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1.  Introduction 

Remark: 

We are using 
𝜕𝑛

𝜕𝑧𝑛, 𝐹′(𝑧), 𝐹(𝑛)(𝑧) and 𝐷𝑧
𝑛 as the differential operators and choosing the most suitable 

notation for the case. 

 

  We will begin with the definition of the two-sided Laplace transform.1 The Laplace transform of a 

real function 𝑓(𝑡) is defined as 

𝐹(𝑧) ≡ ∫ 𝑓(𝑡) ∙ 𝑒−𝑧𝑡𝑑𝑡
∞

−∞

(1) 

where 𝑧 = 𝑥 + 𝑖𝑦 for 𝑥 and 𝑦 real. 

  We assume 𝑓(𝑡) ≥ 0  for all t and 𝑓(−𝑡) =  𝑓(𝑡). Further, 𝑓(𝑡) is so rapidly decreasing that 𝐹(𝑧) is 

entire. Since we assume that 𝑓(𝑡) is an even function, we can write 

𝐹(𝑧) = ∫ 𝑓(𝑡) ∙ 𝑒−𝑧𝑡𝑑𝑡
∞

−∞

= ∫ 𝑓(𝑡) ∙ 𝑒𝑧𝑡𝑑𝑡
∞

−∞

= ∫ 𝑓(𝑡) ∙ cosh(𝑧𝑡) 𝑑𝑡
∞

−∞

= 2 ∫ 𝑓(𝑡) ∙ cosh(𝑧𝑡) 𝑑𝑡
∞

0

(2) 

and the power series expansion of 𝐹(𝑧) 

𝐹(𝑧) = ∑ 𝑎2𝑛 ∙ 𝑧2𝑛

∞

𝑛=0

= 𝑎0 + 𝑎2𝑧2 + 𝑎4𝑧4 + ⋯ (3) 

where 𝑎2𝑛 =
1

(2𝑛)!
∫ 𝑓(𝑡) ∙ 𝑡2𝑛𝑑𝑡

∞

−∞
. Note that 𝑓(𝑡) is non-negative, hence 𝑎2𝑛 is strictly positive for all 

𝑛.Therefore, any coefficient is not missing. 

  The real and imaginary part of 𝐹(𝑧) is 

𝐹(𝑧) = 𝑢(𝑥, 𝑦) + 𝑖𝑣(𝑥, 𝑦) (4) 

 

where 

𝑢(𝑥, 𝑦) = ∫ 𝑓(𝑡) ∙ cosh(𝑥𝑡) ∙ cos(𝑦𝑡) 𝑑𝑡
∞

−∞

(5) 

and 

𝑣(𝑥, 𝑦) = ∫ 𝑓(𝑡) ∙ sinh(𝑥𝑡) ∙ sin(𝑦𝑡) 𝑑𝑡
∞

−∞

(6) 

 

1 Since we are only dealing with the two-sided Laplace transform, the term “two-sided” will be omitted afterward. 



Since 𝑥 or 𝑦 is zero, the imaginary part is vanished, rewriting in 

𝐹(𝑥) = 𝑢(𝑥, 0) = ∫ 𝑓(𝑡) ∙ 𝑒−𝑥𝑡𝑑𝑡
∞

−∞

= ∫ 𝑓(𝑡) ∙ 𝑒𝑥𝑡𝑑𝑡
∞

−∞

= ∫ 𝑓(𝑡) ∙ cosh(𝑥𝑡) 𝑑𝑡
∞

−∞

= ∑ 𝑎2𝑛 ∙ 𝑥2𝑛

∞

𝑛=0

(7) 

and 

𝐹(𝑖𝑦) ≡ 𝐹(𝑦) = 𝑢(0, 𝑦) = ∫ 𝑓(𝑡) ∙ 𝑒−𝑖𝑦𝑡𝑑𝑡
∞

−∞

= ∫ 𝑓(𝑡) ∙ 𝑒𝑖𝑦𝑡𝑑𝑡
∞

−∞

= ∫ 𝑓(𝑡) ∙ cos(𝑦𝑡) 𝑑𝑡
∞

−∞

= ∑(−1)𝑛 ∙ 𝑎2𝑛 ∙ 𝑦2𝑛

∞

𝑛=0

(8) 

which are 𝐹(𝑧) on 𝑥-axis and 𝑦-axis respectively. Clearly, 𝐹(𝑥) and 𝐹(𝑦) are even functions and 

real when 𝑥 and 𝑦 real respectively, and since 𝐹(𝑖𝑦) is real when 𝑦 real, we often use 𝐹(𝑦) instead 

of 𝐹(𝑖𝑦) for convenience.  

   

To be 𝐹(𝑧) entire, the coefficients 𝑎2𝑛 should be rapidly decreasing. A rough estimation how 

rapidly the coefficients decrease, we may use the rule of thumb 

∑ 𝑎2𝑛
∞
𝑛=1

𝑎0

(9) 

and we guess the less the value (9), the more rapidly the coefficients decrease. 

  Since 𝐹(0) = 𝑎0 and 𝐹(1) = ∑ 𝑎2𝑛
∞
𝑛=0 , we can write (9) as 

𝐹(1)

𝐹(0)
− 1 (10) 

 The value (9) should be close to zero. Otherwise 𝐹(𝑧) cannot be entire. For example, if 𝑓(𝑡) =

𝑒−𝑡2
, the value (9) is 𝑒1/4 − 1 ≈ 0.2840. 

 

2.  log- convexity and log-concavity 

  A function 𝑓(𝑥) is log-convex if 𝑙𝑛[𝑓(𝑥)] is convex. Similarly, a function 𝑓(𝑥) is log-concave if 

𝑙𝑛[𝑓(𝑥)] is concave2. 

 

Theorem 1: The log- convexity and log-concavity 

1) A function 𝑓(𝑥) is log-convex, if and only if 

𝑓(𝜆𝑥1 + 𝜇𝑥2) ≤ [𝑓(𝑥1)]𝜆 ∙ [𝑓(𝑥2)]𝜇 (11)   

where 𝜆, 𝜇 > 0 and 𝜆 + 𝜇 = 1. 

and 

𝑓(𝑥) ∙ 𝑓′′(𝑥) − [𝑓′(𝑥)]2 ≥ 0 (12) 

 
2 If 𝐹(𝑥) < 0, then 𝑙𝑛[𝑓(𝑥)] is not defined. In this case, we assume that 𝐹(𝑥) is log-convex if 𝐹(𝑥) ∙ 𝐹′′(𝑦) − [𝐹′(𝑦)]2 ≥ 0 and log-

concave if [𝐹′(𝑦)]2 − 𝐹(𝑥) ∙ 𝐹′′(𝑦) ≥ 0. 



 

2) A function 𝑓(𝑥) is log-concave, if and only if 

𝑓(𝜆𝑥1 + 𝜇𝑥2) ≥ [𝑓(𝑥1)]𝜆 ∙ [𝑓(𝑥2)]𝜇 (13) 

where 𝜆, 𝜇 > 0 and 𝜆 + 𝜇 = 1. 

and 

𝑓(𝑥) ∙ 𝑓′′(𝑥) − [𝑓′(𝑥)]2 ≤ 0 (14) 

 

Theorem 2: The strictly log- convexity and strictly log-concavity 

1) A function 𝑓(𝑥) is strictly log-convex, if and only if 

𝑓(𝜆𝑥1 + 𝜇𝑥2) < [𝑓(𝑥1)]𝜆 ∙ [𝑓(𝑥2)]𝜇 (15)   

where 𝜆, 𝜇 > 0 and 𝜆 + 𝜇 = 1. 

and 

𝑓(𝑥) ∙ 𝑓′′(𝑥) − [𝑓′(𝑥)]2 > 0 (16) 

 

2) A function 𝑓(𝑥) is strictly log-concave, if and only if 

𝑓(𝜆𝑥1 + 𝜇𝑥2) > [𝑓(𝑥1)]𝜆 ∙ [𝑓(𝑥2)]𝜇 (17) 

where 𝜆, 𝜇 > 0 and 𝜆 + 𝜇 = 1. 

and 

𝑓(𝑥) ∙ 𝑓′′(𝑥) − [𝑓′(𝑥)]2 < 0 (18) 

 

3.  The Laguerre inequalities 

The necessary but not sufficient conditions of 𝐹(𝑦) to have 

only real zeros are that 𝐹(𝑦) and all the derivatives of 𝐹(𝑦) are log-concave, where 

𝐹(𝑦) = 𝑢(0, 𝑦) = ∫ 𝑓(𝑡) ∙ 𝑒−𝑖𝑦𝑡𝑑𝑡 = ∫ 𝑓(𝑡) ∙ 𝑒𝑖𝑦𝑡𝑑𝑡 = ∫ 𝑓(𝑡) ∙ cos(𝑦𝑡) 𝑑𝑡
∞

−∞

∞

−∞

∞

−∞

 

Hence, we have the theorem 

 

Theorem 3: The Laguerre inequalities 

𝐹(𝑦) belongs to the Laguerre-Pólya class if 

[𝐹(𝑛+1)(𝑦)]
2

− 𝐹(𝑛)(𝑦) ∙ 𝐹(𝑛+2)(𝑦) ≥ 0 (19) 

where 𝑛 = 0, 1, 2, 3, … and for all 𝑦 ∈ ℝ. 



