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Abstract

We propose a novel approach for flow simulations in fractured porous me-
dia based on an equi-dimensional representation of the fractures and a standard
continuous finite element (FE) method. We employ an adaptive mesh refinement
strategy to automatically adjust an initial regular mesh to any fracture distribution
with a desired accuracy. The proposed approach is easily implementable in any FE
software, does not involve the coupling of different discretizations, and provides
symmetric and positive definite stiffness matrices. We provide a systematic vali-
dation of our method and we show that it can be used to simulate fluid flow for
fracture networks of realistic complexity.

Keywords: Fractured porous media; Adaptive mesh refinement; Fluid flow; Finete
element method

1 INTRODUCTION

The numerical simulation of fractured porous media is relevant for many applications
in the Earth, environmental, and engineering applications, such as geothermal energy
production, hydrocarbon exploration, nuclear waste disposal, CO, storage. Fractures
are heterogeneities characterized by 1) material properties which are highly different
with respect to the ones of the embedding background and 2) one dimension, usually
referred to as aperture, that is much smaller compared to the other ones.

The geometric complexity of realistic fracture networks and the multiple length scales
involved pose several difficulties to the numerical simulation of fractured media. In
particular, for models based on an equi-dimensional representation of the fractures, i.e.,
models in which the fractures have the same dimension of the embedding background,
the generation of meshes is one of the major challenges. This finds its expression
in the fact that the use of equi-dimensional models have so far been limited to small
numbers of the fractures [6, 14, 5]. Among the methods based on an equi-dimensional



representation, the mimetic finite difference (MFD) is the most successful one, as it is
robust even on anisotropic and distorted meshes [1].

To overcome such difficulties, discrete fracture-matrix (DFM) approaches allow for a
hybrid-dimensional representation of the fractures, i.e., fractures are considered objects
of one dimension less than the embedding background. In DFM approaches, the same
model is simulated in the fracture and in the background domains and suitable terms
are introduced to couple the two models. Hence, the arising stiffness matrices present
a block structure. Several conforming and non-conforming discretization methods,
based on finite volume (FV) and finite element (FE) methods, have been proposed for
the DFM approach.

Among the conforming methods, we name the BOX, which is a vertex-centered FV
method [8], the TPFA, which is a control-volume finite difference method which uses
a two-point flux approximation [11], the MPFA, which is a generalization of the for-
mer and employs a multi-point flux approximation [17]. Among the non-conforming
methods, we name the embedded discrete fracture-matrix (EDFM) [13], the extended
finite elements (XFEM) [12], and methods base on mortar-type techniques [3].

Although hybrid-dimensional representations partially simplify the process of mesh
creation, conforming methods still require meshes that match at the intersections and
the mesh generation still remains an issue for cases of high geometrical complex-
ity. On the other hand, non-conforming methods provide more freedom in the mesh
generation, as the fracture mesh can be located arbitrarily inside the background do-
main. However, in general, they are not straightforward to implement and may present
high condition numbers, when the fracture grid cuts the background elements in small
subelements. Moreover, hybrid-dimensional models rely on the assumption of negligi-
ble aperture. However, fracture apertures which are two-orders-of-magnitude less than
the background size are often encountered [10, 5, 2]. In these cases, the assumption of
negligible aperture is not applicable and the error coming from the lower-dimensional
representation of the fractures may dominate the discretization error.

In this work, we present an alternative approach based on an equi-dimensional repre-
sentation of the fractures and a continuous FE method on adapted meshes that allows
to simulate fractured media of realistic complexity. Employing an idea similar to the
one presented in [4], we use an adaptive mesh refinement (AMR) strategy to create
a hierarchy of meshes that approximate the interfaces between the fractures and the
embedding background with increasing accuracy without the need to explicitly resolve
them. Starting from an initial regular mesh unrelated to the fracture distribution, at
each step of the AMR strategy, we create a new mesh level by refining the elements
which have non-empty overlap with the interfaces between fractures and background.

We employ this approach for the simulation of single-phase fluid flow problems and
we validate it using the four tests proposed in the seminal benchmark paper for single-
phase flow in fractured porous media [5]. We show that a reasonable number of AMR
steps allows to reproduce the fundamental characteristics of the solutions of all the
proposed tests. As the proposed approach is based on standard continuous FE method
and does not involve coupling terms, it can be easily implemented in any FE frame-
work, the condition number does not suffer for elongated or distorted elements, and the
resulting stiffness matrix is suitable for the solution with efficient algebraic multigrid
method. Moreover, our approach can be employed for the computation of reference so-
lutions of models with equi-dimensional representations of the fractures in the process



of validating hybrid-dimensional representations in complicated and realistic fracture
networks.

