ω∗-ordered sequences are also complete infinite totalities, in spite

of the fact that there is not a first element to begin with. The

increasing sequence of negative integers, Z∗ = . . . , -3, -2, -1, is an

example of ω∗-ordered sequence.

Figura 28.1 – Z
∗-points and Z-points.

P526 That said, let us consider a point particle P moving through

the X axis (of a Cartesian coordinate system) from the point -1 to

the point 2 at a constant finite velocity v (Figure 28.1). Assume P

is in the point 0 just at the precise instant t0. At instant t1 = t0 +

1/v it will be exactly in the point 1. Consider now the following ω∗-

ordered sequence of Z*-points 〈z∗i 〉 within the real interval (0, 1),
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defined by [234]

z∗n∗ =
1

2n
, ∀n ∈ N (1)

where z∗n∗ stands for the last but n− 1 element of the ω∗-ordered

sequence 〈z∗i 〉 of Z*-points. Consider also the sequence of Z-points

〈zi〉 within the real interval (0, 1) defined by:

zn =
2n − 1

2n
, ∀n ∈ N (2)

P527 Although the points of the X axis are densely ordered (bet-

ween any two of its points infinitely many other points do exist),

Z*-points and Z-points are not. Between any two successive Z*-

points z∗(n+1)∗, zn∗ there is no other Z*-point (ω∗-discontinuity),

and a distance greater than zero z∗n∗ − z∗(n+1)∗ > 0 always exists.

Because of ω∗-discontinuity, Z*-points can only be traversed (by

a point object as P ) in a successive way, one at a time, one after

the other, and in such a way that between any two successive Z*-

points, a distance greater than zero z∗n∗− z∗(n+1)∗ > 0 must always

be traversed. The traversal will take a time greater than zero if

it is traversed at a finite velocity. The same applies to Z-points,

which exhibit ω-discontinuity.

P528 As P passes over the points of the closed real interval [0, 1]

of the X axis, it must traverse the successive Z*-points and the

successive Z-points. It makes no sense to wonder about the instant

at which P begins to traverse the successive Z*-points because

there is not a first Z*-point to be traversed. The same can be said

on the instant at which P ends to traverse the Z-points, in this

case because there is not a last Z-point to be traversed. For this

reason, we will focus our attention on the number of Z*-points P

has already traversed and on the number of Z-points it must still

traverse at any instant t within the closed real interval [to, t1].

P529 In this sense, and being t any instant within [to, t1], let Z
∗(t)

be the number of Z*-points P has traversed just at instant t. And

let Z(t) be the number of Z-points to be traversed by P at the
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instant t. The discussion that follows examines the evolution of

Z∗(t) and Z(t) as P moves from the point 0 to the point 1. Both

discussions are formalized versions of Zeno’s Dichotomy II and I

respectively. See, for instance, [34, 35, 235, 203, 126, 239, 62, 157].

P530 The strategy of pairing off the Z*-points (or the Z-points)

with the successive instants of a strictly increasing infinite sequence

of instants was firstly used (in a broad sense) by Aristotle [12,

Books-III-VI] when trying to solve Zeno’s dichotomies. Although

Aristotle ended up by rejecting his original strategy, it is still the

preferred one to discuss on both paradoxes. As we will see, however,

the discontinuity and separation of Z*-points and Z-points leads

to a conflicting conclusion.

Zeno’s Dichotomy II

P531 Let us begin by analyzing the way P passes over the Z*-

points. Since the sequence of Z*-points is ω∗-ordered, its first point

does not exist, and consequently its first n points, for any finite

number n, do not exist either. Thus, and taking into account that

P is in the point 0 at t0 and in the point 1 at t1, it holds:

∀t ∈ [t0, t1]

{
t = t0 : Z∗(t) = 0

t > t0 : Z∗(t) = ℵo
(3)

According to (3), no instant t exists within [t0, t1] at which Z∗(t)

= n, whatever be the finite number n, otherwise there would exist

the impossible first n elements of an ω∗-ordered sequence. Notice

Z∗(t) is well defined in the whole interval [t0, t1]. Thus, equation

(3) represents a dichotomy, ω∗-dichotomy: Z∗(t) can only take two

values along the whole closed interval [t0, t1]: 0 and ℵo.

P532 In agreement with P531 and regarding the number of tra-

versed Z*-points, P can only have two successive states: the sta-

te P ∗(0) at which it has traversed zero Z*-points, and the state

P ∗(ℵo) at which it has traversed aleph-null Z*-points. The num-

ber of traversed Z*-points change directly from zero to ℵo (ω∗-

dichotomy), without finite intermediate states at which P has tra-
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versed only a finite number of Z*-points.

P533 Taking into account the ω∗-discontinuity of Z*-points and

the fact that between any two successive Z*-points a distance grea-

ter than zero always exists, to traverse two successive Z*-points

z∗(n+1)∗, z
∗
n∗, whatsoever they be, means to traverse a distance grea-

ter than zero:

z∗n∗ − z∗(n+1)∗ > 0,∀n ∈ N (4)

In consequence, to traverse ℵo of such successive Z*-points in the

same direction means to traverse a distance greater than zero. And

to traverse a distance greater than zero at the finite velocity v of

P means the traversal has to last a time greater than zero.

P534 Although it is impossible to calculate neither the exact du-

ration of the transition P ∗(0) → P ∗(ℵo) nor the distance P must

traverse while performing such a transition (there is neither a first

instant nor a first point at which the transition begins), we have

proved in P533 that, indeterminable as they might be, that dura-

tion and that distance must be greater than zero. It will now be

proved they cannot be greater than zero.

P535 Let d be any real number greater than zero and consider the

real interval (0, d). According to the ω∗-dichotomy (533), at any

point x within (0, d) our point-particle P have already traversed

aleph-null Z*-points. In consequence the distance P must traverse

while performing the transition P ∗(0)→ P ∗(ℵo) is less than d. And

since d is any real number greater than zero, we must conclude the

distance P must traverse while performing the transition P ∗(0)→
P ∗(ℵo) is less than any real number greater than zero.

P536 So then, according to P533, the distance P must traverse

while performing the transition P ∗(0) → P ∗(ℵo) is greater than

zero. And according to P535 that distance must be less than any

number greater than zero. But there is no real number greater

than zero and less than any real number greater than zero. So, it

is impossible for the distance P must traverse while performing
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the transition P ∗(0)→ P ∗(ℵo) to be greater than zero. The same

conclusion, and for the same reasons, applies to the time elapsed

while performing the transition P ∗(0)→ P ∗(ℵo).

P537 In line with P533 and P535, the point particle P needs to

traverse a distance greater than zero for a time greater than zero

to perform the transition P ∗(0) → P ∗(ℵo), but neither that dis-

tance nor that time can be greater than zero. Note this is not a

question of indeterminacy but of impossibility. If it were a ques-

tion of indeterminacy there would exist a nonempty set of possible

solutions, although we could not determine which of them is the

correct one. In our case the set of possible solutions is the empty

set, because the set of the real numbers greater than zero and less

than any real number greater than zero is the empty set.

P538 In short:

A) According to the actual infinity hypothesis, the transition

P ∗(0)→ P ∗(ℵo) takes place.
B) The transition P ∗(0) → P ∗(ℵo) can only take place along

a distance and a time greater than zero, because of the ω∗-

discontinuity and to the distance greater than zero that P

must traverse at its finite velocity v.

C) The transition P ∗(0) → P ∗(ℵo) cannot take place along a

distance and a time greater than zero, because of the ω∗-

dichotomy, and because no real number greater than zero is

less than all real numbers greater than zero.

D) Zeno’s Dichotomy II is, therefore, a contradiction derived

from ω∗-order.

Zeno’s Dichotomy I

P539 We will now examine the way P traverses the Z-points

between the point 0 and the point 1. Being Z(t) the number of

Z-points to be traversed by P at the precise instant t in [t0, t1],

that number can only take two values: ℵo and 0. In fact, assume

that at any instant t within [t0, t1] the number of Z-points to be

traversed by P is a finite number n > 0. This would imply the
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impossible existence of the last n points of an ω-ordered sequence

of points. Thus, we have a new dichotomy:

∀t ∈ [t0, t1]

{
t < t1 : Z(t) = ℵo
t = t1 : Z(t) = 0

(5)

Therefore, no instant t exists at which Z(t) = n, whatever be

the finite number n. Notice Z(t) is well defined in the whole in-

terval [t0, t1]. Thus, equation (5) expresses a new dichotomy, ω-

dichotomy: Z(t) can only take two values: ℵo and 0.

P540 In accord with P539 and regarding the number of Z-points

to be traversed, P can only have two successive states: the state

P (ℵo) at which that number is ℵo, and the state P (0) at which

that number is 0. The number of Z-points to be traversed by P

decreases directly from ℵo to 0, without finite intermediate states

at which it has to traverse only a finite number of Z-points.

P541 Taking into account the ω-discontinuity of Z-points and the

fact that between any two successive Z-points a distance grea-

ter than zero always exists, to traverse two successive Z-points,

whatsoever they be, means to traverse a distance greater than ze-

ro:

zn+1 − zn > 0,∀n ∈ N (6)

In consequence, to traverse ℵo of such successive Z-points in the

same direction means to traverse a distance greater than zero. And

to traverse a distance greater than zero at the finite velocity v of

P means the traversal has to last a time greater than zero.

P542 Although it is impossible to calculate neither the exact du-

ration of the transition P (ℵo) → P (0) nor the distance P must

traverse while performing such a transition (there is neither a last

instant nor a last point at which the transition ends), we have pro-

ved in P541 that, indeterminable as they might be, that duration

and that distance must be greater than zero. It will now be proved
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they cannot be greater than zero.

P543 Let τ be any real number greater than zero, and consider

the real interval (0, τ). According to the ω-dichotomy (5), for any

instant t within (0, τ) the number of Z-points that P must still

traverse at the instant t1 − t is ℵo. In consequence, the time P

needs to perform the transition P (ℵo)→ P (0) is less than τ . And

since τ is any real number greater than zero, we must conclude the

time P needs to perform the transition P (ℵo)→ P (0) is less than

any real number greater than zero.

P544 So then, according to P541, the time P needs to perform

the transition P (ℵo) → P (0) is greater than zero. And according

to P543 that time must be less than any real number greater than

zero. But there is no real number greater than zero and less than

any real number greater than zero. So, it is impossible for the

transition P (ℵo) → P (0) to last a time greater than zero. The

same conclusion, and for the same reasons, applies to the distance

P must traverse while performing the transition P (ℵo)→ P (0).

P545 In line with P541 and P543, P needs to traverse a distan-

ce greater than zero for a time greater than zero to perform the

transition P (ℵo)→ P (0), but neither that distance nor that time

can be greater than zero. Note this is not a question of indeter-

minacy but of impossibility. If it were a question of indeterminacy

there would exist a nonempty set of possible solutions, although we

could not determine which of them is the correct one. In our case

the set of possible solutions is the empty set because the set the

of real numbers greater than zero and less than any real number

greater than zero is, in fact, the empty set.

P546 In short:

A) According to the actual infinity hypothesis, the transition

P (ℵo)→ P (0) takes place.

B) The transition P (ℵo) → P (0) can only take place along a

distance and a time greater than zero, because of the ω-

discontinuity and of the distance greater than zero P must



Conclusion 275

traverse at its finite velocity v.

C) The transition P (ℵo) → P (0) cannot take place along a

distance and a time greater than zero because of the ω-

dichotomy, and because no real number greater than zero

is less than all real numbers greater than zero.

D) Zeno’s Dichotomy I is, therefore, a contradiction derived from

ω-order.

Conclusion

P547 According to the hypothesis of the actual infinity, the set of

Z-points and the set of Z*-points do exist as complete totalities.

Therefore the transitions P ∗(0)→ P ∗(ℵo) and P (ℵo)→ P (0) take

place while P moves from the point 0 to the point 1. Now then,

the transitions P ∗(0) → P ∗(ℵo) and P (ℵo) → P (0) can only take

place along a distance and a time greater than zero. The problem

is that they cannot take place along a distance and a time greater

than zero because that time and that distance is less than any real

number greater than zero, and no real number greater than zero

and less than any real number greater than zero do exist.

P548 The above contradictions are direct consequences of assu-

ming that ω-ordered and ω∗-ordered sets, as the sets of Z-points

and of Z*-points, exist as complete infinite totalities, which in turn

is a consequence of assuming the existence of all finite natural num-

bers as a complete totality [47, p. 103-104], which is the hypothesis

of the actual infinity subsumed into the Axiom of Infinity in mo-

dern set theories. An hypothesis that, consequently, should be put

to the test.
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Making disappear a number

P549 As we will see in this chapter, it is possible to make disap-

pear a number from a list of numbers if the list is ω-ordered, and

the number in question successively exchanges its current position

in the list with the number in the next position in the list, while

a number in the next position in the list exists to exchange its

position. This absurdity is an inevitable consequence of assuming

that ω-ordered lists exist as complete totalities, even without a

last element completing the corresponding list. It will also be pro-

ved these conflicting disappearances do not happen in potentially

infinite lists.

Figura 29.1 – 〈E1,i〉 exchanges through the ω-ordered list of the na-
tural numbers.

P550 Consider the ω-ordered list of all natural numbers: N =

1, 2, 3, . . . , and let 〈ri〉 be the ω-ordered sequence of the rows of

a table T such that ri = i,∀i ∈ N. Assume now we exchange the

number 1 with the number 2; and then the number 1 with the
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number 3; and then the number 1 with the number 4; and so on

(Figure 29.1). In symbols:

E1,n

{
rn = n+ 1

rn+1 = 1
n = 1, 2, 3, . . . (1)

where E1,n represents the exchange between the number 1 in the

row rn of T and the number n + 1 in the row rn+1 of T . The

purpose of the next discussion is to examine the destination of the

number 1 once all possible exchanges 〈E1,i〉 defined by (1) have

been carried out (Principle of Execution P25).

P551 It is immediate to prove that for each natural number v the

first v exchanges 〈E1,i〉i=1,2...v can be carried out. In fact, it is clear

E1,1 can be carried out because it places the number 1 in r2 and

the number 2 in r1. Assume that, being n any natural number, the

first n exchanges 〈E1,i〉i=1,2...n can be performed. Once performed,

the number 1 will be placed in rn+1 and the number n+1 in rn.

Consequently, E1,n+1 can also be performed because it places 1 in

rn+2 and the number n+ 2 in rn+1. Thus, E1,1 can be performed,

and if for any natural number n the first n exchanges 〈E1,i〉i=1,2...n

can be performed, then the first 〈E1,i〉i=1,2...(n+1) exchanges can

also be performed. This inductive reasoning proves that for each

natural number v the first v exchanges 〈E1,i〉i=1...v can be carried

out. We will examine the consequences of this conclusion in the

following two sections by means of two independent arguments

Supertask argument

P552 Supertask theory assumes the possibility to perform infini-

tely many actions in a finite interval of time (see [188] for back-

ground details and Chapters 23 and 17 of this book). The short

discussion that follows analyzes this assumption by mean of a su-

pertask whose successive tasks consist just in performing the suc-

cessive exchanges 〈E1,i〉 defined by (1). As a consequence of those

successive exchanges, the number 1, originally placed in the first

row of T , will be successively placed in the 2nd, 3rd, 4th... row of

T .
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P553 Let 〈tn〉 be a strictly increasing and ω-ordered sequence of

instants within the real interval (ta, tb) whose limit is tb. Assume

each possible exchange E1,i is performed at the precise instants ti
of 〈tn〉. Being tb the limit of 〈ti〉, the one to one correspondence

between 〈ti〉 and 〈E1,i〉 defined by f(ti) = E1,i, proves that at the

instant tb all possible exchanges 〈E1,i〉 will have been carried out

(Principle of Execution P25). The problem is: in which row will be

placed the number 1 at tb?

P554 Let rv be any row of T . Since E1,v places the number 1

in the row rv+1, if the number 1 were in the row rv then the

first v exchanges 〈E1,i〉i=1,2,...v would not have been carried out,

which according to P551 is impossible. Thus, and being, rv any

row of T , we must conclude that at the instant tb the number 1

has disappeared from the table. While all numbers greater than

1 remain in T , each number n > 1 in rn−1, the number 1 has

magically disappeared from T .

P555 It is worth noting the conclusion on the disappearance of the

number 1 has not been deduced from the successively performed

exchanges 〈E1,i〉. We have simply proved that once all possible

exchanges 〈E1,i〉 have been carried out (Principle of Execution

P25), the number 1 cannot be in any row of T , otherwise it would

have to be in a certain row rv, whatsoever it be, and then the first

v exchanges 〈E1,i〉i=1,2,...v would not have been carried out, which

goes against P551.

P556 And note again, the above conclusion is not a question of

indeterminacy regarding the row of T occupied by the number

1 once all possible exchanges 〈E1,i〉 have bee carried out, it is a

question of an actual disappearance: once all possible exchanges

〈E1,i〉 have been carried out (Principle of Execution P25), the set

of possible rows of T where the number 1 could be is just the empty

set. In line with other arguments in this book, it is immediate the

number 1 disappear from T just at tb, an instant at which the

number 1 is no longer exchanged. This is, in fact, infinitist magic.

