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ABSTRACT  
 

The Symmetric Primal-Dual Symplex Pivot Decision Strategy (spdspds) is a novel iterative 

algorithm to solve linear programming problems.  Here, a symplex pivoting operation is 

considered simply as an exchange between a basic (dependent) variable and a non-basic 

(independent) variable, in the Tucker’s Compact Symmetric Tableau (CST) which is a unique 

symmetric representation common to both the primal as well as the dual of a linear programming 

problem in its standard canonical form.  From this viewpoint, the classical simplex pivoting 

operation of Dantzig may be considered as a restricted special case.  

 

The infeasibility index associated with a symplex tableau is defined as the sum of the number of 

primal variables and the number of dual variables, which are infeasible.  A measure of goodness 

as a global effectiveness measure of a pivot selection is defined/determined as/by the decrease in 

the infeasibility index associated with such a pivot selection.  At each iteration the selection of the 

symplex pivot element is governed by the anticipated decrease in the infeasibility index - seeking 

the best possible decrease in the infeasibility index - from among a wide range of candidate 

choices with non-zero values - limited only by considerations of potential numerical instability.  

The algorithm terminates when further reduction in the infeasibility index is not possible; then the 

tableau is checked for the terminal tableau type to facilitate the problem classification - a 

termination with an infeasibility index of zero indicates optimum solution.  The worst case 

computational complexity of spdspds is shown to be O(L
1.5

).  
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1.  INTRODUCTION  
 

Linear Programming (LP) problem represents one of the most widely used class of computational 

models, for which any possible improved solution technique would certainly be highly desirable.  

Of course, there has been several alternative solution strategies suggested including the classical 
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simplex method of Dantzig [1] and several variations thereof, followed by recent polynomial time 

algorithms, namely the Ellipsoid Method of Khachiyan [2] [3] and the Karmarkar Algorithm [4] - 

both classified now as belonging to Interior Point Algorithms.  Terlaky [5] Todd [6] and Adler et 

al [7] present a summary view of the various developments as well as a projected futuristic view 

of the overall situation. Let us not get diverted much into the historical developments etc.  

 

The simplex pivoting operation of Dantzig represents a move from one basis/tableau to another 

basis/tableau, by/through a single exchange between an entering infeasible non-basic variable and 

a leaving feasible basic variable.  For a chosen entering infeasible non-basic variable, the leaving 

feasible basic variable is to be selected so as to meet certain restrictive criteria in terms of the 

corresponding limitation of moving only between two neighboring extreme/vertex points of the 

polytope defined by the set of linear system of inequalities - so as to maintain feasibility while 

improving the objective function value by moving further towards the optimum.  

 

The proposed spdspds approach can be considered as a novel generalization of the simplex 

method of Dantzig, in terms of lifting all of such restrictions and providing a wider scope for the 

selection of the pivots - any nonzero element of the coefficient matrix in the tableau can be a 

potential candidate pivot element.  It  is  indeed  true  that  the  very  term  simplex  pivot  has  been  

redefined  here - as a simple/single exchange between an entering non-basic variable and a leaving basic 
variable - maintaining only that combinatorial/structual property of being a simple/single exchange between 
a selected  pair - that being the justification for renaming it as  symplex pivot - emphasizing the  primal-dual  
symmetry therein.  The symplex pivot of spdspds  need not necessarily correspond to a pair 

consisting of an  entering  infeasible  non-basic  variable  and a  leaving  feasible  basic  variable; 

also it does not require to be limited to a move between neighboring extreme/vertex points of the 

associated polytope - although the move does indeed correspond to one between a pair of  

intersection points  defined by the set of  linear system of inequalities.  

 

The actual selection of a spdspds pivot element is governed by an analysis of the associated 

measure of goodness of such a pivot choice.  A global measure of goodness or a global 

effectiveness measure (gem) for pivot selection is defined, utilizing the novel concept of  

infeasibility index  associated with a  symplex tableau - defined as the sum of the number of 

primal variables and the number of dual variables that are infeasible.  The change in the 

infeasibility index associated with a symplex pivot element can be determined by a thorough 

analysis of the tableau data.  To guarantee the best computational performance, it is proposed to 

select a pivot element corresponding to the best possible decrease in the infeasibility index.   

 

When further decrease in the infeasibility index is not possible, then the pivoting process is 

terminated.  An analysis of the data pattern in the  terminal tableau  can be used to classify the 

problem into one of the possible  six categories  as explained herein later.  

 

 

2.  TUCKER'S  COMPACT  SYMMETRIC  TABLEAU  
 

We will go through some well known preliminaries for the sake of establishing the notational 

conventions used in this paper, as used in our earlier reports [8] and [9].  

 

The Symmetric Primal-Dual Pair of LP in the  Standard Canonical Form  is as follows:  
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Primal Problem:  

   maximize c.x = f 

   s.t.  A.x ≤ b   (1) 

     x ≥ 0 

Dual Problem:  

   minimize v.b = g 

   s.t.  v.A ≥ c   (2) 

     v ≥ 0 

 
The descriptions for each of the problem parameters in (1) & (2) above are as follows:  

 

 x  Primal decision variables n x 1 vector 

 c Primal objective function coefficients 1 x n vector 

 f Primal objective function value 1 x 1 scalar 

 A Primal constraint coefficient matrix m x n matrix 

 b Primal constraint upper bound m x 1 vector 

 v   Dual decision variables 1 x m vector 

 g Dual objective function value 1 x 1 scalar  

 

 

We introduce the m x l vector y of slack variables to (1) and the 1 x n vector u of surplus 

variables to (2) to write the symmetric primal-dual pair in canonical form as follows:  

 

Primal Problem:  

   maximize c.x  + 0.y = f 

   s.t.  A.x + Im.y = b  (3) 

     x, y  ≥ 0  

 

Dual Problem:  

   minimize v.b + u.0 = g 

   s.t.  v.A – u.In  = c  (4) 

     v, u  ≥ 0 
 

 

This Symmetric Primal-Dual pair is represented in the Tucker’s Compact Symmetric Tableau 

(CST) as shown in Figure-1.  

