A proof of the Riemann hypothesis using the two-sided Laplace transform

Seong Won Cha, Ph.D.
swcha@dgu.edu

1. Introduction

Remark:

We are using $\frac{\partial^{n}}{\partial z^{n}}, F^{\prime}(z), F^{(n)}(z)$ and D_{z}^{n} as the differential operators and choosing the most suitable notation for the case.

We will begin with the definition of the two-sided Laplace transform. ${ }^{1}$ The Laplace transform of a real function $f(t)$ is defined as

$$
\begin{equation*}
F(z) \equiv \int_{-\infty}^{\infty} f(t) \cdot e^{-z t} d t \tag{1}
\end{equation*}
$$

where $z=x+i y$ for x and y real.
We assume $f(t) \geq 0$ for all t and $f(-t)=f(t)$. Further, $f(t)$ is so rapidly decreasing that $F(z)$ is entire. Since we assume that $f(t)$ is an even function, we can write

$$
\begin{equation*}
F(z)=\int_{-\infty}^{\infty} f(t) \cdot e^{-z t} d t=\int_{-\infty}^{\infty} f(t) \cdot e^{z t} d t=\int_{-\infty}^{\infty} f(t) \cdot \cosh (z t) d t=2 \int_{0}^{\infty} f(t) \cdot \cosh (z t) d t \tag{2}
\end{equation*}
$$

and the power series expansion of $F(z)$

$$
\begin{equation*}
F(z)=\sum_{n=0}^{\infty} a_{2 n} \cdot z^{2 n}=a_{0}+a_{2} z^{2}+a_{4} z^{4}+\cdots \tag{3}
\end{equation*}
$$

where $a_{2 n}=\frac{1}{(2 n)!} \int_{-\infty}^{\infty} f(t) \cdot t^{2 n} d t$. Note that $f(t)$ is non-negative, hence $a_{2 n}$ is strictly positive for all n.Therefore, any coefficient is not missing.

The real and imaginary part of $F(z)$ is

$$
\begin{equation*}
F(z)=u(x, y)+i v(x, y) \tag{4}
\end{equation*}
$$

where

$$
\begin{equation*}
u(x, y)=\int_{-\infty}^{\infty} f(t) \cdot \cosh (x t) \cdot \cos (y t) d t \tag{5}
\end{equation*}
$$

and

$$
\begin{equation*}
v(x, y)=\int_{-\infty}^{\infty} f(t) \cdot \sinh (x t) \cdot \sin (y t) d t \tag{6}
\end{equation*}
$$

[^0]Since x or y is zero, the imaginary part is vanished, rewriting in

$$
\begin{equation*}
F(x)=u(x, 0)=\int_{-\infty}^{\infty} f(t) \cdot e^{-x t} d t=\int_{-\infty}^{\infty} f(t) \cdot e^{x t} d t=\int_{-\infty}^{\infty} f(t) \cdot \cosh (x t) d t=\sum_{n=0}^{\infty} a_{2 n} \cdot x^{2 n} \tag{7}
\end{equation*}
$$

and
$F(i y) \equiv F(y)=u(0, y)=\int_{-\infty}^{\infty} f(t) \cdot e^{-i y t} d t=\int_{-\infty}^{\infty} f(t) \cdot e^{i y t} d t=\int_{-\infty}^{\infty} f(t) \cdot \cos (y t) d t=\sum_{n=0}^{\infty}(-1)^{n} \cdot a_{2 n} \cdot y^{2 n}(8)$
which are $F(z)$ on x-axis and y-axis respectively. Clearly, $F(x)$ and $F(y)$ are even functions and real when x and y real respectively, and since $F(i y)$ is real when y real, we often use $F(y)$ instead of $F(i y)$ for convenience.

To be $F(z)$ entire, the coefficients $a_{2 n}$ should be rapidly decreasing. A rough estimation how rapidly the coefficients decrease, we may use the rule of thumb

$$
\begin{equation*}
\frac{\sum_{n=1}^{\infty} a_{2 n}}{a_{0}} \tag{9}
\end{equation*}
$$

and we guess the less the value (9), the more rapidly the coefficients decrease.
Since $F(0)=a_{0}$ and $F(1)=\sum_{n=0}^{\infty} a_{2 n}$, we can write (9) as

$$
\begin{equation*}
\frac{F(1)}{F(0)}-1 \tag{10}
\end{equation*}
$$

The value (9) should be close to zero. Otherwise $F(z)$ cannot be entire. For example, if $f(t)=$ $e^{-t^{2}}$, the value (9) is $e^{1 / 4}-1 \approx 0.2840$.

