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Abstract

A theorem on the number of distinct eigenvalues of diagonalizable matrices
is obtained. Some applications related to matrices with simple eigenvalues,
triangular defective matrices, adjacency matrices and graphs are discussed.
Other ideas and examples are provided.
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1 Preliminaries

Most of the work done in the recent years about the number of distinct eigenvalues
of matrices revolves around the relationship between graphs and matrices. In par-
ticular, the concept of minimum number of distinct eigenvalues of graph has been
studied trough some articles such as [1], [8], [4], [6], [2]. Other recent articles
about the number of distinct eigenvalues are related to low-rank perturbation of
matrices, [7], [11], [14] and [15].
The way we go in this paper is different in the sense that our main result is stated,
proved and applied within matrix analysis. Then, in the last section, we establish
a connection with graph theory. The question about the distinct eigenvalues is for-
mulated in this work as follows.
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Is there a way to find the number of distinct eigenvalues of a given complex matrix
without calculating the eigenvalues themselves?
We provide an affirmative answer to this question in the general case of diagonal-
izable matrices. A major tool to achieve this goal, is the next lemma.
Let v1,v2 and v3 be three vectors in Cn, n ≥ 2, such that v1 and v2 are linearly
independent. It can be easily verified that there is always at least one unit vector w1
in the subspace spanned by v1 and v2 such that w1 is orthogonal to v3, i.e, w∗1v3 = 0.
This idea can be generalized as follows.

Lemma 1.1. Let V be a vector space of dimension n≥ 2 and let H be a subspace
of V of dimension k with 2 ≤ k ≤ n. For every vector v ∈ V , there exists an or-
thonormal basis B = {w1, . . . ,wk} of H such that al least (k−1) elements of B are
orthogonal to v.

Proof. We prove the lemma for Cn and the proof extends naturally to every vector
space endowed with an inner product and having dimension ≥ 2.
The trivial case is where v is orthogonal to H. If v ∈ H, then the existence of B is
ensured by Gram-Schmidt process. Suppose that v /∈ H and v is not orthogonal to
H. Then there exists a vector v1 ∈ H such that v1 ∗ v 6= 0. Let v1, . . . ,vk be a basis
of H. For i = 2,3, . . . ,k, we use v,v1 and vi to form the unit vector

ui =
− v∗vi

v∗v1
v1 + vi

‖− v∗vi

v∗v1
v1 + vi‖

, (1)

which is orthogonal to v. Moreover, u2,u3, . . . ,uk are linearly independent, be-
long to H and span a subspace G ⊂ H of dimension (k− 1). Therefore, Gram-
Schmidt process is applied to obtain an orthogonal basis {w2, . . . ,wk} of G from
u2,u3, . . . ,uk. Note that the vectors w2, . . . ,wk are orthogonal to v since G itself is
orthogonal to v. Let

w1 =

v1−
k

∑
i=2

(w∗i v1)wi

‖v1−
k

∑
i=2

(w∗i v1)wi‖
. (2)

Then w1 ∈ H, ‖w1‖ = 1 and {w1, . . . ,wn} form an orthonormal basis of H. The
assertion of the lemma is satisfied by this basis.

Some other key ideas on which our analysis is based are about matrix product and
spectral decomposition of matrices. If x1, . . . ,xn and y1, . . . ,yn are vectors in Cn,
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then [
x1 . . .xn

]y∗1
...

y∗n

=
n

∑
i=1

xiy∗i . (3)

Moreover, if λ1, . . . ,λn are complex numbers, then

[
x1 . . .xn

]λ1
. . .

λn


y∗1
...

y∗n

=
n

∑
i=1

λixiy∗i . (4)

Remark 1.2. It follows from (3) and (4) that the complex matrix M = ∑
n
i=1 λixiy∗i

has spectrum {λ1, . . . ,λn} if ∑
n
i=1 xiy∗i = In, the n×n identity matrix. In this case,

M is diagonalizable, xi and yi are, respectively, right and left eigenvectors of M as-
sociated with λi. If all the eigenvalues of M are simple, then there is a unique Jordan
decomposition given by the left side of (4), in which all the eigenvectors x1, . . . ,xn

are unit vectors. An important fact used in our analysis is that this uniqueness does
not hold if some of the eigenvalues of M are nonsimple. In other words, if λ is
a nonsimple eigenvalue of M, then every basis of the eigenspace of M associated
with λ can be used to produce a Jordan decomposition of M. This idea is illustrated
by the following example.