 

 

 

 

 

 

 

 

 

 

Figure-1: Initial Compact Symmetric Tableau (T0)  
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The relations in (3) & (4) corresponding to the Primal and Dual can be combined to give -  
 

   c.x + u.x    =    v.A.x    =    v.b – v.y    (5)  
 

    f   + u.x    =    v.A.x    =     g   –  v.y    (6)  
 

For any feasible (basic or non-basic) solution to the P-D pair,  
 

   u, x, v, y             ≥            0     (7)  

and therefore,  

   (g – f)    =    (u.x + v.y)    ≥    0    (8)  
 

For any basic solution (feasible or infeasible) to the P-D pair,  

the non-basic variables are set to zero;  

that is,  

    u, y        =        0     (9)  

and therefore,  

   (g – f)    =    (u.x + v.y)    =    0    (10)  
 

The entries in the Tucker’s Compact Symmetric Tableau (CST) directly correspond to the 

associated basic solution to the P-D pair, thus establishing a one-to-one correspondence between 

a solution basis and the associated Tucker’s Compact Symmetric Tableau (CST).  A pivoting 

operation on the CST tableau corresponds to the associated move from one basis to another.  
 

For the LP problem pair (1) & (2) or equivalently (3) & (4) the above tableau in Figure-1 

represents the initial tableau indicating the initial basic solution (IBS) wherein yi are the primal 

basic variables associated (one to one permanent association) with vi the dual non-basic variables, 

and xj are the primal non-basic variables associated (one to one permanent association) with uj the 

dual basic variables.  Note that xj (and the –1) are column-labels and vi (and the –1) are row 

labels in the tableau, and the way to interpret (read) the tableau is as follows:  
 

Primal Problem: 

  å     aij . xj  –  bi   =  –yi ,   i  Î R  (row index)  

                        jÎC  

          (11)  

  å    cj . xj  –  0   =  f          (function to be maximized)  

                        jÎC  
 

Dual Problem:  

  å  vi . aij  –  cj   =   uj ,   j Î C   (Column index)  

                        iÎR  

          (12)  

  å   vi . bi  –  0  =  g       (function to be minimized)  

                        iÎR  
 

wherein the variables xj, yi, vi, uj  are all considered to be non-negative.  
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3.  ALGEBRA  (ARITHMETIC)  OF  SYMPLEX  PIVOTING  PROCESS  
 

With the Tucker's Compact Symmetric Tableau (CST) representation for linear programming, in 

its standard/canonical form, one can observe that once a pivot element is selected, the actual 

pivoting process (the algebra and hence the arithmetic operations) is the same irrespective of the 

pivot selection; for example whether it is a primal pivot or a dual pivot.  Hence it suffices to 

present here a single (common) set of operations representing that pivoting process.  This 

expressional elegance and computational efficiency along with convenience and versatility (as 

will be evident later) are the reasons why the above representation has been selected for the 

purpose of our study; motivated by [10].  

 

For the sake of generality, let us imagine that we are somewhere in the middle of solving a LP 

problem (say after the k
th
 iteration), and have the system model represented by a tableau (Tk) as 

shown in Figure-2.  

 

By the nature of the sequence of elementary row (column) operations being performed during any 

pivoting process, the system model represented in Figure-2 is equivalent to that represented by 

the initial tableau which corresponds to the P-D pair (11) & (12). The transformed version of the 

primal-dual pair directly expressed by the above tableau is as follows:  

 

 

 
 

 

 

 

 

 
 

 
 

Figure-2: Compact Symmetric Tableau (Tk) after k iterations 
 

Primal Problem:  

  zi
B
   =     βi  –  å     αij . zj

N
 ,     i  Î R  (row index)  

                                               jÎC  

           (13)  

  f     =    – δ  +  å     γj  . zj
N
 ,     (function to be maximized) 

                                               jÎC 

Dual Problem:  

  wj
B
   =  – γj   +  å     wi

N
 . αij ,     j Î C  (column index) 

                                                iÎR 

           (14)  

  g      =   – δ  +  å     wi
N

 . βi      (function to be minimized)  

                                                iÎR  
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The effect of a pivoting operation on (13) & (14) performed with a chosen pivot element αIJ is 

exactly to affect an exchange between the P-D variable pairs indicated by I and J in (13) and (14). 

That is, zJ
N
 is entered into primal basis in exchange for zI

B
 in (13), and wI

N
 is entered into dual 

basis in exchange for wJ
B
 in (14).  Suppose we have chosen the pivot element αIJ using some 

appropriate pivot selection scheme, and we would like to derive the resulting tableau (Tk+1). Let 

the resulting tableau (Tk+1) be indicated in Figure-3.  

 

 

 

 

 

 

 

 

 
 

 

Figure-3: Compact Symmetric Tableau (Tk+1) after (k+1) iterations 
 

The algebra (arithmetic) of deriving the above tableau (Tk+1) of Figure-3 from the previous 

tableau (Tk) of Figure-2 is detailed below:  

 

 (αIJ)’  ←  (1/αIJ) ;  (αIj)’  ←  (αIj)/αIJ ; (βI)’ ←  (βI/αIJ) ;  

 (αiJ)’  ←  – (αiJ/αIJ) ;      (γJ)’ ←  – (γJ/αIJ) ;  

 (αij)’  ←  αij  –  (αIj/αIJ)αiJ ;     (βi)’ ←  βi   – (βI/αIJ)αiJ ;  

 (γj)’   ←  γj   –  (αIj/αIJ)γJ ;     (δ)’  ←  δ    –  (βI/αIJ)γJ ;  
 

along with an exchange of labels associated with row I and column J; that is effectively:  

 

 (zJ
N
 )’  ←  zI

B
;    (zI

B)’  ←  zJ
N
;    (wJ

B)’  ←  wI
N
;    (wI

N)’  ←  wJ
B
;  

 

while retaining the very same labels for all the other rows and columns; that is:  

 

 (zj
N
 )’  ←  zj

N
;    (zi

B)’  ←  zi
B
;     (wj

B)’  ←  wj
B
;    (wi

N)’  ←  wi
N
; 

 

for  i є R\{I} and j є C\{J}.  

 

It is to be noted here that the Tucker’s Compact Symmetric Tableau (CST) is a unique symmetric 

representation common to both the primal as well as the dual of a linear programming problem in 

its standard canonical form.  Also, the tableau evolves from T0 as the initial tableau representing 

the problem as posed (or close to being so, after some due preprocessing) along the sequence of 

symplex iterations all the way to the final terminal tableau T* - while always being a tableau 

representation of an equivalent system of linear inequalities as well as the objective function.  