2. log- convexity and log-concavity

A function $f(x)$ is log-convex if $\ln [f(x)]$ is convex. Similarly, a function $f(x)$ is log-concave if $\ln [f(x)]$ is concave ${ }^{2}$.

Theorem 1: The log- convexity and log-concavity

1) A function $f(x)$ is log-convex, if and only if

$$
\begin{gather*}
f\left(\lambda x_{1}+\mu x_{2}\right) \leq\left[f\left(x_{1}\right)\right]^{\lambda} \cdot\left[f\left(x_{2}\right)\right]^{\mu} \tag{11}\\
\text { where } \lambda, \mu>0 \text { and } \lambda+\mu=1 .
\end{gather*}
$$

and

$$
\begin{equation*}
f(x) \cdot f^{\prime \prime}(x)-\left[f^{\prime}(x)\right]^{2} \geq 0 \tag{12}
\end{equation*}
$$

[^1]2) A function $f(x)$ is log-concave, if and only if
\[

$$
\begin{gather*}
f\left(\lambda x_{1}+\mu x_{2}\right) \geq\left[f\left(x_{1}\right)\right]^{\lambda} \cdot\left[f\left(x_{2}\right)\right]^{\mu} \tag{13}\\
\text { where } \lambda, \mu>0 \text { and } \lambda+\mu=1 .
\end{gather*}
$$
\]

and

$$
\begin{equation*}
f(x) \cdot f^{\prime \prime}(x)-\left[f^{\prime}(x)\right]^{2} \leq 0 \tag{14}
\end{equation*}
$$

Theorem 2: The strictly log-convexity and strictly log-concavity

1) A function $f(x)$ is strictly log-convex, if and only if

$$
\begin{gather*}
f\left(\lambda x_{1}+\mu x_{2}\right)<\left[f\left(x_{1}\right)\right]^{\lambda} \cdot\left[f\left(x_{2}\right)\right]^{\mu} \tag{15}\\
\text { where } \lambda, \mu>0 \text { and } \lambda+\mu=1
\end{gather*}
$$

and

$$
\begin{equation*}
f(x) \cdot f^{\prime \prime}(x)-\left[f^{\prime}(x)\right]^{2}>0 \tag{16}
\end{equation*}
$$

2) A function $f(x)$ is strictly log-concave, if and only if

$$
\begin{gather*}
f\left(\lambda x_{1}+\mu x_{2}\right)>\left[f\left(x_{1}\right)\right]^{\lambda} \cdot\left[f\left(x_{2}\right)\right]^{\mu} \tag{17}\\
\text { where } \lambda, \mu>0 \text { and } \lambda+\mu=1 .
\end{gather*}
$$

and

$$
\begin{equation*}
f(x) \cdot f^{\prime \prime}(x)-\left[f^{\prime}(x)\right]^{2}<0 \tag{18}
\end{equation*}
$$

3. The Laguerre inequalities

The necessary but not sufficient conditions of $F(y)$ to have only real zeros are that $F(y)$ and all the derivatives of $F(y)$ are log-concave, where

$$
F(y)=u(0, y)=\int_{-\infty}^{\infty} f(t) \cdot e^{-i y t} d t=\int_{-\infty}^{\infty} f(t) \cdot e^{i y t} d t=\int_{-\infty}^{\infty} f(t) \cdot \cos (y t) d t
$$

Hence, we have the theorem

Theorem 3: The Laguerre inequalities

$F(y)$ belongs to the Laguerre-Pólya class if

$$
\begin{equation*}
\left[F^{(n+1)}(y)\right]^{2}-F^{(n)}(y) \cdot F^{(n+2)}(y) \geq 0 \tag{19}
\end{equation*}
$$

where $n=0,1,2,3, \ldots$ and for all $y \in \mathbb{R}$.

It means that if $F(y)$ has only real zeros, then $F(y)$ and all the derivatives of $F(y)$ are logconcave but not conversely.