Example 1.3. Look at the two Jordan decompositions:

M =


1 1 0 1
0 1 1 0
1 1 1 0
1 1 1 −1




1 0 0 0
0 1 0 0
0 0 2 0
0 0 0 2




0 −1 1 0
1 1 −2 1
−1 0 2 −1

0 0 1 −1


and

N =


0 1 1 3
−1 −2 1 2

0 1 1 2
0 1 0 −1




1 0 0 0
0 1 0 0
0 0 2 0
0 0 0 2



−3 −1 4 −3

1 0 −1 1
−3 0 4 −1

1 0 −1 0

 .
Not only M and N are similar to each other, but they represent the same matrix. In
fact, simple calculations shows that

M = N =


1 0 1 −1
−1 1 2 −1
−1 0 3 −1
−1 0 1 1

 .
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The above equality holds because the first two (last two) eigenvectors in the first de-
composition span the same eigenspace associated with λ1 = 1 (λ2 = 2) and spanned
by the first two (last two) eigenvectors in the second decomposition.

2 Main results

2.1 Case of diagonalizable matrices

In this subsection, M is an n×n complex diagonalizable matrix with n≥ 2. It has
a Jordan canonical decomposition of the form

M =
[
x1 . . . xn

]β1
. . .

βn


y∗1
...

y∗n

 , (5)

where β1, . . . ,βn are the n eigenvalues of M (not necessarily distinct), It follows
from (3) and (4) that

M =
n

∑
i=1

βixiy∗i (6)

and

In =
n

∑
i=1

xiy∗i , (7)

where In is the identity matrix. To take account of the multiplicity of eigenvalues
of M, we use the following notation:

1. λ1, . . . ,λr are the distinct eigenvalues of M for some r ≤ n.

2. gi is the multiplicity of λi.

3. The right and left eigenspaces of λi are denoted, respectively, Hi and Li.

4. In the set {x1, . . . ,xn}, the eigenvectors of M associated with λi are denoted
{xi1 , . . . ,xigi

} and form a basis of the eigenspace Hi.

5. In the set {y1, . . . ,yn}, the left eigenvector of M associated with λi are de-
noted {yi1 , . . . ,yigi

} and form a basis of the left eigenspace Li.

Then (6) can be written as

M =
r

∑
i=1

gi

∑
j=1

λixi j y
∗
i j

=
r

∑
i=1

λi

gi

∑
j=1

xi j y
∗
i j

(8)
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and (7) as
r

∑
i=1

gi

∑
j=1

xi j yi j = In, (9)

Note also that

y∗i j
xst =

{
1 if i = s and j = t,
0 otherwise.

(10)

Using (8) and (10), we obtain

Mk =
r

∑
i=1

λ
k
i

gi

∑
j=1

xi j y
∗
i j

for every k ∈ N. (11)

Let t ∈ {1, . . . ,r} and v be a nonzero vector in Cn not orthogonal to Hi for i =
1, . . . , t and orthogonal to Hi for i = t +1, . . . ,r. Then (11) implies

v∗Mk =
r

∑
i=1

λ
k
i

gi

∑
j=1

(v∗xi j)y
∗
i j

=
t

∑
i=1

λ
k
i

gi

∑
j=1

(v∗xi j)y
∗
i j
, k ∈ N. (12)

Moreover, (9) implies

v∗ = v∗In

=
r

∑
i=1

gi

∑
j=1

(v∗xi j)y
∗
i j

(13)

=
t

∑
i=1

gi

∑
j=1

(v∗xi j)y
∗
i j
.