 

From (13) & (14) above, we can get:  
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N
   =  å å  wi

N
 . αij . zj

N
  =  (g+δ)  – å  wi

N
 . zi

B
   (15)  
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and therefore,  

 (g – f)  =   å  wi
N

 . zi
B
  +  å  wj

B
 . zj

N
       (16)  

 

The values of the primal and the dual basic variables as well as (the primal & the dual) objective 

function value corresponding to a basis/tableau can be directly read from the entries of the tableau 

- the primal objective function value being always the same as the dual objective function value 

for every basis/tableau all along the sequence of symplex iterations - each of the summation terms 

in both (15) and (16) above being zero, and the complementary slackness condition being 

automatically satisfied for every basis/tableau.  The relationships (15) & (16) above indicate the 

effect of moving away from a basis, as the non-basic variables are moved away from zero; in 

particular, one can note from (16) above that for all feasible solutions, the dual objective function 

value is an upper bound for the primal objective function value and the primal objective function 

value is a lower bound for the dual objective function value, which is a well known relationship.  

A basic solution  for the P-D pair  is  optimal  if & only if  it is  basic feasible  for the P-D pair.  

 
Now, one may skip sections 4 to 8 and go directly to section 9 in order 

to avoid a pedagogical detour, and possibly come back to these sections 

if and when necessary to fill the gaps in one’s detailed understanding.  

 

 

4.  A  TYPICAL  SYMPLEX  PIVOT  SELECTION  SCHEME  
 

A typical symplex pivot selection scheme can include four (two pairs) fundamental types of 

symplex pivot selections namely Primal Standard Pivot (PSP), Dual Standard Pivot (DSP), Primal 

Tricky Pivot (PTP) and Dual Tricky Pivot (DTP) that are available for symplex pivoting process 

in solving linear programming problems.  The algebra of these pivot selections are given in 

Figure-4, along with a schematic representation of the Tableau Data Pattern that leads to such 

pivot selection.  

 

 

5.  EFFECT  OF  A  TYPICAL  PIVOTING  OPERATION 
 

It is useful at this point to make a few observations regarding the effect of pivoting operation, in 

each of the above pivot selections. 

 

DSP {poxidixi} brings about an immediate improvement in the primal feasibility w.r.t. the pivot 

row, without deterioration of dual feasibility.  The extent of this improvement in primal feasibility 

can be measured by the corresponding improvement (decrease) in the value of the dual objective 

function, given by │βIγJ / αIJ│.  
 

PSP {doxipixi} brings about an immediate improvement in the dual feasibility w.r.t. the pivot 

column, without deterioration of primal feasibility.  The extent of this improvement in dual 

feasibility can be measured by the corresponding improvement (increase) in the value of the 

primal objective function, given by │βIγJ / αIJ│.  
 

PTP {doxopoxi} brings about an immediate improvement in the primal feasibility w.r.t. the pivot 

row, without any concern to the dual feasibility.  The extent of this improvement in primal 

feasibility can be measured by the corresponding improvement (increase) in the value of the 

primal objective function, given by │βIγJ / αIJ│.  
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DTP {poxodoxi} brings about an immediate improvement in the dual feasibility (w.r.t. the pivot 

column, at least) without any concern to the primal feasibility.  The extent of this improvement in 

dual feasibility can be measured by the corresponding improvement (decrease) in the value of the 

dual objective function, given by │βIγJ / αIJ│.  
 

 
(a) Dual Standard Pivot, DSP: {poxidixi}  

 

          I   Î  { i Î  R │βi  < 0};  

          JDSP(I)  ←  arg-min {(γj / αIj) │ γj £  0;  αIj  < 0};  
                               j Î  C  

 

 

 
(b) Primal Standard Pivot, PSP: {doxipixi}  

 

          J  Î  { j Î  C │ γj  > 0};  

         IPSP(J)  ←  arg-min {( βi / αiJ) │ βi  ≥ 0;  αiJ  > 0};  
                            i Î  R  

 

 

 
(c) Primal Tricky Pivot, PTP: {doxopoxi}  

 

          J  Î  { j Î  C │ γj  ≤> 0};  

         IPTP(J)  ←  arg-max {( βi / αiJ) │ βi < 0;  αiJ < 0};  
                            i Î  R  
 

 

 
(d) Dual Tricky Pivot, DTP: {poxodoxi}  

 

         I  Î  { i Î  R │βi  <≥ 0};  

         JDTP(I)  ←  arg-max {(γj / αIj) │ γj  >  0;   αIj  > 0};  

                              jÎC 

 

 

 
Figure-4:.  Four Types of  Typical  Symplex Pivot Selections  

—  negative;  0   zero;  +  positive;  Ө  non-positive;  * any value;  Å   non-negative;  ·  un-analyzed  

 

 

6.  CELL  TYPE  

 
Each potential pivot element/cell in the Compact Symmetric Tableau (CST) is characterized by a 

“cell-type”. The cell type of a cell in Ith
 row and J

th
 column consists of three components. They 

are the sign of αIJ (either ‘0’, ‘+’ or ‘–’), the sign of βI (either ‘Z’, ‘P’ or ‘N’) and the sign of γJ 

(either ‘z’, ‘p’ or ‘n’).  Hence there will be a total of 27 different cell types.  However, if α is zero 

or numerically near-zero, it will not be a potential pivoting cell, since pivoting will not be 

performed on such cells. Hence the nine cell types with α ≈ 0 are combined together and the new 

cell type given is 0**.  Thus there are 19 cell types for our consideration. 

 

 

 

·  – – ← 

·  ·  Å   

+ Ө ·   

 ↓   

·  ·  –  

+ ·  Å  → 

+ Ө ·   

↑    

– ·  – → 

·  ·  Å   

* Ө ·   

↑    

+ ·  * ← 

·  ·  Å   

+ Ө ·   

↓    



spdspds20210221 © Dr.(Prof.) Keshava Prasad Halemane Page 9 of 21 

spdspds20210221 © Dr.(Prof.) Keshava Prasad Halemane Page 9 of 21 

 

7.  TYPICAL  SYMPLEX  PIVOT  DECISION  STRATEGY  
 

The four distinct types of  typical  pivot selections mentioned above may be considered for 

designing a pivoting strategy.  It is to be noted here that the pivot selection as well as the pivoting 

operation is symmetrical w.r.t. the primal problem and the dual problem, both represented in the 

very same Tucker’s Compact Symmetric Tableau representation of a linear programming 
problem.  