The problem is that magic is not compatible with formal sciences.
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Modus Tollens argument

P557 Consider the following two propositions regarding the execu-

tion of all possible exchanges 〈E1,i〉:
p: Once performed all possible exchanges 〈E1,i〉, the number 1

remains in T .

q: Once performed all possible exchanges 〈E1,i〉, the number 1

is in a certain row rv of T .

It is quite clear that p ⇒ q because if once performed all possible

exchanges 〈E1,i〉 the number 1 remains in T , then it must be in

one of its rows rv, whatever it be.

P558 We will prove now q is false. Let rv be any row of T . If once

performed all possible exchanges 〈E1,i〉 the number 1 is in rv then

E1,v has not been carried out. But this is false because:

1) The index v in E1,v is a natural number.

2) According to P551, for each natural number v, it is possible

to carry out the first v exchanges 〈E1,i〉i=1,2...v.

3) All possible exchanges 〈E1,i〉 have been carried out.

4) At least the first v exchanges 〈E1,i〉i=1,2...v(1) have been carried

out.

5) E1,v placed the number 1 in rv+1.

In consequence the number 1 is not in rv. Therefore, and being rv
any row, we must conclude q is false.

P559 Therefore, we can write:

p⇒ q (2)

¬q (3)

————
∴ ¬p (4)

which means that once performed all possible exchanges 〈E1,i〉
(Principle of Execution P25), the number 1 is no longer in the

table T .
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P560 Evidently, the above arguments on the disappearance of the

number 1 could be applied to any other number of T . Moreover, it

could be applied simultaneously to any number of numbers of T .

For example, all odd (or even) numbers can disappear simultaneo-

usly from T by a sequence of exchanges similar to the above one.

The reader will certainly be able to define it.

The potential infinity alternative

P561 We will end this chapter by analyzing the problem of 〈E1,i〉
exchanges from the point of view of the potential infinity. From this

point of view only finite totalities make sense, as large as wished

but always finite. Consider, then, any finite number n and the table

Tn of the first n natural numbers. 〈E1,i〉 will be now defined by:

E1,i

{
ri = i+ 1

ri+1 = 1
i = 1, 2, 3, . . . n− 1 (5)

and then, only a finite number n−1 of exchanges 〈E1,i〉i=1,2,...(n−1)

can be carried out, at the end of which the number 1 will be placed

in the last row rn of Tn.

P562 Thus, for any given natural number n the exchanges (5)

in Tn are consistent. Only when they take place in the assumed

complete lists T of all natural numbers they become inconsistent.

In symbols:

E1,i

{
ri = i+ 1

ri+1 = 1
i = 1, 2, 3, . . . n− 1 (6)

is consistent for all n ∈ N, while:

E1,i

{
ri = i+ 1

ri+1 = 1
i = 1, 2, 3, . . . (7)

is inconsistent.
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30 An inconsistent table of natural numbers

Theorem of the nth Digit

P563 This chapter proves the existence of a class of natural num-

bers that can be used to reorder the rows of a table that contains

all natural numbers in such a way that all of its rows become a

particular type of row. The existence of such a reordering con-

tradicts the fact that infinitely many rows of the table can never

become such a particular type of row. The corresponding proofs

are so elementary and simple that only foundational elements of

set theory can be involved in the contradiction.

P564 Let N be the ω-ordered set of all natural numbers and ex-

pressed in the decimal numeral system. It is immediate to prove

the following:

a)Theorem P564, of the nth Digit.-For any given digit and any

given position in the numerical expression of the elements of

the set N, there is at least a denumerable subset of N, each

of whose elements has the same given digit in the same given

position of its numerical expression.

Proof.-Let d be any digit (numeral, figure or cipher) of the de-

cimal numeral system, m any natural number, and n any ele-

ment of N whosemth digit is just d, for instance n = 1(m−1). . . 1d.

From n it is possible to define different sequences of different

elements of N, all of them with the same digit d in the sa-

me mth position of its numerical expression. For example the

sequence 〈ni〉:
n1 = 1(m−1). . . 1d1 (1)

n2 = 1(m−1). . . 1d11 (2)
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n3 = 1(m−1). . . 1d111 (3)

n4 = 1(m−1). . . 1d1111 (4)

. . .

The one to one correspondence f between the ω-ordered set

N and 〈ni〉 defined by f(i) = ni, ∀i ∈ N, proves 〈ni〉 is

denumerable. �

d-Modular Rows and d-Exchanges

P565 Let T be a table whose successive rows 〈ri〉 are the successive
elements 〈i〉 of N. A row ri of T will be said n-modular iff it has

at least n digits and its nth digit is n(mod 10). This means that a

row is, for instance, 6767-modular if its 6767th digit is 7; or that

it is 3333330-modular if its 3333330th digit is 0. If a row rn is

n-modular (being n in n-modular the same number as n in rn) it

will be said d-modular. Consider now the following permutation

D of the rows 〈ri〉 of T . For each successive row ri of T :

• If ri is d-modular then let it unchanged.

• If ri is not d-modular then exchange it with any following

i-modular row rj, j>i, provided that at least one of the rows

rj, j>i succeeding ri be i-modular. Otherwise let it unchan-

ged.

where to exchange two rows ri and rj means to interchange their

respective numerical contents, i.e to place the number in rj in ri,

and the number in ri in rj. The exchange of a non-d-modular row

ri with a following i-modular row rj, j>i will be referred to as d-

exchange. Thanks to the condition j > i (in rj, j>i), once a row

ri has been d-exchanged, it becomes d-modular and will remain

d-modular and unaffected by the subsequent d-exchanges.

P566 Regarding the possibility of being i-modular, it is immediate

to prove the following:

a)Theorem P566, of the non-i-Modular Numbers There is an

infinite number of natural numbers, each one of whose succes-

sive digits ci is different from i(mod 10).
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Proof Consider, for instance, the sequence 〈si〉:

s1 = 21 (5)

s2 = 2121 (6)

s3 = 212121 (7)

s4 = 21212121 (8)

. . .

The one to one correspondence f between N and 〈si〉 defined
by f(i) = si proves it is denumerable. And it is impossible for

each of its elements to have a ith digit di equal to i(mod 10).

�

P567 Though procedures and proofs of infinitely many steps are

accepted and usual in infinitist mathematics, D could even be

considered as an ω-ordered supertask [230, 134]. Indeed, let 〈tn〉
be an ω-ordered and convergent sequence of instants within a finite

interval of time (ta, tb), being tb the limit of the sequence. Assume

that D is applied to each row ri just at the precise instant ti. The

bijection f(ti) = ri proves that at tb the permutation D will have

been applied to every row of T .

P568 Let then Td the table resulting from applying D to T . It is

immediate to prove that:

a)Theorem P568a All rows of Td are d-modular.

Proof.-Assume there is in Td a row rn that is not d-modular.

This implies rn is not n-modular and could not be d-exchanged

with a succeeding n-modular row. Since n is finite and all n-

modular rows have the same digit n(mod 10) in the same nth

position of its numerical expression, rn will be preceded by at

most a finite number n − 1 of n-modular rows and succeeded

by an infinite number of n-modular rows (Theorem P564 of

the nth Digit), one of which had to be exchanged with rn. So,

it is impossible for the row rn of Td not to be d-modular. �

b)Theorem P568b Not all rows of Td are d-modular.
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Proof.-Let n be any of the natural numbers none of whose ith

digit is i(mod 10) (Theorem P566). Since permutation D does

not remove rows from T , the number n will be a row rv of

Td. But rv cannot be d-modular, otherwise the vth digit of n

would be v(mod 10), which is not the case. �

Discussion

P569 The elementariness and simplicity of the above argument

suggest that its contradictory conclusions could only be solved by

refining some of the foundational elements of set theory, such as

the hypothesis of the actual infinity subsumed into the Axiom of

Infinity. Indeed, it is that hypothesis that legitimizes the existence

of any infinite collection as a complete totality, even not having

a last element completing the collection [134], as is the case of

the above ω-ordered list T of all natural numbers. It is also that

hypothesis that makes it possible the Theorem P564, of the nth

Digit, and then that each row rn of T be preceded by a finite

number of n-modular rows and succeeded by an infinite number

of such n-modular rows, which in turn makes it possible the above

argument. An argument that would be impossible, for instance,

under the hypothesis of the potential infinity.
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The unary numeral system

P570 A numeral is not a number but the symbol we use to repre-

sent a number. Thus, the numeral “5” is the symbol for the number

5 in the usual decimal numeral system. Perhaps the most primiti-

ve way to represent numbers [245] is what we now call the unary

numeral system (UNS). As its name suggests, only one numeral

is needed to represent any natural number. Here we will use the

numeral “1”. The successive natural numbers will then be written

as: 1, 11, 111, 1111, 11111, 111111, . . .

P571 Although, for obvious reasons, the UNS is not the most

appropriate for complex arithmetic calculations, it is the system

that best represents the essential nature of the natural numbers:

each natural number is exactly one unit greater than its immediate

predecessor, and then the unary expression of each natural number

has exactly one numeral more than the unary expression of its

immediate predecessor. In addition, the UNS suggests a recursive

arithmetic definition of the natural numbers: starting from the first

of them, the number 1, add one unit to define the next one.

P572 The result of defining the successive natural numbers (all of

them finite) by adding one unit to the first natural number, and

then to the successive numbers resulting from each of the infinitely

many successive additions, is not an infinite number but an infini-

tude of finite numbers, each one unit greater than its immediate

predecessor. In conformity with the hypothesis of the actual infi-

nity, all these infinitely many finite natural numbers exist as a com-

plete totality. Or in terms of the UNS, according to the infinitist

orthodoxy it is possible to define infinitely many finite strings of
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1s, each with one numeral 1 more than its immediate predecessor,

without ever reaching a string with infinitely many 1s. On this be-

lief is axiomatically founded the infinitist paradise. The Axiom of

Infinity say, basically, the same: ∃N(∅ ∈ N∧∀x ∈ N(x∪{x} ∈ N))

(Chapter 4).

P573 Let us put to the test the above hypothesis on the existence

of an actual infinitude of finite numbers, each one unit greater

than its immediate predecessor. For this, consider a special unary

writing machine (UWM) capable of writing horizontal strings of 1s

of any finite length. Now let UWM work according to the following

conditions:

a) On an empty tape, and at each of the successive instants ti,

and only at them, of an ω-ordered sequence of instants 〈ti〉 in
the real interval (ta, tb) whose limit is tb, UWM writes a first

numeral 1, or a numeral 1 on the right side of the last numeral

1 written by UWM. At instant tb, UWM writes nothing and

stops.

Figura 31.1 – The unary writing machine on the point of writing the
fifth numeral, i.e. the number 5 in the unary numeral system.

P574 From the supposed existence of the sequence of the natural

numbers as a complete totality (hypothesis of the actual infinity

subsumed into the Axiom of Infinity) and from the functioning of

UWM, the following two theorems are immediately deduced:

a)Theorem P574a: At tb, the string S1 written by UWM is finite.

Proof.-Let t be any instant in the interval (ta, tb). It holds:

∃v ∈ N : tv < t < tv+1. Therefore, at the instant t, the string

S1 has a finite number v of 1s. So then, and being t any instant

of (ta, tb), the string S1 is finite in the whole interval (ta, tb).
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Alternatively, if T is the set of all instants of (ta, tb) at which

UWM has written only a finite string of 1s, the complementary

set T of T in (ta, tb) is the empty set. And considering that at

tb no numeral is written, S1 can only be finite. �

b)Theorem P574b : At tb, the string S1written by UWM is not

finite.

Proof n.-Let n be any natural number. If S1 were a finite string

of n numerals 1, UME would not have written the correspon-

ding numeral 1 at each of the successive instants tn+1, tn+2,

tn+2 . . . of 〈ti〉, what is not the case. So then, at tb the string

S1 is not finite. �

P575 Again a contradiction, and behind it the same cause: the

actual infinity hypothesis. The belief that the infinite collections

exist as complete totalities.

The unary table of the natural numbers

P576 Consider now the following ω-ordered table U of the natural

numbers written in the UNS:

Row r1: 1 (1)

Row r2: 11 (2)

Row r3: 111 (3)

Row r4: 1111 (4)

Row r5: 11111 (5)

. . . (6)

The nth row of U , symbolically rn, corresponds to the unary re-

presentation of the natural number n, which consists of a string

of exactly n numerals “1”. According to the hypothesis of the ac-

tual infinity, the infinitely many rows of U , one for each natural

number, do exist all at once, as a complete totality.

P577 The number of rows of U is the same as the number of

the natural numbers, i.e. ℵo, the cardinal of the set of the natural
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numbers. According to the infinitist orthodoxy, ℵo is the smallest

infinite cardinal, the smallest number greater than all finite natural

numbers (see Chapters 4 and 19 on the actual infinity and aleph

null respectively).

P578 The first column of U has ℵo elements, one for each row,

one for each natural number. Since each element of this column

belongs to a different row and no other column has more elements

than this first column (it could easily be proved that each column

of U has ℵo elements), we can say this first column defines the

number of rows of U , in the sense that the first element of each

row is a different element of this first column, and then a one to

one correspondence f between the rows 〈ri〉 of U and the elements

〈c1i〉 of its first column can be defined:

f(ri) = c1i, ∀ri ∈ T (7)

However, while the number of rows of U is completely defined by

the number of 1s of its first column, the number of its columns is

highly problematic, as we will immediately see.

P579 Being each row rn composed of exactly n numerals “1”, and

being each of those numerals an element of a different column, that

row ensures the existence of at least n columns in U . It is in this

sense that we will say that rn defines exactly n columns:

r1 = 1 (r1 defines 1 column) (8)

r2 = 11 (r2 defines 2 columns) (9)

r3 = 111 (r3 defines 3 columns) (10)

r4 = 1111 (r4 defines 4 columns) (11)

. . . (12)

rn = 111 n. . .111 (rn defines n columns) (13)

. . . (14)

P580 Let’s begin by proving the number of columns of the table U
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cannot be finite. In effect, let n be any natural number. U cannot

have n columns because in that case the number n+ 1 would not

belong to the table: the unary representation of that number is a

string of n+1 numerals “1” and then a row of U that defines n+1

columns. Thus, whatsoever be the finite number n, U cannot have

n columns.

P581 And now we will prove the number of columns of U can-

not be infinite either. Since each row is the unary expression of

a natural number and all natural numbers are finite, each row rn
consists of a finite string of n numerals “1”. So, every row of U

defines a finite number of columns. Or in other words, since no

natural number is infinite, no row defines infinitely many columns.

But if no row defines an infinite number of columns, U cannot have

an infinite number of columns, unless the number of its columns is

defined not by one row but by a certain number of rows. We will

examine now this possibility.

P582 Assume the infinite number of columns (C from now on) of

the table U is not defined by a particular row but by a group of

rows, even by the whole table. Evidently, if a group of rows (or the

whole table) is needed in order to define C, then at least two rows

of the group will contribute together to the definition of C. Where

contribute together means that each row defines certain columns

that the other does not and vice versa.

P583 Let rk and rn be any two of those contributing rows. If rk
and rn contribute together to define C, then rk will define certain

columns that rn does not, and vice versa. Otherwise only one of

them would be necessary in order to define C.

P584 Now then, since k and n are natural numbers we will have

either k < n or k > n. Assume k < n, in this case rk defines the

firsts k columns of U and rn the firsts n columns of U . In con-

sequence, although rn defines (n − k) columns that rk does not,

all columns defined by rk are also defined by rn. This proves the

impossibility that any two different rows of a group of rows (inclu-
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ding the whole table) contribute together to define C. Therefore,

the number of rows of U cannot be infinite.

P585 And things can get worse with respect to the definition of

C. In effect, let 〈tn〉 be any ω-ordered strictly increasing sequence

of instants within the real interval (ta, tb) whose limit is tb and

consider the following conditional supertask:

a)Supertask P585.-At each instant ti of 〈tn〉 remove from U the row

ri if, and only if, the remaining rows define the same number

of columns of U as if ri were not removed. Otherwise end the

supertask.

P586 In any case, at the instant tb supertask P585 would ha-

ve been performed and we will have the following two mutually

exclusive alternatives:

1) At tb not all rows have been removed.

2) At tb all rows have been removed.

In accord with the first alternative, and taking into account the

successive way the rows have been removed, there will be a first

row rn that was not removed because its removal would have chan-

ged the number of columns of U . But this is impossible because

all columns defined by rn are also defined by the next row rn+1.

The first alternative is then false. We must therefore conclude the

second alternative is true, which means U has the same number of

columns as an empty table! A new consequence of being complete

and incompletable as the list of the natural numbers is assumed

to be from the perspective of the actual infinity hypothesis.

