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Abstract 

We present in this paper some interesting Lienard type equations without 

restoring force. We show that these equations can exhibit sinusoidal periodic 

solutions that can be exploited to represent harmonic and isochronous periodic 

oscillations in nonlinear damped dynamical systems. 
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Introduction  

A rich variety of solution methods like approximate techniques, transformation 

theory of equations, first integral approach and dynamical systems theory are 

exploited in the literature to study the general second-order differential equation 

of Lienard type 

0)(),( =++ xhxxxx &&&& σ                                                                                             (1) 

where overdot means derivative with respect to time, ),( xx &σ  denotes a function 

of x  and ,x&  and )(xh  is a function of x . A lot of theories of existence and 

uniqueness of periodic solutions of the equation (1) from Poincaré-

Bendixsonprinciple can be found in the literature [1]. The existence of limit 

cycles of special cases of the equation (1) has been widely investigated in the 

literature [1]. The linear damped harmonic oscillator 

02 =++ xxx ωγ &&&                                                                                                     (2) 

where γ  and ω  are arbitrary constants, is the basic case of the equation (1), 

where ,),( γσ =xx &  and xxh 2)( ω= . In this context the term xxx &&),(σ−  denotes the 

damping force, and )(xh−  is the restoring force in the equation (1). It is known, 

when ,0),( =xx &σ  that the equation (1) can exhibit conservative periodic 
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oscillations so that the equation (1) is said conservative system. There is a vast 

literature in this type of equations where .0),( =xx &σ   The cubic Duffing equation 

03 =++ xxx βα&&                                                                                                     (3) 

where α  and β  are arbitrary constants, belongs to this type of Lienard 

equations. The equation (3) has deeply been examined in the literature and used 

to describe several nonlinear phenomena in physics [2-4]. The exact solution of 

the cubic Duffing equation is well known to be each of the Jacobi elliptic 

functions. However, in some recent papers [3, 4] the authors have successfully 

shown that this equation can exhibit unbounded tangent periodic solutions such 

that it could not be a nonlinear conservative oscillator as claimed in the 

literature. An interesting class of equations of the type (1)can read 

0)()( =++ xhxxx &&& ϑ                                                                                               (4) 

The well-studied Van der Pol equation  

0)1( 2 =+−+ xxxx &&& µ                                                                                                (5) 

in the literature, where 0>µ  is an arbitrary constant, belongs to the class of 

equations (4). The existence of limit cycles of the equation (5) is broadly 

documented in the literature [1]. Another equation of physical importance that 

belongs to the class (4) is the generalized and modified Emden type equation 

[5,6].  

03

21 =+++ xxxxx λαα &&&                                                                                           (6) 

where 21, αα and λ  are arbitrary parameters. In [5] the authors succeeded to 

calculate exact harmonic and isochronous periodic solution of the equation (6) 

for the first time and claimed to find an unusual Lienard type nonlinear 

oscillator. However, in a recent paper, Doutètien et al. [6], have successfully 

shown the existence of unbounded periodic solution for the equation (6). Thus 

the authors in [6] concluded that the equation (6) is in fact a pseudo-oscillator. 

The quadratic Lienard type equation 

0)()( 2 =++ xhxxux &&&                                                                                                (7) 

where )(xu  is a function of ,x belongs also to the general class of equations (1). 

In this case xxuxx && )(),( =σ . A special case of the equation (7) presented in [7] has 

acquired a high consideration in the literature and has been intensively treated 
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from physical as well as mathematical point of view. In [7] the authors claimed 

to find a unique oscillator of type (7) exhibiting sinusoidal periodic oscillations 

but with amplitude-dependent frequency. However, Monsia and his group 

succeeded to show the existence of many equations of type (7) exhibiting 

sinusoidal periodic solutions [8-10] with amplitude-dependent frequency. 

Recently, Akande et al. [11] have shown successfully that the so-called 

Mathews-Lakshmanan oscillator presented in [7] is in fact a pseudo-oscillator 

since this equation can exhibit non-oscillatory behavior. In the literature the 

mixed Lienard type equation 

[ ] 0)()()( =+++ xhxxxxux &&&& ϑ                                                                                    (8)     

where ),()(),( xxuxxx ϑσ += &&  has been also the object of interesting studies [12-

16]. The authors in [14,15] presented for the first time some equations of type 

(8) exhibiting exact sinusoidal and isochronous periodic solutions. Although the 

equation (8),that is the equation (1) has been well studied within the framework 

of existence and uniquenesstheorems obtained from the Poincaré-Bendixson 

principle [1], the determination of exact and explicit periodic solutions continues 

to be a challenge. In this way, Monsia and his group investigated recently the 

quadratically dissipative equation [16] 