 

The four distinct types of typical pivot selections may be considered in the following default 

preference order: {{DSP,PTP},{PSP,DTP}} to drive towards primal feasibility first; or 

alternatively {{PSP,DTP},{DSP,PTP}} to drive towards dual feasibility first.  

 

At every iteration, an attempt is made to select a pivot element/cell, by checking the possible 

pivot selections belonging to one of the above four types of pivot selections in the default 

preference order as specified above.  It is to be noted that depending upon the actual data in the 

Tableau, a pivot selection of specific type which was not possible in an earlier iteration, can 

become possible in a later iteration, sometimes even in the very next following iteration.  That is 

why it is a crucial part of an algorithm to check in each (and every) iteration, for each of the four 

types of possible pivot selections preferably (although not necessarily) in a pre-specified 

preference order.  At each step mentioned above, if there is more than one pivot element of that 

particular cell type, then the choice can be narrowed by utilizing some measure of goodness for 

the pivot selection, appropriately defined.  

 

 

8.  MEASURE  OF  GOODNESS  FOR  PIVOT  SELECTION   
 
From the earlier discussion above, one can observe that the absolute value of the change in the 

objective function, namely, abs(βIγJ/αIJ) can possibly be utilized as a local effectiveness measure 

(lem) of the pivoting operation - applicable for any and every iteration, for both primal and dual - 

given by  lem(I, J) = abs(βIγJ/αIJ).  

 
Although it is not specifically suggested here, one can opt to choose a pivot, possibly to maximize 

this local effectiveness measure (lem) in every iteration, either among the possible pivots of a 

particular type or subtype, or even among of all the possible pivots of all the four possible types.  

Even, if done so, it cannot be guaranteed (needs further research?) to minimize the overall 

number of symplex iterations required for reaching an optimum solution.  

 
It requires further research work to thoroughly understand, analyze and incorporate the concept of 

any “local effectiveness measure” (lem) for a single symplex pivoting operation to the fullest 

extent, that would in effect achieve a guaranteed improvement in some corresponding "global 

effectiveness measure" (gem) defined appropriately for the given LP problem; in developing a 

efficient & robust solution strategy.  For now, let us come to the main algorithm itself.  

 
In order to achieve guaranteed performance efficiency, we propose to utilize a global 
effectiveness measure (gem) that characterizes a CST tableau with a number indicating 
the largest possible decrease in the infeasibility index as presented in this paper.  
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9.  INFEASIBILITY  INDEX  :  A  GLOBAL  EFFECTIVENESS  MEASURE  
 

As an inverse measure of goodness, the infeasibility index  λ  of a given CST tableau is defined as 

the sum of the primal infeasibility index  μ  and the dual infeasibility index  ν.  It corresponds to 

the number of basic variables in primal & dual which are infeasible in the given tableau.  That is, 

we define  λ = μ + ν; and therefore –  
 

λ = (μ,  number of rows with β < 0)   + (ν,  number of columns with γ > 0);  

or  

λ = (μ,  number of rows with zi
B
 < 0) + (ν,  number of columns with wj

B
 < 0).  

 

If the infeasibility index  λ  of the given tableau equals to zero then it indicates that the tableau is 

the terminal tableau which is feasible and optimal.  By the definition of the infeasibility index, it 

can never be negative, nor can it be more than the sum of the number of columns and the number 

of rows in the Compact Symmetric Tableau.  That is,  
 

 0  ≤  λ  =  {(0≤μ≤m) + (0≤ν≤n)}  ≤  (m + n).  
 

Given a tableau, the change in the infeasibility index (τ = Δλ) can be associated with each cell that 

can be a potential candidate pivot element (i.e. α ≠ 0).  This change in the infeasibility index 

consists of two components, one is the change in the primal infeasibility index (σ = Δμ) and the 

other is the change in the dual infeasibility index (ρ = Δν).  That is,  
 

 Change in the infeasibility index  τ = Δλ = (Δμ + Δν) = σ + ρ.  

 

 

9.1  Calculation of the change in the primal infeasibility index (σ = Δμ)  
 

For each column j, the ratio Rij = bi/aij is calculated for all rows i = 1, 2, …, m.  
The ratio can either be positive, zero or negative.  It can be represented as in Figure-5.  

 

Let αIJ be the chosen pivot element, then after pivoting the values of β are given by 

 

   (βI)’ ←  (βI/αIJ)  and 

   (βi)’ ←  βi   – (βI/αIJ)αiJ 

and    RIJ   =    βI/αIJ 
 

The calculation of σ can be divided into three different cases depending upon the value of RIJ.  

β = 0 is considered as feasible.  
 

(i) RIJ = 0  (i.e. βI = 0,  αIJ ≠ 0)  
 

Here there will not be any change in the β values, and therefore there will not be any change in 
the infeasibility index. Hence,  σ = 0.  

 

(ii) RIJ > 0  ( βI ≥ 0, αIJ > 0 :  pixi    -or-    βI < 0, αIJ < 0 :  poxi)  
 

RiJ < 0 will not affect the change in the infeasibility index. RiJ < 0 can occur in two situations.  
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One of them is when βi < 0 and αiJ > 0.  In this case, it can be seen from the expression for (βi)’ 
given above, that (βi)’ will continue to be negative; hence the change in the infeasibility index is 

not affected.  
 

The other is when βi > 0 and αiJ < 0.  In this case, it can be seen from the expression for (βi)’ 
given above, that (βi)’ will continue to be positive; hence the change in the infeasibility index is 
not affected.  

 

 
Figure-5: Ordered Pattern of (βi / αiJ) Values for i = 1, 2, …, m  

* => (‘P’, ‘N’ or ‘Z’)  
 
 

RiJ > 0 will affect the change in the infeasibility index. RiJ > 0 can occur in two situations.  

One is when βi ≥ 0 and αiJ > 0. In this case, it can be seen from the expression for (βi)’ given 
above, that (βi)’ will continue to be positive for the ratios RiJ > RIJ, (βi)’ will be zero for the ratios 
RiJ = RIJ, (βI)’ will continue to be positive, and (βi)’ will become negative for the ratios RiJ < RIJ. 

Hence the change in the infeasibility index is increased by the number of ratios RiJ which are less 

than RIJ and greater than or equal to zero. 

