
In the subject of physics (i.e., special and general relativity), the only measurements that1

are considered meaningful are invariants.
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The Scale Invariant Prior and Its Generalizations

Stephen P. Smith

Abstract. The scale invariant prior is revisited, for a single variance parameter and for a
variance-covariance matrix. These results are generalized to develop different scale
invariant priors where probability measure is assigned through the sum of variance
components that represent partitions of total variance, or through a sum of variance-
covariance matrices representing partitions of a total variance-covariance matrix.

1. Introduction

The attribute of “invariance” implies both the presence of information when making a
measurement, and also the complete lack of information. That is, to assert that a
measurement looks the same from all points of view implies the certainty of information,
but it also implies that the measurement cannot be distinguished by alternative
reference frames that may rest beyond simple empiricism. Invariance of this sort
typifies relativity that is found depending on a frame of reference, making a circularity in
the meaning of measurement . 1

Translation invariance applies to parameters that are free to vary on the real line, in all
directions. This invariance can be described in geometric terms as points in space that
are relative to a frame of reference that implies an origin and a coordinate system that
propagates out from the origin. Its always the visible difference between a position and
the origin that carries invariant information, whereas an unreferenced point in absolute
space carries no visible information. The density function that treats all unreferenced
locations equally is the flat prior, or a constant, and it represents no information. To
measure distance, however, also requires a scale and if the scale is also arbitrary then
scale invariance is also indicated when there is no information to prefer one scale over
another.   

The scale invariant prior can be justified purely on the arbitrariness offered by the units
of measurement, absent a more abstract construct of invariance. It’s the measurements
themselves that are found relative to the standard of measurement or the yard stick
that’s implied by the frame of reference, and therefore statistical inferences can be
made invariant to the selected standard by the appropriate selection of a vague prior
that is impartial to all possible standards. 

For example, what is known about a sample of observations, denoted by the vector y, is
represented by the transformed vector c×y where c is an arbitrary constant that can be
anything. Statistical inferences are made invariant to the constant c, but note this is far
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less demanding than if the vector y was transformed, element by element, by an
arbitrary monotone transformation, where useful information reduces to rank
information which is a result of a more ambitions demand for invariance. The simplicity
offered by the present investigation is a direct result of limiting consideration to scale
invariance.

The scale invariant prior attaches directly to the parameter F that measure dispersion,
like the standard deviation represented by the elements of y, but the statical model can
be more complicated than the simple case that involves point estimates of location and
variation. Nevertheless, transforming y to c×y results in changing F to c×F, and the
appropriate prior that is impartial to the choice of c is the well known scale invariant
prior:

While this prior is improper, because it integrates to infinity, we may compare
probabilities that are evaluated over bounded regions to demonstrate scale invariance
as Berger (1980, pages 70-71) does.  Define the following probability:

Scale invariance is implied by the identity P(F 0 A) = P(F 0 c A), following Berger, which-1

carries a transformation where the Jacobian cancels because of the form of the prior.

It is also useful to reexpress the same scale invariant prior but in terms of F  (a variance2

component) by going through a standard change of variables, and this produces the
result:

For a simple linear model that describes y, containing only fixed effects and only one
random effect representing a set of residuals, the flat prior can be used to treat all the
fixed effects, and the above scale invariant prior can be used to treat the dispersion
parameter that’s attached to the random residues (see Tanner 1993, page 12). Then
the Bayesian posterior distribution can be sampled directly whereby the fixed effects
are sampled from a multivariate normal distribution (conditional on F ), and the2

dispersion parameter (in the form of F ) is sampled from an inverted Chi-square2

distribution. The simulation can now be extended by performing Gibb’s updates, thus
sampling from the posterior distribution for all the fixed effects and the dispersion
parameter, together.

For the general variance component model, where F  can be partitioned into several2

variance components, the seductive approach is to assign the above scale invariant
prior to each variance component, and then continue with a Bayesian simulation that
follows the obvious path of sampling from the multivariate normal distribution, followed
by sampling from inverted Chi-square distributions in turn for each variance component,



For cases where the degree of belief parameter was set to zero.2

By comparison, the square-root of the total variance and each of the individual variance3

components have a different relationship, albeit one implied by this additive relationship
involving the variances.
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and putting the whole thing together by making Gibb’s update cycles (e.g., Gelfand et
al, 1990; Wang, Rutledge and Gianola, 1993) . While this simple adaptation looks2

attractive on first impression, this is actually very misleading. The application of scale
invariance must be reconnected to the yard stick that makes measurements on actual
observations, y, and so far there is nothing that extends the discovered nicety found for
F  to the rest of the variance components. A bigger problem is that its possible to over-2

weigh the posterior distribution with improper priors that end up making the posterior
distribution improper (e.g., Hobert and Casella 1996; Daniels 1999). Therefore, a fix is
sought to find the appropriate prior for multiple variance components under the sought
goal of scale invariance that’s applied consistently, perhaps at the expense of having to
abandon the convenient draws from the inverted Chi-square distribution that fitted well
as Gibb’s updates.   