Proposition 1:

Let $f(x)$ be an even function, then we can express $f(x)$ as polynomial whose powers are all even. So, we can write

$$
\begin{equation*}
f(x)=b_{0}+b_{2} x^{2}+\cdots+b_{2 n} x^{2 n}=\sum_{k=0}^{n} b_{2 k} \cdot x^{2 k} \tag{20}
\end{equation*}
$$

where $b_{2 k}$ is real and can be positive, negative or zero.
Let $\mathrm{p}(x)$ be $f(\sqrt{x})$, so, we can write

$$
\begin{equation*}
p(x) \equiv f(\sqrt{x})=b_{0}+b_{2} x+\cdots+b_{2 n} x^{n}=\sum_{k=0}^{n} b_{2 k} \cdot x^{k} \tag{21}
\end{equation*}
$$

Clearly, if ρ is a root of $f(x)$, i.e., $f(\rho)=0$ then ρ^{2} is a root of $p(x)$. If ρ is real, $p(x)$ has a real root ρ^{2}. Now, we define another polynomial, namely $\left.q(x) \equiv p(x)\right|_{x=-x}=p(-x)$, which can be written as

$$
\begin{equation*}
q(x)=b_{0}-b_{2} x+\cdots+b_{2 n} x^{n}=\sum_{k=0}^{n}(-1)^{k} \cdot b_{2 k} \cdot x^{k} \tag{22}
\end{equation*}
$$

If ρ is a root of $f(x), \rho^{2}$ is a root of $p(x)$ and $-\rho^{2}$ is a root of $q(x)$. Since $f(x)$ is an even function, if ρ is a root of $f(x)$, then $-\rho$ is also a root of $f(x)$. Therefore, if $f(x)$ has $2 \cdot m$ real roots, $p(x)$ and $q(x)$ have m real roots. As mentioned above, if ρ is a real root of $f(x), \rho^{2}$ is a real root of $p(x)$ and $-\rho^{2}$ is a real root of $q(x) . \rho^{2}$ is non-negative and $-\rho^{2}$ is non-positive, hence we rewrite the statement above:

If $f(x)$ has $2 \cdot m$ real roots, $p(x)$ has m real roots in the interval $[0, \infty)$ and $q(x)$ has m real roots in the interval $(-\infty, 0]$. Consequently, if $f(x)$ does not have any real root, $p(x)$ has no real root in the interval $[0, \infty)$ and $q(x)$ has no real root in the interval $(-\infty, 0]$. In other words, if $f(x)$ does not have any real root, $f(x)$ does not change the sign at all, hence, $p(x)$ and $q(x)$ do not change the sign in the interval $[0, \infty)$ and $(-\infty, 0]$ respectively.
If $f(x)$ if non-negative or non-positive, i.e., $f(x) \geq 0$ or $f(x) \leq 0$ for all $x \in \mathbb{R}$, then $f(x)$ can be zero. Assuming $f(x) \geq 0$ and $f(\rho)=0$, then since $f(x)$ is non-negative, $f(\rho)$ is a local minimum, thus $f^{\prime}(\rho)=0$. The case of $f(x) \leq 0$ is similar, and $f(\rho)$ is a local maximum, thus $f^{\prime}(\rho)=0$. Therefore, $f(x) \geq 0$ or $f(x) \leq 0$ for all $x \in \mathbb{R}$ and $f(\rho)=0$, then $f(\rho)$ is an extremum, hence $f^{\prime}(\rho)=0$

Since $f(x)=p\left(x^{2}\right)$, we have $f^{\prime}(\mathrm{x})=2 \mathrm{x} \cdot p^{\prime}\left(x^{2}\right)$ where $p^{\prime}\left(x^{2}\right)$ denotes $\left.p^{\prime}(x)\right|_{x=x^{2}}$. Thus, if $f^{\prime}(\rho)=0$, then $p^{\prime}\left(\rho^{2}\right)=0$, and therefore $p\left(\rho^{2}\right)=0$ and $p^{\prime}\left(\rho^{2}\right)=0$, which means is that if $f(x) \geq 0$ or $f(x) \leq 0$ for all $x \in \mathbb{R}, p(x)$ does not change the sign in the interval $[0, \infty)$.
$f(x)$ is an even function and therefore $f^{\prime}(0)=0$ but $p^{\prime}(0) \neq 0$. It is because $f^{\prime}(\mathrm{x})$ is an odd function. However, $r(x) \equiv f^{\prime}(\mathrm{x}) / x$ is an even function and therefore $f^{\prime}(\rho)=r(\rho)=0$. Thus, if $f^{\prime}(\rho)=r(\rho)=0$, then $p^{\prime}\left(\rho^{2}\right)=0$.