P587 While, in accordance with the hypothesis of the actual infi-

nity subsumed into the Axiom of Infinity, U is a complete and well

defined totality composed of infinitely many rows, the argument

[P580-P585] proves the number of its columns cannot be finite or

infinite. Consequently, the unary table U of all natural numbers is

inconsistent. An inconsistency that does not arise on the hypothe-

sis of the potential infinity: for any natural number n, the unary
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table Un of the first n natural numbers has exactly n rows and n

columns.
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32 Physics and Supertasks

Introduction

P588 In the last years of the 20th century and the first years

of the 21st, the arguments on supertasks have been extended to

the physical world. And not only to explore the possibilities that

supertasks could actually be carried out in the physical world, but

also, and inversely, to discover new characteristics of the physi-

cal world from supertasks. As expected, the supposed practical

execution of supertasks would impose on the physical world an

anomalous and implausible phenomenology never observed before.

But infinitism is willing to accept any anomalous phenomenology

before questioning the formal consistency of the actual infinity hy-

pothesis involved in such anomalies. In this chapter two supertasks

are analyzed, the one in the framework of classical mechanics and

the other in that of special relativity. The first is the emblematic

“beautiful supertask”. The second proposes to solve the Goldbach

conjecture by analyzing one by one all even natural numbers taking

advantage of the relativistic dilation of time.

A Newtonian supertask

P589 In 1996 J. P. Laraudogoitia published a short article entitled

A beautiful Supertask. Example of Indeterminism in Classical Me-

chanics, a paradigm of the class of supertasks in which physical

laws get involved [184]. The physical foundation of the beautiful

supertask (BS hereafter) is the elastic collision. As it is well known,

classical mechanics states that in this kind of collisions the linear

momentum (the product of mass and velocity: m× v) and the ki-

netic energy (half the product of mass and the square of velocity:

1/2×m× v2) are conserved. If an object of mass m moving with

295
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a uniform velocity v meets another object at rest and with the

same mass m, both object are said to collide elastically if after

the collision the object that was at rest inherits the motion from

the one that was moving and the one that was moving inherits

the rest state from the one that was at rest. There is therefore an

exchange of roles in elastic collisions. This simple mechanical basis

is the fundament of BS. Only that instead of one elastic collision

there will be an ω-ordered sequence of elastic collisions. Although

the ω-order does not appear in the original argument.

Figura 32.1 – Elastic collision of two particles: the linear momentum
and the kinetic energy are preserved (in the case represented the two
particles have the same mass).

P590 Let us consider, as Laraudogoitia did, an ω-ordered set of

point particles 〈pi〉, all of them with the same massm, each particle

pi at rest at the point xi = 1/2i of an ω-ordered sequence of points

〈xi〉 of the X axis of a coordinate system in R3. The set of particles

〈pi〉 is completed with another additional point particle, po, to the

right of the previous ones and with the same mass m as them, but

in this case moving along the common straight line X to the left

with a uniform velocity v parallel to X (Figure 32.2). Naturally,

the above set of particles (L system from now on) could not exist in

our physical universe if they were elementary particles of ordinary

matter because the known universe has a finite number of such

particles, in the order of 2× 1080.

P591 Suppose that po collides elastically with p1 at the instant

t1. As a consequence of this elastic collision, po remains at rest at

the point x1 and p1 inherits the rectilinear and uniform motion of
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Figura 32.2 – The beautiful supertask about to begin.

po, moving then to the left with the velocity v inherited from po.

Now it will be p1 that ends up suffering an elastic collision with

p2. As a consequence of this new collision, p1 remains at rest in

x2 while p2 inherits the motion of p1. The motion of p2 towards

p3 ends up in a new elastic collision as a consequence of which p2
remains at rest in x3 and p3 inherits the motion of p2. It is obvious

how this story continues: each particle pi at rest in xi inherits the

motion of its predecessor pi−1, which in turn inherits the rest state

of pi in xi. Thus, each pi particle moves from its original position

xi to the next one xi+1. Although we will not do it here, it is easy

to calculate the instant ti in which the particle pi collides with

its neighbor pi+1. It is also easy to calculate the first instant tb
at which all particles have already collided (tb = 1/2v). Supertask

BS is the infinite sequence of elastic collisions just described.

P592 Before beginning the discussion on BS, a minor problem

will be addressed related to the fact that while the sequences 〈pi〉
and 〈xi〉 are ω-ordered by their corresponding sequences of indexes:

the natural number in their natural order of precedence (Theorem

P80a, of the Indexed Sets), the points of the real straight line X

are densely ordered. Indeed, BS assumes that each particle pi is at

rest at the point xi where it collides with the moving particle pi−1,

its immediate predecessor in 〈pi〉. Now then, the collision cannot

take place in the point xi, otherwise both particles would be in

the same point xi at the same instant ti, and this would not be

an elastic collision but a physical interpenetration. The problem

here is that the real line is densely ordered, so that between any

two different points infinitely many other different points do exist.

There is not a point x in X immediately preceding the point xi
where pi is placed. That is to say, there is no point x in the X axis

occupied by the particle pi−1 at the instant ti at which it collides
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with pi. Or in other more general terms: there is no couple of

points (xi, x) in the X axis at which the couple of point particles

(pi, pi−1) can collide, because whatsoever be x, infinitely many

different points exist between x and xi, which makes impossible

for the two point particles to collide. In these conditions, two point

particles can interpenetrate each other but not elastically collide.

The continuum of the real line is not the right scenario for an

elastic collision of two point particles.

P593 Going back to BS, at the instant tb, once BS has been

completed, the particle po will be at rest in x1 and each particle

pi of 〈pi〉 will be at rest in xi+1. And since there is not a last

particle in the ω-ordered system of particles L, there will not be

a last collision either, or a last particle moving indefinitely to the

left. At the instant tb, all particles of the system L of particles

will be at rest. And since there is not a last particle inheriting the

linear momentum and the kinetic energy of the initial particle po,

then either the basic laws of physics are violated (conservation of

energy and linear momentum), or it is necessary to appeal to an

ad hoc energy dissipation that justifies the ω-order causing this

mechanical anomaly. Naturally, in a finite system of particles the

story would end without the need for anomalous dissipations, with

the last particle on the left moving indefinitely to the left with the

velocity v inherited from the particle po through pn−1, pn−2 . . . , p1.

And this holds for any finite number n of particles. Only when the

number of particles is infinite appears the anomalous dissipation

of momentum and kinetic energy.

P594 The supertask BS has an epilogue based on the symmetry

with respect to time of Newton laws of mechanics: it would be

possible that a system of particles like the previous one, being at

rest all its particles, spontaneously self-excite so that each particle

in the position xi+1 moves to the position xi and the particle po
initiates a motion of uniform velocity v parallel to the axis X and

from left to right. This would be the self-exited supertask SS.

P595 The publication of BS was followed by a certain discussion
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and by other similar publications [184, 185, 186, 82, 5, 187, 175,

6, 7, 189, etc.]. But it was not even considered the possibility that

the anomalous dissipation and self-excitation were the product of

the inconsistency of the ω-order (and therefore of the actual infi-

nity) involved in the sequence 〈pi〉: the infinitely many particles of

〈pi〉 exist as a complete totality despite the fact that no last par-

ticle completes the sequence. There is no physical reason for the

anomalous dissipation that must follow BS. The only reason is to

avoid the infinitist catastrophe that would imply the existence of

a last particle in the ω-ordered sequence of particles 〈pi〉; the exis-
tence of a last inheritor of the linear momentum and the kinetic

energy of po. It is the non-existence of a last particle in a ω-ordered

system of particles that imposes the anomalous dissipation. Either

anomalous dissipation or inconsistency of the ω-order. Infinitism

does not hesitate to choose the dissipation of energy, however ano-

malous it may be. Which naturally complicates in an unnecessary

way the understanding of the world.

P596 Let us consider again the system L of particles, but now

with po moving along the negative side of the X axis, towards the

particles 〈pi〉 placed as before. Let us suppose that po moves in this

case from left to right with the same uniform velocity v as before,

although in the opposite direction, and in such a way that it is at

the point x = −1 of the X axis at the instant t∗. At the instant

t1 = t∗ + 1/v it will be in the point 0, the origin O of the X axis,

to the point of encountering the particles 〈pi〉.

P597 But the encounter will never take place. If the elastic colli-

sion of po with some particle of 〈pi〉 would take place, the particle

po would remain stopped at a certain point xv of (0, 1/2), since

at the point 0 there is no particle of 〈pi〉 (0 is the limit of the se-

quence 〈xi〉, not a point of the sequence). Taking into account that

between the point 0 and the point xv, whatever be xv, there are

infinitely many points of 〈xi〉 in each of which there is a particle

of 〈pi〉, the particle po had to be stopped before xv. Therefore, the

moving particle po cannot be stopped at any point xv, whatever

it is, because it would have to be stopped before that xv. An una-
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voidable consequence of the ω-asymmetry: every point xv of 〈xi〉
and every particle pv of 〈pi〉 has a finite number v of predecessors

and an infinite number ℵo of successors. So, there is not a last

point of 〈xi〉 or a last particle of 〈pi〉. And since the only point of

(0, 1/2) before all points of 〈xi〉 is the point 0, and no particle of

〈pi〉 is placed in the point 0, the particle po would pass through

all particles of 〈pi〉 without colliding with any of them, which is

impossible because all of them are particles with a mass greater

than zero, and all of them are placed in the trajectory of po. This

would be the ghostly supertask GS.

P598 HS and its formal sequels SS and GS would be proving

the inconsistency of ω-order, and then the inconsistency of the

hypothesis of the actual infinity from which that ω-order is deduced

[47, p. 158, Theorem §14 I].

A relativistic supertask

P599 The first physical requirement of a supertask is the infinite

divisibility of time: an infinite number of successive instants are

necessary in order to execute the successive tasks of a supertask.

We know that matter, energy, and electric and non-electric charges

are discrete, quantified, and not infinitely divisible. With respect

to space-time we do not have the same certainty. It would be more

aesthetic if it were also discrete, at least because of its intimate

relationships with the rest of the physical entities, which are. Ho-

wever, the dominant idea throughout the 20th century has been

that of a space-time continuum, a legacy of the pre-Socratic world.

P600 Since the 1920s there has been some interest in discussing

discrete and finite options for space and time (see for example

[27, 61, 94, 162, 129, 96, 19, 200, 20]). These options have become

increasingly important as serious alternatives to the continuum.

Thus, for example, the development of string theory and loop quan-

tum gravity, two important approaches to quantum gravity, require

certain doses of finiteness: the scale of strings is supposed to be

close to the Planck scale [209], and, in turn, loop quantum gravity

uses a quantum spacetime [219, 220].
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P601 Although many infinitist believe supertasks are conceptually

possible, they do not believe they were possible from the point of

view of their practical execution. Especially if they involve ex-

treme physical situations as would be the case of infinite speeds,

durations and trajectories [110, 112]. This requirement is a serious

drawback to the physical reality of supertasks. A solution is to

draw on the theory of relativity. If the time corresponds to that of

a mobile observer relative to the supertask reference frame, then

the mobile observer may perceive a finite time in performing the

supertask even though the duration of the supertask is infinite re-

lative to its proper reference frame [81]. In this type of supertasks,

known as bifurcated supertasks [81, 80, 149] two reference systems

intervene in which time flows in a very different way, so it would

be possible to match finite time intervals in one of them with in-

finite intervals in the other. This situation could occur in certain

spatial-temporal conditions (Malament-Hogarth spaces [123]) such

as those that occur around the singularity of a black hole.

P602 It would be possible, then, to arrange two research teams so

that one of them would accelerate to close enough to the speed of

light while keeping the other team always in its event horizon, so

that both teams can communicate. Time would pass in a very diffe-

rent way in both frames, a finite interval in the accelerated team’s

frame would be equivalent to an infinite interval in the other, he-

re the scientific team would have to be replaced from generation

to generation, but the successive teams could dedicate their time,

for example, to analyze one by one the successive even numbers

and check, for example, Goldbach’s conjecture (to check if every

even number greater than 2 is the sum of two prime numbers). If,

when exploring the list of even numbers, they find an exception,

they would communicate it to other team, so that this team would

know in a finite time the solution of Goldbach’s conjecture: if they

receive a signal before the expected time, the conjecture would be

false. But if the conjecture is true, the research team would have to

analyze the complete sequence of the even numbers, and in these

conditions the supertask could only be of an infinite duration
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P603 In the reference frame of a bifurcated supertask of an as-

sumed infinite duration, the interval of time would be an interval

of the real straight line with two endpoints: the instant in which

the supertask begins, and the first instant after completing the

supertask. The length of that interval can only be finite (Theorem

P335, of the Finite Segments). And if in that finite interval of ti-

me infinitely many tasks have to be performed, the division of the

interval into infinite parts, defined by the duration of each task, is

also inconsistent (Theorem P354).
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Introduction

P604 The number Pi (π) does not need presentation. Almost ever-

yone knows it is the ratio of the circumference to the diameter of

any circle. . . and many other things. It is the most ubiquitous of all

numbers, π appears in an interminable list of mathematical and

physical formula (see [172] for a short and pleasant introduction).

P605 Pi is an irrational and transcendent number, i.e. a non alge-

braic number that transcends algebraic methods, in Euler words

(cited in [172, p. 59]). In consequence its decimal expansion is in-

finite and the only way to know its successive digits is to calculate

them by means of appropriate algorithms. From an infinitist point

of view, however, the infinitely many digits of π exist, all at once,

as a finished and complete totality. From that (theo)platonic point

of view, π exists by itself independently of the human mind. This

is not the point of view of this book.

P606 Chapter 14 ended by recalling that the existence of endless

calculations does not implies the existence of the corresponding

finished results. For instance, if we divide 1 by 3 we get a rational

number with an endless decimal expansion:

1

3
= 0,333333333333333333333333333333333333 . . . (1)

and it is worth asking whether this decimal expansion exists as a

complete and finished totality (actual infinity) or as an unlimited

sequence of digits, as large as you wish but always finite (potential

infinity).

303



304 A trip through Pi

P607 In the case of π the algorithms are a little more complicated,

for instance Ramanujan’s algorithm:

1

π
=

2
√
2

9801

∞∑

n=0

(4n)!(1103 + 26390n)

(n!)43964n
(2)

Or Chudnovsky’s algorithm [55]:

1

π
= 12

∞∑

n=0

(−1)n(6n)!(13591406 + 54514034n)

(n!)3(3n)!(6403203)n+1/2
(3)

The last one has served to calculated he firsts 12.1 trillions digits

of π in October 2013 [246]. Fantastic as they may seem, these

decimal expansions are minuscule: written in ordinary text (5 mm

per digit) would occupy a distance equal to 0.033 the distance

from the Earth to the Sun. Written in the same ordinary text, a

decimal expansion of 9 ! 9 decimals (see Chapter XXX) would be

a string of digits millions of times greater than the diameter of

the observable universe (93000 millions of light-years). And 9 ! 9 is

ridiculous compared with, for instance 10 ! 100, which in turns is

ridiculous compared with 100 ! 1000 etc.

P608 However, infinitist mathematics assumes the infinitely many

decimals of π (and of any other number with an infinite decimal

expansion) do exist as a complete totality, as an ω-ordered sequen-

ce of digits in which every digit is preceded by a finite numbers

of digits and succeeded by an infinite numbers of digits, being ℵo
the cardinal of the set of all those digits. We will see now that

assumption could lead to a contradiction.

The decimal expansion of Pi

P609 Consider the expression of π in the decimal numeral system:

π = 3,141592653589793238462643383279502884 . . . (4)

Its decimal expansion .141592653. . . is an ω-ordered sequence of

digits whose ordinal is ω, the smallest of the transfinite ordinals.
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This sequence has a first digit, in this case the digit 1, but not

a last digit, and each digit has an immediate successor and an

immediate predecessor (except the first of them). In consequence

each digit is preceded by a finite number of digits and succeeded

by an infinite numbers of digits (ω-asymmetry)

P610 Let 〈pn〉 be the sequence defined by the decimal expansion

of π so that the ith term pi of 〈pn〉 is just the ith digit of the

decimal expansion of π:

p1 = 1; p2 = 4; p3 = 1; p4 = 5; p5 = 9; p6 = 2; . . . (5)

Let C be the set {0, 1, 2, 3, 4, 5, 6, 7, 8, 9} of all digits of the decimal

numeral system, and let x be a variable whose domain is the set

C.

P611 Now let us consider the following sequence 〈Dn(x)〉 of defi-
nitions of x:

Di(x) = pi, pi ∈ 〈pn〉; i = 1, 2, 3, . . . (6)

subjected to the following:

Restriction P611.-Each ith definition Di(x) of the sequence

of definitions 〈Dn(x)〉 will be carried out if, and only if, x

results defined within its domain C.

Notice that the sequences 〈pn〉 and 〈Dn(x)〉 are indexed by the

natural numbers. So, they are ω-ordered (Theorem P80a, of the

Indexed Sets). And notice also the successive definitions Di(x)

are carried out successively, following the natural ω-order of the

indexes i = 1, 2, 3, . . . .