Daniels (1999) provides an adequate list of alternative non-informative priors that may
be adapted for multiple variance components in hierarchical models, even multivariate
variance-covariance matrices. Understand that this makes my present paper much less
original in a broad sense, but my paper has a very narrow focus. My particular goal is to
extend scale invariance in a coherent way from first principles, thus generalizing the
results to multiple variance components (in Section 2) and variance-covariance
matrices (in Section 3).

2. Scale Invariant Prior for Multiple Variance Components

For the purpose of illustration, the total variance will be assumed to be composed of
three variance components: F  = x  +y  +z . If the data had only unique representations2 2 2 2

of the random factors in combination, then all that can be estimated is the total
variance, F . In any regard, the improper prior given by (1) still applies. But this prior2

represents a marginal distribution, involving one parameter, not three. Two parameters,
suitably transformed, need to be integrated out of the joint distribution to recover (1). It’s
the joint distribution that is sought. Because the variance components add to make the
total variance , because changing y to c×y impacts the sum in the same way as the3

components, i.e., c ×F  = c ×x  +c ×y  +c ×z , the natural joint distribution to seek is of2 2 2 2 2 2 2 2

the form B(F )=B(x  +y  +z ) where probability measure is assigned democratically2 2 2 2

through the total variance. There are other less sensible possibilities that may single out
the variance components while maintaining the resemblance of symmetry, but the
choice may also complicate the subsequent integration that is implied. The adopted
form, B(x  +y  +z ), works by giving a tractable integration.2 2 2
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Now make the following change of variables, coming with the specified ranges of
integration.

x =x 0 < x  < t2 2 2 2

t =x  +y  0 < t   < F2 2 2 2 2

F  = x  +y  +z  0 < F  < 42 2 2 2 2

Substituting the changed variables into the joint distribution simply generates B(F ), and2

the Jacobian is 1. The integration that reproduces (1) is given below.

Therefore, the joint prior is given by the following,

and while this prior is improper, its not as improper or as badly behaved as the prior 

1B (x , y , z  )= x  × y  × z   would be. Now gone is an easy draw from an inverted Chi-2 2 2 -2 -2 -2

square distribution during a Bayesian simulation. Nevertheless, the Metropolis algorithm
or one of its variants are available to substitute for some of the Gibb’s updates
corresponding to the variance components. Because the form of the posterior
distribution is not complicated much by (2), the development of custom software is not
impeded.

Its immediate how to generalize this result for a different number of variance
components; its always the total variance raised to the power that’s the negative
number of variance components. 

3. Scale Invariant Prior for Multivariate Variance-Covariance Matrices

The developments in Section 2 are not entirely satisfactory, given that restricting the
prior to be of the form B(x , y , z  )=B( x  +y  +z  ) carries some arbitrariness that does2 2 2 2 2 2

not define the prior uniquely. As previous noted, an alternative scale invariant prior

1B (x , y , z ) exists. In this case, the result of a change of scale transformation leads to a2 2 2

1Jacobian that cancels with the form of the prior, leading to the declaration that B  is a
scale invariant prior. Therefore, there is an alternative way to identify scale invariant
priors based on the Jacobian, and not needing the integration used in Section 2.
Integration can still be attempted, but introducing the same change of variables, i.e.,

1turning x , y  and z  into  x , t  and F , causes the integration of B (x , t -x , F -t ) to2 2 2 2 2 2 2 2 2 2 2

diverge to infinity as soon as x  is integrated between 0 and t  in the very first integral,2 2

1indicating that this improper prior is more improper than (2). Despite this weakness, B



 This prior is defined as the determinant of the Fisher information matrix raised to the4

power -½, see Press (2005, Section 3.6.2).
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is interesting because in relates to a variance matrix, V, and to the vague prior density

2 (Press, 2003, Section 5.4.2) that is given by B (V, k) = |V|  where |@| is the matrix-k

1 2determinant and when k=1 for a diagonal matrix V. Precisely, B =B (V, 1) when:

 

In this particular case, all the off-diagonal covariances found in V are zero, but the
result generalizes for a general variance-covariance matrix. Setting k=½(p+1) in 

2 B (V, k) where p is the order of that matrix V returns the Jeffreys invariant prior , which4

is also the vague prior first introduced by Geisser and Cornfield (1963). To demonstrate

p×p iscale invariance introduce the diagonal matrix W = diag{ w }, representing units of

imeasurement w for the i-th variate, i=1, 2, ...p. A change of variables is given by the
quadratic form, V*= WVW , representing an arbitrary scale change on each variate inT

matrix notation. The Jacobian, J, is a diagonal matrix of order ½p(p+1), and moreover,
|J|=|W| . Therefore, scale invariance corresponds to finding k such that, p+1

2 2 B (V, k) = B (WVW , k)×|J|. This reduces to solving k where |W| ×|W| =1, andT -2k p+1

therefore k=½(p+1). This demonstrates that the integration described in Section 2 is not
needed for finding a scale invariant prior, with |J| available.