It means that if 𝐹(𝑦) has only real zeros, then 𝐹(𝑦) and all the derivatives of 𝐹(𝑦) are log-

concave but not conversely. 

 

Proposition 1: 

Let 𝑓(𝑥) be an even function, then we can express 𝑓(𝑥) as polynomial whose powers are all even. 

So, we can write 

𝑓(𝑥) = 𝑏0 + 𝑏2𝑥2 + ⋯ + 𝑏2𝑛𝑥2𝑛 = ∑ 𝑏2𝑘 ∙ 𝑥2𝑘

𝑛

𝑘=0

(20) 

where 𝑏2𝑘 is real and can be positive, negative or zero. 

   Let p(𝑥) be 𝑓(√𝑥), so, we can write 

𝑝(𝑥) ≡ 𝑓(√𝑥) = 𝑏0 + 𝑏2𝑥 + ⋯ + 𝑏2𝑛𝑥𝑛 = ∑ 𝑏2𝑘 ∙ 𝑥𝑘

𝑛

𝑘=0

(21) 

Clearly, if ρ is a root of 𝑓(𝑥), i.e., 𝑓(ρ) = 0 then ρ2 is a root of 𝑝(𝑥). If ρ is real, 𝑝(𝑥) has a real root 

ρ2. Now, we define another polynomial, namely 𝑞(𝑥) ≡ 𝑝(𝑥)|𝑥=−𝑥 = 𝑝(−𝑥), which can be written as 

𝑞(𝑥) = 𝑏0 − 𝑏2𝑥 + ⋯ + 𝑏2𝑛𝑥𝑛 = ∑(−1)𝑘 ∙ 𝑏2𝑘 ∙ 𝑥𝑘

𝑛

𝑘=0

(22) 

If ρ is a root of 𝑓(𝑥), ρ2 is a root of 𝑝(𝑥) and −ρ2 is a root of 𝑞(𝑥). Since 𝑓(𝑥) is an even function, 

if ρ is a root of 𝑓(𝑥), then -ρ is also a root of 𝑓(𝑥). Therefore, if 𝑓(𝑥) has 2 ∙ 𝑚 real roots, 𝑝(𝑥) and 

𝑞(𝑥) have 𝑚 real roots. As mentioned above, if ρ is a real root of 𝑓(𝑥), ρ2 is a real root of p(𝑥) and 

−ρ2 is a real root of q(𝑥). ρ2 is non-negative and −ρ2 is non-positive, hence we rewrite the 

statement above: 

  If 𝑓(𝑥) has 2 ∙ 𝑚 real roots, 𝑝(𝑥) has 𝑚 real roots in the interval [0, ∞)  and 𝑞(𝑥) has 𝑚 real roots 

in the interval (−∞, 0]. Consequently, if 𝑓(𝑥) does not have any real root, 𝑝(𝑥) has no real root in 

the interval [0, ∞)  and 𝑞(𝑥) has no real root in the interval (−∞, 0]. In other words, if 𝑓(𝑥) does 

not have any real root, 𝑓(𝑥) does not change the sign at all, hence, 𝑝(𝑥) and 𝑞(𝑥) do not change 

the sign in the interval [0, ∞) and (−∞, 0] respectively. 

If 𝑓(𝑥) if non-negative or non-positive, i.e., 𝑓(𝑥) ≥ 0 or 𝑓(𝑥) ≤ 0 for all 𝑥 ∈ ℝ, then 𝑓(𝑥) can be 

zero. Assuming 𝑓(𝑥) ≥ 0 and 𝑓(ρ) = 0, then since 𝑓(𝑥) is non-negative, 𝑓(ρ) is a local minimum, 

thus  𝑓′(ρ) = 0. The case of 𝑓(𝑥) ≤ 0 is similar, and 𝑓(ρ) is a local maximum, thus  𝑓′(ρ) = 0. 

Therefore, 𝑓(𝑥) ≥ 0 or 𝑓(𝑥) ≤ 0 for all 𝑥 ∈ ℝ and 𝑓(ρ) = 0, then 𝑓(ρ) is an extremum, hence 

𝑓′(ρ) = 0 

Since 𝑓(𝑥) = 𝑝(𝑥2), we have 𝑓′(x) = 2 x ∙ 𝑝′(𝑥2) where 𝑝′(𝑥2) denotes 𝑝′(𝑥)|𝑥=𝑥2. Thus, if 

𝑓′(ρ) = 0, then 𝑝′(ρ2) = 0,  and therefore 𝑝(ρ2) = 0 and 𝑝′(ρ2) = 0, which means is that if 𝑓(𝑥) ≥ 0 

or 𝑓(𝑥) ≤ 0 for all 𝑥 ∈ ℝ, 𝑝(𝑥) does not change the sign in the interval [0, ∞). 

 𝑓(𝑥) is an even function and therefore 𝑓′(0) = 0 but 𝑝′(0) ≠ 0. It is because 𝑓′(x) is an odd 

function. However, 𝑟(𝑥) ≡ 𝑓′(x)/𝑥 is an even function and therefore 𝑓′(ρ) = 𝑟(ρ) = 0. Thus, if 

𝑓′(ρ) = 𝑟(ρ) = 0, then 𝑝′(ρ2) = 0. 



Similarly, if 𝑓(𝑥) ≥ 0 or 𝑓(𝑥) ≤ 0 for all 𝑥 ∈ ℝ, then 𝑞(𝑥) = 𝑝(−𝑥) does not change sign in the 

interval (−∞, 0]. 

   Now, we define 𝑔(𝑥) as follows: 

𝑔(𝑥) ≡ 𝑓(𝑖𝑥) = 𝑏0 − 𝑏2𝑥2 + ⋯ + 𝑏2𝑛𝑥2𝑛 = ∑(−1)𝑘 ∙ 𝑏2𝑘 ∙ 𝑥2𝑘

𝑛

𝑘=0

(23) 

then, 𝑞(𝑥) = 𝑔(√𝑥) and naturally, 𝑝(𝑥) = 𝑞(−𝑥). Therefore, 𝑔(𝑥) does not change the sign ∀𝑥 ∈ ℝ, 

if and only if  q(𝑥) and p(𝑥) do not change the sign in the interval [0, ∞) and (−∞, 0] respectively. 

  Consequently, both 𝑓(𝑥) and 𝑓(𝑖𝑥) do not change the sign ∀𝑥 ∈ ℝ  if and only if either 𝑝(𝑥) or 

𝑞(𝑥) does not change the sign  ∀𝑥 ∈ ℝ. 

   

Proposition 2: The log- convexity of 𝑭(𝒙) 

From (7), 𝐹(𝑥) is defined as: 

𝐹(𝑥) = ∫ 𝑓(𝑡) ∙ 𝑒−𝑥𝑡𝑑𝑡
∞

−∞

 

  For 𝑥1 and 𝑥2 (𝑥1 ≠ 𝑥2), and 𝜆, 𝜇 > 0 , 𝜆 + 𝜇 = 1 

𝐹(𝜆𝑥1 + 𝜇𝑥2) = ∫ 𝑓(𝑡) ∙ 𝑒−(𝜆𝑥1+𝜇𝑥2)𝑡𝑑𝑡
∞

−∞

= ∫ [𝑓(𝑡) ∙ 𝑒−𝑥1𝑡]𝜆 ∙ [𝑓(𝑡) ∙ 𝑒−𝑥2𝑡]𝜇𝑑𝑡
∞

−∞

 

and by the Hölder inequality, we have 

∫ [𝑓(𝑡) ∙ 𝑒−𝑥1𝑡]𝜆 ∙ [𝑓(𝑡) ∙ 𝑒−𝑥2𝑡]𝜇𝑑𝑡
∞

−∞

≤ [∫ 𝑓(𝑡) ∙ 𝑒−𝑥1𝑡𝑑𝑡
∞

−∞

]

𝜆

∙ [∫ 𝑓(𝑡) ∙ 𝑒−𝑥2𝑡𝑑𝑡
∞

−∞

]

𝜇

 

In addition, [𝑓(𝑡) ∙ 𝑒−𝑥1𝑡]1/𝜆 and [𝑓(𝑡) ∙ 𝑒−𝑥2𝑡]1/𝜇 are not linearly dependent for 𝑥1 ≠ 𝑥2, hence the 

equality does not hold. So, we have 

𝐹(𝜆𝑥1 + 𝜇𝑥2) < [𝐹(𝑥1)]𝜆 ∙ [𝐹(𝑥2)]𝜇 

This means that 𝐹(𝑥) is strictly log-convex. 