 

The other is when βi < 0 and αiJ < 0. In this case, it can be seen from the expression for (βi)’ given 
above, that (βi)’ will continue to be negative for the ratios RiJ > RIJ, (βi)’ will become zero for the 
ratios RiJ = RIJ, (βI)’ will become positive, and (βi)’ will become positive for the ratios RiJ < RIJ. 

Hence the change in the infeasibility index is decreased by the number of ratios RiJ which are less 

than or equal to RIJ and strictly greater than zero.  
 

Therefore,  

 σ1 = Σ No. of rows i with βi ≥ 0, αiJ > 0 and 0 ≤ RiJ < RIJ  :  {pixi}  

 σ4 = Σ No. of rows i with βi < 0, αiJ < 0 and 0 < RiJ ≤ RIJ  :  {poxi}  

and  

 σ  = σ1 – σ4    :  {pixi-poxi}  
 

 +N* 

 –P* 

 +P* 

 –N* 

 +Z* 

 –Z* 

b > 0, a > 0 

b < 0, a < 0 b > 0, a < 0 

b < 0, a > 0 

b = 0  a < 0 

a > 0  b = 0 

R > 0 R < 0 

1 2 

3 4 

0 
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(iii) RIJ < 0  ( βI ≥ 0, αIJ < 0 :  pixo    -or-    βI < 0, αIJ > 0 :  poxo)  
 

RiJ > 0 will not affect the change in the infeasibility index. RiJ > 0 can occur in two situations.  

 

One of them is when βi ≥ 0 and αiJ > 0. In this case, it can be seen from the expression for (βi)’ 
given above, that (βi)’ will continue to be positive; hence the change in the infeasibility index is 
not affected. 

 

The other is when βi < 0 and αiJ < 0. In this case, it can be seen from the expression for (βi)’ given 
above, that (βi)’ will continue to be negative; hence the change in the infeasibility index is not 
affected. 

 

RiJ <0 will affect the change in the infeasibility index. RiJ < 0 can occur in two situations.  

One is when βi ≥ 0 and αiJ < 0. In this case, it can be seen from the expression for (βi)’ given 
above, that (βi)’ will continue to be positive for the ratios RiJ < RIJ, (βi)’ will be zero for the ratios 
RiJ = RIJ, (βI)’ will become negative, and (βi)’ will become negative for the ratios RiJ > RIJ. Hence 

the change in the infeasibility index is increased by the number of ratios RiJ which are greater 

than RIJ and less than or equal to zero (one more, if βI is positive, since it will become negative). 

 

The other is when βi < 0 and αiJ > 0. In this case, it can be seen from the expression for (βi)’ given 
above, that (βi)’ will continue to be negative for the ratios RiJ < RIJ, (βi)’ will become zero for the 
ratios RiJ = RIJ, (βI)’ will become negative, and (βi)’ will become positive for the ratios RiJ > RIJ. 

Hence the change in the infeasibility index is decreased by the number of ratios RiJ which are 

greater than or equal to RIJ and strictly less than zero (one less, if βI is negative, since it will 

continue to be negative).  

 

Therefore,  

 σ3 = Σ No. of rows i with βi ≥ 0, αiJ < 0 and RIJ < RiJ ≤ 0  :  {pixo}  

 σ2 = Σ No. of rows i with βi < 0, αiJ > 0 and RIJ ≤ RiJ < 0  :  {poxo}  

and  

 σ = (σ3 + 1) – σ2 if (βI > 0)   or  

 σ = σ3 – (σ2 – 1)  if (βI < 0)  

Hence we get,  

 σ = σ3  – σ2 + 1   :  {pixo1-poxo}  
 

 

9.2  Calculation of the change in the dual infeasibility index (ρ = Δν)  
 

For each row i, the ratio Rij = γj/aij is calculated for all columns j = 1, 2, …, n.  
The ratio can either be positive or negative. It can be represented as in Figure-6.  

 

Let αIJ be the chosen pivot element, then after pivoting the values of γ are given by 

 

   (γJ)’ ←  – (γJ/αIJ)  and 

   (γj)’ ←  γj   – (γJ/αIJ)αIj 

and    RIJ   =    γJ/αIJ  

 

The calculation of  ρ  can be divided into three different cases  depending upon the value of  RIJ.  

γ = 0 is considered as feasible.  
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(i) RIJ = 0  (i.e. γJ = 0,  αIJ ≠ 0)  
 

Here there will not be any change in the γ values, and therefore there will not be any change in 
the infeasibility index. Hence,  ρ = 0.  

 

 
Figure-6: Ordered Pattern of (γj / αIj) Values for j = 1, 2, …, n 

* => (‘p’, ‘n’ or ‘z’)  
 

 

(ii) RIJ > 0  ( γJ ≤ 0, αIJ < 0 :  dixi    -or-    γJ > 0, αIJ > 0 : doxi)  
 

RIj < 0 will not affect the change in the infeasibility index. RIj < 0 can occur in two situations.  

 

One of them is when γj < 0 and αIj > 0. In this case, it can be seen from the expression for (γj)’ 
given above, that (γj)’ will continue to be negative; hence the change in the infeasibility index is 
not affected. 

 

The other is when γj > 0 and αIj < 0. In this case, it can be seen from the expression for (γj)’ given 
above, that (γj)’ will continue to be positive; hence the change in the infeasibility index is not 
affected. 

 

RIj > 0 will affect the change in the infeasibility index. RIj > 0 can occur in two situations.  

One is when γj ≤ 0 and αIj < 0. In this case, it can be seen from the expression for (γj)’ given 
above, that (γj)’ will continue to be negative for the ratios RIj > RIJ, (γj)’ will be zero for the ratios 
RIj = RIJ, (γJ)’ will continue to be negative, and (γj)’ will become positive for the ratios RIj < RIJ. 

Hence the change in the infeasibility index is increased by the number of ratios RIj which are less 

than RIJ and greater than or equal to zero. 

 

The other is when γj > 0 and αIj > 0. In this case, it can be seen from the expression for (γj)’ given 
above, that (γj)’ will continue to be positive for the ratios RIj > RIJ, (γj)’ will become zero for the 
ratios RIj = RIJ, (γJ)’ will become negative, and (γj)’ will become negative for the ratios RIj < RIJ.  