Multivariate models may have several random effects, beyond the random residuals.
This permits multiple variance matrices, just as multiple variance components were
introduced in Section 2. For the sake of illustration, consider the introduction of two p×p
variance matrices, G and R. Each of these matrices can be reparameterized by the
scale transformations: G*= WGW  and R*= WRW , again with reference to the diagonalT T

matrix W representing p units of measure. The Jacobian matrix doubles in order, and its
determinant is given by  |J|=|W| . The naive next step is to double the order of matrix2p+2

V to contain both G and R, and to define a 2p×2p matrix U as indicated below.

2 2 Finally, solve for k where B (V, k) = B (UVU , k)×|W| . This reduces to T 2p+2

|W| ×|W| =1, with k=½(p+1). This value of k is unchanged from what was found-4k 2p+2

before, despite the fact that V is now a 2p×2p matrix.

1The naive approach can be criticized for the same reason that B  was criticized in
Section 2, because it may be too improper and might even make the posterior
distribution improper. Fortunately, there is now an immediate fix for this short coming,
and no integration is needed. Note that variance-covariance matrices can add into a



This derivation depends on the Vech operator, and the key result listed by Harville5

(1997, bottom of page 366).
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total variance-covariances matrix: V=G+R and WVW  = W[G + R]W = WGW + WRW .T  T T T

Now the matrix V does not double in order, while the determinant of the Jacobian is still

2 2 |J|=|W| . Lastly, solve for k in B (G+R, k) = B (W[G + R]W , k)×|W| . This reduces2p+2  T 2p+2

to |W| ×|W| =1, and k=p+1 which is now doubled. The sought scale invariant prior-2k 2p+2

for two variance matrices is given by the following.

Prior (3) generalizes when there is a total variance matrix T that can be partitioned into r
variance matrices that sum to T:

As a check, the prior (3) is derived a second time below using the method based on the
integration from Section 2. Start with prior given by Geisser and Cornfield (1963), and
represent this prior as a marginal distribution that can be recovered by integrating out
one of the variance matrices from the joint prior that is sought. Restrict the joint prior,

4B , to assign probability measure based on the total variance-covariance matrix T=G+R.
Change the variables of integration from G and R to T and R, noting that the
determinant of the Jacobian is 1. Define the matrix inequality T>R to mean that for all
x0R , x (T-R)x>0. Then R varies between 0 (the null matrix) and T. The matrix T variesp T

between 0 and “infinity,” but this last integration is never employed. The first integration
and the mathematical assignments are represented below.

The integral is actually a multiple integral, and would be very difficult to evaluate in part
because a better parameterization is needed to map out the range of integration and
this comes with a determinant of the Jacobian that can be very complicated. However,
there is a transformation of R that leads to a simplification H=L RL , where L is the-1 -1 T

Cholesky decomposition of T, i.e., LL =T. Now H varies between 0 and I, and theT

Jacobian reveals  that dR=|T| dH. Therefore, the integral becomes the following.5 ½(p+1) 
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Now the integral on the right can be ignored because it is a constant. Combining this

4result with the right side of (4) shows that B (T)%|T| , and this agrees with (3).-p-1

4. Conclusion

When there are multiple scale parameters it was found that the scale invariant prior is
not uniquely defined. Far from being a negative result, this observation can be turned
into something useful by constructing new scale invariant priors from multiplicative
combinations of such priors. All is permitted as long as the Jacobian cancels in the
construction. This basically moves from particular priors (2) and (3) that were found to
be barely improper to new constructions that are now more improper. For example, as
an alternative to (2) the following asymmetrical prior might find utility:

In some applications involving hierarchical models, the natural partitioning of what’s

5known about variance might better justify the use of B  rather than (2). Nevertheless, be
warned not to make the prior too improper (Hobert and Casella, 1996).

Alternatively, maybe (2) and (3) are preferred among all scale invariant alternatives
because these priors are the most symmetrical and assign probability measure the
most democratically through the total variance (or the total variance-covariance matrix),
and are the least improper? Some criterion is needed to brake the stalemate, otherwise
different units of measurement can have a non-relative impact on information content
when scale invariance is abandoned. It is certainly true that when total variance can be
partitioned into individual variance components then an arbitrary change in the standard
of measurement impacts all the components in the same way, and that comes close to
settling the issue because probability measure must be assigned consistently with that
fact.
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