By Lemma 1.1, the eigenvectors xi1 , . . . ,xigi
of λi can be chosen to form an or-

thonormal set in which v∗xi1 6= 0 and v∗xi j = 0 for j = 2, . . . ,gi (if gi ≥ 2). Then,
with this choice of the right eigenvectors {xi j}, the existence and uniqueness of the
corresponding left eigenvectors {yi j} are ensured by the Jordan normal form (5).
We emphasize that this choice of eigenvectors preserves the matrix M as explained
in Remark 1.2 and Example 1.3. It follows from (12) that

v∗Mk =
t

∑
i=1

λ
k
i (v
∗xi1)y

T
i1 , k ∈ N (14)

and from (13) that

v∗ =
t

∑
i=1

(v∗xi1)y
∗
i1 . (15)
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Now, let a0, . . . ,at−1 be complex numbers such that

a0v∗+a1v∗M+ · · ·+at−1v∗Mt−1 = 0. (16)

From (14), (15) and (16) we have

t−1

∑
k=0

ak

[
t

∑
i=1

λ
k
i (v
∗xi1)y

T
i1

]
= 0 (17)

or equivalently,
t

∑
i=1

(v∗xi1)

[
t−1

∑
k=0

akλ
k
i

]
y∗i1 = 0. (18)

Since v∗xi1 6= 0 and the eigenvectors {yi1 | 1≤ i≤ t} are linearly independent, (18)
implies

t−1

∑
k=0

akλ
k
i = 0 for i = 1, . . . , t. (19)

If some of the coefficient (ai) are different than zero, then (19) implies that the
polynomial f (x) = ∑

t−1
k=0 akzk has t distinct roots λ1, . . . ,λt , while its degree does

not exceed (t − 1). This is a contradiction. Hence, a0 = a1 = · · · = at−1 = 0.
Then we deduce from (16) that the vectors v, M∗v, . . . , (M∗)t−1v are linearly
independent. Since there are t of them, those vectors span the subspace spanned
by the set of vectors {yi1 | 1 ≤ i ≤ t} as it can be seen from (14) and (15). We
denote this subspace by LM(v). The vector v as well as all the vectors of the form
(M∗)kv, k ∈ N are linear combinations of {yi1 | 1 ≤ i ≤ t} as it can be seen from
(14) and (15). Therefore, they belong to LM(v).
The right and left eigenspaces associated with any eigenvalue of M have the same
dimension. Therefore, we could replace M by M∗ in the above analysis to obtain
the following theorem.

Theorem 2.1. Let M be an n×n complex diagonalizable matrix with n≥ 2 and let
λ1, . . . ,λr be the distinct eigenvalues of M with r ∈ {1, . . . ,n}. For every nonzero
vector v ∈ Cn, let RM(v) and LM(v) be the subspaces of Cn defined by

RM(v) = span
{

v, Mv, M2v, . . .
}

(20)

and
LM(v) = span

{
v, M∗v, (M∗)2v, . . .

}
(21)

1. If v is not orthogonal to t eigenspaces of M and orthogonal to the (r− t)
remaining ones for some t ∈{1, . . . ,r}. Then the vectors v,M∗v, . . . ,(M∗)t−1v
are linearly independent and span LM(v).
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2. If v is not orthogonal to t left eigenspaces of M and orthogonal to the (r− t)
remaining ones for some t ∈ {1, . . . ,r}. Then the vectors v,Mv, . . . ,Mt−1v
are linearly independent and span RM(v).

Clearly, it is always possible to find a vector v that is not orthogonal to any eigenspace
(left eigenspace) of M. Therefore, we have the following corollary of Theorem 2.1.

Corollary 2.2. Let M be an n×n complex diagonalizable matrix M and q(M) be
the number of its distinct eigenvalues. Then

q(M) = max
{

rank
([

v Mv . . . Mn−1v
]) ∣∣∣ v ∈ Cn

}
. (22)

Remark 2.3. The inequality

q(M)≤ rank(M)+1 (23)

holds for all complex matrices including the diagonalizable matrix M. It follows
from Corollary 2.2 and (23) that for every v ∈ Cn,

rank
([

v Mv . . . Mn−1v
])
≤ rank(M)+1. (24)

The practical aspect of Theorem 2.1 consists of Corollary 2.2 and the following
corollary which are considered together with the theorem as our main results.

Corollary 2.4. An n× n complex diagonalizable matrix M has at least k distinct
eigenvalues if and only if there exists an nonzero vector v∈Cn such that the matrix

A =
[
v Mv . . . Mn−1v

]
(25)

has rank k.