Similarly, if $f(x) \geq 0$ or $f(x) \leq 0$ for all $x \in \mathbb{R}$, then $q(x)=p(-x)$ does not change sign in the interval ($-\infty, 0]$.

Now, we define $g(x)$ as follows:

$$
\begin{equation*}
g(x) \equiv f(i x)=b_{0}-b_{2} x^{2}+\cdots+b_{2 n} x^{2 n}=\sum_{k=0}^{n}(-1)^{k} \cdot b_{2 k} \cdot x^{2 k} \tag{23}
\end{equation*}
$$

then, $q(x)=g(\sqrt{x})$ and naturally, $p(x)=q(-x)$. Therefore, $g(x)$ does not change the sign $\forall x \in \mathbb{R}$, if and only if $\mathrm{q}(x)$ and $\mathrm{p}(x)$ do not change the sign in the interval $[0, \infty)$ and $(-\infty, 0]$ respectively.

Consequently, both $f(x)$ and $f(i x)$ do not change the sign $\forall x \in \mathbb{R}$ if and only if either $p(x)$ or $q(x)$ does not change the sign $\forall x \in \mathbb{R}$.

Proposition 2: The log- convexity of $F(x)$

From (7), $F(x)$ is defined as:

$$
F(x)=\int_{-\infty}^{\infty} f(t) \cdot e^{-x t} d t
$$

For $x 1$ and $x 2(x 1 \neq x 2)$, and $\lambda, \mu>0, \lambda+\mu=1$

$$
F\left(\lambda x_{1}+\mu x_{2}\right)=\int_{-\infty}^{\infty} f(t) \cdot e^{-\left(\lambda x_{1}+\mu x_{2}\right) t} d t=\int_{-\infty}^{\infty}\left[f(t) \cdot e^{-x_{1} t}\right]^{\lambda} \cdot\left[f(t) \cdot e^{-x_{2} t}\right]^{\mu} d t
$$

and by the Hölder inequality, we have

$$
\int_{-\infty}^{\infty}\left[f(t) \cdot e^{-x_{1} t}\right]^{\lambda} \cdot\left[f(t) \cdot e^{-x_{2} t}\right]^{\mu} d t \leq\left[\int_{-\infty}^{\infty} f(t) \cdot e^{-x_{1} t} d t\right]^{\lambda} \cdot\left[\int_{-\infty}^{\infty} f(t) \cdot e^{-x_{2} t} d t\right]^{\mu}
$$

In addition, $\left[f(t) \cdot e^{-x_{1} t}\right]^{1 / \lambda}$ and $\left[f(t) \cdot e^{-x_{2} t}\right]^{1 / \mu}$ are not linearly dependent for $x 1 \neq x 2$, hence the equality does not hold. So, we have

$$
F\left(\lambda x_{1}+\mu x_{2}\right)<\left[F\left(x_{1}\right)\right]^{\lambda} \cdot\left[F\left(x_{2}\right)\right]^{\mu}
$$

This means that $F(x)$ is strictly log-convex.
Since $F(x)$ is strictly log-convex, we also have

$$
\begin{equation*}
F(x) \cdot F^{\prime \prime}(x)-\left[F^{\prime}(x)\right]^{2}>0 \tag{24}
\end{equation*}
$$

Now, let $G(x)$ be $F(x) \cdot F^{\prime \prime}(x)-\left[F^{\prime}(x)\right]^{2}$, namely

$$
\begin{equation*}
G(x) \equiv F(x) \cdot F^{\prime \prime}(x)-\left[F^{\prime}(x)\right]^{2} \tag{25}
\end{equation*}
$$

then $G(x)>0$ or $G(x) \neq 0$ for all real x. Since $F(x), F^{\prime \prime}(x)$ and $\left[F^{\prime}(x)\right]^{2}$ are even functions, $G(x)$ is also an even function. We define another function $p(x) \equiv G(\sqrt{x})$. Since $G(x)$ is an even function, $p(x) \neq 0$ for $0 \leq x<\infty$ and $p(-x) \neq 0$ for $-\infty<x \leq 0$ by the proposition 1 .