Since 𝐹(𝑥) is strictly log-convex, we also have 

𝐹(𝑥) ∙ 𝐹′′(𝑥) − [𝐹′(𝑥)]2 > 0 (24) 

  Now, let 𝐺(𝑥) be 𝐹(𝑥) ∙ 𝐹′′(𝑥) − [𝐹′(𝑥)]2, namely 

𝐺(𝑥) ≡ 𝐹(𝑥) ∙ 𝐹′′(𝑥) − [𝐹′(𝑥)]2 (25) 

then 𝐺(𝑥) > 0 or 𝐺(𝑥) ≠ 0 for all real 𝑥. Since 𝐹(𝑥), 𝐹′′(𝑥) and [𝐹′(𝑥)]2 are even functions, 𝐺(𝑥) is 

also an even function. We define another function 𝑝(𝑥) ≡ 𝐺(√𝑥). Since 𝐺(𝑥) is an even function, 

𝑝(𝑥) ≠ 0 for 0 ≤ 𝑥 < ∞ and 𝑝(−𝑥) ≠ 0 for −∞ < 𝑥 ≤ 0 by the proposition 1. 

Since 𝐹(𝑥) = ∫ 𝑓(𝑡) ∙ 𝑒−𝑥𝑡𝑑𝑡
∞

−∞
,  

𝐺(𝑥) = ∫ 𝑓(𝑡) ∙ 𝑒−𝑥𝑡𝑑𝑡
∞

−∞

∙ ∫ 𝑓(𝑡) ∙ 𝑡2 ∙ 𝑒−𝑥𝑡𝑑𝑡
∞

−∞

− [∫ 𝑓(𝑡) ∙ 𝑡 ∙ 𝑒−𝑥𝑡𝑑𝑡
∞

−∞

]

2

(26) 



and 

𝑝(𝑥) = ∫ 𝑓(𝑡) ∙ 𝑒−√𝑥𝑡𝑑𝑡
∞

−∞

∙ ∫ 𝑓(𝑡) ∙ 𝑡2 ∙ 𝑒−√𝑥𝑡𝑑𝑡
∞

−∞

− [∫ 𝑓(𝑡) ∙ 𝑡 ∙ 𝑒−√𝑥𝑡𝑑𝑡
∞

−∞

]

2

(27) 

which is non-zero for 𝑥 ≥ 0. Moreover, 𝑝(−𝑥) is non-zero for 𝑥 ≤ 0, we have 

𝑝(−𝑥) = ∫ 𝑓(𝑡) ∙ 𝑒√−|𝑥|𝑡𝑑𝑡
∞

−∞

∙ ∫ 𝑓(𝑡) ∙ 𝑡2 ∙ 𝑒√−|𝑥|𝑡𝑑𝑡
∞

−∞

− [∫ 𝑓(𝑡) ∙ 𝑡 ∙ 𝑒√−|𝑥|𝑡𝑑𝑡
∞

−∞

]

2

 

or more intuitively, 

𝑝(−𝑥) = ∫ 𝑓(𝑡) ∙ 𝑒𝑖√|𝑥|𝑡𝑑𝑡
∞

−∞

∙ ∫ 𝑓(𝑡) ∙ 𝑡2 ∙ 𝑒𝑖√|𝑥|𝑡𝑑𝑡
∞

−∞

− [∫ 𝑓(𝑡) ∙ 𝑡 ∙ 𝑒𝑖√|𝑥|𝑡𝑑𝑡
∞

−∞

]

2

 

and by changing the variable t ↦ −t we have 

𝑝(−𝑥) = ∫ 𝑓(𝑡) ∙ 𝑒−𝑖√|𝑥|𝑡𝑑𝑡
∞

−∞

∙ ∫ 𝑓(𝑡) ∙ 𝑡2 ∙ 𝑒−𝑖√|𝑥|𝑡𝑑𝑡
∞

−∞

− [∫ 𝑓(𝑡) ∙ 𝑡 ∙ 𝑒−𝑖√|𝑥|𝑡𝑑𝑡
∞

−∞

]

2

(28) 

which is non-zero for |𝑥| ≥ 0. Further, we have 𝑝(−𝑥) = 𝑝(𝑖 ∙ |𝑥|) from Eq. (28). 

Eq. (28) is not different than 𝐺(𝑖𝑥)|
𝑥=√|𝑥| and since 𝐺(𝑖𝑥) is real when 𝑥 real, hence 𝑔(𝑖 ∙ |𝑥|) is 

real when 𝑥 real. 

  By changing the variable |𝑥| ↦ 𝑦2 in Eq (27), we have 

 𝑝(𝑖 ∙ |𝑥|)||𝑥|=𝑦2 = 𝑝(𝑖 ∙ 𝑦2) = ∫ 𝑓(𝑡) ∙ 𝑒−𝑖√𝑦2𝑡𝑑𝑡
∞

−∞
∙ ∫ 𝑓(𝑡) ∙ 𝑡2 ∙ 𝑒−𝑖√𝑦2𝑡𝑑𝑡

∞

−∞
− [∫ 𝑓(𝑡) ∙ 𝑡 ∙ 𝑒−𝑖√𝑦2𝑡𝑑𝑡

∞

−∞
]

2
 

thus 

𝑝(𝑖 ∙ 𝑦2) = ∫ 𝑓(𝑡) ∙ 𝑒−𝑖∙|𝑦|𝑡𝑑𝑡
∞

−∞

∙ ∫ 𝑓(𝑡) ∙ 𝑡2 ∙ 𝑒−𝑖∙|𝑦|𝑡𝑑𝑡
∞

−∞

− [∫ 𝑓(𝑡) ∙ 𝑡 ∙ 𝑒−𝑖∙|𝑦|𝑡𝑑𝑡
∞

−∞

]

2

 

or 

𝑝(𝑖 ∙ 𝑦2) = ∫ 𝑓(𝑡) ∙ 𝑒−𝑖∙𝑦𝑡𝑑𝑡
∞

−∞

∙ ∫ 𝑓(𝑡) ∙ 𝑡2 ∙ 𝑒−𝑖∙𝑦𝑡𝑑𝑡
∞

−∞

− [∫ 𝑓(𝑡) ∙ 𝑡 ∙ 𝑒−𝑖∙𝑦𝑡𝑑𝑡
∞

−∞

]

2

(29) 

which is non-zero for 𝑦 ≥ 0. Furthermore, since 𝑔(𝑖 ∙ 𝑦2) is real and an even function, 𝑔(𝑖 ∙ 𝑦2) is 

non-zero for all 𝑦 ∈ ℝ. Hence, Eq. (29) is nothing but 𝐺(𝑖𝑦). 

  Or more easily, from Eq. (28) 𝑝(−𝑥) is non-zero if |𝑥| ≥ 0, and this means that 𝑝(−𝑥) is non-zero 

∀ 𝑥 ∈ ℝ. Hence, from proposition 1, both 𝐹(𝑥) and 𝐹(𝑖𝑦) are non-zero ∀𝑥 ∈ ℝ . 

From Eq. (8), we have 

𝐹(𝑦) = ∫ 𝑓(𝑡) ∙ 𝑒−𝑖𝑦𝑡𝑑𝑡
∞

−∞

 

and since 𝐹′(𝑦) = −𝑖 ∫ 𝑓(𝑡) ∙ 𝑡 ∙ 𝑒−𝑖𝑦𝑡𝑑𝑡
∞

−∞
 and 𝐹′′(𝑦) = − ∫ 𝑓(𝑡) ∙ 𝑡2 ∙ 𝑒−𝑖𝑦𝑡𝑑𝑡

∞

−∞
 

𝐹(𝑦) ∙ 𝐹′′(𝑦) − [𝐹′(𝑦)]2 = − ∫ 𝑓(𝑡) ∙ 𝑒−𝑖𝑦𝑡𝑑𝑡
∞

−∞

∙ ∫ 𝑓(𝑡) ∙ 𝑡2 ∙ 𝑒−𝑖𝑦𝑡𝑑𝑡
∞

−∞

+ [∫ 𝑓(𝑡) ∙ 𝑡 ∙ 𝑒−𝑖𝑦𝑡𝑑𝑡
∞

−∞

]

2

 



which is − 𝐺(𝑖𝑦). Since 𝐺(𝑖𝑦) is non-zero for all 𝑦 ∈ ℝ, so is − 𝐺(𝑖𝑦) =  𝐹(𝑦) ∙ 𝐹′′(𝑦) − [𝐹′(𝑦)]2. 

We know that 𝐹(𝑦) ∙ 𝐹′′(𝑦) − [𝐹′(𝑦)]2 ≠ 0  for all 𝑦 ∈ ℝ, hence 𝐹(𝑦) is either strictly log-convex or 

strictly log-concave. To determine it, we examine 𝐹(𝑦) ∙ 𝐹′′(𝑦) − [𝐹′(𝑦)]2 at 𝑦 = 0. From Eq. (8), we 

have 

𝐹(𝑦) = ∑(−1)𝑛 ∙ 𝑎2𝑛 ∙ 𝑦2𝑛

∞

𝑛=0

 

Since 𝐹(0) = 𝑎0,  𝐹′(0) = 0 and 𝐹′′(0) = −2 ∙ 𝑎2, we have 𝐹(0) ∙ 𝐹′′(0) − [𝐹′(0)]2 = −2𝑎0 ∙ 𝑎2 < 0, 

hence 𝐹(𝑦) is strictly log-concave. It is because 𝐹(𝑦) ∙ 𝐹′′(𝑦) − [𝐹′(𝑦)]2 does not change the sign 

for all 𝑦. 