This work is organized as follows. In Section 2, we introduce the flow problem and the
FE discretization of adapted meshes. In Section 3, we discuss the AMR strategy. In
Section 4, we report the results of the validation of our method. Finally, we offer some
concluding remarks in Section 5.

2 MATHEMATICAL PRELIMINARIES

We present the mathematical model and the FE discretization in a two-dimensional
setting. The approach discussed below can be straightforwardly extended to three-
dimensional settings.

2.1 Geometrical definitions

We denote a polygonal domain in the Euclidean space &2 by Q. The boundary of Q is
0Q and the outward normal to Q is n. In case of an axis-aligned rectangular domains,
we employ the symbol QF and the two dimensions of the domain are denoted by L, and
L,. We introduce a set ¥ of rectangular inclusions filcQwithi=1,2...N r, where
Ny = | F| is the number of inclusions. We define the background and inclusions subset
of Q, respectively, by i

N .

Qp:=[Jf and Q,:=Q\Q.

i=1
Both Q; and ©y may be non-connected sets. The set I' := Qyn ﬁf is the interface
between the background and the fracture subdomains.

2.2 The model problem

We assume 0Q can be decomposed into I'p and Iy, i.e., respectively, the subsets where
Dirichlet and Neumann boundary conditions are imposed. Dirichlet boundary condi-
tions are denoted by pp and Neumann boundary conditions by gy. Neglecting source
terms, the weak formulation of single-phase flow in porous media reads

Find p € U such that J kVp~quQ=J gyvdll Yvey, 1)
Q Ty

where p is the pressure, V = {ve H'(Q) : v|r, =0},and U = {ve H'(Q) : v|r, = pp}.
The permeability £ attains different values in €, and Q, i.e.,

k= kp, in  Qp,
ks, in Q.

Existence, uniqueness, and stability results for the weak problem (1) follow from Lax-
Milgram theorem.

Close to the vertices of the inclusions, usually referred to as singular points, the solution
p can be written as the sum of a regular function in H>(Q) and some singular functions
[7, 16]. Such singular functions reduce the regularity of solution. For example, we
report one of the well-known regularity results from [15], which states that



Theorem 1 The solution of problem (1) fulfills p € H'*1/4(Q).

Hence, due to the discontinuities in k, the regularity of the solution is reduced and
classical smooth solutions to (1) are not defined.

2.3 Finite element approximation

To discretize Eq. (1), we employ a standard conforming FE method defined on non-
conforming meshes. Meshes are locally refined close to the interface but they do not
resolve the interface I. We refer to these kinds of meshes as unresolved or unfitted.
Due to the use of unresolved meshes, material properties may be discontinuous over
the elements of the mesh that are crossed by the interface. Corresponding material
properties are assigned to the quadrature point during the assembly. Due to this lack of
regularity, we employ a composite quadrature rule with one node per sub-element and
10? sub-elements per mesh element.

The discretization of the weak formulation (1) results in a linear system of the form
Ap =T, )

where the stiffness matrix A is symmetric and positive definite. We remind that due to
Theorem 1, convergence of the FE method could be suboptimal for such a problem, as
it requires that the solution belong to be in H?(Q) to ensure at least a convergence of
order one in energy norm.

3 ADAPTIVE MESH REFINEMENT FOR EQUI-DIMENSIONAL
INCLUSIONS

We briefly describe the AMR strategy for the generation of adapted equi-dimensional
meshes for arbitrary fracture networks. We follow the strategy presented in [4] even if
we employ a different criterion to choose the elements to refine. Such an approach has
been used for the simulation of hydro-mechanical coupling in fractured porous media
in [9, 18].

We consider meshes that are non-conforming tessellations of Q with elements K. Hence,
we assume that a mesh can have hanging vertices, i.e., there could exist a vertex of an
element K; that may belong to an edge of another element K;. We restrict ourselves to
the case of 1-irregular (or balanced) meshes, for which at most one hanging node can
exist per edge.