 +*n 

 –*p 

 +*p 
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 +*z 

 –*z 
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Hence the change in the infeasibility index is decreased by the number of ratios RIj which are less 

than or equal to RIJ and strictly greater than zero.  
 

Therefore,  

 ρ1 = Σ No. of columns j with γj ≤ 0, αIj < 0 and 0 ≤ RIj < RIJ  :  {dixi}  

 ρ4 = Σ No. of columns j with γj > 0, αIj > 0 and 0 < RIj ≤ RIJ  :  {doxi}  

and  

 ρ = ρ1 – ρ4    :  {dixi-doxi}  

 

(iii) RIJ < 0  ( γJ ≤ 0, αIJ > 0 :  dixo    -or-    γJ > 0, αIJ < 0 :  doxo)  
 

RIj > 0 will not affect the change in the infeasibility index. RIj > 0 can occur in two situations.  

 

One of them is when γj < 0 and αIj < 0. In this case, it can be seen from the expression for (γj)’ 
given above, that (γj)’ will continue to be negative; hence the change in the infeasibility index is 
not affected. 

 

The other is when γj > 0 and αIj > 0. In this case, it can be seen from the expression for (γj)’ given 
above, that (γj)’ will continue to be positive; hence the change in the infeasibility index is not 
affected. 

 

RIj <0 will affect the change in the infeasibility index. RIj < 0 can occur in two situations.  

One is when γj ≤ 0 and αIj > 0. In this case, it can be seen from the expression for (γj)’ given 
above, that (γj)’ will continue to be negative for the ratios RIj < RIJ, (γj)’ will be zero for the ratios 

RIj = RIJ, (γJ)’ will become positive, and (γj)’ will become positive for the ratios RIj > RIJ. Hence 

the change in the infeasibility index is increased by the number of ratios RIj which are greater 

than RIJ and less than or equal to zero (one more, if γJ is negative, since it will become positive). 

The other is when γj > 0 and αIj < 0. In this case, it can be seen from the expression for (γj)’ given 
above, that (γj)’ will continue to be positive for the ratios RIj < RIJ, (γj)’ will become zero for the 

ratios RIj = RIJ, (γJ)’ will become positive, and (γj)’ will become negative for the ratios RIj > RIJ. 

Hence the change in the infeasibility index is decreased by the number of ratios RIj which are 

greater than or equal to RIJ and strictly less than zero (one less, if γJ is positive, since it will 

continue to be positive).  
 

Therefore,  

 ρ3 = Σ No. of columns j with γj ≤ 0, αIj > 0 and RIJ < RIj ≤ 0  :  {dixo}  

 ρ2 = Σ No. of columns j with γj > 0, αIj < 0 and RIJ ≤ RIj < 0  :  {doxo}  

and  

 ρ = (ρ3 + 1) – ρ2 if (γJ < 0)    or 

 ρ = ρ3 – (ρ2 – 1)  if (γJ > 0)  

Hence we get,  

 ρ = ρ3 – ρ2 + 1   :  {dixo1-doxo}  
 

 

10.  CST-SIGNATURE  OF  A  COMPACT  SYMMETRIC  TABLEAU  
 

The CST-signature of a Compact Symmetric Tableau is a string of length  n+m (number of 

columns + number of rows).  The first  n  entries are chosen from the characters  n, p or z  

depending up on whether the  γ  value is negative, positive or zero respectively; the next  m  
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entries are chosen from the characters  N, P or Z  depending up on whether the  β  value is 

negative, positive or zero respectively.  The positions of these entries are fixed with respect to the 

initial tableau - considering the lexicographic ordering of these   n+m  parameters.  During the 

pivoting operation, for every subsequent tableau, the CST-signature string is generated, and it is 

compared with the signatures of all the previous tableaus stored in a dictionary, to facilitate the 

detection of any possible imminent cycle; since each CST-tableau has a unique CST-signature 

and each CST-signature uniquely identifies a CST-tableau.  The CST-signature of an anticipated 

resultant CST-tableau corresponding to a specific possible choice of pivot element can indeed be 

pre-determined, in advance, even before performing a pivot operation.  

 

 

11.  ALGORITHM  TERMINATION  -  TERMINAL  TABLEAU  TYPES  

 
When further pivoting is not possible, the tableau is checked for the terminal tableau type. These 

terminal tableau types are classified so as to correspond to the various possible problem 

categories that a linear programming problem may conveniently be considered.  These various 

possible  terminal tableau types  are shown in  Figure-7  with  labels  F  for  feasible-basic-finite, 

∞  for  feasible basic-finite/non-basic-infinite  and  Φ  for  infeasible  corresponding to both 

primal and dual variables.  

 
 

  D = F   D = ∞   D = Φ  

                

  • Ө 0    + 0       

P = F  Å  * +    * +       

  0 − •    Ө •       

                

                

                

P = ∞  − * Å         • Ө Å   

  0 − •        Ө + •  

                

                

        • Å    • Ө Å   

P = Φ        Å  −   Å  0 −  

        Ө •   Ө + •  

                

 

Figure-7.  Six Categories for Terminal Tableau Data Pattern. 

 −   negative;        0  zero;           +    positive;  

 Ө  non-positive;  *  any value;  Å   non-negative;  ·  un-analyzed  
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This classification into six categories as presented here is a refinement over the well known 

classical approach; one that enables to distinctly identify the case wherein primal (dual) has a 

feasible basic-finite/non-basic-infinite optimum with finite value for the objective function, while 

the dual (primal) has a feasible-basic-finite optimum.  This distinction from the classical approach 

arises because we give primary emphasis on the classification based on the nature of the decision 

variables at termination, and give secondary emphasis on the finiteness (or otherwise) of the 

objective function value.  The set of criteria for this classification scheme, to be used after 

ensuring that the tableau is indeed the terminal tableau, is given below:  

 

· P=F  : μ = 0; [∀(IÎR,JÎC):{0 ≤ σIJ}] & [∄(iÎR,jÎC):{(αij <0)(βi ≥0)(γj ≥0)}];  

· P=∞  : μ = 0; [∀(IÎR,JÎC):{0 ≤ σIJ}] & [∃(iÎR,jÎC):{(αij <0)(βi ≥0)(γj ≥0)}];  

· P=Φ  : μ > 0; [∀(IÎR,JÎC):{0 ≤ σIJ}];  

· D=F  : ν = 0; [∀(JÎC,IÎR):{0 ≤ ρIJ}] & [∄(jÎC,iÎR):{(αij >0)(βi ≤0)(γj ≤0)}];  

· D=∞  : ν = 0; [∀(JÎC,IÎR):{0 ≤ ρIJ}] & [∃(jÎC,iÎR):{(αij >0)(βi ≤0)(γj ≤0)}];  

· D=Φ  : ν > 0; [∀(JÎC,IÎR):{0 ≤ ρIJ}];  

 

Note that the situations corresponding to primal/dual degeneracy with the resultant dual/primal 

multiplicity and also that of infinite rays are all easily discernible in this classification scheme.  