P612 Let us now prove the following:

a)Theorem P612.-For each natural number v it is possible to per-

form the first v definitions 〈Dn(x)〉i=1,2,...v.

Proof.-Assume that there is a natural number v for which it

is impossible to perform the first v definitions 〈Dn(x)〉i=1,2,...v.
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There will be a first natural number k ≤ v for which it si im-

possible to carry out Dk(x). Now then, according to (6) we

have:

Dk(x) = pk (7)

where pk is the kth digit of the decimal expansion of π, i.e. one

of the elements of the set C of all digits of the decimal numeral

system. Consequently, Dk(x) defines x as an element of its do-

main C, and according to Restriction 611 it can be performed.

Therefore it is impossible that Dk(x) cannot be performed. So,

for each natural number v it is possible to perform the first v

definitions 〈Dn(x)〉i=1,2,...v. �

An inductive proof would also be immediate.

P613 The Principle of Invariance P19, the Principle of Execution

P25 and ω-order allow us to prove the following two theorems.

a)Theorem P613a.-Once performed all possible definitions Di(x) of

the sequence of definitions 〈Dn(x)〉, and only them, x is defined

as an element of C

Proof.-Since each and every definition Di(x) of 〈Dn(x)〉 defines
x as a decimal digit pi of the decimal expansion of π, and each

digit of that expansion is an element of C we must conclude

that each and every definition Di(x) of 〈Dn(x)〉 defines x as

an element of its domain C. So, and according to Principle of

Invariance P19, once performed all possible definitions Di(x)

of 〈Dn(x)〉 (Principle of Execution P25), and only them, x will

be defined as an element of C, whatsoever it be. �

b)Theorem P613b.-Once performed all possible definitions Di(x) of

the sequence of definitions 〈Dn(x)〉, and only them, x is not

defined as an element of C.

Proof.-Let Ch be any element of C and assume that once per-

formed all possible definitions of the sequence 〈Dn(x)〉 (Princi-
ple of Execution P25), and only them, we have x = Ch. At least

one definition Di(x) will define x as Ch. Let Dk(x) = Ch ∈ C

be any one of such definitions. Dk(x) does not leave x defined
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as Ch, in the sense that all definitions that follow Dk(x) defi-

ne x also as Ch. If that were the case the number pi would

be rational: π = 3,1415 . . . ChChCh . . . .Therefore, none of the

definitions that define x as Ch leave x defined as Ch, for any

Ch ∈ C. And since the completion of the sequence of definitions

〈Dn(x)〉 is not an additional definition (Principle of Invariance

P19) and Ch is any element of C, we must conclude that once

performed all possible definitions of the sequence of definitions

〈Dn(x)〉, and only them, x is not defined as an element of C. �

P614 Notice the conclusion on the value of x once performed all

possible definitions 〈Dn(x)〉 (Principle of Execution P25) and only

them, is not a question of indeterminacy but of impossibility: the

set of possible solutions is the empty set.

P615 The hypothesis of the actual infinity legitimizes the existen-

ce of ω-ordered lists as complete totalities without a last element

completing the lists. The decimal expansion of π is one of those

lists, and the above contradiction a simple consequence of assu-

ming its existence as a finished and complete totality.

P616 Things are quite different from the potential infinity pers-

pective, simply because from this perspective only finite totalities

make sense. The existence of never-ending procedures as that of

counting, or that of dividing 1 by 3, or π algorithms, explain the

existence of endless sequences of results. But we cannot affirm that

these endless sequences of results exist as ended totalities. We can-

not affirm that it is possible to complete the incompletable. That

possibility can only be axiomatically established.

P617 In the end, the only common property of all integer numbers

is that each one of them (n) is one unit greater than its immediate

predecessor (n − 1). As an ultimate cause, all properties of the

rational numbers come from this universal property of the integer

numbers: each rational number corresponds to a ratio (n1/n2) of

two integer numbers (n1 and n2). Algorithms more complex than
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simple a proportion originate irrational numbers like π. Although

every finite decimal expression of an irrational number corresponds

to a rational number, that is to say, to a proportion of two integer

numbers.

P618 Some properties of the real numbers can be amazing (for

some more than others) and their corresponding relations with

the aforementioned universal property of the integer numbers are

far from being evident. But all rational (and irrational?) numbers

are built on the sole basis of that universal attribute of integer

numbers, and therefore that sole basis must be the ultimate cause

of all of their properties.

P619 In the case of the real numbers it must also be considered

the existence of endless calculation algorithms that tend towards

a limit without ever reaching the limit, as is the case, for the sake

of illustration, of the well known Gregory-Leibniz series:

1− 1

3
+

1

5
− 1

7
+

1

9
− 1

11
+ · · · = π

4
(8)

According to the potential infinity hypothesis you can go as far

as you wish through those series, but you can never complete the

trip. According to the actual infinity hypothesis you can do it.

P620 In both cases, the actual and the potential infinity, the series

and the limits of the series are two different things. According to

the actual infinity hypothesis you can write:

∞∑

n=0

(−1)n
2n+ 1

=
π

4
(9)

assuming that the infinitely many summands of the series do exist

all at once as a complete totality, and that you can sum all of

them, being the result of the sum the limit of the series. On the
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contrary, from the potential infinity perspective we must write:

→∑

n=0

(−1)n
2n+ 1

→ π

4
(10)

which means we can approach the limit as much as we wish but

we will never reach the limit, and the existence of all summands

of the series as a complete totality makes no sense.
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Definitions

P621 Riemann’s Series Theorem states that it is possible to reor-

der the summands of a conditionally convergent series in such a

way that it converges to any desired number or to (positive or ne-

gative) infinity. As we will see in this chapter, the theorem only

applies if infinitely many terms are involved in the rearrangement.

In those conditions, to converge and not converge to a given num-

ber could be reinterpreted as a contradiction derived from the in-

consistency of the actual infinity.

P622 A series
∑∞

i=0 ai is conditionally convergent if it is conver-

gent but not absolutely convergent. Or in other terms if, and only

if:

a) The series converges to a finite number L:

ĺım
n→∞

∞∑

i=0

ai = L (1)

b) The series of its positive (negative) terms diverges to positive

(negative) infinite.

ĺım
n→∞

∞∑

i=0

|ai| =∞ (2)

P623 Riemann’s Series Theorem states that by the appropriate

rearrangement of its terms, any conditionally convergent series can

be made converge to any given finite number or to infinity.
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Discussion

P624 We will exclusively deal with conditionally convergent series

of real numbers that may converge to infinity or to different finite

numbers by rearrangements based on the application of the asso-

ciative, commutative and distributive properties of the elementary

arithmetic operations in the field of the real numbers.

P625 Let S =
∑∞

i=1 ai be any conditionally convergent series; v

any natural number; and Sv,O the sum of the first v summands of S

ordered in a certain way denoted by O. Let us apply one time one

of the properties associative, commutative or distributive to the

summands of Sv,O so that we get a new ordering O1 of the initial

summands. Being Sv,O1
the new sum, it will hold Sv,O1

= Sv,O,

otherwise the applied property would not be satisfied in the field

of the real numbers, which is not the case. Assume that for any

natural number n it is possible to apply n successive times the

properties associative, commutative and distributive to the sum-

mands of Sv,O to get a new ordering On of the initial summands

and so that, being Sv,On the new sum, it holds: Sv,On = Sv,O. The

properties associative, commutative or distributive can be applied

one time again to the summands of Sv,On to get a new ordering

On+1 of them, and so that Sv,On+1
= Sv,On , otherwise the applied

property would not be satisfied in the field of the real numbers,

which is not the case.

P626 From the above inductive argument P625, we conclude that

for any finite natural number n it is possible to apply n times

the properties associative, commutative and distributive to the

summands of Sv,o to get n different arrangements of the summands

while their sum is always the same.

P627 It holds, then, the following:

a)Theorem of the Consistent Reordering.-For any natural num-

ber v, the sum of first v terms of any conditionally convergent

series is always the same, irrespective of the rearrangement of

the involved summands.

We can therefore assert that only when the number of summands
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is infinite the result of the sum depends on the rearrangement of

the summands. Therefore, it is the assumed actual infinite number

of summands that made it possible Riemann’s conclusion.

P628 According to Riemann series theorem, if S is any condi-

tionally convergent series and r any real number, the sum of its

infinitely many terms is and is not equal to r, depending on the

order the terms of the series are summed. This is the type of result

one can expect if the hypothesis of the actual infinity were inconsis-

tent. Riemann’s Series Theorem could, therefore, be reinterpreted

as a proof of the inconsistency of the actual infinity hypothesis.

And that possibility, as legitimate as any other, should be expli-

citly declared in the statement of the theorem.
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35 Timetabling the infinite

Introduction

P629 Mathematics is not usually concerned with the way the infi-

nitely many successive steps of, for instance, an ω-ordered sequen-

ce of recursive definitions could be carried out. It simply assumes

they are carried out in their complete totalities (Principle of Execu-

tion P25). But the finitely or infinitely many successive steps of

any definition, procedure or proof could easily be timetabled by

any sequence of instants of the same ordinality as the sequence of

steps, and a one to one correspondence between both sequences.

Evidently, the correspondence between instants and steps has no

effect on the result of the timetabled definition or procedure. It

simply states the successive instants at which each of its successi-

ve steps could be performed. We will examine here the difference

between defining a sequence of infinitely many different objects

without a last object completing the sequence, and redefining in-

finitely many times the same object.

Recursive definitions

P630 Let 〈an〉 be any ω-ordered sequence a1, a2, a3, . . . and con-

sider the following ω-ordered sequence of recursive definitions:




A1 = {a1}

Ai = Ai−1 ∪ {ai}, i = 2, 3, 4, . . .
(1)

The result of the sequence of definitions (1) is assumed to be an

ω-ordered sequence 〈An〉 of nested sets:

A1 ⊂ A2 ⊂ A3 ⊂ . . . (2)
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which, according to the hypothesis of the actual infinity, exists as a

complete totality. Obviously, this implies to assume the infinitely

many successive steps of (1) have been completed. Notice that,

being a recursive definition, it is not possible to define all sets

〈An〉 at once. The sets of the sequence 〈An〉 have to be defined

one by one, one after the other. Simply because, except the first

one, each set is defined in terms of the previous one. Recursive

definitions indexed by well-ordered sets, as the ω-ordered set N of

the natural numbers, do have ω-ordinality (Theorem P80a, of the

Indexed Sets).

P631 Let now (ta, tb) be any finite interval of time and let 〈tn〉
be an ω-ordered and strictly increasing sequence of instants within

(ta, tb) whose limit is tb, as is the case of, for example, the classical

sequence defined by:

tn = ta + (tb − ta)×
2n − 1

2n
(3)

Definition (3) assumes time is infinitely divisible, what may, or

may not, be the case in the physical world. This is not, however,

an impediment to infinitist formal theories because they could be

assumed to be developed in a conceptual universe in which time

is arbitrarily defined as infinitely divisible (Principle of Autonomy

P23).

P632 The sequence of definitions (1) can be timetabled by the

sequence 〈tn〉 in an elementary way: by assuming that each nth

definition takes places at the precise instant tn. The one to one

correspondence f defined by:

f : 〈ti〉 ↔ 〈Ai〉 (4)

f(ti) = Ai, ∀i ∈ N (5)

proves that at tb we will have the same ω-ordered totality 〈An〉
defined in (1). Notice each successive step of definition (1) defines

a new set, and we will finally have a sequence of infinitely many



A conflicting definition 317

sets without a last set completing the sequence.

A conflicting definition

P633 Timetabling mathematical definitions composed of infini-

tely many steps reveals some significant insufficiencies on the as-

sumed completeness of the involved ω-ordered totalities. We will

now examine one of them.

P634 Let x and y be two natural variables (whose domain is the

set of the natural numbers) initially defined as x = 1, y = 1. And

consider the following ω-ordered sequences of definitions of both

variables, 〈Dn(x)〉 and 〈Dn(y)〉:

At each successive instant tn of 〈tn〉




Dn(y) = 1

Dn(x) = n
(6)

where n in tn is the same as in Dn(x) = n. Evidently y is always

defined with the same value 1, while at each successive instant tn,

x is defined with a different value, just the index n of tn. Since tb is

the limit of 〈tn〉, at tb the sequences 〈Dn(x)〉 and 〈Dn(y)〉 will have
been completed. Thus, tb is the first instant at which the variables

x and y are no longer redefined.

P635 In the first place, it will be proved that x and y remain well

defined along the whole interval [ta, tb). In fact, let t be any instant

within [ta, tb). Evidently, it holds ta ≤ t < tb. So, if ta ≤ t < t2
we will have x = 1; y = 1. And if t1 < t, there will be an index v

such that tv ≤ t < tv+1 because 〈tn〉 is an ω-ordered and strictly

increasing sequence whose limit is tb. In this case, we will have

x = v; y = 1. This proves that both variables remain well defined

along the whole interval [ta, tb).

P636 Since x and y remain well defined along the whole interval

[ta, tb) and no other definition takes place neither at tb nor after tb,

we can conclude both variables remain well defined in the whole

closed interval [ta, tb].
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P637 It is immediate to prove, however, that x is not defined at

tb. Although it was always defined as a natural number, its current

value at tb cannot be a natural number, otherwise, and taking into

account that it was successively defined as the successive natural

numbers, that number would be the impossible last natural num-

ber or, alternatively, only a finite number of definitions would have

been carried out. Notice this is not a question of indeterminacy but

of impossibility: no natural number v exists such that the value of

x at tb could be v. None. After infinitely many correct definitions

it becomes non-defined just at the precise instant tb. The problem

is that nothing happens at tb that can let x non-defined.

P638 In agreement with P636 and P637, we must conclude that,

as a consequence of having been defined infinitely many successive

times, at tb the variable x is and is not defined. A new contradiction

deduced from the same hypothesis of the actual infinity.
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Introduction

P639 This book has mainly dealt with ω-ordered collections (sets

and different types of sequences, tables, procedures and defini-

tions). From the infinitist point of view, those collections exist

as ordered complete totalities, as the ordered list of the natural

numbers. According to the infinitist orthodoxy these collections

exist as complete totalities even if no last element completes the

corresponding collection. In the precedent chapters, and from the

perspectives of set theory, transfinite arithmetics, geometry, and

supermachines-supertasks, we have examined some of the conse-

quences of assuming the infinite collections exist as complete to-

talities.

P640 Supermachines and supertasks have provided us with a new

instrument for the analysis of the actual infinity hypothesis: time.

On the one hand, timetabling an ω-ordered sequence of steps, or

of actions, of any kind, does not change the result of the sequence

or alter the formal consistency of the corresponding definitions,

proofs or procedures. And on the other, it provides a new way to

examine the consequences of completing the incompletable, most of

the times forcing the actual infinity to leave a track of its assumed

existence. And, as we have seen in this book, what it leaves are

inconsistencies. The last theorem of the next section summarizes

all those formal conflicts.

Two final theorems

P641 Along this book the words “action” and “task” have be used

in the broadest sense to refer to the successive actions performed
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in the successive steps or stages of different procedures, proofs,

arguments, definitions and supertasks. Basically, only ω-ordered

sequences were considered, and they were assumed to be carried

out at the successive instants of a strictly increasing sequence of

instants within a finite interval of time whose right endpoint is the

limit of the sequence.

P642 We will end this book by considering the same sequence

of actions we begin with: the counting of the successive natural

numbers. It is the most simple and at the same time the most

significant sequence of actions because the sequence of the natural

numbers was used by Cantor to define the first transfinite cardinal

ℵo [47, pgs. 103-104] and the first transfinite ordinal ω [47, p. 115].

P643 In agreement with the hypothesis of the actual infinity, the

ω-Ordered sequence 〈n〉 of the natural numbers do exist as a com-

plete totality in spite of the fact that no last number completes the

sequence. And the same can be said of any other ω-ordered sequen-

ce whatsoever. This is precisely the hypothesis, the completion of

incompletable, that this book has been discussing.

P644 The following two theorems summarize the results of such

a discussion. As we will immediately see, what is proved by the

first theorem is a contradiction, of which only the hypothesis of

the actual infinity subsumed into the Axiom of Infinity, may be

responsible, as the second of those theorems proves.

P645 Once the hypothesis of the actual infinite has been assumed

(and therefore the existence of infinite collections as complete tota-

lities, even if there is not a last element to complete the collection),

it is possible to prove the following two theorems:

a)Theorem P645a, of the Inconsistent Completion.-If the suc-

cessive natural numbers 1, 2, 3,. . . of the ω-ordered sequence

〈n〉 of the natural numbers are counted at the successive ins-

tants t1, t2, t3,. . . of an ω-ordered sequence of instants 〈tn〉
within the finite interval of time (ta, tb) whose limit is tb, then

at the precise instant tb all natural numbers have and have not
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been counted.