We denote the initial regular mesh by 7°. Denoting by N, the number of elements
along one direction, we employ the symbol T/\% to stress the resolution of the initial
mesh. By red-refinement, we refer to the split of a parent element into four identical
child elements. An adapted mesh 7 (or ‘Z}é), with ¢ > 1 is obtained by red-refining a

subset 4 of elements of 7~ (or Tj\fx_l). We denote by hl{& = L, /N, /2" the size of the
smallest edge present in the mesh ‘T,\fx

In order to construct the mesh 7¢ from T4, we add the elements of 7/~ that inter-

sect the interface I" to the set 4. Then, we add all the elements that are needed to ensure
that 7' is 1-irregular. Finally, we replace the elements in 4 with their red-refinement.

Figure 1 shows some steps of the AMR strategy for a unitary square with two frac-
tures. The domain, reported Subfigure 1a, contains two fractures, which are centered



in (0.5,0.5), have length of 0.8, and have an aperture of 0.05. We on purpose consider
thick fractures to visualize the adaptive steps. The skewed one is inclined of an angle
of 30°. In Figure 1b, we report an initial mesh ‘Tl%. In Figures lc-1h, we report the
hierarchy of adapted meshes created with the AMR strategy. We observe how in the
first three steps, all elements which are in the interior of the fracture are refined. Later,
in the steps from 3 to 6, the refinement is performed only on close to the boundary.
After six steps, the mesh size is 7, = 1/10/2% ~ 1.5 x 1073,
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Figure 1: (a) Unitary square domain containing two fractures (red) intersecting each
other at an angle of 30°. The blue rectangle denotes the fracture tip, for which blowups
are shown on the right of each subfigure. (b) Initial regular mesh. (c)-(h) Adapted
meshes created at steps from 1 to 6 of the AMR strategy.



4 NUMERICAL RESULTS

We validate the described approach using the tests proposed in the benchmark pa-
per [5]. This work presents

» four tests for single-phase fluid flow in fractured porous media featuring fracture
networks of different complexity intended to be benchmarks for discretization
approaches;

* a comparison of the results obtained with different discretization approaches.
The considered approaches are all based on hybrid-dimensional formulations,
except one based on an equi-dimensional formulation and a mimetic finite dif-
ference (MFD) method.

Following the nomenclature of the benchmark paper, we refer to the four tests with
the names: 1) regular fracture network, 2) Hydrocoin, 3) complex fracture network,
4) realistic fracture network. For problem 1), two cases are considered: a conductive
network, featuring fractures with a permeability larger than the one of the background,
and a blocking network, featuring fractures with a permeability much smaller than the
one of the background. We refer to the conductive and blocking cases with 1¢) and 1b),
respectively. For problem 3), two cases are considered: a vertical flow (top to bottom)
and a horizontal flow (left to right). We refer to the vertical and horizontal cases with
3v) and 3h), respectively.

Tests 1), 3), 4) are defined in axis-aligned domain QL and, hence, a structured initial
mesh is employed. Test 2) is defined in a polygonal domain and an initial mesh has
been created with Cubit 13.1.

As proposed in the benchmark paper, we analyze the pressure profiles along some
segments. For tests 1), 2), 3), we compare our solutions against the reference one
computed with an equi-dimensional MFD method. Instead for problem 4), we compare
our solutions against the solutions obtained with the hybrid-dimensional approaches.

Simulations have been performed with parrot2, a software applications implemented
in the FE framework MOOSE. The arising linear system has been solved using the
algebraic multigrid solver Hypre BoomerAMG for tests 1), 2) 3). For test 4), the linear
system has been solved using the parallel direct solver Mumps.

4.1 Regular fracture network

The first test consists of a regular fracture network of six fractures embedded in a uni-
tary square. Fracture aperture is 10™* m, i.e., four-orders-of-magnitude less than the
domain size. In Figure 2, we report an example of the adapted meshes resulting by the
application of the AMR strategy: an initial mesh with Ny = N, = 40 is reported in Fig-
ure 2a, while the adapted meshes resulting after 6 AMR steps is reported in Figure 2b.
We observe how all elements overlapping with the boundary of one fracture, which is
modeled as a rectangle, are gradually refined to improve the resolution. This illustrates
the effectiveness of the meshing algorithm. Figures 2¢ and 2d reports the spatial pres-
sure distribution for the conductive and blocking cases, respectively, computed on the
mesh ‘1‘1860.

For the conductive case, the analysis is performed along the horizontal (y = 0.7) and
vertical (x = 0.5) dashed black segments reported in Figure 2a. For the blocking case,
the analysis is performed along the diagonal dashed black segment.