Since $F(x)=\int_{-\infty}^{\infty} f(t) \cdot e^{-x t} d t$,

$$
\begin{equation*}
G(x)=\int_{-\infty}^{\infty} f(t) \cdot e^{-x t} d t \cdot \int_{-\infty}^{\infty} f(t) \cdot t^{2} \cdot e^{-x t} d t-\left[\int_{-\infty}^{\infty} f(t) \cdot t \cdot e^{-x t} d t\right]^{2} \tag{26}
\end{equation*}
$$

and

$$
\begin{equation*}
p(x)=\int_{-\infty}^{\infty} f(t) \cdot e^{-\sqrt{x} t} d t \cdot \int_{-\infty}^{\infty} f(t) \cdot t^{2} \cdot e^{-\sqrt{x} t} d t-\left[\int_{-\infty}^{\infty} f(t) \cdot t \cdot e^{-\sqrt{x} t} d t\right]^{2} \tag{27}
\end{equation*}
$$

which is non-zero for $x \geq 0$. Moreover, $p(-x)$ is non-zero for $x \leq 0$, we have

$$
p(-x)=\int_{-\infty}^{\infty} f(t) \cdot e^{\sqrt{-|x|} t} d t \cdot \int_{-\infty}^{\infty} f(t) \cdot t^{2} \cdot e^{\sqrt{-|x|} t} d t-\left[\int_{-\infty}^{\infty} f(t) \cdot t \cdot e^{\sqrt{-|x|}} d t\right]^{2}
$$

or more intuitively,

$$
p(-x)=\int_{-\infty}^{\infty} f(t) \cdot e^{i \sqrt{|x|}} d t \cdot \int_{-\infty}^{\infty} f(t) \cdot t^{2} \cdot e^{i \sqrt{|x|} t} d t-\left[\int_{-\infty}^{\infty} f(t) \cdot t \cdot e^{i \sqrt{|x|} t} d t\right]^{2}
$$

and by changing the variable $\mathrm{t} \mapsto-\mathrm{t}$ we have

$$
\begin{equation*}
p(-x)=\int_{-\infty}^{\infty} f(t) \cdot e^{-i \sqrt{|x|} t} d t \cdot \int_{-\infty}^{\infty} f(t) \cdot t^{2} \cdot e^{-i \sqrt{|x|} t} d t-\left[\int_{-\infty}^{\infty} f(t) \cdot t \cdot e^{-i \sqrt{|x|} t} d t\right]^{2} \tag{28}
\end{equation*}
$$

which is non-zero for $|x| \geq 0$. Further, we have $p(-x)=p(i \cdot|x|)$ from Eq. (28).
Eq. (28) is not different than $\left.G(i x)\right|_{x=\sqrt{|x|}}$ and since $G(i x)$ is real when x real, hence $g(i \cdot|x|)$ is real when x real.

By changing the variable $|x| \mapsto y^{2}$ in Eq (27), we have

$$
\left.p(i \cdot|x|)\right|_{|x|=y^{2}}=p\left(i \cdot y^{2}\right)=\int_{-\infty}^{\infty} f(t) \cdot e^{-i \sqrt{y^{2}} t} d t \cdot \int_{-\infty}^{\infty} f(t) \cdot t^{2} \cdot e^{-i \sqrt{y^{2}} t} d t-\left[\int_{-\infty}^{\infty} f(t) \cdot t \cdot e^{-i \sqrt{y^{2}} t} d t\right]^{2}
$$

thus

$$
p\left(i \cdot y^{2}\right)=\int_{-\infty}^{\infty} f(t) \cdot e^{-i \cdot|y| t} d t \cdot \int_{-\infty}^{\infty} f(t) \cdot t^{2} \cdot e^{-i \cdot|y| t} d t-\left[\int_{-\infty}^{\infty} f(t) \cdot t \cdot e^{-i \cdot|y| t} d t\right]^{2}
$$

or

$$
\begin{equation*}
p\left(i \cdot y^{2}\right)=\int_{-\infty}^{\infty} f(t) \cdot e^{-i \cdot y t} d t \cdot \int_{-\infty}^{\infty} f(t) \cdot t^{2} \cdot e^{-i \cdot y t} d t-\left[\int_{-\infty}^{\infty} f(t) \cdot t \cdot e^{-i \cdot y t} d t\right]^{2} \tag{29}
\end{equation*}
$$

which is non-zero for $y \geq 0$. Furthermore, since $g\left(i \cdot y^{2}\right)$ is real and an even function, $g\left(i \cdot y^{2}\right)$ is non-zero for all $y \in \mathbb{R}$. Hence, Eq. (29) is nothing but $G(i y)$.

Or more easily, from Eq. (28) $p(-x)$ is non-zero if $|x| \geq 0$, and this means that $p(-x)$ is non-zero $\forall x \in \mathbb{R}$. Hence, from proposition 1, both $F(x)$ and $F(i y)$ are non-zero $\forall x \in \mathbb{R}$.