 

In case of terminal infeasibility, a judicious use of either the change in primal infeasibility index 

(σ=Δμ) or change in dual infeasibility index (ρ=Δν) instead of the change in overall infeasibility 

index (τ=Δλ) can be utilized to arrive at an almost primal feasible or an almost dual feasible 

tableau, if one requires such an output for further problem analysis etc.  This maneuverability can 

be adapted to the needs of the problem and that shows the versatility of the spdspds approach.  

 

 

12.  SYMMETRIC  PRIMAL  DUAL  SYMPLEX  PIVOT  SELECTION  STRATEGY  

 

(1) The proposed spdspds approach can be used to solve any LP problem, by first converting it 

into the standard/canonical form before proceeding further.  In performing such transformation, it 

is possible to enhance the overall efficiency by the following approach:  
 

Free variables can be replaced by non-negative variables not double in number, but only 

just one extra in number;  Equations can be replaced by inequalities not double in number, 

but only just one extra in number;  
 

No need for use of artificial variables; the initial basic solution need not necessarily be 

feasible; and therefore no need to rely on two-phase method or big-M method, etc.  

 

(2) Any nonzero element of the coefficient matrix in the tableau can be a potential pivot element.  

The earlier defined typical symplex pivot selection scheme and the associated set of four types of 

pivot candidates {DSP, PTP, PSP, DTP} is only a  typical  sample, presented for  pedagogical  

reasons, to eventually take the reader towards the proposed spdspds.  For example, a pivot 

selection with cell type  +Pn or –Pn  may usually seem to be simply unacceptable or extremely 

unlikely.  However, it may turn out that such a choice can yield a surprisingly large decrease in 

the infeasibility index, depending on the tableau data, especially as an intermediary pivoting 

iteration, and therefore worth the consideration.  
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(3) The proposed concept of  infeasibility index  along with the use of a measure of goodness for 

the pivot selection determined as/by the anticipated  decrease in the infeasibility index considered 

as a global effectiveness measure (gem) arising due to the specific pivot selection, turns out to be 

a  great  grand  breakthrough  in achieving the  ultimate  performance  challenge  in the use of 

symplex method  for solving  linear programming  problems.  

 

 (4) The concept of the CST-signature  explained earlier can be utilized to detect & avoid cycling 

as well as to keep a record of the actual computational path taken by the algorithm - as a track 

record, from the initial tableau all the way up to the terminal/final tableau. It may be noted here 

that a more compact CST-signature can also be defined, that indicates only the combinatorial 

information, that is, only about the partitioning of the set of variables into the two disjoint 

subsets, namely, the set of basic variables and the set of non-basic variables; without giving any 

specific detail about the feasibility/infeasibility or the numerical sign of the variable.  

 

(5) Problem of cycling (en-route towards the terminal tableau, caused by intermediate 

degeneracy) will get prevented because of the very nature of the spdspds pivot selection strategy, 

seeking the best possible decrease of the infeasibility index - a primal/dual degenerate pivot 

doesn’t result in any decrease in the primal/dual infeasibility index.  When encountered with a 

possible degeneracy, the lexicographic ordering of the variables is used as a tie-breaking 

mechanism to guide the choice of pivot element, thus coursing through a part of the cycle, until a 

point is reached wherefrom spdspds finds a step down the infeasibility path again, unless it 

happens to be the terminal tableau.  So, spdspds is effectively immune to problem of cycling 

caused by intermediate degeneracy.  

 

(6) Potential possibility of numerical instability can be avoided by careful elimination of poor 

choices of the pivot element, using appropriate filters - even if it requires going for a second best 

(sub-optimal) choice in terms of the decrease in the infeasibility index - in order to avoid such 

treacherous pathways leading to numerically disastrous computational behavior.  

 

 

13.  COMPUTATIONAL COMPLEXITY  
 

For a linear programming problem represented in its standard canonical form using the Tucker’s 
Compact Symmetric Tableau of size (m)x(n) the problem size L can be taken as [(m+1)*(n+1)].  

 

In the worst case, the infeasibility index of the initial tableau will at most be  {(m)+(n)}  and at 

each spdspds pivoting iteration the infeasibility index gets reduced by at least  one  so that it takes 

at most  {(m)+(n)}  spdspds  pivoting iterations to reach the optimum solution if one exists; or 

may even be well before that in order to report the infeasibility status of the given problem.  

However, the expected number of spdspds pivoting iterations is  =< min{(m),(n)} because the 

basic / non-basic status of each variable is not expected to switch around much except in rare 

instances of potential numerical instability etc.  Therefore, the number of spdspds pivoting 

iterations required to solve the linear programming problem is,  O(L
1/2

)  in the worst case.  

 

Each spdspds pivoting operation requires a complete analysis of the infeasibility status before 

performing the actual pivoting operation, and that requires =< [2*(m)*(n)] floating point 

operations, that is O(L).  Each spdspds pivoting operation itself requires =< [3*(m+1)*(n+1)] 

floating point operations, which is again O(L).  
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Therefore, the total computational work involved in solving the linear programming problem is 

=< {(m)+(n)}*[5*m*n + 3*m + 3*n] floating point arithmetic operations, which is of course 

O(L
1.5

) - that is super-linear sub-quadratic polynomial complexity bound.  

 

It can be shown easily that the space complexity is only O(L) - that is, linear complexity bound.  
 

Note that spdspds has finite termination and provides a definite output, that is, either the optimum 

solution if & when one exists, or a point of minimal infeasibility beyond which no further 

spdspds pivoting is possible towards any improvement in the feasibility of the given problem - 

which itself may provide insight as to the possible refinements in the problem formulation itself.  