Note that we have proved 𝐹(𝑦) is log-concave using 𝑝(−𝑥) which is log-concave and defined as 

𝐹(−√𝑥) = ∑(−1)𝑛 ∙ 𝑎2𝑛 ∙ 𝑥𝑛

∞

𝑛=0

    (𝑥 ≤ 0) (30) 

so, 𝑝(0) = 𝑎0,  𝑝′(0) = −𝑎2 and  𝑝′′(0) = 2𝑎4 and since 𝑝(−𝑥) is log-concave, (𝑎2)2 > 2𝑎0𝑎4. 

Moreover 𝑝(𝑥) is positive for 𝑥 ≥ 0 and (𝑎2)2 > 2𝑎0𝑎4, 𝐹(√𝑥) is also log-concave for 𝑥 ≥ 0. 

Further, since [𝐹′(𝑦)]2 − 𝐹(𝑦) ∙ 𝐹′′(𝑦) > 0, 𝑝(−𝑥) and 𝑝(𝑥) does not change the sign for 𝑥 ≥ 0 and 

𝑥 ≤ 0 respectively. Hence 𝐹(√𝑥) and 𝐹(−√𝑥) are log-concave ∀𝑥 ∈ ℝ because of (𝑎2)2 > 2𝑎0𝑎4. 

 A more intuitive method to determine 𝐹(𝑦) whether log-convex or log-concave from 𝐹(𝑥) ∙ 𝐹′′(𝑥) −

[𝐹′(𝑥)]2  is changing 𝑥  to 𝑖𝑦.  From 𝐹(𝑥) ∙ 𝐹′′(𝑥) − [𝐹′(𝑥)]2 > 0 , we use another notation of 

derivatives, i.e. 

𝐹(𝑥) ∙
𝑑2

𝑑𝑥2 𝐹(𝑥) − [
𝑑

𝑑𝑥
𝐹(𝑥)]

2

> 0 and we change 𝑥 to 𝑖𝑦, that is, 

𝐹(𝑖𝑦) ∙
𝑑2

𝑑(𝑖𝑦)2 𝐹(𝑖𝑦) − [
𝑑

𝑑(𝑖𝑦)
𝐹(𝑖𝑦)]

2
=

1

𝑖2 𝐹(𝑖𝑦) ∙
𝑑2

𝑑𝑦2 𝐹(𝑖𝑦) − [
1

𝑖

𝑑

𝑑𝑦
𝐹(𝑖𝑦)]

2
= −𝐹(𝑖𝑦) ∙

𝑑2

𝑑𝑦2 𝐹(𝑖𝑦) + [
𝑑

𝑑𝑦
𝐹(𝑖𝑦)]

2
> 0 , 

which derives 𝐹(𝑦) ∙ 𝐹′′(𝑦) − [𝐹′(𝑦)]2 < 0. 

  This can be explained as follows: 

By Eq. (4), 𝐹(𝑧) =  𝑢(𝑥, 𝑦) + 𝑖𝑣(𝑥, 𝑦), where 𝑢(𝑥, 𝑦) is the real part and 𝑣(𝑥, 𝑦) is the imaginary part 

of 𝐹(𝑧). Since 

𝐹′(𝑧) =  
𝜕𝑢

𝜕𝑥
+ 𝑖

𝜕𝑣

𝜕𝑥
=

𝜕𝑢

𝜕(𝑖𝑦)
+ 𝑖

𝜕𝑣

𝜕(𝑖𝑦)
 

𝐹′′(𝑧) =  
𝜕2𝑢

𝜕𝑥2
+ 𝑖

𝜕2𝑣

𝜕𝑥2
=

𝜕2𝑢

𝜕(𝑖𝑦)2
+ 𝑖

𝜕2𝑣

𝜕(𝑖𝑦)2
 

and so on. 

  Since the imaginary part vanishes on 𝑥-axis and 𝑦-axis, by Eq. (7) and (8), 𝐹(𝑥) = 𝑢(𝑥, 0) and  

𝐹(𝑖𝑦) = 𝑢(0, 𝑦). Indeed, 𝐹(𝑥) and 𝐹(𝑖𝑦), and all their derivatives are generally not same but they 

are same at the origin where 𝑥 = 0 and 𝑦 = 0. Hence, we can write: 

𝐹(𝑥)|𝑥=0 = 𝐹(𝑖𝑦)|𝑦=0       
𝜕

𝜕𝑥
𝐹(𝑥)|

𝑥=0
=

𝜕

𝜕(𝑖𝑦)
𝐹(𝑖𝑦)|

𝑦=0
        

𝜕2

𝜕𝑥2 𝐹(𝑥)|
𝑥=0

=
𝜕2𝑢

𝜕(𝑖𝑦)2 𝐹(𝑖𝑦)|
𝑦=0

 and so on, 

hence we have 



(𝐹(𝑥) ∙
𝑑2

𝑑𝑥2
𝐹(𝑥) − [

𝑑

𝑑𝑥
𝐹(𝑥)]

2

)|
𝑥=0

= (𝐹(𝑖𝑦) ∙
𝑑2

𝑑(𝑖𝑦)2
𝐹(𝑖𝑦) − [

𝑑

𝑑(𝑖𝑦)
𝐹(𝑖𝑦)]

2

)|
𝑦=0

(31) 

which leads 

(𝐹(𝑥) ∙ 𝐹′′(𝑥) − [𝐹′(𝑥)]2)|𝑥=0 = (−𝐹(𝑦) ∙ 𝐹′′(𝑦) + [𝐹′(𝑦)]2)|𝑦=0 (32) 

Therefore, if both 𝐹(𝑥) ∙ 𝐹′′(𝑥) − [𝐹′(𝑥)]2 and 𝐹(𝑖𝑦) ∙ 𝐹′′(𝑖𝑦) − [𝐹′(𝑖𝑦)]2 do not change the sign 

∀𝑥, 𝑦 ∈ ℝ, the sign of 𝐹(𝑥) ∙
𝑑2

𝑑𝑥2 𝐹(𝑥) − [
𝑑

𝑑𝑥
𝐹(𝑥)]

2

 and 𝐹(𝑖𝑦) ∙
𝑑2

𝑑(𝑖𝑦)2 𝐹(𝑖𝑦) − [
𝑑

𝑑(𝑖𝑦)
𝐹(𝑖𝑦)]

2
 does not 

change ∀𝑥, 𝑦 ∈ ℝ and the sign is same as 𝑥 = 0 and 𝑦 = 0. 

Furthermore, if 𝐺(𝑥) is the sum of products of two derivatives of 𝐹(𝑥), and 𝐺(𝑥) and 𝐺(𝑖𝑦) do not 

change the sign ∀𝑥, 𝑦 ∈ ℝ, then the sign 𝐺(𝑥)|𝑥=𝑖𝑦 is same as of 𝐺(𝑥) as long as 𝐺(𝑖𝑦) is real. 

 

We have proved the first step of the Laguerre inequalities. From (19), if 𝑛 is even, the 𝑛𝑡ℎ 

derivative of 𝐹(𝑧) is as follows: 

 

𝐹(2𝑘)(𝑧) = ∫ 𝑓(𝑡) ∙ 𝑡2𝑘 ∙ 𝑒−𝑧𝑡𝑑𝑡
∞

−∞
(33) 

where 𝑛 = 2𝑘. 

 We define 𝑓2𝑘(𝑡) ≡ 𝑓(𝑡) ∙ 𝑡2𝑘. Since both 𝑓(𝑡) and 𝑡2𝑘 are non-negative and even, 𝑓2𝑘(𝑡) is also a 

non-negative even function. So, we can write 

𝐹(2𝑘)(𝑧) ≡ 𝐹2𝑘(𝑧) = ∫ 𝑓2𝑘(𝑡) ∙ 𝑒−𝑧𝑡𝑑𝑡
∞

−∞
(34)

where 𝑘 = 0, 1, 2, … 

 We have proved that the Laplace transform of any non-negative even function holds the 

Laguerre inequalities. That is, 𝐹2𝑘(𝑖𝑦) ≡ 𝐹(2𝑘)(𝑖𝑦) is log-concave for all 𝑘 ≥ 0.3 

 

Now, we will prove the Laguerre inequalities for odd 𝑛. Let 𝑛 be 2𝑘 + 1 for 𝑘 = 0, 1, 2, … , then 

form (7), the (2𝑘 + 1)𝑡ℎ derivative of 𝐹(𝑥), i.e., 𝐹(2𝑘+1)(𝑥) is as follows: 

𝐹(2𝑘+1)(𝑥) = ∫ 𝑓(𝑡) ∙ 𝑡2𝑘+1 ∙ 𝑒−𝑧𝑡𝑑𝑡
∞

−∞

= 𝑥 ∙ ∫ 𝑓(𝑡) ∙ 𝑡2𝑘+2 ∙
𝑒−𝑧𝑡

𝑥𝑡
𝑑𝑡

∞

−∞

(35) 

and since 

∫ 𝑒𝑧𝑡𝜏𝑑𝜏
−1

−∞

=
𝑒−𝑧𝑡

𝑥𝑡
 

we have 

𝐹(2𝑘+1)(𝑥) = 𝑥 ∙ ∫ ∫ 𝑓(𝑡) ∙ 𝑡2𝑘+2 ∙ 𝑒𝑧𝑡𝜏 𝑑𝜏 ∙ 𝑑𝑡
−1

−∞

∞

−∞

(36) 

We define 𝐺2𝑘(𝑥) as 

 

3Indeed, 𝐹(2𝑘)(𝑖𝑦) = (−1)𝑘 ∙ 𝐹(2𝑘)(𝑥)|
𝑥=𝑖𝑦

, but the sign of 𝐹(2𝑘)(𝑖𝑦) ∙ 𝐹(2𝑘+2)(𝑖𝑦) and [𝐹(2𝑘+1)(𝑖𝑦)]
2
 is same for all k. 