Proof. If M has at least k distinct eigenvalues, then by Corollary 2.2, there exists
a vector v such as A has rank k. Conversely, Suppose that the rank of A is k. If
M has less than k distinct eigenvalues, say k′ with k′ < k, then it has exactly k′

left eigenspaces. Hence, the largest possible number of left eigenspaces of M that
could be not orthogonal to v is k′. It follows by Theorem 2.1 that the dimension
of the subspace LM(v) spanned by v, Mv, M2v, . . . has dimension at most equal to
k′. This is in contradiction with our assumption that the rank of A is k. Hence,
k′ ≥ k.

Remark 2.5. Corollary 2.2 tells us that, for every nonzero vector v ∈ C and for
every k ∈ N, the rank of a matrix of the form (25) is a lower bound for the number
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of distinct eigenvalue of M given that M is diagonalizable. Furthermore, if M is
nonsingular, let

B =
[
Mhv Mh+1v . . . Mh+k−1v

]
, (26)

with h ∈ N. Then B can be written as

B = Mh
[
v Mv . . . Mk−1v

]
= BA, (27)

where A is as in (25). Since Mh is nonsingular, the rank of B is same as the rank of[
v Mv . . . Mk−1v

]
. By Corollary 2.2, we conclude that the rank of the matrix B

is also a lower bound of the nubmber of distinct eigenvalues of the matrix M given
that M is diagonalizable and nonsingular.

2.2 Normal matrices

By definition, an n× n complex matrix M is normal if MM∗ = M∗M, where M∗

is the conjugate transpose of M. It is well known that M is normal if and only if it
has a spectral decomposition of the form

M =
n

∑
i=1

βiwiw∗i , (28)

where {(βi,wi)} is a complete set of eigenpairs of M. Look at equivalent condition
(15) and its proof in [9]. The vectors w1, . . . ,wn form an orthonormal basis of Cn

which implies by (3) that
n

∑
i=1

wiw∗i = In, (29)

where In is the n×n identity matrix. Complex normal matrices are diagonalizable.
Therefore, Theorem 2.1 and its corollaries apply to them. As it can be seen from
(28), the right and left eigenspaces associated with every eigenvalue βi of M are the
same. Hence, for every nonzero vector v ∈ Cn, the matrices

[
v, Mv, . . . , Mn−1v

]
and

[
v∗, v∗M, . . . , v∗Mn−1

]∗ span the same space. In other words, the subspaces
LM(v) and RM(v) given, respectively, by (20) and (21) are actually the same sub-
space if M is normal. It follows from Theorem 2.1 that the dimension of this
subspace is a lower bound of the number of distinct eigenvalues of M.

Remark 2.6. Theorem 2.1 and its corollaries apply, in particular, to symmetric
matrices which form an important subclass of normal matrices. As we shall explain
in the third sections, there are some applications in graph theory related to the
adjacency matrix of simple undirected graph which is a symmetric matrix.
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2.3 Case of defective matrices

A matrix M is said to be defective if it has at least one eigenvalue for which the
algebraic and geometric multiplicities are not equal. Theorem 2.1 and its corol-
laries do not hold in the general case of non-diagonalizable matrices. Here is a
counterexample.

Example 2.7. Consider the following matrix

M =

 1 0 −1
2 −1 3
1 −1 3

 .
If we choose the canonical vector v = [1 0 0]T , then the matrix

A = [v Mv M2v] =

 1 1 0
0 2 3
0 1 2


is nonsingular since its determinant is nonzero, det(A) = 1. According to Corol-
lary 3.1, matrix M should have 3 simple eigenvalues. However this is not the case
since M is defective and has Jordan decomposition

M =

 1 1 0
1 −1 −1
0 −1 −1

 1 1 0
0 1 1
0 0 1

 0 1 −1
1 −1 1
−1 1 2


from which we see that M has one distinct eigenvalue 1 with different algebraic
and geometric multiplicities, respectively, equal to 3 and 1.

Note that an n×n complex matrix has a Jordan decomposition of the form

M =
[
x1 . . . xn

]


λ1 δ12
. . .

. . .