From Eq. (8), we have

$$
F(y)=\int_{-\infty}^{\infty} f(t) \cdot e^{-i y t} d t
$$

and since $F^{\prime}(y)=-i \int_{-\infty}^{\infty} f(t) \cdot t \cdot e^{-i y t} d t$ and $F^{\prime \prime}(y)=-\int_{-\infty}^{\infty} f(t) \cdot t^{2} \cdot e^{-i y t} d t$

$$
F(y) \cdot F^{\prime \prime}(y)-\left[F^{\prime}(y)\right]^{2}=-\int_{-\infty}^{\infty} f(t) \cdot e^{-i y t} d t \cdot \int_{-\infty}^{\infty} f(t) \cdot t^{2} \cdot e^{-i y t} d t+\left[\int_{-\infty}^{\infty} f(t) \cdot t \cdot e^{-i y t} d t\right]^{2}
$$

which is $-G(i y)$. Since $G(i y)$ is non-zero for all $y \in \mathbb{R}$, so is $-G(i y)=F(y) \cdot F^{\prime \prime}(y)-\left[F^{\prime}(y)\right]^{2}$.
We know that $F(y) \cdot F^{\prime \prime}(y)-\left[F^{\prime}(y)\right]^{2} \neq 0$ for all $y \in \mathbb{R}$, hence $F(y)$ is either strictly log-convex or strictly log-concave. To determine it, we examine $F(y) \cdot F^{\prime \prime}(y)-\left[F^{\prime}(y)\right]^{2}$ at $y=0$. From Eq. (8), we have

$$
F(y)=\sum_{n=0}^{\infty}(-1)^{n} \cdot a_{2 n} \cdot y^{2 n}
$$

Since $F(0)=a_{0}, F^{\prime}(0)=0$ and $F^{\prime \prime}(0)=-2 \cdot a_{2}$, we have $F(0) \cdot F^{\prime \prime}(0)-\left[F^{\prime}(0)\right]^{2}=-2 a_{0} \cdot a_{2}<0$, hence $F(y)$ is strictly log-concave. It is because $F(y) \cdot F^{\prime \prime}(y)-\left[F^{\prime}(y)\right]^{2}$ does not change the sign for all y.

Note that we have proved $F(y)$ is log-concave using $p(-x)$ which is log-concave and defined as

$$
\begin{equation*}
F(-\sqrt{x})=\sum_{n=0}^{\infty}(-1)^{n} \cdot a_{2 n} \cdot x^{n} \quad(x \leq 0) \tag{30}
\end{equation*}
$$

so, $p(0)=a_{0}, p^{\prime}(0)=-a_{2}$ and $p^{\prime \prime}(0)=2 a_{4}$ and since $p(-x)$ is log-concave, $\left(a_{2}\right)^{2}>2 a_{0} a_{4}$.
Moreover $p(x)$ is positive for $x \geq 0$ and $\left(a_{2}\right)^{2}>2 a_{0} a_{4}, F(\sqrt{x})$ is also log-concave for $x \geq 0$.
Further, since $\left[F^{\prime}(y)\right]^{2}-F(y) \cdot F^{\prime \prime}(y)>0, p(-x)$ and $p(x)$ does not change the sign for $x \geq 0$ and $x \leq 0$ respectively. Hence $F(\sqrt{x})$ and $F(-\sqrt{x})$ are log-concave $\forall x \in \mathbb{R}$ because of $\left(a_{2}\right)^{2}>2 a_{0} a_{4}$.

A more intuitive method to determine $F(y)$ whether log-convex or log-concave from $F(x) \cdot F^{\prime \prime}(x)$ $\left[F^{\prime}(x)\right]^{2}$ is changing x to iy. From $F(x) \cdot F^{\prime \prime}(x)-\left[F^{\prime}(x)\right]^{2}>0$, we use another notation of derivatives, i.e.
$F(x) \cdot \frac{d^{2}}{d x^{2}} F(x)-\left[\frac{d}{d x} F(x)\right]^{2}>0$ and we change x to $i y$, that is,
$F(i y) \cdot \frac{d^{2}}{d(i y)^{2}} F(i y)-\left[\frac{d}{d(i y)} F(i y)\right]^{2}=\frac{1}{i^{2}} F(i y) \cdot \frac{d^{2}}{d y^{2}} F(i y)-\left[\frac{1}{i} \frac{d}{d y} F(i y)\right]^{2}=-F(i y) \cdot \frac{d^{2}}{d y^{2}} F(i y)+\left[\frac{d}{d y} F(i y)\right]^{2}>0$, which derives $F(y) \cdot F^{\prime \prime}(y)-\left[F^{\prime}(y)\right]^{2}<0$.