𝐺2𝑘(𝑥) ≡
1

𝑥
∙ 𝐹(2𝑘+1)(𝑥) = ∫ ∫ 𝑓(𝑡) ∙ 𝑡2𝑘+2 ∙ 𝑒𝑥𝑡𝜏 𝑑𝜏 ∙ 𝑑𝑡

−1

−∞

∞

−∞

(37) 

For 𝑥1 and 𝑥2 (𝑥1 ≠ 𝑥2), and 𝜆, 𝜇 > 0 , 𝜆 + 𝜇 = 1, 

𝐺2𝑘(𝜆𝑥1 + 𝜇𝑥2) = ∫ ∫ 𝑓(𝑡) ∙ 𝑡2𝑘+2 ∙ 𝑒(𝜆𝑥1+𝜇𝑥2)∙𝑡𝜏 𝑑𝜏 ∙ 𝑑𝑡
−1

−∞

∞

−∞

 

or 

𝐺2𝑘(𝜆𝑥1 + 𝜇𝑥2) = ∫ ∫ [𝑓(𝑡) ∙ 𝑡2𝑘+2 ∙ 𝑒𝑥1𝑡𝜏]𝜆 ∙ [𝑓(𝑡) ∙ 𝑡2𝑘+2 ∙ 𝑒𝑥2𝑡𝜏]𝜇 𝑑𝜏 ∙ 𝑑𝑡
−1

−∞

∞

−∞

 

and by the Hölder inequality of double integral. We have 

∫ ∫ [𝑓(𝑡) ∙ 𝑡2𝑘+2 ∙ 𝑒𝑥1𝑡𝜏]𝜆 ∙ [𝑓(𝑡) ∙ 𝑡2𝑘+2 ∙ 𝑒𝑥2𝑡𝜏]𝜇 𝑑𝜏 ∙ 𝑑𝑡
−1

−∞

∞

−∞

 

< [∫ ∫ 𝑓(𝑡) ∙ 𝑡2𝑘+2 ∙ 𝑒𝑥1𝑡𝜏 𝑑𝜏 ∙ 𝑑𝑡
−1

−∞

∞

−∞

]

𝜆

∙  [∫ ∫ 𝑓(𝑡) ∙ 𝑡2𝑘+2 ∙ 𝑒𝑥2𝑡𝜏 𝑑𝜏 ∙ 𝑑𝑡
−1

−∞

∞

−∞

]

𝜇

 

 

hence 

𝐺2𝑘(𝜆𝑥1 + 𝜇𝑥2) < [𝐺2𝑘(𝑥1)]𝜆 ∙ [𝐺2𝑘(𝑥2)]𝜇 (38) 

which means 𝐺2𝑘(𝑥) is log-convex. 

From (35) and (37), the inequality (38) can be written: 

 ∫ 𝑓(𝑡) ∙ 𝑡2𝑘+2 ∙ sinhc(𝜆𝑥1𝑡 + 𝜇𝑥2𝑡) 𝑑𝑡
∞

−∞
 

< [∫ 𝑓(𝑡) ∙ 𝑡2𝑘+2 ∙ sinhc(𝑥1𝑡) 𝑑𝑡
∞

−∞

]

𝜆

∙ [∫ 𝑓(𝑡) ∙ 𝑡2𝑘+2 ∙ sinhc(𝑥2𝑡) 𝑑𝑡
∞

−∞

]

𝜇

 

where sinhc(𝑥𝑡) =
sinh(𝑥𝑡)

𝑥𝑡
. Note that sinhc(𝑥𝑡) ≥ 1 and even. 

With the same manner we used before, it can be shown that  

𝐺2𝑘(𝑖𝑦) = (−1)𝑘 ∙ ∫ 𝑓(𝑡) ∙ 𝑡2𝑘+2 ∙ sinc(𝑦𝑡) 𝑑𝑡
∞

−∞

 

is strictly log-concave. The function sinc(𝑦𝑡) is defined as 
sin(𝑥𝑡)

𝑥𝑡
. 

From (36),  

𝐹(2𝑘+1)(𝑥) = 𝑥 ∙ 𝐺2𝑘(𝑥) (39) 

and 

𝐹(2𝑘+1)(𝑖𝑦) = (−1)𝑘 ∙ 𝑦 ∙ 𝐺2𝑘(𝑖𝑦) (40) 

𝐺2𝑘(𝑥) is log-convex but 𝑥 is log-concave, therefore 𝐹(2𝑘+1)(𝑥) is not log-convex for all 𝑥 ∈ ℝ.  

𝐹(2𝑘+1)(𝑖𝑦), however, is log-concave ∀𝑦 ∈ ℝ because both ±𝑦 and 𝐺2𝑘(𝑖𝑦) are log-concave ∀𝑦 ∈

ℝ. 



Since 𝐹(𝑖𝑦) is nothing but Fourier Transform of 𝑓(𝑡), we have shown that the Fourier transform of a 

non-negative even function satisfies the Laguerre inequalities. 

 

4.  The generalized Laguerre inequalities 

From (1), the Laplace transform is defined as 

𝐹(𝑧) ≡ ∫ 𝑓(𝑡) ∙ 𝑒−𝑧𝑡𝑑𝑡
∞

−∞

 

and therefore 

|𝐹(𝑧)|2 = 𝐹(𝑧) ∙ 𝐹∗(𝑧) = 𝐹(𝑥 + 𝑖𝑦) ∙ 𝐹(𝑥 − 𝑖𝑦) = ∫ ∫ 𝑓(𝑡1) ∙ 𝑓(𝑡2) ∙ 𝑒−𝑥∙(𝑡1+𝑡2) ∙ 𝑒−𝑖𝑦(𝑡1−𝑡2) 𝑑𝑡1 ∙ 𝑑𝑡2

∞

−∞

∞

−∞

(41) 

  By changing the variables t = 𝑡1 + 𝑡2 and 𝜏 = 𝑡1, we have 

|𝐹(𝑥 + 𝑖𝑦)|2 = ∫ ∫ 𝑓(𝜏) ∙ 𝑓(𝑡 − 𝜏) ∙ 𝑒−𝑥𝑡
∞

−∞

∞

−∞

∙ 𝑒−𝑖𝑦𝜏 ∙ 𝑒𝑖𝑦(𝑡−𝜏) 𝑑𝜏 𝑑𝑡 (42) 

Letting 𝜏 ↦ −𝜏, and assuming 𝑓(𝑡) is even, we have 

|𝐹(𝑥 + 𝑖𝑦)|2 = ∫ [∫ 𝑓(𝜏) ∙ 𝑓(𝑡 + 𝜏) ∙ 𝑒𝑖𝑦𝜏 ∙ 𝑒𝑖𝑦(𝑡+𝜏)𝑑𝜏
∞

−∞

] 𝑒−𝑥𝑡
∞

−∞

𝑑𝑡 (43) 

or simply, 

|𝐹(𝑥 + 𝑖𝑦)|2 = ∫ 𝑟𝑦(𝑡) ∙ 𝑒−𝑥𝑡
∞

−∞

𝑑𝑡 (44) 

where  

𝑟𝑦(𝑡) = ∫ 𝑓(𝜏) ∙ 𝑓(𝑡 − 𝜏) ∙ 𝑒−𝑖𝑦𝜏 ∙ 𝑒𝑖𝑦(𝑡−𝜏)𝑑𝜏
∞

−∞

= ∫ 𝑓(𝜏) ∙ 𝑓(𝑡 + 𝜏) ∙ 𝑒𝑖𝑦𝜏 ∙ 𝑒𝑖𝑦(𝑡+𝜏)𝑑𝜏
∞

−∞

(45) 

  The conjugate of 𝑟𝑦(𝑡) 

𝑟𝑦
∗(𝑡) = ∫ 𝑓(𝜏) ∙ 𝑓(𝑡 + 𝜏) ∙ 𝑒−𝑖𝑦𝜏 ∙ 𝑒−𝑖𝑦(𝑡+𝜏)𝑑𝜏

∞

−∞

(46) 

and by substitution 𝜏 ↦ 𝜏 − 𝑡, and assuming 𝑓(𝑡) is even, we have 

𝑟𝑦
∗(𝑡) = ∫ 𝑓(𝜏 − 𝑡) ∙ 𝑓(𝜏) ∙ 𝑒−𝑖𝑦(𝜏−𝑡) ∙ 𝑒−𝑖𝑦𝜏𝑑𝜏

∞

−∞

= ∫ 𝑓(𝜏) ∙ 𝑓(𝑡 − 𝜏) ∙ 𝑒−𝑖𝑦𝜏 ∙ 𝑒𝑖𝑦(𝑡−𝜏) ∙ 𝑑𝜏
∞

−∞

 

which is the equation (34), therefore, 𝑟𝑦(𝑡) is real. Moreover, 𝑟𝑦(𝑡) is an even function which can 

be easily proved. The function 𝑟𝑦(𝑡) is real and even but does not hold the positivity, namely, It can 

be negative. 