 

 

14.  A POSER TO THE COOL HEADED BRAVE HEARTS  
 

Here i present a poser to you, my cool headed brave heart counterpart:  

 

Refer to the notation used in Figure-4 and consider the two scenarios described below:  

 

[∀IÎR]:[∄JÎC{{I=IPSP(J)}˅{I=IPTP(J)}}]; & [∀JÎC]:[∄IÎR{{J=JDSP(I)}˅{J=JDTP(I)}}];  

 

or the scenarios described below:  

 

[∀IÎR]:[∄JÎC{∀iÎR{(βI≥0)˄((0≤βI/αIJ<βi/αiJ)˅(βi/αIj<βI/αIJ≤0))}˅{(βI<0)˄((0≤βi/αiJ<βI/αIJ)˅(βI/αIJ<βi/αiJ≤0))}}];  

 

&  

 

[∀JÎC]:[∄IÎR{∀jÎC{(γJ≤0)˄((0≤γJ/αIJ<γj/αIj)˅(γj/αIj<γJ/αIJ≤0))}˅{(γJ>0)˄((0≤γj/αIj<γJ/αIJ)˅(γJ/αIJ<γj/αIj≤0))}}];  

 

and then may even possibly consider the scenarios described below:  

 

[∀IÎR]:[∄JÎC{∀iÎR{(σIJ < σiJ ≤ 0)}] & [∀JÎC]:[∄IÎR{∀jÎC{(ρIJ < ρIj ≤ 0)}];  

 

A careful reading of the above will reveal that the underlying reasoning here is very similar to 

that used in the concept of  infeasibility index  as a  global effectiveness measure  for a symplex 

pivoting operation  that form the  conceptual  foundation  for the  design  of  spdspds expressed 

by the following:  

 

¬[(∃IÎR)(∃JÎC)]:[{(∀iÎR)(∀jÎC)(i≠I)(j≠J){τIJ < τij ≤ 0}]  

 

 

15.  DIRECTIONS FOR FUTURE RESEARCH  
 

The spdspds algorithm provides a scope for future research work with a motivation to further 

enhance the worst case computational complexity possibly down to O(L) - that is, linear w.r.t. the 

size of the input data set.  The idea is simply to exploit the complete information content that is 

made available through the infeasibility analysis of initial tableau T0.  Note that corresponding to 

every potential pivot element (I,J) the infeasibility analysis provides information as to the 

feasibility status (sign - positive or zero or negative) of the primal and dual variables in the 

associated resultant tableau T0(I,J).  
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Analyze the entries in the initial tableau  T0  and make a statement declaring the status of each of 

the  n+m  variables in the terminal tableau T*; that is, as to whether it will be a basic variable or a 

non-basic variable in the terminal tableau.  This question is equivalent to asking, in the context of 

non-linear programming [11] as to whether a constraint will be active (non-basic?) or otherwise at 

the optimum - although of course expecting an answer in that context may certainly not be 

practical.  However, the situation with linear systems can be more promising so as to expect a 

possible attempt in answering the question - that only based on a thorough analysis of either the 

initial problem data T0, or equivalently, the problem data Tk  associated with the model en-route 

towards the optimum - with a redefined concept of  binding/nonbinding  constraints [12][13].  

 

A binary string CST-signature may be defined by mapping the alphabet symbols {n,z,P,Z} to 1 

indicating feasibility and mapping the alphabet symbols {p,N} to 0 indicating infeasibility.  Let 

the binary string CST-signature of the initial tableau T0 be S0 and that of T0(I,J) be S0(I,J).  For 

the initial tableau T0 create a list L0 of the binary strings S0(I,J) corresponding to each of the 

potential spdspds pivot elements (I,J) associated with a decrease 0 > τ = Δλ = (Δμ + Δν) = σ + ρ 

in the overall feasibility index λ.  A detailed analysis of how feasibility status of each of the 

primal and dual variables get affected by each choice of the potential pivot element, requires the 

study of the components σ1 & σ4 or σ3 & σ2 along with ρ1 & ρ4 or ρ3 & ρ2 as appropriate.  

The combined effect of a simultaneous application of more than one symplex pivot 

(rather than a sequence of symplex pivoting operations) is indeed worth further detailed 

study, and can possibly lead to what may be called as an “omniplex pivoting operation”.   

 
Such an effort may require an exploration to further strengthen the correspondence among - linear 

programming and network optimization along with combinatorial optimization - while also 

leading towards a design of an efficient solution strategy for the LP - with very similar or even 

better performance efficiency than that of spdspds.  

 

The versatility of the spdspds algorithm allows for extensive combinatorial analysis along 

with numerical experimentation that may need to be conducted to explore further possibilities, 

including possible applications in polyhedral combinatorics, etc.  Also, for example, as in the 

classical approaches, one can possibly seek to first achieve primal or dual feasibility, 

more efficiently, by utilizing the best possible decrease in the corresponding component σ 
or ρ rather than τ, before going further with later iterations.  

 

 

16.  CONCLUSION  
 

The proposed concept of infeasibility index is an inverse measure of goodness associated with a 

CST tableau.  The anticipated decrease in the infeasibility index as a global effectiveness measure 

associated with each pivot element forms the basic foundation for the proposed spdspds 

algorithm.  The proposed spdspds provides a novel viewpoint to the very same classic framework 

of Tucker’s Compact Symmetric Tableau (CST) representation for LP - with a newly defined 

concept of  symplex  pivot;  while also leading to an  efficient,  robust  and  versatile  iterative 

solution strategy requiring minimum number of symplex iterations, with a worst case 

computational complexity of O(L
1.5

).  

 

The proposed concept of the CST-signature can be utilized to keep track of the computational 

path from the initial tableau to the terminal tableau, and in turn also to detect cycling.  It is 

expected that an implementation of this proposed spdspds approach can achieve the ultimate 

performance challenge in solving linear programming problems - and thus lead towards 
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consequent immediate as well as lasting, deep and far reaching impact on the development & 

study of optimization algorithms and their computational complexity analyses.  

 

The spdspds algorithm claims -  

(1) guaranteed improvement in the feasibility at every step;  

(2) guaranteed finite termination;  

(3) guaranteed immunity against cycling;  

(4) guaranteed minimum number of pivoting iterations;  

(5) guaranteed worst case computational complexity of O(L
1.5

).  

 

It is suggested that ‘spdspds’ may be read as ‘yes-speedy-yes-speedy-yes’ (yes! - why silent?) 

while rejoicing its 180-degree rotational symmetry as a string symbol.  
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