λn−1 δn−1,n
λn


y∗1
...

y∗n

 , (30)

where δi−1,i ∈ {0,1}, xi and yi are respectively right and left eigenvector or gener-
alized eigenvector associated with λi. Equation in (30) can be written in another
way:

M =
n

∑
i=1

λixiy∗i +
n

∑
i=2

δi−1,i xi−1 y∗i . (31)

The second sum on the right side of (31) is equal to 0 if and only if M is diagonal-
izable. It is responsible for the fact that Theorem 2.1 and its corollaries do not hold
in the general case of defective matrices.
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2.4 Fields other than C and R

If K is an algebraically closed field, then every matrix M in Mn(K), the set of n×n
matrices with elements in K, have a Jordan normal decomposition of the form

M = SAS−1, (32)

where S, A ∈Mn(K), A is upper triangular and S is nonsingular.
Let x1, . . . ,xn be the columns of S and yT

1 , . . . ,y
T
n be the rows of S−1. If M is diago-

nalizable, i.e., A is diagonal, then (32) is equivalent to

M =
n

∑
i=1

λixiyT
i , (33)

where λ1, . . . ,λn are the diagonal elements of A. Replacing y∗i by yT
i in the previous

reasoning done for Theorem 2.1 in the case of complex matrices, we see that this
theorem holds for the general case of diagonalizable matrices over algebraically
closed field K.

3 Applications in matrix analysis

3.1 A criterion for diagonalizable matrices to have all simple eigen-
values

It is possible to check that all the eigenvalues of a given diagonalizable matrix are
simple without computing the eigenvalues themselves. This can be done by using
the following corollary.

Corollary 3.1. Let M be an n× n complex diagonalizable matrix. Then all the
eigenvalues of M are simple if and only if there exist a vector v ∈ Cn such that
v,Mv, . . . ,Mn−1v are linearly independent.

Proof. Follows immediately from Corollary 2.4.

Example 3.2. Consider the 3×3 diagonalizable matrix

M =

 1 2 1
1 −1 2
0 1 −1

 .
We need to show that all the eigenvalues of M are simple by using Corollary 3.1.

For this purpose, we choose v to be the canonical vector v =

 0
1
0

 ,
and we form the matrix
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A =
[
v Mv M2v

]
=

 0 2 1
1 −1 5
0 1 −2

 .
Since det(A) = 5 6= 0, we conclude, by Corollary 3.1, that all the eigenvalues of M
are simple.

Remark 3.3. In the previous example the conclusion that the eigenvalues of M are
simple wouldn’t be made if the vector u = [0 1 0]T is chosen instead of v. This
is because u is orthogonal to one of the eigenspaces of M (can be checked by the
reader).
In general, the vector v could be chosen to have a simple structure to reduce the
amount of computation. For example canonical vectors, scalar multiples of canon-
icals vector, the all 1’s vector, etc.

3.2 Separation of close eigenvalues

Practically speaking, one big advantage of Corollary 3.1 is that the vector v can be
chosen randomly and at the same time it is highly expected to be not orthogonal to
any of the eigenspaces of M even when those eigenspaces are unknown to us. The
numerical method used to compute eigenvalues of large diagonalizable matrices
might produce uncertainty about multiplicities of eigenvalues because of computa-
tion errors related to eigenvalues that are close to each other in value. In this case,
Corollary 3.1 can be used to conclude with certainty that all the eigenvalues of a
given matrix are simple. Here is a demonstration with a small 3×3 diagonalizable
matrix.

Example 3.4. Consider the diagonalizable matrix

M =

 −8.98 −9.99 −10.09
12 13.01 12.11
−2 −2 −1

 .
Let v = [0 0 3]T and

A = [v Mv M2v]

=

 0 −30.27 −60.8421
0 36.33 73.0833
3 −3 −9.12

 .
If we consider approximation to one decimal digit, then the eigenvalues of M are
going to look equal to each other, λ1 ≈ λ2 ≈ λ3 ≈ 1.0. However, matrix A has a de-
terminant neatly different than zero; det(A) =−5.514, which implies, by Corollary
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3.1, that the eigenvalues of M are distinct without any doubt. In fact the eigenval-
ues of M are exactly λ1 = 1, λ2 = 1.01 and λ3 = 1.02. This example shows us
that Corollary 3.1 can be used as a supporting algorithm for the separation of close
eigenvalues of large diagonalizable matrices computed by another algorithm. The
computation cost of such combination of algorithms is beyond the scope of this
work and can be the subject of further research.