Since |𝐹(𝑥 + 𝑖𝑦)|2 is even for 𝑥, the Eq. (44) can be written as 

|𝐹(𝑥 + 𝑖𝑦)|2 = ∑ 𝐴2𝑛 ∙ 𝑥2𝑛

∞

𝑛=0

(47) 

where 



 

𝐴2𝑛 =
1

(2𝑛)!
∫ 𝑟𝑦(𝑡) ∙ 𝑡2𝑛∞

−∞
𝑑𝑡 (48) 

  Imagine |𝐹(𝑥 + 𝑖𝑦)|2 on the horizontal line where 𝑦 is constant. If 𝐴2𝑛 ≥ 0 for all 𝑛, then we have a 

unique global minimum at 𝑥 = 0 and |𝐹(𝑥 + 𝑖𝑦)|2 is increasing while |𝑥| increasing. Hence If 𝐴2𝑛 is 

non-negative for all 𝑛, zeros of |𝐹(𝑥 + 𝑖𝑦)|2 can exist only at 𝑥 = 0, i.e., 𝑖𝑦-axis. 

By reforming (45), so that 

𝑟𝑦(𝑡) = ∫ 𝑓(𝜏) ∙ 𝑒𝑖𝑦𝜏 ∙ 𝑓(𝑡 + 𝜏) ∙ 𝑒𝑖𝑦(𝑡+𝜏)𝑑𝜏
∞

−∞

(49) 

and by letting 𝑔(𝜏) =  𝑓(𝜏) ∙ 𝑒−𝑖𝑦𝜏, 𝑟𝑦(𝑡) is the cross-correlation function of 𝑔(𝜏) and 𝑔∗(𝜏) where 

𝑔∗(𝜏) = 𝑓(𝜏) ∙ 𝑒𝑖𝑦𝜏. Let 𝐹(𝜔) be the Fourier transform of 𝑓(𝜏), then the Fourier transform of 𝑔(𝜏) is 

𝐹(𝜔 − 𝑦) and the Fourier transform of 𝑔∗(𝜏) is 𝐹(𝜔 + 𝑦). By the cross-correlation theorem, we 

have 

𝑟𝑦(𝑡) =
1

2𝜋
∫ 𝐹(𝜔 − 𝑦) ∙ 𝐹(𝜔 + 𝑦) ∙ 𝑒𝑖𝑡𝜔𝑑𝜔

∞

−∞

 

and since 𝐹(𝑦) is even, we have 

𝑟𝑦(𝑡) =
1

2𝜋
∫ 𝐹(𝑦 − 𝜔) ∙ 𝐹(𝑦 + 𝜔) ∙ 𝑒𝑖𝑡𝜔𝑑𝜔

∞

−∞

(50) 

which is similar to the Wigner-Ville distribution function. By changing variable  𝑥 = 𝑖𝜃, from (44), 

we have 

|𝐹(𝑖𝜃 + 𝑖𝑦)|2 =
1

2𝜋
∫ ∫ 𝐹(𝑦 − 𝜔) ∙ 𝐹(𝑦 + 𝜔) ∙ 𝑒𝑖𝜔𝑡 ∙ 𝑒−𝑖𝜃𝑡

∞

−∞

𝑑𝜔
∞

−∞

𝑑𝑡 (51) 

and 

∫ ∫ 𝐹(𝑦 − 𝜔) ∙ 𝐹(𝑦 + 𝜔) ∙ 𝑒𝑖𝜔𝑡 ∙ 𝑒−𝑖𝜃𝑡
∞

−∞

𝑑𝜔
∞

−∞

𝑑𝑡 = ∫ 𝐹(𝑦 − 𝜔) ∙ 𝐹(𝑦 − 𝜔) ∙ [∫ 𝑒𝑖𝜔𝑡 ∙ 𝑒−𝑖𝜃𝑡𝑑𝑡
∞

−∞

]
∞

−∞

𝑑𝜔 

and 

∫ 𝑒𝑖𝜔𝑡 ∙ 𝑒−𝑖𝜃𝑡𝑑𝑡
∞

−∞

= 2𝜋 ∙ 𝛿(𝜃 − 𝜔) 

thus, we have 

|𝐹(𝑖𝜃 + 𝑖𝑦)|2 = ∫ 𝐹(𝑦 − 𝜔) ∙ 𝐹(𝑦 + 𝜔) ∙ 𝛿(𝜔 − 𝜃)
∞

−∞

𝑑𝜔  

and by omitting 𝑖 for convenience, we have, 

|𝐹(𝜃 + 𝑦)|2 = 𝐹(𝑦 − 𝜃) ∙ 𝐹(𝑦 + 𝜃) (52) 

which is the characteristic equation of |𝐹(𝑥 + 𝑖𝑦)|2 where x = 𝑖𝜃, hence, from (44) 

|𝐹(𝜃 + 𝑦)|2 = ∫ 𝑟𝑦(𝑡) ∙ 𝑒−𝑖𝜃𝑡
∞

−∞

𝑑𝑡 (53) 

The 𝑛𝑡ℎ moment of |𝐹(𝑥 + 𝑖𝑦)|2, which is denoted as 𝑀𝑛, is defined as follows 



𝑀𝑛(𝑦) = ∫ 𝑡𝑛 ∙ 𝑟𝑦(𝑡)
∞

−∞

𝑑𝑡 (54) 

or  

𝑀𝑛(𝑦) = (−1)𝑛 ∙ 𝐷𝑥
𝑛|𝐹(𝑥 + 𝑖𝑦)|2|𝑥=0 (55) 

 

   Another method to get 𝑀𝑛(𝑦) is differentiating (53), that is, 

𝑀𝑛(𝑦) =
1

(−𝑖)𝑛
∙ 𝐷𝜃

𝑛|𝐹(𝜃 + 𝑦)|2|𝜃=0 

or by (52), 𝑀𝑛(𝑦) is 
1

(−𝑖)𝑛 ∙ 𝐷𝜃
𝑛[𝐹(𝜃 − 𝑦) ∙ 𝐹(𝜃 + 𝑦)]𝜃=0 which can be computed using the Leibniz 

rule, that is, 

𝑀𝑛(𝑦) =  
1

(−𝑖)𝑛
∙ 𝐷𝜃

𝑛[𝐹(𝑦 − 𝜃) ∙ 𝐹(𝑦 + 𝜃)]𝜃=0 =  
1

(−𝑖)𝑛
∙ ∑(−1)𝑘 ∙ (

𝑛
𝑘

) ∙ 𝐹(𝑘)(𝑦) ∙ 𝐹(𝑛−𝑘)(𝑦)

𝑛

𝑘=0

(56) 

However, since 𝑟𝑦(𝑡) is an even function, 𝑀𝑛(𝑦) vanishes when 𝑛 is odd and we need to compute 

only for even 𝑛, hence, 

𝑀2𝑛(𝑦) = 𝐷𝜃
2𝑛[𝐹(𝑦 − 𝜃) ∙ 𝐹(𝑦 + 𝜃)]𝜃=0 = (−1)𝑛 ∑(−1)𝑘 ∙ (

2𝑛
𝑘

) ∙ 𝐹(𝑘)(𝑦) ∙ 𝐹(2𝑛−𝑘)(𝑦)

2𝑛

𝑘=0

(57) 

and we have 

|𝐹(𝑥 + 𝑖𝑦)|2 = ∑
1

(2𝑛)!
∙ 𝑀2𝑛(𝑦)

∞

𝑛=0

∙ 𝑥2𝑛 = ∑ 𝐿𝑛(𝑦)

∞

𝑛=0

∙ 𝑥2𝑛 (58) 

where 

𝐿𝑛(𝑦) = (−1)𝑛 ∙
1

(2𝑛)!
∑(−1)𝑘 ∙ (

2𝑛
𝑘

) ∙ 𝐹(𝑘)(𝑦) ∙ 𝐹(2𝑛−𝑘)(𝑦)

2𝑛

𝑘=0

(59) 

Theorem 4: The generalized Laguerre inequalities 

The zeros of 𝐹(𝑧) locate only on the 𝑖𝑦-axis if and only if 𝐿𝑛(𝑦) ≥ 0 for any 𝑦 and 𝑛. 