02

22
=

−
+ x

x

x
x &&&

µ
                                                                                           (9) 

where 0>µ  is an arbitrary parameter. The equation (9) is of Lienard type (1) 

without restoring force, that is to say with .0)( =xh  The equation (9) is an 

exceptional quadratically damped equation, since it does not satisfy the theorem 

of existence of at least one periodic solution formulated in [1] (see Theorem 

11.2), but the authors [16] succeeded to calculate exact and explicit general 

periodic solution of the equation (9). More interesting, this periodic solution is 

sinusoidal and isochronous, that is this solution is identical to the solution of the 

linear harmonic oscillator equation 

02 =+ xbx&&                                                                                                         (10) 

with amplitude of oscillations 0>µ  and angular frequency 0>b  Thus, for the 

first time a periodic solution has been obtained for an equation of the form  

0),( =+ xxxx &&&& σ                                                                                                 (11)  
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that does not obey the theorem of existence of periodic solutions [1]. More 

recently, Adjaï et al. [17] have successfully revealed for this purpose the 

existence of several others equations of type (11) exhibiting also sinusoidal and 

isochronous periodic solutions. In the present paper, the problem is to ask 

whether there are equations of type (11) that can exhibit identical sinusoidal and 

isochronous periodic solutions to the equations solved in [17]. The current work 

predicts the existence of such equations of type (11). In this perspective, we 

briefly present [17] an overview of the required theory (section 2) and exhibit 

the identical solutions of equations (section 3). We present finally a conclusion 

for the contribution. 

2.Overview of the theory 

According to [17] one can verify that 

l
& xxfaxxgb )()( +=                                                                                          (12) 

is a first integral of the general second-order differential equation [17] 
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Using the relation (12), the equation (13) becomes 
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Substituting ),()( 2 xfxg = into the equation (14), allows one to obtain 
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By application of 0=l , the equation (15) reduces to 

0
)(

)('

)(

)('2
2

2 =++ x
xf

xf
ax

xf

xf
x &&&&                                                                                (16) 

which can be written in the form   

0
)(

)('

)(
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xf

xf
ax

xf

xf
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The equation (17) has the form of the equation (11), that is of the equation (1) 

where the restoring force .0)( =xh In this way the equation (17) does not also 

satisfy the Theorem 11.2 of [1]. However, the objective in the following section 

is to show that the equation (17) without restoring force can exhibit sinusoidal 

and isochronous periodic solutions identical to the solutions of equations 

exhibited in [17].  

3. Equations with sinusoidal periodic solutions 

In the situation where ),()( 2 xfxg =  the first integral (12) can ensure the general 

solution of the equation (17) as 

∫=+− dxxfKta )()(                                                                                            (18) 

where K , is a constant of integration. Now we can investigate the first special 

case of the equation (18). 

3.1   
2

2

1

1
)(

cxc
xf

+
=  

In this case the equation (17) is written as 
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xc
x &&&&                                                                      (19) 

where 1c  and 2c  are arbitrary parameters. Putting the expression of  )(xf  in the 

equation (18), yields  

( ) ∫
+

=+−
2

2

1 cxc

dx
Kta                                                                                    (20) 

such that, after integration, one can get  

( )Ktca
c

c
x +−−=










−−

1

2

11sin                                                                            (21) 

which allows one to obtain the solution of the equation (19) as  

( )( )Ktca
c

c
tx +−−−= 1

1

2 sin)(                                                                            (22) 
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The formula (22) represents a sinusoidal solution of the equation (19) but with 

amplitude-dependent frequency, where  0<1c  , 0>2c  and 0<a . Applying 

11 −=c , transforms the solution (22) into  

( )[ ]Ktactx +−= sin)( 2                                                                                       (23) 

which becomes sinusoidal and isochronous periodic solution. The solutions (22) 

and (23) are identical to the solutions (19) and (21) of the Reference [17] 

respectively, where 2

2 µ=c  and 0>µ , is an arbitrary constant, while the equation 

(19) is quite different from the equation (16) of the Reference [17]. 

3.2   
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This case leads to 
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Using the relation (18), the solution of the equation (24) is given by 

( ) ∫
+

=+−
xcxc

dx
Kta

2
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1

1                                                                                (25) 

which, after integration, reduces to 

( )11

2

211 2
sin Ktca

c
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

 +−                                                                         (26) 

From the equation (26), one can get the general solution of the equation (24) in 

the form 

( )[ ][ ]Ktca
c

c
tx +−+−= 1

1

2 sin1
2

)(                                                                         (27) 

where 0<1c  , 0>2c  and 0>a . The solution (27) is sinusoidal but with 

amplitude-dependent frequency. However,, the solution (27) can be made 

isochronous by setting 11 −=c . In this context, the solution (27) becomes 

( )[ ][ ]Kta
c

tx +−= sin1
2

)( 2                                                                                   (28) 
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where  0>2c , and 0>a . The solutions (27) and (28) are identical to the 

solutions (26) and (27) of the Reference [17] respectively, while the equation 

(24) is quite different from the equation (23) of the Reference [17]. So with that 

a conclusion can be performed for the work. 

Conclusion 

In this contribution, some equations of Lienard type have been studied. We have 

successfully shown that these equations without restoring force can exhibit 

sinusoidal and isochronous periodic oscillations. 
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