This can be explained as follows:
By Eq. (4), $F(z)=u(x, y)+i v(x, y)$, where $u(x, y)$ is the real part and $v(x, y)$ is the imaginary part of $F(z)$. Since

$$
\begin{gathered}
F^{\prime}(z)=\frac{\partial u}{\partial x}+i \frac{\partial v}{\partial x}=\frac{\partial u}{\partial(i y)}+i \frac{\partial v}{\partial(i y)} \\
F^{\prime \prime}(z)=\frac{\partial^{2} u}{\partial x^{2}}+i \frac{\partial^{2} v}{\partial x^{2}}=\frac{\partial^{2} u}{\partial(i y)^{2}}+i \frac{\partial^{2} v}{\partial(i y)^{2}}
\end{gathered}
$$

and so on.
Since the imaginary part vanishes on x-axis and y-axis, by Eq. (7) and (8), $F(x)=u(x, 0)$ and $F(i y)=u(0, y)$. Indeed, $F(x)$ and $F(i y)$, and all their derivatives are generally not same but they are same at the origin where $x=0$ and $y=0$. Hence, we can write:
$\left.F(x)\right|_{x=0}=\left.\left.F(i y)\right|_{y=0} \quad \frac{\partial}{\partial x} F(x)\right|_{x=0}=\left.\left.\frac{\partial}{\partial(i y)} F(i y)\right|_{y=0} \quad \frac{\partial^{2}}{\partial x^{2}} F(x)\right|_{x=0}=\left.\frac{\partial^{2} u}{\partial(i y)^{2}} F(i y)\right|_{y=0}$ and so on, hence we have

$$
\begin{equation*}
\left.\left(F(x) \cdot \frac{d^{2}}{d x^{2}} F(x)-\left[\frac{d}{d x} F(x)\right]^{2}\right)\right|_{x=0}=\left.\left(F(i y) \cdot \frac{d^{2}}{d(i y)^{2}} F(i y)-\left[\frac{d}{d(i y)} F(i y)\right]^{2}\right)\right|_{y=0} \tag{31}
\end{equation*}
$$

which leads

$$
\begin{equation*}
\left.\left(F(x) \cdot F^{\prime \prime}(x)-\left[F^{\prime}(x)\right]^{2}\right)\right|_{x=0}=\left.\left(-F(y) \cdot F^{\prime \prime}(y)+\left[F^{\prime}(y)\right]^{2}\right)\right|_{y=0} \tag{32}
\end{equation*}
$$

Therefore, if both $F(x) \cdot F^{\prime \prime}(x)-\left[F^{\prime}(x)\right]^{2}$ and $F(i y) \cdot F^{\prime \prime}(i y)-\left[F^{\prime}(i y)\right]^{2}$ do not change the sign $\forall x, y \in \mathbb{R}$, the sign of $F(x) \cdot \frac{d^{2}}{d x^{2}} F(x)-\left[\frac{d}{d x} F(x)\right]^{2}$ and $F(i y) \cdot \frac{d^{2}}{d(i y)^{2}} F(i y)-\left[\frac{d}{d(i y)} F(i y)\right]^{2}$ does not change $\forall x, y \in \mathbb{R}$ and the sign is same as $x=0$ and $y=0$.

Furthermore, if $G(x)$ is the sum of products of two derivatives of $F(x)$, and $G(x)$ and $G(i y)$ do not change the sign $\forall x, y \in \mathbb{R}$, then the sign $\left.G(x)\right|_{x=i y}$ is same as of $G(x)$ as long as $G(i y)$ is real.