 

Definition: The copositive-definite function 

A function 𝑓(𝑥) is copositive-definite if and only if 

∑ ∑ 𝑐𝑛𝑐𝑘
∗  𝑓(𝑥𝑛 + x𝑘) ≥ 0 

𝑁

𝑘=1

𝑁

𝑛=1

(60) 

for any complex values 𝑐𝑛, real values 𝑥𝑛 and non-negative integer 𝑁 > 0. 

 

Some properties of the copositive-definite function 

1. If 𝑓(𝑥) is copositive-definite, 𝑓(0) ≥ 0. 



2. If 𝑓(𝑥) is copositive-definite, its (2𝑛)𝑡ℎ derivatives, i.e., 𝑓(2𝑛)(𝑥) is also copositive-definite. 

3. If 𝑓(𝑥) and 𝑔(𝑥) are copositive-definite, 𝑓(𝑥) ∙ 𝑔(𝑥) is also copositive-definite. 

 

Indeed, 𝐹(𝑦 + 𝜃) = 𝐹(𝑖𝑦 + 𝑖𝜃) = 𝐹[𝑖(𝑦 + 𝜃)], i.e., this function lies on the 𝑖y-axis. 𝐹(𝑦 − 𝜃) is the 

same. We will map 𝐹(𝑦 − 𝜃) ∙ 𝐹(𝑦 + 𝜃) on 𝑥-axis, i.e., 𝐹(𝑥 − 𝜃) ∙ 𝐹(𝑥 + 𝜃), and we have  

𝐹(𝑥 − 𝜃) = ∫ 𝑓(𝑡) ∙ 𝑒−𝑥𝑡 ∙ 𝑒𝜃𝑡𝑑𝑡
∞

−∞

(61) 

and 

𝐹(𝑥 + 𝜃) = ∫ 𝑓(𝑡) ∙ 𝑒−𝑥𝑡 ∙ 𝑒−𝜃𝑡𝑑𝑡
∞

−∞

(62) 

𝐹(𝑥 − 𝜃) is copositive-definite for 𝜃, because 

∑ ∑ 𝑐𝑛𝑐𝑘
∗𝐹(𝑥 − (𝜃𝑛 + 𝜃𝑘)) 

𝑁

𝑘

𝑁

𝑛=1

= ∫ 𝑓(𝑡) ∙ 𝑒−𝑥𝑡 ∙ ∑ ∑ 𝑐𝑛𝑐𝑘
∗  𝑒(𝜃𝑛+𝜃𝑘)𝑡

𝑁

𝑘

𝑁

𝑛=1

𝑑𝑡
∞

−∞

= ∫ 𝑓(𝑡) ∙ 𝑒−𝑥𝑡 ∙ |∑ 𝑐𝑛𝑒𝜃𝑛𝑡

𝑁

𝑛=1

|

2

𝑑𝑡
∞

−∞

≥ 0 

In the same way, 𝐹(𝑥 + 𝜃) is also copositive-definite for 𝜃, thus 𝐹(𝑥 − 𝜃) ∙ 𝐹(𝑥 + 𝜃) is copositive-

definite for 𝜃 by the property 3. 

Since 𝐹(𝑥 − 𝜃) ∙ 𝐹(𝑥 + 𝜃) is copositive-definite for 𝜃, 𝐷𝜃
2𝑛[𝐹(𝑥 − 𝜃) ∙ 𝐹(𝑥 + 𝜃)] is copositive-

definite by the property 3. Also, 𝐷𝜃
2𝑛[𝐹(𝑥 − 𝜃) ∙ 𝐹(𝑥 + 𝜃)]𝜃=0 ≥ 0 and we have 

𝑀2𝑛(𝑥) = 𝐷𝜃
2𝑛[𝐹(𝑥 − 𝜃) ∙ 𝐹(𝑥 + 𝜃)]𝜃=0 = ∑(−1)𝑘 ∙ (

2𝑛
𝑘

) ∙ 𝐹(𝑘)(𝑥) ∙ 𝐹(2𝑛−𝑘)(𝑥)

2𝑛

𝑘=0

≥ 0 (63) 

and 

𝐿𝑛(𝑥) =
1

(2𝑛)!
∙ 𝑀2𝑛(𝑦) 

𝐹(𝑘)(𝑥) ∙ 𝐹(2𝑛−𝑘)(𝑥) is an even function, and therefore 𝑀2𝑛(𝑥) is an even function, hence the 

power series of 𝑀2𝑛(𝑥) has only even powers of 𝑥.Thus by the proposition 1,  𝑃2𝑛(𝑥) ≡ 𝑀2𝑛(√𝑥) 

does not change the sign for 𝑥 ≥ 0, and 𝑄2𝑛(𝑥) ≡ 𝑃2𝑛(−𝑥) does not change the sign for 𝑥 ≤ 0. 

From (7), we have 

𝐹(𝑥) = 𝑢(𝑥, 0) = ∫ 𝑓(𝑡) ∙ 𝑒−𝑥𝑡𝑑𝑡
∞

−∞

= ∫ 𝑓(𝑡) ∙ 𝑒𝑥𝑡𝑑𝑡
∞

−∞

 

and  

𝐹(𝑘)(𝑥) ∙ 𝐹(2𝑛−𝑘)(𝑥) = ∫ 𝑓(𝑡) ∙ 𝑡𝑘 ∙ 𝑒𝑥𝑡 𝑑𝑡
∞

−∞

∙ ∫ 𝑓(𝑡) ∙ 𝑡2𝑛−𝑘 ∙ 𝑒𝑥𝑡  𝑑𝑡
∞

−∞

(64) 

Let 𝑝𝑘(𝑥) = 𝐹(𝑘)(𝑥) ∙ 𝐹(2𝑛−𝑘)(𝑥)|
𝑥=√𝑥

= 𝐹(𝑘)(√𝑥) ∙ 𝐹(2𝑛−𝑘)(√𝑥), and 𝑞𝑘(𝑥) = 𝑝𝑘(−𝑥), then 



𝑝𝑘(−𝑥) = ∫ 𝑓(𝑡) ∙ 𝑡𝑘 ∙ 𝑒−√𝑥∙𝑡 𝑑𝑡
∞

−∞

∙ ∫ 𝑓(𝑡) ∙ 𝑡2𝑛−𝑘 ∙ 𝑒−√𝑥∙𝑡 𝑑𝑡
∞

−∞

 

If 𝑥 ≤ 0, then 

𝑝𝑘(−𝑥) = ∫ 𝑓(𝑡) ∙ 𝑡𝑘 ∙ 𝑒−𝑖√|𝑥|∙𝑡 𝑑𝑡
∞

−∞

∙ ∫ 𝑓(𝑡) ∙ 𝑡2𝑛−𝑘 ∙ 𝑒−𝑖√|𝑥|∙𝑡 𝑑𝑡
∞

−∞

= 𝑝𝑘(−𝑖 ∙ |𝑥|) (65) 

 By changing variable |𝑥| ↦ 𝑦2, we have 

𝑝𝑘(−𝑖 ∙ |𝑥|)||𝑥|=𝑦2 = 𝑝𝑘(−𝑖 ∙ 𝑦2) = ∫ 𝑓(𝑡) ∙ 𝑡𝑘 ∙ 𝑒−𝑖∙|𝑦|∙𝑡 𝑑𝑡
∞

−∞

∙ ∫ 𝑓(𝑡) ∙ 𝑡2𝑛−𝑘 ∙ 𝑒−𝑖∙|𝑦|∙𝑡 𝑑𝑡
∞

−∞

 

and since 

 ∫ 𝑓(𝑡) ∙ 𝑡𝑘 ∙ 𝑒𝑖∙|𝑦|∙𝑡 𝑑𝑡
∞

−∞
∙ ∫ 𝑓(𝑡) ∙ 𝑡2𝑛−𝑘 ∙ 𝑒𝑖∙|𝑦|∙𝑡 𝑑𝑡

∞

−∞
= ∫ 𝑓(𝑡) ∙ 𝑡𝑘 ∙ 𝑒−𝑖∙|𝑦|∙𝑡 𝑑𝑡

∞

−∞
∙ ∫ 𝑓(𝑡) ∙ 𝑡2𝑛−𝑘 ∙ 𝑒−𝑖∙|𝑦|∙𝑡 𝑑𝑡

∞

−∞
 

we have 

𝑝𝑘(−𝑖 ∙ 𝑦2) = ∫ 𝑓(𝑡) ∙ 𝑡𝑘 ∙ 𝑒−𝑖∙𝑦𝑡 𝑑𝑡
∞

−∞

∙ ∫ 𝑓(𝑡) ∙ 𝑡2𝑛−𝑘 ∙ 𝑒−𝑖𝑦∙𝑡 𝑑𝑡
∞

−∞

 

which is nothing but 

𝑝𝑘(−𝑖 ∙ |𝑥|)||𝑥|=𝑦2 = (−1)𝑛 ∙ 𝐹(𝑘)(𝑖 ∙ 𝑦) ∙ 𝐹(2𝑛−𝑘)(𝑖 ∙ 𝑦) (66) 