For the conductive case, the pressure profiles computed along the horizontal and verti-
cal segments are reported in Figures 2e and 2f, respectively, for different mesh sizes of
the initial mesh and different number of AMR steps. From Figure 2e, we observe that
our approach is able to correctly reproduce the pressure profile along the horizontal
segment even for coarse meshes. Instead, for what concerns the vertical line (2f), we
observe that the results are mostly dominated by the minimum mesh size. In particular,
a value of hva = 1/40/2" provides a pressure profile that coincides with the reference
one. These results are confirmed also by additional numerical simulations performed
on denser meshes that we are not reported.

For the blocking case, the pressure profiles are reported in Figure 2g. We observe
that our approach based on a continuous FE method and an equi-dimensional formu-
lation is able to reproduce the correct pressure profiles even for coarse meshes. This
result is particularly interesting, as some methods based on continuous FE, but hybrid-
dimensional formulations (BOX and EDFM), were not able to capture the pressure
discontinuities. Again, as for the vertical segment in the conductive case, we observe
that there exists a threshold value for the minimum mesh size in order to obtain results
that are superimposed with the reference solution. Such a value is hfvx =1/40/2"2.

As a result of this first analysis, we can conclude that the our approach based on an
equi-dimensional formulation and continuous FE is able to reproduce the correct pres-
sure distribution, if the interfaces are approximated with a sufficient accuracy. Such
accuracy may depend on the material properties of the background and of the frac-
tures.

4.2 Hydrocoin

This test was proposed within the international Hydrocoin project, (Swedish Nuclear
Power Inspectorate (SKI). The original domain has been slightly modified according
to the description provided in [5]. The aperture of the fractures is about 10! m, i.e.,
two-orders-of-magnitude less than the domain size.

The initial mesh, reported in Figure 3a, is quite coarse and is characterized by Ny = 12
and Ny, = 9. In such a figure, we have superimposed the two inclined fractures of this
test and the horizontal segment along which the analysis is performed . The adapted
mesh after six steps of AMR is reported in Figure 3b. The resulting adapted mesh
is characterized by an h?z ~ 2, meaning that roughly five elements fit in the fracture
aperture. Figure 3c depicts the spatial distribution of the pressure on such a mesh.

Figure 3d reports the pressure profile computed along the horizontal line (y =-200 m)
for different steps of AMR. As for the first test, increasing of the number of AMR steps
allows to obtain solutions which are perfectly superimposed with the reference one. For
this test, such a characteristic has not been observed for discretizations based on hybrid-
dimensional formulations. This is due to the fact that hybrid-dimensional formulation
relies on the assumption of negligible aperture that is not justified for fractures that are
so large.

4.3 Complex fracture network

This test features a unitary square with ten fractures distributed as in Figure 4a. Eight
fractures, depicted in red, are conductive and two fractures, depicted in blue, are block-
ing. A resulting adapted mesh after 5 steps of AMR is reported in Figure 4b. At the
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Figure 2: (a) Initial regular mesh where we depict the fracture network in red. (b)
Adapted mesh obtained after six AMR steps. (c)-(d) Pressure distribution for the con-
ductive and the blocking case, respectively. (e-f) Solutions are evaluated along the back

segments for the conductive case. (g) Solutions evaluated along the back segments for
blocking case.
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Figure 3: (a) Initial regular mesh where we depict the fractures in red. (b) Adapted
mesh obtained after six AMR steps. (c) Pressure distribution. (d) Pressure profiles
evaluated along the black segment.

quadrature points belonging to more than one fracture, the assigned permeability is the
harmonic mean of the permeabilities of each fracture.

In Figures 4c and 4c, we report the pressure distribution for the vertical and horizontal
flow cases, respectively. These pressure distributions resemble the ones reported in the
benchmark paper.

The pressure profiles are evaluated along the black segment reported in Figure 4a.
In Figures 4e and 4f, we report the pressure profiles for the vertical flow case. In
Figures 4g and 4h, we report the pressure profiles for the horizontal flow case. For
all the results, we observe that the error is always dominated by the accuracy with
which the fractures boundary are resolved and almost no influence is given by the
initial background mesh. As also observed in [5], the vertical flow is approximated
more easily. Conversely, for the horizontal flow, finer meshes are necessary. Again,
our approach, even though continuous, is able to reproduce the pressure drop close to
the blocking fractures.