3.3 Criterion for a triangular matrix to be defective

We have seen in the previous section that Theorem 2.1 and its corollaries do not
hold in the general case of defective matrices. However, even in this case they are
of some use as shown in the following example.

Example 3.5. Consider the upper-diagonal matrix

M =


1 −2 5 14
0 2 −1 −5
0 0 2 6
0 0 0 −1


Apparently, the eigenvalue λ = 2 has algebraic multiplicity 2 but it’s geometric
multiplicity is hidden so we don’t know if M is diagonalizable or not. We choose,
for example, v = [0 0 0 1] to form the matrix

A = [v Mv M2v M3v] =


0 14 40 106
0 −5 −11 −33
0 6 6 18
1 −1 1 −1


which is nonsingular since its determinant is nonzero, det(A) = 504. If M is diag-
onalizable, then by Corollary 3.1, all its eigenvalues have to be simple which is not
the case. Therefore M is defective and the geometric multiplicity of the eigenvalue
λ = 2 is equal to 1. In fact M has Jordan decomposition

M =


1 2 1 1
0 −1 1 −1
0 0 1 2
0 0 0 −1




1 0 0 0
0 2 1 0
0 0 2 0
0 0 0 −1




1 2 −3 −7
0 −1 1 3
0 0 1 2
0 0 0 −1


The following corollary summarizes the idea illustrated in the above example.

Corollary 3.6. Let M be an n× n triangular complex matrix and suppose that
some of the diagonal elements of M repeat. If there exists a vector v ∈Cn such that
the matrix

[
v Mv . . . Mn−1v

]
is nonsingular, then M is defective.
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Proof. Follows from Corollary 3.1 and the fact that the diagonal elements of a
triangular matrix are its own eigenvalues.

3.4 Connection with the inverse eigenvalue problem

Theorem 2.1 impose a condition for diagonalizable matrices to be realizable by a
given set of complex numbers.

Corollary 3.7. Let λ1, . . . ,λk be k distinct complex numbers and let n be an integer
such that n≥ k. If M is a diagonalizable matrix realizable by {λ1, . . . ,λk}, then for
every vector v ∈ Cn, the subspace LM(v) spanned by v,Mv,M2v, . . . has dimension
at most equal to k. Moreover, if v is not orthogonal to any of the eigenspaces of M,
then LM(v) has dimension exactly equal to k and is spanned by v, Mv, . . . , Mk−1.

Proof. The first assertion of the corollary follows from Corollary 2.4 and the sec-
ond one from Corollary 2.2.

4 Applications in graph theory

Let G be a simple undirected graph with n vertices a1, . . . ,an and let A be its ad-
jacency matrix. By q(A) we denote the number of distinct eigenvalues of A. A
class of matrices that contains A is the set S(G) of n× n real symmetric matrices
M = [mi j] compatible with G, i.e., matrices that satisfy the condition: every off-
diagonal element mi j of M is different than 0 if and only if there is an edge between
the vertices ai and a j of G. The minimum number of distinct eigenvalues q(G) of
graph G is defined to be the minimum number of distinct eigenvalues a matrix M
in S(G) can have.
The following theorem is a well-known result on the adjacency matrix of undi-
rected graph. It has an elegant proof based, among other ideas, on the fact that the
roots of minimal polynomial of symmetric matrix are distinct, look at [3, Theorem
2.2.1]. Here, we provide a new proof of this theorem based on Corollary 2.4, then
we make a comparison between the two proofs.

Theorem 4.1. The number of distinct eigenvalues q(A) of A is at least one more
than the diameter d of G. That is,

q(A)≥ d +1. (34)

Proof 1: new proof based on Corollary 2.4

Proof. Let {a1, . . . ,an} be the set of vertices of G. Denote by e1 It is known that
the position (i, j) of At is equal to the number of paths of length t between ai and
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a j for t = 1,2, . . . . Without loss of generality, we assume that the diameter of G
occurs between a1 and ad+1 for some d ∈ {2,3, . . . ,n} and consists of the edges:
a1a2,a2a3, . . . , adad+1. Hence, for j = 2, . . . ,d + 1, the shortest path between a1
and a j has length j− 1. It is well known that the (i, j)th and ( j, i) entries of At

are equal to the the number of paths of length t between the vertices ai and a j.
Consequently, for t = 1,2, . . . ,

(At) j1 =

{
t if j = t +1,
0 if t +1 < j ≤ d +1.