From (63) we can write 

𝑄2𝑛(𝑥) ≡ 𝑃2𝑛(−𝑥) = ∑(−1)𝑘 ∙ (
2𝑛
𝑘

) ∙ 𝑝𝑘(−𝑥) ∙ 𝑝2𝑛−𝑘(−𝑥)

2𝑛

𝑘=0

(67) 

where 𝑄2𝑛(𝑥) does not change the sign for 𝑥 ≤ 0, hence 

𝑀2𝑛(𝑦) = 𝐷𝜃
2𝑛[𝐹(𝑦 − 𝜃) ∙ 𝐹(𝑦 + 𝜃)]𝜃=0 = (−1)𝑛 ∙ ∑(−1)𝑘 ∙ (

2𝑛
𝑘

) ∙ 𝐹(𝑘)(𝑖𝑦) ∙ 𝐹(2𝑛−𝑘)(𝑖𝑦)

2𝑛

𝑘=0

 

or since 𝐹(𝑘)(𝑖𝑦) ∙ 𝐹(2𝑛−𝑘)(𝑖𝑦) is real, 𝑖 can be omitted. Thus 

𝑀2𝑛(𝑦) = (−1)𝑛 ∙ ∑(−1)𝑘 ∙ (
2𝑛
𝑘

) ∙ 𝐹(𝑘)(𝑦) ∙ 𝐹(2𝑛−𝑘)(𝑦)

2𝑛

𝑘=0

(68) 

does not change sign for all 𝑦 ∈ ℝ and 𝑛 ≥ 0, which yields 𝑀2𝑛(𝑦) ≥ 0 or 𝑀2𝑛(𝑦) ≤ 0 for all 𝑦 ∈ ℝ 

and 𝑛 ≥ 0.  

To determine the sign of 𝑀2𝑛(𝑦), we simply substitute 𝑛 = 0 and 𝑦 = 0, because the sign of 

𝑀2𝑛(𝑦) does not change for all 𝑦 ∈ ℝ and 𝑛 ≥ 0. Hence 

𝑀0(0) = [𝑓(0)]2 = 𝑎0
2 > 0 

where 𝑎0 is defined in (3). Therefore 𝑀2𝑛(𝑦) ≥ 0 for all 𝑦 ∈ ℝ and 𝑛 ≥ 0. 

Another way to determine the sign of 𝑀2𝑛(𝑦) is the substitution 𝑥 to 𝑖𝑦. Since 

𝐹(𝑘)(𝑥) ∙ 𝐹(2𝑛−𝑘)(𝑥)|
𝑥=0

=
𝑑𝑘

𝑑(𝑖𝑦)𝑘
𝐹(𝑦) ∙

𝑑2𝑛−𝑘

𝑑(𝑖𝑦)2𝑛−𝑘
𝐹(𝑦)|

𝑦=0

 



and 𝑀2𝑛(𝑥) and 𝑀2𝑛(𝑖𝑦) do not change the sign, from (63) we have 

𝑀2𝑛(𝑖𝑦) = ∑(−1)𝑘 ∙ (
2𝑛
𝑘

) ∙
𝑑𝑘

𝑑(𝑖𝑦)𝑘
𝐹(𝑦) ∙

𝑑2𝑛−𝑘

𝑑(𝑖𝑦)2𝑛−𝑘
𝐹(𝑦)

2𝑛

𝑘=0

≥ 0 

which is 

𝑀2𝑛(𝑖𝑦) =
1

𝑖𝑘 ∙ 𝑖2𝑛−𝑘
∑(−1)𝑘 ∙ (

2𝑛
𝑘

) ∙
𝑑𝑘

𝑑(𝑖𝑦)𝑘
𝐹(𝑦) ∙

𝑑2𝑛−𝑘

𝑑(𝑖𝑦)2𝑛−𝑘
𝐹(𝑦)

2𝑛

𝑘=0

≥ 0 

 

Hence 

𝑀2𝑛(𝑖𝑦) = 𝑀2𝑛(𝑦) = (−1)𝑛 ∙ ∑(−1)𝑘 ∙ (
2𝑛
𝑘

) ∙ 𝐹(𝑘)(𝑦) ∙ 𝐹(2𝑛−𝑘)(𝑦) ≥ 0

2𝑛

𝑘=0

 

 

Since 𝐿𝑛(𝑥) =
1

(2𝑛)!
∙ 𝑀2𝑛(𝑦) ≥ 0, the generalized Laguerre inequalities are valid for a two-sided 

Laplace transform 𝐹(𝑧) of a non-negative even function 𝑓(𝑡) as long as 𝐹(𝑧) converses. 

 

5. The Riemann hypothesis 

The Riemann zeta function (s) is defined 

(s) = ∑
1

𝑛𝑠

∞

𝑛=1

= 1 +
1

2𝑠
+

1

3𝑠
+ ⋯ 

where s =  + iω. 

It is known that the zeros of (s) are located only on the strip 0 <  < 1. Riemann conjectured 

that all the zeros of (s) are located on the line  =
1

2
, so-called “Riemann hypothesis”. 

Using the Riemann’s functional equation, an entire and symmetric function can be obtained 

which is called the xi function ξ(s) where 

ξ(s) =
1

2
𝜋−

𝑠
2𝑠(𝑠 − 1)Γ (

𝑠

2
) (s) (69) 

The function ξ(s) can be written as 

ξ(s) = ∫ φ(t) ∙ 𝑒−(𝑠−
1
2

)𝑡𝑑𝑡
∞

−∞

(70) 

where 

φ(t) = 2𝜋 ∑ 𝑛2 ∙ 𝑒−𝜋𝑛2𝑒2𝑡
∙ (2𝜋𝑛2𝑒

9
2

𝑡 − 3𝑒
5
2

𝑡)

∞

𝑛=1

(71) 

and it can be shown that φ(t) > 0 for all t and an even function. 

  By substitution z = 𝑠 −
1

2
  where 𝑧 = 𝑥 + i𝑦 , and φ(t) is even, we have 



Φ(𝑧) = ∫ φ(t) ∙ 𝑒−𝑧𝑡𝑑𝑡
∞

−∞

= ∫ φ(t) ∙ cosh(𝑧𝑡) 𝑑𝑡
∞

−∞

(74) 

and since Φ(z) is a shifted function by 
1

2
 of ξ(s), Φ(z) is entire and the zeros of Φ(z) should be 

located on the strip −
1

2
< 𝑥 <

1

2
 . From (69), we have 

Φ(𝑧) =
1

2
𝜋−

1
4 ∙ 𝜋−

𝑧
2 ∙ (𝑧2 −

1

4
) ∙ Γ (

𝑧

2
+

1

4
) ∙  (𝑧 +

1

2
) (75) 

which is Riemann’s original definition of xi-function. 

 We consider the function φ(t) defined in (71). It is positive and even. Moreover, it is decreasing 

very rapidly4, thus Φ(𝑖𝑦) belongs to the Laguerre-Pólya class and has only real zeros. It means 

that all the zeros of Φ(z) are located at x = 0, and hence, all the zeros of ξ(s) and (s) are located 

at  =
1

2
 . Thus, the Riemann hypothesis is true. 

  Another popular definition Φ(𝑧) is: 

Φ(𝑖𝑧) = ∫ φ(t) ∙ cos(𝑧𝑡) 𝑑𝑡
∞

−∞

= 2 ∫ φ(t) ∙ cos(𝑧𝑡) 𝑑𝑡
∞

0

 

and by substitution t ↦ 2t, we have 

Φ(𝑖𝑧) = 4 ∫ φ(2t) ∙ cos(2𝑧𝑡) 𝑑𝑡
∞

0

(76) 

We define ∅(t) as 

∅(t) = 𝜋 ∑ 𝑛2 ∙ 𝑒−𝜋𝑛2𝑒2𝑡
∙ (2𝜋𝑛2𝑒9𝑡 − 3𝑒5𝑡)

∞

𝑛=1

 

then ∅(t) =
1

2
 φ(2t) and eq. (74) will be 

Φ(𝑖𝑧) = 8 ∫ ∅(t) ∙ cos(2𝑧𝑡) 𝑑𝑡
∞

0

 

and by defining Ξ(z) =
1

8
 Φ(iz/2), we have 

Ξ(z) = ∫ ∅(t) ∙ cos(𝑧𝑡) 𝑑𝑡
∞

0

(77) 

or simply, 

Ξ(𝑧) = 2 Φ(𝑖𝑧) (78) 

  This function is called the big-xi or upper-case xi function and used to prove the Riemann 

hypothesis and to find the location of zeros in most literatures. Since Φ(𝑖𝑧) is only the rotation of 

Φ(𝑧) by 90𝑜, the zeros of Ξ(𝑧) locate only on the 𝑥-axis. 

 

4 According to rule of thumb (10), 
Φ(1)

Φ(0)
− 1 ≈ 0.0233, which is much smaller than 𝑓(𝑡) = 𝑒−𝑡2

 