4.4 Realistic fracture network

This final test features a realistic network of 63 fractures of different length. The aper-
ture is four-orders-of-magnitude less than background size. The conductivity of the
fractures is six-orders-of-magnitude larger than the one of the background. For this
test, we start from a coarse mesh with N, =7 and N, = 6. This initial mesh is re-
ported in Figure 5a as well as the horizontal and the vertical segments, along which
the solution is evaluated. The meshes after three and five AMR steps are reported in
Figures 5b and Sc, respectively. In total, we apply to this mesh up to 10 AMR steps.
The mesh 77! is characterized by a value /1% ~ 1072, that coincides with the fracture
aperture. The resulting pressure distribution is illustrated in Figure 5d. For this test, no
reference solution based on equi-dimensional representations has been provided, due
to the difficulties in the generation a mesh that is able to resolve the intersections and
the interfaces between the background and the embedded fractures. For this reason,
we perform a comparison against all the solutions reported in [5] and based on hybrid-
dimensional models. We observe that the pressure profiles obtained with our approach
are in agreement with the published solutions along the two proposed segments, (Fig-
ures Se and 5f). In particular, our approach is able to reproduce all the features of the
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Figure 4: (a) Initial regular mesh where we depict the conductive fractures in red and
the blocking fractures in blue. (b) Mesh obtained after five AMR steps. (c) Pressure
distribution for the vertical flow. (d) Pressure distribution for the horizontal flow. (e)-
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solution along these two segments.

S CONCLUSIONS

We have proposed an approach for the simulation of fluid flow in fractured porous
media based on an equi-dimensional representation of the fractures and a continuous
FE method. The equi-dimensional representation of the fractures allows to consider the
full physics occurring in the fracture, i.e., to include cross-fracture phenomena, which
are usually neglected in hybrid-dimensional representations. In order to create suitable
meshes for fractured media, we employed an adaptive mesh refinement strategy, which
allows, starting from a regular initial mesh, to refine the element close to interfaces
between fractures and the embedding background. In this way, we can adapt any initial
mesh to approximate even the more complicated fracture distribution with a desired
accuracy. As our approach does not require any coupling between different geometrical
entities, it can be directly implemented in any FE framework. Moreover, it provides
provides linear systems characterized by a stiffness matrix which is symmetric and
positive definite. Hence, the solution can be realized with efficient algebraic multigrid
solvers.

We have validated our approach using the tests proposed in the seminal benchmark
paper for single-phase fluid flow. We showed that our method is able to correctly
reproduce all the pressure profiles and that the accuracy with which the fractures are

10



I EEE w00
500 += /{ R 500 e 500
N DS Y =
AN/ 4 nde |
300 > Ay 300 e T 300 o
TR ™ I a
‘ Vi & B £
RV LA R -f
‘\z » : : I % :
0 ¢ 0 - & 0 +
0 350 625 0 350 625 0 350 625
@ T ) 7 © T
12 x10° x10°

N ® ©

1000000

I 900000
800000

)

700000
600000
500000
400000

S o

pressure [Pa]
o
pressure [Pa]

300000
200000
100000

00 2

IS
@

Flux-Mortar DFM
FE $\mathcal T_7/10}$| Flux-Mortar
—FE

T_7N10}$]

o = n

0 200 600 800

o

100 200 300

400
arc length [m]

(d) Pressure distribution

(e) Horizontal segment

Figure 5: (a) Initial regular mesh where we depict the fractures in red. (b) Adapted
mesh obtained after three AMR steps. (c) Adapted mesh obtained after five AMR
steps. (d) Pressure distribution. (e) Pressure profiles evaluated along the horizontal
black dashed segment depicted in (a). (f) Pressure profiles evaluated along the vertical
black dashed segment depicted in (a).

approximated is the fundamental criterion to obtain correct results. This aspect is much
more relevant than the accuracy of the background mesh.

Although the proposed method has shown to be able to reproduce all the pressure pro-
files proposed in the several tests, the accuracy depends on the fracture aperture, the
conductivity, the geometry, the segment along which the numerical solutions are eval-
uated. For geometries for which a reference solution does not exist, a possible strategy
would be to evaluate two solutions computed on meshes obtained from subsequent
application of our AMR strategy. However, the use of error estimators for interface
problems would provide a more sound strategy in the choice of the mesh.

Finally, we would like to point out that the proposed approach can be employed to
compute reference solutions with equi-dimensional formulations in order to evaluate
the accuracy and the approximation properties of methods based on hybrid-dimensional
formulations.
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