Proof.-Since the sequence 〈n〉 of the natural numbers and the

sequence 〈tn〉 of instants are both ω-ordered, it is immediate

that a one to one correspondence f(n) = tn between 〈n〉 and
〈tn〉 does exist, being tn just the precise instant at which the

number n is counted. Since tb is the limit of the sequence 〈tn〉,
the instant tb is posterior to all instants of the sequence 〈tn〉.
Consequently, at the precise instant tb all natural numbers of

the sequence 〈n〉 have already been counted, each n at the pre-

cise instant tn, always prior to tb. So, at the precise instant tb
all natural numbers have been counted (Principle of Execution

P25).

Let now A be the set of all instants of (ta, tb) at which the

counting of the successive natural numbers is not completed,

and B the set of all instants of (ta, tb) at which the counting of

the successive natural numbers is already completed. Taking

into account that tb is the limit of 〈tn〉, we can write:

∀t ∈ (ta, tb) : ∃tv ∈ 〈tn〉 : tv < t < tv+1 (1)

so that at t, for any t in (ta, tb), only a finite number v of

natural numbers, 1, 2, 3,. . . v, have been counted and infinitely

many of them, v+1, v+2, v+3,. . . , remain still to be counted.

So, at t the counting of the successive natural numbers is not

completed. Consequently we can write:

∀t ∈ (ta, tb) : t ∈ A; t /∈ B (2)

And then:

(ta, tb) ⊂ A (3)

(ta, tb) ∩B = ∅ (4)

Therefore no instant t of the interval (ta, tb) exists such that

at t the counting of the successive natural numbers is comple-

ted. None. As equation (4) indicates, this is not a question of

indeterminacy but of impossibility. So, and being tb the first
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instant after all instants of the interval (ta, tb), at the precise

instant tb not all natural numbers have been counted. �

b)Theorem P645b, of the Inconsistent Infinity.-The hypothe-

sis of the actual infinity, which asserts the existence of the set

of the natural numbers as a complete totality, is inconsistent

Proof.-Let k be any natural number and consider the sequence

Sk = 1, 2, 3,. . . k of the first k natural numbers of 〈n〉, and the

sequence Tk of the first k instants t1, t2, . . . tk of the ω-ordered

sequence of instants 〈tn〉 within (ta, tb) whose limit is tb. Assu-

me each number i of Sk of is counted at the precise instant ti of

Tk. The counting will end at tk when counting the last number

k. So, for any natural number k the counting of the first k na-

tural numbers poses no problem, and no contradiction arises.

Only when the sequence of natural numbers is considered as a

complete totality, as the hypothesis of the actual infinity sub-

sumed into the Axiom of Infinity requires, the contradiction

of the Theorem P645 of the Inconsistent Completion, appears.

We must therefore conclude this contradiction is a formal con-

sequence of the hypothesis of the actual infinity. �



Apéndice A.

The problem of change

Introduction

P646 Change is the most pervasive characteristic of our conti-

nuously evolving universe. And it is also the most difficult logical

problem that man has ever faced (for a general background see

[170, 206], and for the particular view of H. Bergson see [21, 22]).

So difficult that it continues unresolved for over 27 centuries. Chan-

ge could even be an inconsistent process, as it has been claimed at

least from pre-Socratic times. An not only by pre-Socratic authors

as Parmenides or Zeno of Elea, modern authors as J.E. McTaggart

also defended the inconsistency of change [160]. If that were the

case, it would be impossible to explain the physical world, whose

most distinctive feature is just its state of continuous change. It is

therefore surprising how little interest contemporary physics (the

science of change) takes in the problem of change. Especially be-

cause if a solution is found, all physical theories would have to be

adapted to it. In this sense, the discussion that follows proves that

change is inconsistent in the spacetime continuum, but it could

find a solution in certain discrete spacetimes similar to those used

in cellular automata, where, in addition, all oddities of relativity

and quantum physics could be explained. Rarities that surely ap-

pear because of the insistence of physics to explain the physical

world by means of inappropriate mathematics, the same one that

makes it impossible to solve the problem of change.

Causal changes

P647 For the sake of simplicity, and in order to avoid unnecessary

complications, we will discuss here the problem of causal changes

in physical objects. So, if O is one of those physical objects, we
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will say O changes causally from the state Sa to the state Sb if

there exist a set of (physical) laws L such that, under the same

conditions C, and as a consequence of those laws and conditions,

the state of O is Sa at the instant ta and Sb at an ulterior instant

tb. In symbols:

Sa 7→ Sb : L(Sa, C, ta) = (Sb, tb) (1)

Since we will only deal with causal changes defined according to

(1), from now on they will be referred to simply as changes.

P648 The change Sa 7→ Sb can be direct, without intermediate

states. In such a case, it will be referred to as canonical change. It

can also be the result of an ordered sequence of canonical changes:

〈Sa 7→ Sb〉 : Sa 7→ S1 7→ S2 7→ · · · 7→ Sv 7→ Sb (2)

Notice that every element Sn of {Si} must have an immediate

predecessor Sn−1 (except the first of them S1) so that Sn can be

causally derived from Sn−1:

∀Sn>1 : L(Sn−1, Cn−1, tn−1) = (Sn, tn) (3)

The objective of our discussion will exclusively be the analysis of

the canonical changes, be them or not forming part of a sequence

of canonical changes. But first it will be necessary to rule out

the possibility that causal changes can occur in densely ordered

sequences of changes, a possibility that is difficult to imagine but

that must be considered.

P649 Indeed, some infinitists claim that a change could also be the

result of completing a densely ordered sequence of non canonical

changes: one in which between any two changes infinitely many

other changes do occur (it is hard to explain in physical terms what

on earth a densely ordered sequence of changes could really be). For

this reason, and before discussing the problem of canonical change

(the classical problem of change) we will prove the impossibility for

a change to occur as a consequence of completing a densely ordered



Causal changes 325

sequence of changes. Recall that the infinitude of a densely ordered

sequence may be numerable, as in the case of the rational numbers

(whose cardinal is ℵo), or non-denumerable as in the case of the real

numbers and the case of the spacetime continuum (whose cardinal

is 2ℵo). It is in that spacetime continuum that all physical changes

are supposed to occur.

P650 In the first place, it is quite clear that in a densely orde-

red sequence of changes no change can be canonical. In fact, if

〈Sa 7→ Sb〉 is a densely ordered sequence of changes and Sλ is any

element of the sequence then it is impossible that Sλ results from a

canonical change of an immediate predecessor Sµ, simply because

in a densely ordered sequence no element has an immediate pre-

decessor. Therefore, Sµ cannot immediately precede Sλ and then

the canonical change:

L(Sµ, Cµ, tµ) = (Sλ, tλ) (4)

is impossible, for all Sλ ∈ [Sa, Sb].

P651 Assume Sa 7→ Sb takes place through a densely ordered se-

quence of non canonical changes 〈Sa 7→ Sb〉. The state Sb results,

therefore, from the completion of a densely ordered sequence of

changes. Thus, the state of our object O will be Sa at a certain

instant ta, and Sb at another posterior instant tb. In those condi-

tions, let f(t), for each t in [ta, tb], be the number of those changes

that still have to be performed at the instant t in order to reach

Sb. It is immediate that f(t) cannot take a finite value n, other-

wise there would exist the impossible lasts n changes of a densely

ordered sequence of changes. In consequence, there is no instant

within [ta, tb] at which only a finite number of changes remain to

be performed in order to reach Sb. We are not facing an indetermi-

nacy, but an impossibility: the set of instants in which only a finite

number of changes remain to take place is the empty set. There-

fore, infinitely many changes would have to occur instantaneously

just at tb.
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P652 We will now prove that instantaneous changes (of a null

duration) are impossible in a spacetime continuum. As we will see,

the reason for that impossibility is that if t is any instant of a

densely ordered sequence of instants then t has neither immediate

predecessor p(t) nor immediate successor s(t), so that between t

and s(t) (or between p(t) and t) there is no time at all. As will be

seen next in this appendix, if time exists in indivisible units (chro-

nons), then time passes through each chronon, and between two

successive chronons no time passes. The natural numbers reflect

this situation: between two successive natural numbers there is no

other natural number. The opposite occurs with the real numbers

modeling the spacetime continuum: between any two of them infi-

nitely many other different real numbers do exist (dense order).

P653 Assume that in our physical object O an instantaneous

change Si 7→ Sj takes place at a certain instant t of the spaceti-

me continuum. The change would be instantaneous if the state of

O were Si at the instant t and Sj at an hypothetical immediate

successor s(t) of t, being null the time elapsed between t and s(t).

But in the spacetime continuum this is impossible because t does

not have an immediate successor s(t), so that between any two

different instants of the spacetime continuum a time greater than

zero always passes. So Si and Sj could only be two simultaneous

states in whose case it would be inconsistent to establish a chro-

nological order of precedence between both states, so that none

of them can be the cause of the other. Instantaneous changes are

therefore impossible in the space-time continuum.

P654 According to P651, in a densely ordered sequence of chan-

ges, instantaneous changes have to occur. And according to P653

instantaneous changes are impossible in the spacetime continuum.

Thus, densely ordered sequences of changes are impossible in the

spacetime continuum.

P655 To propose the coexistence of Sa and Sb at a certain instant

as a solution to the problem of change Sa 7→ Sb means to pose

the problem of that change in terms of the change Sa 7→ (SaSb),
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where (SaSb) stands for that supposed coexistence of states. And

the same would apply to the changes Sa 7→ (Sa(SaSb)), Sa 7→
(Sa(Sa(SaSb))), etc.

The problem of change

P656 Consider any canonical change Sa 7→ Sb of any physical

object O. We will begin by proving that change must be instanta-

neous, i.e. of a null duration. In fact, assume its duration is t > 0,

being t any positive real number. For every t′ in the real interval

(0, t), the state of our object O will be either Sa or Sb. If it were Sa

then the change would not yet have begun and its duration would

be less than t. If it were Sb then the change would have already

finished and its duration would also be less than t. But O must be

in one of those two states because Sa 7→ Sb is a canonical change.

Consequently, the duration of the canonical change Sa 7→ Sb is

less than any real number greater than zero. And being zero the

only real number less than any real number greater than zero, the

canonical change Sa 7→ Sb can only have a null duration, i.e. it can

only be instantaneous.

Instantaneous changes

Change

Canonical changes

Points and instants
must have an
immediate successor

Densely ordered
sequence of changes

Possible in
discrete
spacetimes

Impossible in
continuum
spacetimes

Figura A.1 – The problem of change.

P657 So far we have proved that (see Figure A.1):
a) According to P653, instantaneous changes are impossible in

the spacetime continuum.

b) According to P654, causal changes cannot take place through

a densely ordered sequence of changes.
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c) According to P656, canonical changes take place instantaneo-

usly.

In consequence, it holds the following:

a)Theorem P657, of Change.-Change is impossible in the space-

time continuum.

P658 Being change a pervasive process in our current universe,

the Theorem of Change could be indicating that the spacetime

continuum is not the most appropriate representation of space and

time. Space and time could, in fact, be of a discrete nature, with

indivisible minimum units. In the next section we will analyze the

possibility that change may occur in discrete spacetimes.

A discrete model: cellular automata

P659 Cellular automata like models (CALM) provide a new in-

teresting perspective to analyze the way the universe could be

evolving. In particular it provides a discrete space-time in which

a new analysis of the incomprehensible oddities of contemporary

physics, including change, would be possible. As we will see in the

next short discussion, twenty seven centuries after it was posed,

the old problem of change could find a first consistent solution in

the discrete spacetime of CALMs.

Figura A.2 – Discrete versus continuum space.

P660 In CALMs, space is exclusively composed of indivisible mi-

nimum units: geons. Time is also composed of a sequence of succes-
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sive minimum indivisible units: chronons. No extension exists bet-

ween a geon and its immediate successor in any spatial direction.

Similarly, no time elapses between a chronon and its immediate

successor. Each geon can exhibit different states, each defined by

a certain set of variables. The states of all geons change simulta-

neously at each successive chronon in accordance with the laws

driving the evolution of the automaton. Once changed, the state

of each geon remains unchanged for a chronon. In what follows we

will assume this is the case, although in the place of one chronon,

the state of each geon could also remain unchanged for a certain

(natural) numbers of chronons.

P661 Let u, v, c, . . . z be the set of variables defining the state of

each geon of a certain CALM A. Let us represent the nth state of

each geon σi by σi(ui,n, vi,n, . . . zi,n), where ui,n, vi,n . . . zi,n are the

particular values of the state variables of σ1 at the nth chronon. Let

finally L be the set of laws driving the evolution of the automaton,

including the laws that relate the different state variables to each

other. L determines the way each geon σi changes from a chronon

to the next one taking into account the state of σi as well as the

state of any other geon with which it interacts, which may include

all geons. All these current states define the conditions Ci under

which the laws L determine the state of each geon in the next

chronon, that is, the laws that determine the change that each

geon undergoes in each successive chronon.

P662 The automaton engine changes the state of every geon at

each chronon and maintains it just for one chronon. Thus we can

write for each particular geon σi:

L(σi(ui,n . . . , zi,n), Cn, τn) = (σi(ui,n+1 . . . , zi,n+1), τn+1)

L(σi(ui,n+1 . . . , zi,n+1), Cn+1, τn+1) = (σi(ui,n+2 . . . , zi,n+2), τn+2)

L(σi(ui,n+2 . . . , zi,n+2), Cn+2, τn+2) = (σi(i, un+3 . . . , zi,n+3), τn+3)

L(σi(ui,n+3 . . . , zi,n+3), Cn+3, τn+3) = (σi(ui,n+4 . . . , zi,n+4), τn+4)

. . .

Certain sets of geons could remain grouped with the same con-
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figuration through the successive chronons. They could be said

CALM’s objects.

P663 It is significant that the operation of a CALM is similar to

that of a computer: its internal clock defines the indivisible units

of time in which all operations and updates occur. And remem-

ber that computers are man-made machines capable of simulating

physical phenomena.

P664 Being both space and time discrete, each chronon τn has

an immediate predecessor τn−1 and an immediate successor τn+1,

so that no other chronon elapses neither between τn−1 and τn nor

between τn and τn+1. Or in other words: no time passes between

any two successive chronons. This simple characteristic of CALMs

suffices to solve the logic problem of change because discrete spa-

cetime allows instantaneous changes: the state An at chronon τn
changes to An+1 at the next chronon τn+1, being null the time elap-

sed between τn and τn+1. It could be said that all geons of a CALM

are updated simultaneously at each chronon. The same could be

said of the instants and points of the spacetime continuum, with

the difference that in the continuum there is an uncountable in-

finity of instants and points and none of them has an immediate

successor, which makes change impossible.

P665 Do not forget that our sensory perception of the world is

absolutely continuous. This is why we are used to think in terms

of a spacetime continuum. So far, our only way of thinking. All

our models of the physical world have assumed the physical world

is a continuous world. It is then almost inevitable to extrapolate

this way of thinking to the new discrete paradigm, which obviously

would be catastrophic. To think in (physical) discrete terms will

surely require a long process of reeducation.

P666 An electron, for instance, could be in the state S1 at a cer-

tain instant t1 and in the state S2 at other posterior instant t2,

without ever being in any intermediate state between S1 and S2

(quantum jump). It is therefore a canonical change. In the space-
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time continuum the interval (t1, t2) must always be greater than

zero and during that time the electron cannot be at S1 or at S2.

Therefore, it must cease to exist for a time greater than zero. It

must disappear at t1 and reappear at t2. In the digital spacetime of

a CALM all we have to do is to consider two successive chronons,

τ1 and τ2. At τ1 our electron would be in the state S1, and at τ2
in the state S2 (Figure A.3).

t2

t1

D

D

D

A

A

A

B

B

B

Figura A.3 – In the discrete spacetime of a CALM, an object D chan-
ges from A to B without passing between A and B (think, for instance
in a quantum jump of an electron).

P667 By way of example, assume that:

• The universe has 2,66× 10185 geons.

• The universe contains 1080 elementary particles.

• Each particle is defined by p variables

• Each particle is, somehow, present in each geon.

Let U be a tridimensional CALM of 2,66 × 10185 geons in which

the state of each geon is defined by p × 1080 state variables. If it

were possible to simulate U , perhaps we would observe the self-

organizing and evolution of an object similar to our universe.

P668 U would be incomparable less complex than, for instance,

any matrix of infinite elements (which are usual in mathematics

and theoretical physics). We could model the universe, provided

we know the basic laws that make it evolve. In this circumstan-

ces, to simulate does not means to reproduce the exact history
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of the universe: recursive interactions between geons and the re-

sulting non-linear dynamics open the door of unexpectedness and

creativity, as in the case of the terrestrial biosphere.

P669 In any case, and as noted in P668, we could theorize on

U , we could use it as a theoretical reference to grasp the essen-

ce, magnitude and possibilities of real universes. Colosal as it may

seem, U would be a finite object and then composed of a number

of elements incomparably less than the number of points (2ℵo) a

simple interval of, say, one trillionth of a millimeter of the conti-

nuous space. In addition, while the points of the space continuum

are abstract artifacts devoid of intrinsic physical attributes, each

element of U would be plenty of physical meaning.