(35)

Denote by (At)1 the first column of the matrix At and by e1 the first column of the
identity matrix In, i.e., the canonical vector e1 = [1,0, . . . ,0]T . We readily deduce
from 35 that the columns e1,A1,(A2)1, . . . ,(Ad)1 are linearly independent. Notice
that (At)1 = (At)e1 and construct the matrix

B = [bi j] =
[
e1 A1 (A2)1 . . . (Ad)1

]
=
[
e1 Ae1 A2e1 . . . (Ad)e1

]
. (36)

As it is explained, the columns of B are linearly independent and it follows by
Corollary 2.4 that the matrix A has at least d +1 distinct eigenvalues.

Proof 2: old proof using minimal polynomial (look at [3]).

Proof. Using the same reasoning as in Proof 1, The first columns of I,A,A2, . . . ,Ad

are linearly independent. Hence, the matrices I,A,A2, . . . ,Ad themselves are lin-
early independent. It follows that Ad is not a linear combination of In,A, . . . ,Ad−1

which means that the minimal polynomial of A has degree at least equal to d + 1.
Since A is symmetric, all the roots of its minimal polynomial are distinct and con-
sequently there are at least d +1 of them. They are distinct eigenvalues of A.

Theorem 4.1 is extended to all nonnegative matrices in S(G), by the same reasoning
as in Proof 2. There are other results related to S(G) and q(G) obtained by a similar
reasoning. For example, [1, Theorem 3.2] is another extension of Theorem 4.1
obtained by using the same technique as in Proof 2 and therefore can be proved by
using the ideas of Proof 1. In fact, using Proof 2 with the minimal polynomial and
linearity independence of I,A, . . . ,Ad is the same as using Proof 1 and Corollary
2.4 with the canonical vector v = e1 which is the first column of the identity matrix.
Here appears the advantage of Corollary 2.4. It offers the possibility of using other
vector v instead of the canonical vectors to produce possible better lower bounds
for q(A),q(G) and q(M) for M ∈ S(G). The question now is: for a given graph G,
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how to find a vector v that leads to a better lower bound for q(A) or q(G)?
Actually, this question follows from (22) which implies

q(A) = max
{

rank
([

v Av . . . An−1v
]) ∣∣∣ v ∈ Cn

}
(37)

and

q(G) = min
M∈S(G)

{
max
v∈Cn

{
rank

([
v Mv . . . Mn−1v

])}}
. (38)

4.1 The walk matrix and main eigenvalues of graph

Let G be an undirected graph with n vertices ai, . . . ,an and let A be its adjacency
matrix. Denote by q(A) the number of distinct eigenvalues of A. Let e= [1, . . . ,1]T ,
the all 1’s vector of n components. An eigenvalue λ of A is said to be main eigen-
value of A if it is associated with at least one eigenvector v of A that is not orthog-
onal to e. Some work done in this matter can be found in [5], [10], [12], [13] and
[16].
The walk matrix W of the graph G is given by

W = [wi j] =
[
e Ae . . . An−1] . (39)

The walk matrix acquires its importance from the fact that the entry wi j of W is
equal to the number of paths of lengths j−1 that starts at vertex ai with 1≤ i≤ n
and 2≤ j ≤ n. It follows from Corollary 2.4 that

q(A) ≥ rank(W ). (40)

The following Theorem that relates between the walk matrix and main eigenvalues
is obtained in [10].

Theorem 4.2. [10, Theorem 2.1] The rank of W is equal to the number of main
eigenvalues of A.

Saying that λ is associated with an eigenvector v that is not orthogonal to e is
same as saying that e is not orthogonal to the eigenspace of A associated with
λ . Since A is symmetric, the right and left eigenspaces of M associated with the
same eigenvalue are equal. Therefore the above theorem can be obtained as a
consequence of Theorem 2.1.

5 Conclusion

We have shown how the rank of
[
M Mv . . . Mvn−1

]
, v ∈ Cn, can tell about the

number of distinct eigenvalues of diagonalizable matrix M. Some applications
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have been discussed briefly throughout the paper and it seems that there are more
applications out there in linear algebra, combinatorics and numerical analysis of
matrices. We believe that the main results of this work deserve further exploration.
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