
1990 is about when methods based on automatic differentiation started to become better1

known.

Some Optimization Methods that Use a Limited Number of Second Derivatives

Stephen P. Smith

Abstract. This paper describes two optimization methods that use all first derivatives,
and a subset of second derivatives, all of which are available with backward
differentiation. The first method is Newton’s method on a direction set that changes
dynamically during iteration. The second method is a quasi-Newton method that
approximates the inverse Hessian matrix using a subset of second derivatives.

1. Introduction

Optimization methods that depend on first and second derivative have been advanced
due to efficient algorithms developed for forward and backward differentiation
(Griewank 2000). Prior to these developments other methods had been promoted1

precisely to avoid calculating derivatives. Among those are the direction set methods
that involve line searches and may not use any derivatives (Fletcher 1987, Section 4.2).
And also the quasi-Newton methods that use finite differences of first derivatives to
approximate second derivatives (Fletcher 1987, Section 3.2).

While calculating the entire gradient vector, or all first derivatives, can be accomplished
in computing time proportional to the time needed to calculate the objective function,
calculating all second derivatives may still pose a challenge. Nevertheless, a subset of
the second derivatives, or isolated columns out of the Hessian matrix, can be evaluated
efficiently.

Rather than leaving direction set methods, and quasi-Newton methods, as originally
proposed tools meant to avoid derivative calculations, it is possible today to upgrade
these methods so that information on all first and some second derivatives can be
used. In particular, these upgrades offer possible advantages when only a subset of
second derivatives are available because it may be too difficult to calculate all second
derivatives, or because a robust algorithm that’s less sensitive to starting values is
sought, etc. Section 2 describes straight Newton’s method while restricting the search
to direction sets that change dynamically during iteration. Section 3 describes quasi-
Netwon iteration when using only some second derivatives.

Perhaps these adaptations are not surprising given the history of optimization, and
given that the mathematics is not complicated. In this vein, this paper is not so much
original. Nevertheless, its important to see how these adaptations are now permitted
given backward differentiation, which is the only point of this paper.

Please excuse my original coinage, but this vector is intended to measure how the2

gradient direction changes.

In Section 3.4 of Smith (2000).3

2. Direction Set Optimization Using Selected Second Derivatives

1 2 nTo maximize, or minimize, f(2) with respect to n parameters, 2 , 2 ... 2 , Newton’s
method is available:

Based on first principles, to apply Newton’s method for a direction set only a smaller
number of second derivatives are needed, and first derivatives are needed only for
particular directions represented by a rectangular n×m matrix, U. The gradient vector, g,
can be one of the vectors of U, and this then resembles a method of steepest ascent.
Moreover, the gradient vector of the “second kind” is defined by s = Hg, can also be in2

U and this makes the n×2 matrix U=[g, s]. At any particular iterate k+1, a new
parameterization involving the m×1 vector b is introduced (but only implicitly because it
is never calculated directly), where m<n, and such that:

With U and b only defined for iterate k+1 (because they change dynamically across
iterations), initializing b to zero and applying one round of Newton’s method but limited

k+1to b to return b* then generates the desired updating equations for 2 =2(b*):

(1)

The gradient vector g is evaluated cheaply by backward differentiation, but it’s the
Hessian matrix of second derivatives that requires n passes through the recursion list
which can be expensive. However, the required elements in update equation (1) can be
evaluated much cheaper with on only m passes through the recursions: simply initialize
the Q-matrix (at step-1) with the columns of U in turn, and out (at step 4) will come the3 3

particular column of HU.

Initialize the Q-matrix at step-1 (in Section 3.4 of Smith, 2000) with a column of U, and4

out at step 4 will come the particular column of W.

3

3. Quasi-Newton Optimization Using Selected Second Derivatives

Some types of Quasi-Newton optimization, such as the popular BFGS method (see
Fletcher 1987, page 55), uses finite differences to approximate the Hessian matrix H
(and its inverse), and hence does not evaluate any second derivatives directly. At

k+1iterate k+1, a proxy for the inverse Hessian matrix is used and is denoted by J , and
iteration follows as indicated below that offers an alternative to (1).

kIn the BFGS method, low rank updates are available that are applied to J that

k+1 k+1generates J . Because the matrix J is calculated from finite differences, it has no

kdirect connection to H or H . The matrix J can also be rank deficient and still be useful–1

kas demonstrated in Section 2, which means its inverse (or J) does not exists.-1

k+1In this paper, a different updating formula is given for calculating J that is based on a

subset of second directional derivatives. Backward differentiation provides an efficient
calculation for this subset of directional derivatives, and hence the method described
here will compete with the BFGS approach that does not use second derivatives.

The direction set that defines the directional derivatives is represented by the
rectangular n×m matrix U again, where m<n. The column vectors of U define the m
directions. These columns can be populated by any selection of directions, and they can
change during iteration. For m=2, a good selection of columns are g, and s=Hg, i.e., the
gradient vector and the gradient vector of the second kind, which are highly influential
directions that impact on the objective function and are easy to compute using backward

kdifferentiation. Both U and W=HU will specify the rank-m update of J , in the discussion
below. Like s, W is easy to calculate because it will involve only m<n passes through the
recursion list for backward differentiation. 4

k+1Noting that HU=W implies U=H W, and that the motivation for calculating J is to-1

approximate H , then the goal of updating is to find the n×m matrix V such that -1

k[J +VV]W=U. However, this equation is hard to solve for the matrix V, and its easier to T

start by finding VV as shown below.T

4

Both sides in the last equation (above) involve VV , and so we are still not done.T

kHowever, the top line gives the equation, VV W=U-J W, and this equation can be pre-T

multiplied by W to give a solution for W VV W that does not involve V:T T T

The sought rank-m update is given uniquely by the following.

0 1This updating strategy is interesting, because J can be set to the null matrix, then J
agrees with Section 2 and its direction set optimization that constitutes one step of

k+1 k+1Newton’s method. When J is non-singular, then we also have the equation J U=W,-1

which relates well to a hypothetical rank-m update that approximates the Hessian matrix

k+1 (rather than its inverse). However, the present updating strategy works even when J is
singular.

Rarely is iteration permitted without supervision, as things can go wrong. In minimization,
a Hessian matrix (or its inverse) is sought that is positive definite, and in maximization a
negative definite matrix is sought. In regard to the present updating strategy, there are

k+1 several checks that can be made to make sure that J is trending appropriately. For the
case of minimization, the following checks apply.

k+11. Accept J if both W U and A are positive definite. T

k2. If W U is positive definite, but not A, set J to the null matrix and recalculate andT

k+1accept J .

k+1 k3. If W U is not positive definite, set J =J or consider an alternative strategy.T

5

References

Fletcher, R., 1987, Practical Methods of Optimization, Second Edition. John Wiley &
Sons.

Griewank, A., 2000, Evaluating Derivatives: Principles and Techniques of Algorithmic
Differentiation. SIAM.

Smith, S.P., 2000, A Tutorial on Simplicity and Computation Differentiation for
Statisticians. Memo. viXra: 1702.0243.

	Page 1
	Page 2
	Page 3
	Page 4
	Page 5