P670 To conclude this appendix, let us imagine we build a very

advanced computer game in which its characters evolve until they

become aware of their own intelligence. When trying to explain

their digital universe, they would surely have the same type of

problems we have when trying to explain the incessant changes we

observe in our physical world.



Apéndice B.

Infinity and physics

Introduction
P671 Mathematics has been essentially Platonic throughout its

history. And it continues to be essentially Platonic. Although other

more naturalistic alternatives could also be considered [147]. Con-

temporary neurosciences have made it clear that our brain, and

therefore all our logical abilities, grow and develop through our

own actions and experiences with the physical world. So, despite

dominant Platonism, mathematics also has its roots in the natural

world.

P672 Everything we know of the universe suggests that it is a

dynamic system consistent with the laws driving its evolution. No

contradictions or arbitrariness have ever been discovered. Mathe-

matics is also consistent a system, in this case with the group of

axioms underlying each of its branches. But the consistency of a

theory does not guarantee that it is an appropriate theory to ex-

plain the physical world. The recognized role of mathematics in

explaining the physical world (Quine and Putnam’s Principle of

Indispensability) should be relativized by the role of mathema-

tics in developing inappropriate theories for the same purpose. If

the hypothesis of the actual infinite were inconsistent, mathema-

tics would have been directing the explanation of the world in a

wrong direction, the direction of the pre-Socratic continuum. They

would be responsible for a considerable delay in the knowledge of

the world. Naturally not the mathematics as such, those respon-

sible would be the mathematicians who maintain and impose the

hegemony of their thought and their hostility to disagreement

P673 This appendix suggests a discrete alternative to the conti-

333
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nuous paradigm, until now the only paradigm in which all theories

that claim to explain the physical world have been developed. A

paradigm surely inspired by our sensory perception of the world.

We perceive all material objects and all physical processes in an

essentially continuous way. In particular, motion (the most ubi-

quitous and common of all natural processes) is sensory perceived

as a continuous process, and all theories on motion, at least since

Aristotle [12, Book 3], consider it is in fact acontinuous process.

P674 But recall that motion in a film is also perceived as a con-

tinuous process, although it is a simple consequence of viewing

a discontinuous sequence of images. Human visual system is al-

so based on this phenomenon (phi phenomenon): each perceived

image needs a neuro-processing time greater than zero so that we

can only perceive discontinuous sequences of images of the natu-

ral processes, though our brain makes them appear as continuous

processes. As we will see in this appendix, the physical world could

also be explained in similar discrete terms. And, what is more in-

teresting, these discrete explanations are much more simple then

their corresponding continuous (classical) alternatives.

P675 For the last two centuries, the evidence of the facts revea-

led by modern science has clearly proved that the physical worlds,

at least in what refers to ordinary matter, energy and the diffe-

rent types of charges, is essentially discontinuous, discrete. On the

contrary, space and time are still considered as continuous entities

(infinitely divisible) by the majority of contemporary scientists.

P676 Things are beginning to change also on this issue, and the

number of contemporary physicists that believe spacetime must be

of a certain granular nature is quickly increasing. In Martin Rees’

words [192, p 12]:

Space can’t be indefinitely divided. The details are still mys-
terious, but most physicists suspect that there is some kind of
granularity on a scale of 10−33cm [Planck’s length].
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P677 The hypothesis of the actual infinity is closely involved in

this discussion. Needless to say that if it were an inconsistent hy-

pothesis, we would be forced to replace our current analog para-

digm with a digital model of nature in which space and time could

only be of a discrete nature, with indivisible minima (Theorem

P354). In the next two sections we will discuss some aspects of

this change of paradigm.

Digital versus analog

P678 The continuum is infinitely divisible: between any two real

numbers (points, instants) there always exist other 2ℵo different

real numbers (points, instants). And what is more important, all

those real numbers do exist all at once, as a complete totality.

As a consequence, a straight line segment of a Planck length (≈
10−33cm) has the same number of points as the whole tri-dimen-

sional universe. Consequently, we would have to admit such a mi-

nuscule linear segment would create and destroy the same number

of virtual quantum particles as the whole universe, provided that

virtual quantum particles are created in the points of the physical

space, as it assumed to be the case. Nonetheless, that continuum is

considered an appropriate model for the physical space and time.

We will now discuss some consequences of this assumption.

P679 Infinitist mathematics has been practically the only mathe-

matics since the beginning of the 20th century, although illustrious

dissidents as Poincaré or Wittgenstein were never absent. In con-

sequence, physics is made of this infinitist mathematics: the mathe-

matics founded on the belief that the infinite sets do exist as com-

plete totalities (hypothesis subsumed into the Axiom of Infinity);

on the believing that the list of the natural numbers exists as a

complete totality in spite of the fact the no last number completes

the list; on the believing, in short, that it is possible to complete

the incompletable.

P680 But, contrarily to mathematics, physics theories must be ex-

perimentally tested. And experimental physics is always finitist: all

observations and measurements can only yield a finite (and indeed
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very small) number of digits. An experimental precision of twenty

decimals is considered a formidable result, and in fact it is formi-

dable. But for infinitist mathematics it is a ridiculous number of

decimals compared, for instance, with a number with 9 ! 9 decimals

(Chapter 14 defines n-expofactorials numbers as 9 ! 9). Imagine, on

the other hand, a physical constant with 9 ! 9 decimals, its represen-

tation in standard text, at five millimeters per digit, would occupy

a line millions of times longer than the diameter of the visible uni-

verse. Those physical constants would be rather grotesque. And so

would be the universe if those monstrous numbers were necessary

to explain its working and evolution. A finite number of decimals,

i.e. a simple proportion of two integer numbers, should suffice. I

suspect W. Ockham would had come to the same conclusion.

P681 A common method for solving physical problems by means

of infinitist mathematics (differential and integral calculus, for ins-

tance) consists in trying first a discrete solution in order to make

discreteness tends to zero and find there (in the continuum sce-

nario) the correct solution. This was the method M. Planck was

using to solve the so called ultraviolet catastrophe, an apparently

unsolvable problems in those days, at the beginning of the XX

century. Surprisingly enough, the correct solution appeared much

more before discreteness vanishes in the infinitist scenario of the

continuum. What we now call Planck constant gave the correct

solution at the particular value of 6,626068 × 10−34 m2 Kg s−1.

P682 Although Planck’s discrete solution to the ultraviolet ca-

tastrophe was initially taken as provisional, it immediately led to

the birth of quantum mechanics, the most successful science ever

developed by man. But quantum mechanics, the science of discre-

teness par excellence, the science where indivisible minima play

a fundamental role, is also made of infinitist mathematics, the

mathematics of the continuum where indivisible minima make no

sense. This incompatibility is surely the cause of another appa-

rently unsolvable problem: the incompatibility between quantum

mechanics and the general theory of relativity. In S. Majid words

[148, p 73]:
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The continuum assumption on space and time seems then to be

the root of our problems in quantum gravity.

P683 Although Planck scale was initially conceived to provide a

universal metric reference independent of our arbitrary elections

for mass, length and time units, it finally served to discover the

limits beyond which the physical laws make no longer sense. But

if the laws of physics lose their meaning at Planck’s scale, then the

continuum turns out to be absolutely useless to physics.

P684 And not only useless. When infinity appears in their equa-

tions, physicists are forced to remove it from them because of the

unsolvable problems it invariably leads to. A removal that usually

requires a lot of hard and tedious work, as in the case of renor-

malization in quantum electrodynamics. Not all physical theories

are renormalizable, for instance if photons had rest mass, minus-

cule as it may be, then quantum electrodynamics (a part of the

Standard Model of Particles) would loss its gauge symmetry and

would become non-renormalizable. So, the hypothesis of the actual

infinity finally imposes severe restrictions to the physical theories,

restrictions that are physically significant. Moreover, a theory ex-

plaining the general treatment of singularities (appearance of in-

finities) would be necessary: in which cases, and why, they should

be, or not, eliminated.

P685 Physicists never question the formal consistency of the ac-

tual infinity, as if that consistence were a proved fact. Evidently

that is not the case, otherwise the Axiom of Infinity would be un-

necessary. The hypothesis of the actual infinity, the belief that the

infinite sets exist as complete totalities, is just a hypothesis. Brou-

wer, Poincaré or Wittgenstein, among others, rejected it. What is

really surprising here is that while we spend a lot of time and mo-

ney to liberate physical equations from the infinities, no effort is

made in order to examine the possibilities to liberate mathematics

from the actual infinity.

P686 If there is a physical theory compromised with the actual
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infinity, that theory is the theory of relativity, whose special section

(special relativity) is a theory on the spacetime continuum. The

next section reproduces, slightly modified, a chapter of [135] which

is devoted to the confrontation between the analog (classical) and

the digital interpretation of relativity.

Relativity: Two interpretation face to face

P687 We will now confront some singular aspects of the theory of

relativity from the point of view of its classical (analog) interpreta-

tion and from the point of view of the discrete (digital) alternative.

In this last interpretation both space and time are assumed to be

of a discrete nature, with indivisible minima of space (geons) and

of time (chronons).

P688 The most outstanding characteristic of the digital alternati-

ve is its compatibility with all relativistic observations and measu-

rements. Which could be explained because it simply replaces the

spacetime continuum of relativity by a discrete model in which

there also exists a maximum insurmountable speed, though in this

case not as an axiomatic principle but as an inevitable consequen-

ce of the existence of indivisible minima of space (geons) and time

(chronons). Indeed, if nothing is smaller than a geon, and nothing

can last less than a chronon, then there would be a maximum

speed of one geon per chronon (to move through more than one

geon for one chronon would means that a geon could be traversed

in less than one chronon).

P689 Other relativistic problems, as the impossibility to observe

and measure absolute velocities, are resolved by considering the

preinertial nature of photons (an object is preinertial if it inherits

the relative velocity vector of the reference frame where it is set

into motion). Thus, preinertia and a digital model of spacetime

is all we need to explain in physical terms all the enigmas and

oddities derived from the theory of relativity.

P690 The most notable consequence of discrete space-time is that

its indivisible units, geons and chronons, would be real physical
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objects rather than theoretical entelechies devoid of physical mea-

ning, as is the case with points and instants in the spacetime conti-

nuum of relativistic physics. In the discrete alternative, space and

time would be actual physical objects in their own right. The rela-

tive character of space-time in the theory of special relativity, and

the theory itself, could be interpreted as provisional and inevita-

ble solutions forced by the attempt to explain the discontinuous

world by means of inappropriate continuous mathematics. It will

be worthwhile, then, to confront both alternatives, classical (CA)

and discrete (DA).

P691 CA is founded on the spacetime continuum: between any

two of its points there are other 2ℵo different points. In this conti-

nuum all spacetime regions do have the same number of points, so

that a linear interval of, for instance, Planck length, has the same

number of points as the whole 3-dimensional universe. In the place

of abstract points, DA assumes the existence of indivisible (ato-

mic) pieces of space (geons) and time (chronons). In this model,

regions of different extensions do have different number of geons

(chronons), and the whole universe would have a finite number of

such geons, perhaps in the order of 10185 if they were of a Planck

volume.

P692 Lorentz factor γ is capital in the transformation of the same

name that in CA serves to convert between measurements carried

out in different inertial reference frames (see P359). In DA, the

same factor would be used to convert between continuous and dis-

continuous measurements. This makes experimental compatibility

of both versions possible, with the advantage that typical CA ra-

rities do not appear in DA.

P693 The formal consistency of CA depends on an external mathe-

matical hypothesis: the hypothesis of the actual infinity, which, on

the other hand, could be inconsistent (for the reasons given in

this book, that could be the case). The formal consistency of DA

does not depend on any external mathematical hypothesis. The

consistency of a physical theory should not depend upon the con-
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sistency of an abstract external axiom, as is the case of the Axiom

of Infinity.

P694 The points of the spacetime continuum are primitive abs-

tract objects without physical meaning, in spite of which physicists

are forced to deal with mass points, charge points, etc. Points are

not experimentally testable. Chronons and geons are plenty of phy-

sical meaning since they are indivisible physical pieces (atoms) of

space and time. In addition, they could be experimentally testable

(there is an increasing number of researches trying to detect the

spacetime granularity).

P695 The spacetime continuum is not (consistently) compatible

with change (see Appendix A). Discrete spacetimes are (consis-

tently) compatible with change. Recall that change is the most

pervasive characteristic of the Universe. And the great problem

forgotten by physics, the science of change

P696 The existence of a maximum insurmountable velocity is

an axiomatic requirement in CA (Second Principle of relativity).

In DA, the existence of a maximum insurmountable velocity is a

natural consequence of the existence of indivisible minima of both

space and time. In DA the Second Principle of relativity is not

necessary.

P697 The impossibility of absolute motion is a formal (axioma-

tic) consequence of the First Principle of relativity in CA. Absolute

motion through the fabric of geons is possible in DA. The impos-

sibility to detect absolute motion in DA is a physical consequence

of preinertia, including the preinertia of photons.

P698 In CA, the inclination of the relative trajectory of a pho-

ton (vertical in the rest frame of its emitting source) can only be

explained in axiomatic terms (First and Second Principles of rela-

tivity). In DA, that inclination is physically explained by photon

preinertia.
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P699 In CA, the universality of the physical laws needs to make

reference to abstract reference frames. In DA, that reference is not

necessary, although it may be convenient

P700 In CA, the two principles of the special relativity are neces-

sary. DA needs no particular principle, once assumed the universa-

lity of all natural laws as a fundamental principle for all sciences.

P701 In CA, gravity is explained in geometrical terms. No phy-

sical reason has ever been given to explain why matter has the

ability to curve an abstract continuum of points, completely de-

void of physical meaning. DA offers the possibility of a physical

explanation of gravity and other general relativity phenomena:

On the one hand, an object would be a particular set of geons
defined by the values of a certain number of state variables. On
the other, the values of the state variables of the surrounding
geons would be somehow modified by the object. This modi-
fication and the periodic and synchronized way of functioning
of certain discrete models, as CALMs (Cellular Automata Li-
ke Models, see Appendix A), could suffice to build a physical
theory of gravity. Entanglement and synchronicity could also be
explained in the same physical terms (See Section on cellular
automata in Appendix A).

P702 In CA, light bends thanks to the gravitational curvature of

spacetime. In DA, a simple attractive force, in the sense given in

P701, between preinertial objects could account for the gravitatio-

nal bending of light, without having to deform neither space nor

time. An explanation much more simple and physical.

P703 For all the above reasons, it seems reasonable to begin to

consider the possibility of a new digital paradigm, for both mathe-

matics and physics.
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Apéndice C.

Suggestions for a natural theory of sets

Introduction

P704 The contemporary foundation of set theory seems excessi-

vely tortuous and complex, probably for the following three reasons:

a) The platonic scenario where it has been formally founded and

developed, an scenario in which sets are considered as platonic

objects whose existence is mind independent.

b) The hypothesis of the actual infinity subsumed into the Axiom

of Infinity according to which the infinite sets exist as complete

totalities.

c) The restrictions necessary to avoid the inconsistencies derived

from self-reference and from certain excessively infinite sets.

This appendix suggests another foundational alternative far away

from the platonic scenario: the natural scenario of mind intentional

activities. The discussion that follows is in fact founded on a natu-

ral (non platonic) definition of set. It also introduces the concept

of incompletable sequences, via the successor set. Uncompletable

sequences of successor sets are then used to define the incompleta-

ble sequence of finite cardinals and then the concept of potentially

infinite set.

A natural definition of set

P705 We will assume here that sets and natural numbers are ele-

mentary theoretical objects that result from our intentional mental

activity. Therefore they are not objects that exist by themselves

and with which we have the ability to contact. They are mental

constructs that do not exist beyond the mind that construct them.

343
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P706 Perhaps the most basic mind intentional process is to con-

sider any object or group of objects, i.e. to focus our attention

on them. There are, in turn, two basic ways to consider objects,

either successively or simultaneously. The first leads to the concept

of natural number; the second to the concept of set.

P707 When we consider successively different objects we are in a

certain way counting them. A natural number is a sort of measu-

re of the amount of successively considered objects. On the other

hand, if we consider simultaneously different objects we are grou-

ping them into a totality that is a new object different from each of

the considered objects. Accordingly, let us propose the following

natural definition of set based on a suggestion by Lewis Carroll

[51, p. 31]:

a)Definition P707.-A set is the theoretical object that results from

a mental grouping of arbitrary objects previously defined.

The physical world is plenty of natural groups of objects, for exam-

ple the set of the stars of a galaxy, or the set of all ions of a parti-

cular pyrite crystal. The human mind has the ability to recognize

these natural groups, but it has also the ability to define many

other arbitrary groups which may include abstract and imaginary

objects.

P708 Obviously, the definition given in [P707] is constructive:

it only indicates the way sets are constructed: by mental grou-

pings of arbitrary objects previously defined. Being constructive,

it is not a circular semantic definition. Sets are defined as theore-

tical objects because human mind can only construct theoretical

objects. Furthermore, Definition P707 requires the previous defi-

nitions (either by enumeration or by comprehension) of the ob-

jects that will be grouped. This seems a reasonable requirement,

otherwise we would not know what we are grouping, what we are

defining.

P709 On the other hand, that simple requirement (to be defined

before to be grouped) invalidates self-referring sets. In fact, accor-
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ding to it, a set cannot belong to itself because it does not exist as

an element that may be grouped until the set has been defined. Pa-

radoxes as those of Cantor (set of all cardinals), Burali-Forti (set

of all ordinals) and Russell (set of all sets that do not belong to

themselves) are immediately ruled out because their corresponding

sets do not satisfy Definition P707.

P710 Let us now compare the above constructive definition of

set with the following two platonic attempts due to G. Cantor,

although the first of them suggests a non-platonic definition that

is reminiscent of Definition 707:

a) By a ’manifold’ or ’aggregate’ I generally understand every

multiplicity which can be thought of as one, i.e. any totality

of definite elements which by means of a law can be bound

up into a whole, and I believe that in this I am defining

something which is related to the Platonic eidos or idea

([48, page 93]).

b) By an ’aggregate’ (Menge) we are to understand any co-

llection into a whole M of definite and separate objects m

of our intuition or our thought. ([44, p. 481], [47, p. 85])

P711 Since multiplicity, totality and collection are synonymous of

set both definitions are circular. Circularity could not be avoided

in all subsequent attempts to define the notion of platonic set, and

it was finally declared as undefinable, i.e. as a primitive concept

that cannot be defined in terms of other more basic concepts. The

impossibility to define platonic sets probably indicates that sets are

not the platonic objects they were assumed to be, but products of

our intentional mind activity.

P712 Fortunately, most of the symbols, conventions and opera-

tions of classic axiomatic set theories can be preserved in non pla-

tonic set theories. Particularly the notions of membership, subset,

empty set, union, intersection, correspondences and the like. By

contrast, most of the axioms needed in platonic set theories beco-

me unnecessary in non-platonic scenarios.
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P713 As we will see in this appendix, one of the most significant

notions in a constructive set theory is that of successor set, which

follows immediately from Definition P707. Indeed, it is immediate

to prove the following:

a)Theorem P713, of the Successor Set.-Each set A defines a new

set, its successor set s(A), whose elements are the elements of

A, plus a new element which is the set whose unique element

is the set A itself.

Proof.-Once defined a set A, for instance A = {a, b, c}, we will

have at our disposal a new object, the set A, and according

to Definition P707, we can group it with any other arbitrary

elements previously defined. For instance with the elements

a, b, c just used to define A. So we can define a new set S(A)

as:

s(A) = A ∪ {{A} } = {a, b, c, {A}} (1)

s(A) is said the successor set of the set A. �

As we will see the concept of successor may be used to define, also

in constructive terms, the successive natural numbers.

P714 By incompletable we mean here something that not only

is incomplete but also that cannot be completed. In line with this

idea, we will define the notion of incompletable sequence as:

a)Definition P714.-An incompletable sequence is one whose ele-

ments can never be considered as a complete totality, in the

sense that it is always possible to increase the sequence of

considered elements by considering new elements still non-

considered.

P715 The notion of successor set allows to define an incompleta-

ble sequence of sets. Indeed, consider the successive successor sets

of an initial set A:

A, s(A), s(s(A)), s(s(s(A))) . . . s(s(s(. . . (A) . . . )) (2)

that can be compactly written:

A, s1(A), s2(A), s3(A), . . . sn(A) (3)
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Assume we get a final set X:

X = sn(A) (4)

whose successor set cannot be defined. Whatsoever be the set X,

it will be a well defined object and then, according to Definition

P707, we can group it with any arbitrary elements previously de-

fined, including the elements of X, to form a new set. So we can

define:

s(X) = X ∪ {{X} } = sn+1(A) (5)

Consequently it is false that the successor set of X cannot be

defined. Thus the sequence of successive successor sets of A is in

fact incompletable because we can always increase the sequence

of already considered successor sets by considering a new element,

namely the successor set of the last successor set just defined. We

can therefore assert the following:

a)Theorem P715, of the Sequence of Successors.-The sequence

of the successor sets of any set is incompletable.

Sets and numbers

P716 Although several constructive and formal attempts to define

the concept of number have been carried out, this concept could

in fact be primitive, non-definable in terms of other more basic

concepts. In any case we can assume that two sets have the same

number of elements, the same cardinal, if they can be put into a

one to one correspondence. All sets that can be put into a one to

one correspondence among each other define a class of sets, and

then a number: the cardinal of all sets of that class. The cardinal

of a set A is usually denoted by |A|, although there are other

representations such as Card(A), A or n(A).

P717 To count the elements of a set A means finally to consider

successively each one of its elements. We could define a number

(name, numeral and properties) each time we consider a new ele-

ment of A as an indication of the quantity of the considered ele-

ments, as an indication of the size of the set. Though in this context



348 Suggestions for a natural theory of sets

number, quantity and size are semantically indistinguishable and

then the attempt of definition is also circular. After all, perhaps

only operative definitions of the concept of number are possible.

P719 introduces one of them.

P718 One of the best known incompletable sequence of successor

sets is the following one based on the notion of empty set ∅, a set

without elements defined because of its great utility (the same as

with the number zero):

∅ = empty set. (6)

s1(∅) = ∅ ∪ {∅} = {∅} (7)

s2(∅) = {∅} ∪ {{∅}} = {∅, {∅}} (8)

s3(∅) = {∅, {∅}} ∪ {{∅, {∅}}} = {∅, {∅}, {∅, {∅}}} (9)

. . .

P719 We call finite cardinals, or natural numbers, just to the

cardinals of the above successive sets (Von Neumann definition of

1923 [174]):

0 = |∅| (10)

1 = |{∅}| = 0 + 1 (11)

2 = |{∅, {∅}}| = 1 + 1 (12)

3 = |{∅, {∅}, {∅, {∅}}| = 2 + 1 (13)

4 = |{∅, {∅}, {∅, {∅}}, {∅, {∅}, {∅, {∅}}}}, | = 3 + 1 (14)

. . .

where we write +1 to indicate a new element has been added to the

precedent set in order to define the new set and its corresponding

new finite cardinal. The above sequence of the finite cardinals can

also be written as:

0 = |∅| (15)

1 = |{0}| (16)
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2 = |{0, 1}| (17)

3 = |{0, 1, 2}| (18)

4 = |{0, 1, 2, 3}| (19)

5 = |{0, 1, 2, 3, 4}| (20)

. . . (21)

Note each cardinal n is recursively defined in terms of the pre-

viously defined n− 1, except the first of them.

P720 Notice also the above definition of the successive finite car-

dinals, which we identify here with the successive natural numbers,

is only an operational definition. Ultimately we lack of an appro-

priate definition of number. So, to say the cardinal of a set is the

number of its elements is to say nothing from a strictly formal point

of view. But we need to define the cardinal of a set as the number

of its elements even if the concept of number is not properly de-

fined but accepted as a primitive concept that admits operational

definitions.

P721 According to P714, the above sequence (15)-(21) is incom-

pletable so that no last finite cardinal exists. In fact, whatsoever

be the finite cardinal n we consider, we will have:

n = |{∅, s1(∅), s2(∅), . . . sn−1(∅)}| (22)

and since the sequence of successor sets is incompletable in accord

with P715, the successor set of sn−1(∅) does exists, and then we

can write:

sn(∅) = sn−1(∅) ∪ {sn−1(∅)} (23)

= {∅, s1(∅), s2(∅), . . . sn−1(∅), sn(∅)} (24)

In accordance with (15)-(21) the set sn(∅) defines the finite cardi-

nal n+ 1:

|sn(∅)| = |{∅, s1(∅), s2(∅), . . . sn(∅)}| (25)
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= |{0, 1, 2, . . . n}| = n+ 1 (26)

We can therefore assert that being n a finite cardinal (a natural

number) of the incompletable sequence (15)-(21), n + 1 is also a

finite cardinal or natural number of the incompletable sequence

(15)-(21). Thus, we can write:

a)Theorem P721, of the sequence of cardinals.-If n is a finite

natural number, and then the cardinal of a member of the

incompletable sequence of the successor sets of the empty set,

then n+1 is also a finite natural number and then the cardinal

of a set of the same incompletable sequence.

P722 It is worth noting this constructive way of defining natural

numbers, ultimately based on the Definition P707, does not pose

any problem of existence. This is so because we are not trying to de-

fine the set of the natural numbers as a complete mind-independent

totality, but as an incompletable and operational sequence of suc-

cessive terms recursively defined: each number is defined from the

previous one.

P723 Since all sets of the same cardinality are equipotent we can

say that a natural number n is the immediate successor of another

natural number m (or that m is the immediate predecessor of n)

if n is the cardinal of the successor set of any set of cardinal m.

Or in other words, if n = m + 1. Evidently if n is the immediate

successor of m then it is also a successor (though not immediate)

of all predecessors of m. As we saw in Chapter 4, the natural order

of precedence of the natural numbers is a total order, which is also

a well-order.

P724 Let us now consider the set Nn of the first n natural num-

bers:

Nn = {1, 2, 3, . . . n} (27)

We will prove the following:

a)Theorem P724.-The cardinal of the set Nn of the firsts n natural

numbers is just n.
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Proof.-By definition, n is the cardinal of the set:

A = {∅, s1(∅), s2(∅), . . . sn−1(∅)} (28)

Let f be a function from Nn to A defined as:

{
f(1) = ∅
f(i) = si−1(∅), i = 2, 3, 4, . . . , n

(29)

It is clear that f is a one to one correspondence. Therefore Nn

and A are equipotent, i.e. the cardinal of Nn is n. �

P725 As a consequence of the recursive way they are defined, the

elements of Nn exhibit a type of ordering we will call natural order

and denote by n-order, whose main characteristics are:

a) There is a first element: the only one without predecessors

(1).

b) There is a last element: the only one without successors (n).

c) Each given element k has an immediate successor k + 1, ex-

cept the last one.

d) Each given element has k an immediate predecessor k − 1,

except the first one.

where immediate successor (predecessor) of a given element means

that there is no other element between the given element and its

immediate successor (predecessor). Note that n-order is the same

as ω-order except that in ω-order there is not a last element. Thus,

ω-ordered sets are complete totalities (as the actual infinity requi-

res) although no last element completes them. Evidently, this is

not the case of n-ordered sets, all of which have a last element.

Finite sets

P726 As is well known, the hypothesis of the actual infinity sub-

sumed into the Axiom of Infinity states the existence of a set equi-

potent with the set of all finite cardinals (and then with that of

the natural numbers) considered as a complete totality, as if the

above sequence (6)-(9) could in fact be actually completed.
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P727 By contrast, in a non-platonic theory of sets that sequence

is incompletable and then cannot be considered as a complete to-

tality. That sequence is an example of potentially infinite object.

In the next section we will introduce them in a form a little more

detailed. In this one we will focus our attention on finite sets. To

begin with, consider the following elementary definition based on

the above sequences of successor sets and finite cardinals:

a)Definition P727.-A set is finite if, and only if, it has a finite

cardinal.

P728 The above theorems and definitions allow to prove the

following results on the finite sets:

a)Theorem P728a.- Every finite set can be n-ordered.

Proof.-Let A be any finite set. According to Definition P727,

there will be a finite cardinal n such as |A| = n. Being A equi-

potent with all sets of the same cardinality it will equipotent to

the n-ordered set Nn of the first n finite cardinals whose cardi-

nal is n in accord with P724. So, a one to one correspondence

f exists between Nn and A. Accordingly, we can write:

A∗ = {f(1), f(2), f(3), . . . , f(n)} (30)

which is the n-ordered version of the set A, because if i pre-

cedes j in N, then f(i) precedes f(j) in this reordering of A.

�

b)Theorem P728b.-If A is a finite set of cardinal n then its suc-

cessor set S(A) = A ∪ {{A} } is a finite set of cardinal n+ 1.

Proof.-Since the cardinal of the set A is n and, according to

[P724], the cardinal of Nn is also n there will be a one to one

correspondence f between A and the set Nn = {1, 2, 3, . . . n}.
The one to one correspondence g defined by:

g : A ∪ {{A} } 7→ {1, 2, . . . n, n+ 1}
{
∀a ∈ A : g(a) = f(a)

g({A}) = n+ 1

(31)
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proves S(A) is a finite set whose cardinal is n+ 1. �

c)Theorem P728c.-If A is a finite set and b an element which does

not belong to A then the set A ∪ {b} is also finite.

Proof.-Let f be a correspondence between the sets A∪{b} and
s(A) defined by:

f : A ∪ {b} 7→ S(A)




f(a) = a,∀a ∈ A

f(b) = {A}
(32)

Evidently f is a bijection between A∪ {b} and s(A). So these

sets have the same cardinality. Let n be the cardinal of A,

according to the Theorem P728b, the cardinal of s(A) is the

finite cardinal n+1. Thus the cardinal of A∪{b} is also n+1.

Consequently A ∪ {b} is a finite set. �

d)Theorem P728d.-If A and B are any two finite sets then the set

A ∪B is also finite.

Proof.-Being B finite it can be n-ordered (Theorem P728a)

and its elements can be represented as b1, b2, . . . bk. According

to the Theorem P728c, the successive sets:

A ∪ {b1} (33)

A ∪ {b1} ∪ {b2} (34)

...

A ∪ {b1} ∪ {b2} · · · ∪ {bk} = A ∪B (35)

are all them finite. �

Potentially infinite sets

P729 As far as I know, potentially infinite sets have never deserved

the attention of mathematicians. Probably because set theories are

infinitist theories founded and developed by infinitists that assume

the hypothesis of the actual infinity.



354 Suggestions for a natural theory of sets

P730 From the above constructive perspective we can only con-

sider the ability of our minds to perform endless (incompletable)

process as that of counting or defining in recursive terms. The ob-

jects resulting from those incompletable processes could be used

to define sets in the sense of Definition P707.

P731 But those sets could never be considered as complete tota-

lities, as in the case of finite sets. Those incompletable totalities

would represent the set theoretical version of the potential infinity

introduced by Aristotle twenty four centuries ago [12, Book VIII].

P732 Potentially infinite sets can be immediately defined in terms

of finite sets.

a)Definition P732: A set is potentially infinite if, and only if, it is

not finite.

P733 The following theorems are immediate consequences of the

above definition.

a)Theorem P733a.-Potentially infinite sets do not have finite car-

dinals.

Proof.-It is an immediate consequence of Definitions P727 and

P732. �

b)Theorem P733b.-The set N of finite cardinals is potentially infi-

nite.

Proof.-Let us assume that N is finite. According to Definition

P727 it will have a finite cardinal n, which is also the cardi-

nal of the (n − 1)th successive successor set of {∅} in (6)-(9).

According to [P721] this sequence is incompletable so that the

nth term, and then the finite cardinal n+ 1, also exists. The-

refore n is not the cardinal of N. This proves that no finite

cardinal n can be the cardinal of N. Therefore N is not finite,

and then it is potentially infinite according to Definition P732.

�

c)Theorem P733c.-If X is a potentially infinite set and A any of

its finite subsets then the set X−A is also potentially infinite.
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Proof.-Evidently we will have:

X = A ∪ (X −A) (36)

So if X−A were finite then, according to the Theorem P728d,

the set X would also be finite. Consequently X − A must be

potentially infinite. �

d)Theorem P733d.-If X is a potentially infinite set and A any of

its proper finite subsets, then X contains elements which are

not in A.

Proof.-According to Definition 727, A has a finite number n of

elements. Therefore, X must contain elements which are not in

A, otherwise X would also have a finite cardinal n and would

be a finite set, which is not the case. �

e)Theorem P733e.-If X is a potentially infinite sets and A any of

its proper finite subsets, then A is a proper subset of at least

another finite subset of X.

Proof.-Let A be a finite subset of a potentially infinite set X,

and b an element of X that does not belong to A (Theorem

P733d). Since A is finite, the set B = A ∪ {b} is also finite

(Theorem P728c). And it holds: A ⊂ B ⊂ X. �
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Apéndice D.

Platonism and biology

Living beings as extravagant objects

P734 In 1973 Dobzhansky published a celebrated paper whose

title summarizes modern biological thought [75]:

Nothing in Biology Makes Sense Except in the Light of Evolu-
tion.

I think it would have been more appropriate to write reproduction

in the place of evolution because, on the one hand, evolution is po-

wered by reproduction; and on the other because only reproduction

can account for the extravagances of living beings. Of course, evolu-

tion is a natural process and denying it is so absurd as denying pho-

tosynthesis or glycolysis. Other thing is its theoretical explanation.

As any scientific theory, the theory of organic evolution remains

unfinished and currently opened to numerous discussions. See for

instance [218, 29, 223, 195, 205, 153, 85, 194, 53, 105, 204, 52].

P735 Living beings are, in fact, extravagant objects, i.e. objects

with properties that cannot be deduced exclusively from the phy-

sical laws. To have red feathers, or yellow feathers, or to move by

jumping, or to be devoured by the female in exchange for copu-

lating with it, are examples (and the list would be interminable)

of properties that cannot be derived exclusively from the physical

laws but from the peculiar competitive and reproductive history of

each organism. Thus, living beings are subjected to a biological law

that dominates over all physical laws, the Law of Reproduction:

reproduce as you might.

P736 The informational nature of living beings [136] and the law

of reproduction make it possible the fixation of arbitrary extrava-

357
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gances. The success in reproducing depends upon certain characte-

ristics of living beings that frequently have nothing to do with the

efficient accomplishment of the physical laws but with arbitrary

preferences such as singing, or dancing, or having brilliant colors.

P737 Although, on the other hand, to achieve reproduction is

previously necessary to be alive, which in turn requires a lot of

functional abilities related to the particular ecological niche each

living being occupies. But this is in fact secondary: adapted and

efficient as an organism may be, if it does not reproduce, all its

physical excellence will be immediately removed from the biosphe-

re. The Law of Reproduction opens the door to innovations in

living beings, and then almost anything can be expected.

Biology and abstract knowledge

P738 Living beings are topically viewed as systems efficiently

adapted to their environment. No attention is usually payed to

their extravagant nature, although being extravagant is a very re-

markable feature. We, living beings, are the only (known) extra-

vagant objects in the Universe. By the way, those extravagances

could only be the result of a capricious evolution, not of an intelli-

gent design as creationists defend. Capricious evolution restricted

by the physical laws governing the world.

P739 One of the latest extravagances appeared in the biosphe-

re is the consciousness exhibited by, at least, most of the human

beings. Surely, that sensation of individual subjectivity is respon-

sible for some peculiar ways of interpreting the world, as platonic

essentialism, the belief that ideas and abstract concepts do exist

independently of the mind that elaborate them.

P740 Animals do have the ability to compose abstract represen-

tations of their environment, particularly of all those objects and

processes involved in their survival and reproduction. A leopard,

for instance, has in its brain the (abstract) idea of gazelle, it knows

what to do with a gazelle (as is well known by gazelles), whatsoe-

ver be the particular gazelle it encounters with. The abstract idea
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of gazelle, and of any other thing, is elaborated in the brain by

means of different components (the so called atoms of knowledge)

that not only serve to form the idea of gazelle but of many other

abstract ideas.

P741 And not only ideas, sensorial perceptions are also elabora-

ted, by similar processes, in atomic and abstract terms [250, 167]

which surely also serves to organisms to filter the irrelevant de-

tails of the highly variable and useless information coming from

the physical world, and thus to identify with sufficient security

the (biologically) significant objects and process that form part of

their ecological niches.

Figura D.1 – The dog ’knows’ the logic of the physical world; the ball
does not.

P742 To have the ability of composing abstract representations

of the world is indispensable for animals in order to survive and

reproduce, And a mistake in this affair may cost them the higher

of the prices. A ball rolling down towards a precipice will not stop

to avoid falling down; but the dog running behind it, will try to

stop as soon as it perceives the precipice; dogs know gravity and its

consequences. Animals interact with their surroundings and need

to know its singularities, its peculiar ways of being and evolving,

i.e. its physical logic, and even its mathematical logic: primates

and humans could dispose of neural networks to deal with numbers

[71, 72, 116].

P743 Animals need abstract representations of the physical world,

and that is not a minor detail (the maintenance and continuous
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functioning of this internal representation of the world consumes

up to 80% of the total energy consumed by a human brain [191].)

It must be an efficient and precise representation, if not animal

life would be impossible. It is through their own actions and ex-

periences, including imitation and innovation [128, 100, 196, 243]

that they develop their neurobiological representation of the world

in symbolic and abstract terms. The cortex behavior depends on

the neuronal circuits developed through the history of stimuli each

individual receives [86, 133]. Is is then clear that abstract know-

ledge built on individual actions and experiences is indispensable

for animal life.

P744 Perception and cognition are constructive neuronal proces-

ses in which elementary units of abstract knowledge are involved.

The processes take place in different brain areas, as we are now be-

ginning to know with certain detail [197, 65, 217, 66, 130, 67, 211].

This way of functioning seems incompatible with platonic essen-

tialism. Accordingly, concepts and ideas seem to be brain elabora-

tions rather than transcendent entities we have the ability to con-

nect with. Through our personal cognitive actions and experiences

(that, in addition, have a transpersonal cumulative potential th-

rough cultural heritage and cultural networks) we have end up by

developing that great cognitive system we call science.

P745 The consciousness of ideas and the ability of recursive thin-

king (perhaps an exclusive ability of humans [64, 116]) could have

promoted the raising and persistence of platonic essentialism. But

that way of thinking is simply incompatible with both evolutionary

biology [156] and neurobiology. It seems reasonable that Plato were

platonic in Plato times, but it is certainly surprising the persisten-

ce of that old way of thinking in the community of contemporary

mathematicians. Though, as could be expected, a certain level of

disagreement on this affair also exists [146, 139, 147, 14]. It is re-

markable the fact that many non platonic authors, such as Witt-

genstein, were against both the actual infinity and self-reference

[154], two capital concepts in the history of platonic mathematics.
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Eso está basado en sus creencias platónicas.

P746 The reader may come to his own conclusions on the conse-

quences the above biological criticism of platonic essentialism could

have on self-reference and the actual infinity. Although, evidently,

he can also maintain that he does not know through neural net-

works and persists in his platonic beliefs. But for those of us who

believe in the organic nature of our brains and in its abilities to per-

ceive and know modeled through more than 3600 millions years of

implacable organic evolution, Platonism has no longer sense. The

actual infinity and self-reference could lose all their meaning away

from their platonic scenario

P747 In my opinion, the actual infinity hypothesis is not only use-

less in order to explain the physical world, it is also annoying in cer-

tain disciplines as quantum gravity and quantum electrodynamics

(renormalization [93, 125, 142, 247, 208, 221, 9]). Physics [214, 216]

and even mathematics [171, 215] could go without it. Except trans-

finite arithmetic and other related areas, most of contemporary

mathematics are compatible with the potential infinity, including

key concepts as those of limit or integral. Experimental sciences as

chemistry, biology and geology have never been related to it. The

potential infinity would suffice. Some contemporary cosmological

theories, as the theory of multiverse [69] or the theory of cyclic uni-

verse [224], make use of infinity in a rather imprecise way. Even the

number of distinguishable sites in the universe could be finite [122].

Matter, energy, and electric charge seem to be discrete entities with

indivisible minima; space and time could also be of the same discre-

te nature, as is being suggested from some areas of contemporary

physics [107, 108, 233, 89, 219, 13, 220, 8, 148, 228, 16, 141, 16, 228].

P748 Beyond Planck’s scale nature seems to lose all its physical

sense. As the actual infinity, the spacetime continuum could al-

so be inconsistent. The reader can finally imagine the enormous

simplification of mathematics and physics once liberated from the

platonic burden of the actual infinity and self-reference. Perhaps

we should give Ockham razor a chance.
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Apéndice E.

Glossary

Axiom.-A statement whose truthfulness is accepted without proof

as the basis for inference arguments.

Axiom of Choice.-See ZFC.

Circular definition.-Invalid definition because the term defined

is used in its own definition.

Compact set.-A set of real numbers A it is said compact, if each

sequence of elements of A has a subsequence that converges to one

element of A.

Complement set.-Being A a proper subset of B, the set B − A

of all elements of B not in A is said the complement of A with

respect to B, denoted by A, or by A′.

Correspondences between sets.-To establish a correspondence

between two sets A and B is somehow matching their elements, or

part of them. If all elements of A are matched, the correspondence

is an application; if, in addition, each element of A is matched with

a different element of B, the application is said an injective fun-

ction or injective application; if in a function all elements of B are

matched, the function is called bijective, surjective or exhaustive

or a one-to-one correspondence; a function is which not all elements

of B are matched is said non-surjective, or non-exhaustive.

Distance between two points.-Length of the straight line bet-

ween the two points. If the Euclidean coordinates of both points

363
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are (x1, y1, z1) and (x2, y2, z2), the Euclidean distance is given by

d =
√

(x2 − x1)2 + (y2 − y1)2 + (z2 − z1)2 (1)

Empty Set.-A set without elements whose cardinal is 0, and who-

se symbol is ∅.

Euclidean.-Geometries built on the basis of the 5 Euclidean pos-

tulates (or on their corresponding modern versions). The existence

of a single parallel through a given point to a given straight line

is assumed. The Euclidean distance between two points in a Eu-

clidean space is the length of the straight line joining them.

Euclidean Axiom of the Whole and the Part.-The whole

is greater than any of its proper parts (parts different from the

whole).

Euclidean space.–Cartesian geometric space (with a coordinate

system, for example three-dimensional with three coordinate axes

X, Y and Z) which satisfies Euclid’s axioms and in which the dis-

tance between two points of coordinate (x1, y1, z1) and (x2, y2, z2)

is defined by (1).

Fractal.-Geometric object whose structure is the same on any

scale that is represented or observed. They are the objects of study

of fractal geometry.

Function.-A relation between the elements of two sets, called do-

main and image, which associates a single element of the image

with each element of the domain. The function is real (rational) if

the domain is the set of real (rational) numbers.

Fundamental laws of logic

First Law (Principle of Identity): A = A (A is what it is,

and A is not what it is not).

Second Law (Law of Contradiction): A and non-A is not

possible.
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Third Law (Principle of the Excluded Middle): either A

or non-A; no third alternative.

Fuzzy set.-A set that may contain elements that belong only par-

tially to it.

Gauge theories.-Quantum field theories developed to explain the

fundamental interactions between elementary particles.

Gödel Theorem (First Theorem of Incompleteness).-In every for-

mal system there exist true statements that cannot be proved.

Hilbert’s Hotel.-A (conceptual) hotel with infinite single rooms,

which being completely occupied by one guest in each room, can

admit infinite new guests who will stay individually, each one in

a room. To do this, each of the former guests changes its room

according to the following criteria: if a guest occupies the room

Rn, it is changed to the room R2n+1. That way, all rooms with an

even number become free. In those infinite rooms that have been

left empty, the infinite new guests will be accommodated.

Hyper-real numbers.-An axiomatic extension of the real num-

bers that include infinitesimals and infinite numbers.

Infimum.-See sequence.

Injective function.-See correspondences between sets.

Image of an element.-The image of an element of one set in

another set, through an injective correspondence of the first set in

the second one, is the element of the second set paired with the

element of the first set.

Internal or closed operation.-An operation, for example addi-

tion or multiplication, between the elements of a set is internal or

closed if the result is always an element of the set.

Internal Set Theory.-Axiomatic set theory that expands ZFC

to include part of the non-standard analysis.
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Interval.-Set of points or numbers x defined by two points or

numbers a and b called endpoints of the interval that verify a < b.

It is denoted by [a, b] if both ends are included (closed interval);

or by (a, b) if they are not included (open interval); if only one of

the ends is included, they are called half-open, or half-closed,

or open on the left and closed on the right (a, b], and vice versa

[a, b).

Knuth notation.-A simplified way of expressing numbers raised

to an exponent, or to a tower of exponents of the same exponent.

For example 99
9

is written 9 ↑↑ 3.

Limit of a sequence.-A real number L is the limit of a sequence

〈ai〉 of real numbers if for every real number ǫ > 0 there is a

natural number k such that for every natural number n > k it

holds |L− an| < ǫ. In symbols:

ĺım
n→∞

= L⇒ ∀ǫ > 0 : ∃n ∈ N : |L− an| < ǫ,∀n > k (2)

Mathematical induction.-A method for demonstrating that all

elements of a collection, such as the set of the natural numbers,

satisfy a given property P : it must be proved that the first element

a1 of the collection satisfies P and that if any element an of the

collection satisfies P , then the next element an+1 also satisfies P .

Measure theory.-A branch of mathematics that studies mea-

surable sets and functions. Of interest in geometry, analysis and

statistic.

Metric.-A symmetric binary function d defined for a givens set A,

which is non-negative and satisfies:

d(x, y) + d(y, z) ≥ d(x, z),∀x, y, z ∈ A (3)

being d(x, y) = 0 iff x = y. It is usually referred to as distance.

Modus Tollens.-A basic rule of logical inference: If the conse-

quence of a true logical inference is false, then the antecedent of
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the inference is also false:

p⇒ q (4)

¬q (5)

————
∴ ¬p (6)

Nested sets (intervals).-A sequence of sets (intervals) such that

each of them is a proper subset (superset) of its immediate succes-

sor.

Non-standard analysis.-A branch of mathematical analysis, in

which infinitesimal numbers are introduced in an axiomatic way:

non-null numbers (called hyper-reals) whose absolute value (inde-

pendent of the sign) is smaller than any standard real number.

One to one correspondence (bijection).-There is a one-to-one

correspondence between a set A and another set B if each element

of A can be paired off with a different element of the set B, and

all elements of A and B result paired.

Peano’s axioms..-Peano’s axioms are statements about the na-

tural numbers that (as any axiom) are accepted without demons-

tration. They are the following:

1) 1 is a natural number.

2) If n is a natural number, n+1 is also a natural number called

the successor of n

3) 1 is not a successor of other natural number.

4) If two natural numbers have different successors, then they are

different natural numbers.

5) If a set contains the number 1 and the successor of each element

in that set, then that set contains all natural numbers.

Permutation.-Each of the different reorderings of an ordered list

of elements.

Perpetuum mobile.-A hypothetical machine that would be able

to continue working forever, after an initial impulse, without the
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need for additional external power. Its existence would violate the

second law of thermodynamics, which is why it is considered an

impossible object.

Proper subset.-A set A is a proper subset of another set B if

all elements of A are elements of B, but not all elements of B are

elements of A. The set B is said a superset of the set A.

Proper part.-Part of a whole that does not contain all elements

of the whole.

Quantum chromodynamics.-Study of the properties of the strong

nuclear interaction from a quantum point of view.

Quantum electrodynamics.-Study of the properties of the elec-

tromagnetic interaction from a quantum point of view.

Recursive definition.-A first definition of an element followed by

a finite or infinite sequence of new definitions in which each new

definition the element is defined in terms of the previous definition.

Renormalization.-Calculation procedures used to eliminate the

infinities from equations

Richard paradox.-Assume there exists the indexed list of all

arithmetic properties of the natural numbers: to be even, odd,

prime, multiple of 5, etc. An additional property would be that

of being richardian: a number is said richardian if it doesn’t meet

the property it indexes; and non-Richardic if he does. Let’s assume

that the property of being a Richardian is indexed by the number

k, k = be richardian. It is easy to see that if the number k is ri-

chardian, then it is not richardian; and that if k isn’t richardian,

then it’s richardian.

Standard model of particles.-Theory that describes and clas-

sifies all elementary particles, and describes the electromagnetic,

weak nuclear and strong nuclear interactions.
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Segment of a given line.-A line* whose points and endpoints

belong all of them to the given line.

Sequence.-A sequence is an ordered set of elements a1, a2, a3. . . ,

usually denoted by 〈ai〉. The elements (also called terms) that pre-

cede a given element are called predecessors of that element. And

those that follow it are called successors. If between two terms of

a sequence there are no other terms of the sequence, one of them

is the immediate predecessor of the other; and the other the

immediate successor to the one. A sequence is strictly in-

creasing (decreasing) if each of its elements is greater (smaller)

than its immediate predecessor. An element that is not part of a

sequence and is greater (smaller) than all elements of the sequence

is called the upper (lower) bound of the sequence. The lower

of the upper bounds is called the least upper bound or supre-

mum of the sequence. The highest of the lower bounds is called

the greatest lower bound or infimum of the sequence. A se-

quence with a limit is said convergent, and their terms are said

to converge to that limit because they are getting closer and closer

to it, although they never reach it. Non-convergent sequences are

said to be divergent.

Superset.-See proper subset.

Supertask.-Execution of an infinite number of tasks, or actions,

within a finite interval of time.

Supremum.-See sequence.

Surjective function or bijection.-See correspondences between

sets.

Tautology.-A statement that is always true. For example: either

the number 1177 is a prime number or the number 1177 is not a

prime number.

Topology.-Branch of mathematics that studies the properties of

geometric objects that remain constant under transformations such
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as stretching, torsion and deformation. It generalizes the concepts

of continuity and limit.

Venn diagram.-A diagram in which mathematical sets are repre-

sented by overlapping circles.

ZFC.-Standard axiomatic set theory (Zermelo-Fraenkel) that in-

cludes the Axiom of choice: of any family of disjointed sets it is

possible to define a set with one element from each set of the fa-

mily.
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de la Ciencia, Espasa Calpe, Madrid, 2004.

[177] Alba Papa-Grimaldi, Why mathematical solutions of Zeno’s paradoxes
miss the point: Zeno’s one and many relation and Parmenides prohibi-
tion, The Revew of Metaphysics 50 (1996), 299–314.

[178] Derek Parfit, Reasons and Persons, The Clarendon Press, Oxford, 1984.

[179] Parménides, Acerca de la naturaleza, De Tales a Demócrito. Fragmentos
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niz, Goldbach, Bolzano., Infini des mathématiciens, infini des philosophes
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