We have proved the first step of the Laguerre inequalities. From (19), if n is even, the $n^{\text {th }}$ derivative of $F(z)$ is as follows:

$$
\begin{equation*}
F^{(2 k)}(z)=\int_{-\infty}^{\infty} f(t) \cdot t^{2 k} \cdot e^{-z t} d t \tag{33}
\end{equation*}
$$

where $n=2 k$.
We define $f_{2 k}(t) \equiv f(t) \cdot t^{2 k}$. Since both $f(t)$ and $t^{2 k}$ are non-negative and even, $f_{2 k}(t)$ is also a non-negative even function. So, we can write

$$
\begin{equation*}
F^{(2 k)}(z) \equiv F_{2 k}(z)=\int_{-\infty}^{\infty} f_{2 k}(t) \cdot e^{-z t} d t \tag{34}
\end{equation*}
$$

where $k=0,1,2, \ldots$
We have proved that the Laplace transform of any non-negative even function holds the Laguerre inequalities. That is, $F_{2 k}(i y) \equiv F^{(2 k)}(i y)$ is log-concave for all $k \geq 0 .{ }^{3}$

Now, we will prove the Laguerre inequalities for odd n. Let n be $2 k+1$ for $k=0,1,2, \ldots$, then form (7), the $(2 k+1)^{t h}$ derivative of $F(x)$, i.e., $F^{(2 k+1)}(x)$ is as follows:

$$
\begin{equation*}
F^{(2 k+1)}(x)=\int_{-\infty}^{\infty} f(t) \cdot t^{2 k+1} \cdot e^{-z t} d t=x \cdot \int_{-\infty}^{\infty} f(t) \cdot t^{2 k+2} \cdot \frac{e^{-z t}}{x t} d t \tag{35}
\end{equation*}
$$

and since

$$
\int_{-\infty}^{-1} e^{z t \tau} d \tau=\frac{e^{-z t}}{x t}
$$

we have

$$
\begin{equation*}
F^{(2 k+1)}(x)=x \cdot \int_{-\infty}^{\infty} \int_{-\infty}^{-1} f(t) \cdot t^{2 k+2} \cdot e^{z t \tau} d \tau \cdot d t \tag{36}
\end{equation*}
$$

We define $G_{2 k}(x)$ as

[^2]\[

$$
\begin{equation*}
G_{2 k}(x) \equiv \frac{1}{x} \cdot F^{(2 k+1)}(x)=\int_{-\infty}^{\infty} \int_{-\infty}^{-1} f(t) \cdot t^{2 k+2} \cdot e^{x t \tau} d \tau \cdot d t \tag{37}
\end{equation*}
$$

\]

For $x 1$ and $x 2(x 1 \neq x 2)$, and $\lambda, \mu>0, \lambda+\mu=1$,

$$
G_{2 k}\left(\lambda x_{1}+\mu x_{2}\right)=\int_{-\infty}^{\infty} \int_{-\infty}^{-1} f(t) \cdot t^{2 k+2} \cdot e^{\left(\lambda x_{1}+\mu x_{2}\right) \cdot t \tau} d \tau \cdot d t
$$

or

$$
G_{2 k}\left(\lambda x_{1}+\mu x_{2}\right)=\int_{-\infty}^{\infty} \int_{-\infty}^{-1}\left[f(t) \cdot t^{2 k+2} \cdot e^{x_{1} t \tau}\right]^{\lambda} \cdot\left[f(t) \cdot t^{2 k+2} \cdot e^{x_{2} t \tau}\right]^{\mu} d \tau \cdot d t
$$

and by the Hölder inequality of double integral. We have

$$
\begin{gathered}
\int_{-\infty}^{\infty} \int_{-\infty}^{-1}\left[f(t) \cdot t^{2 k+2} \cdot e^{x_{1} t \tau}\right]^{\lambda} \cdot\left[f(t) \cdot t^{2 k+2} \cdot e^{x_{2} t \tau}\right]^{\mu} d \tau \cdot d t \\
<\left[\int_{-\infty}^{\infty} \int_{-\infty}^{-1} f(t) \cdot t^{2 k+2} \cdot e^{x_{1} t \tau} d \tau \cdot d t\right]^{\lambda} \cdot\left[\int_{-\infty}^{\infty} \int_{-\infty}^{-1} f(t) \cdot t^{2 k+2} \cdot e^{x_{2} t \tau} d \tau \cdot d t\right]^{\mu}
\end{gathered}
$$

hence

$$
\begin{equation*}
G_{2 k}\left(\lambda x_{1}+\mu x_{2}\right)<\left[G_{2 k}\left(x_{1}\right)\right]^{\lambda} \cdot\left[G_{2 k}\left(x_{2}\right)\right]^{\mu} \tag{38}
\end{equation*}
$$

which means $G_{2 k}(x)$ is log-convex.
From (35) and (37), the inequality (38) can be written:

$$
\begin{aligned}
\int_{-\infty}^{\infty} f(t) \cdot t^{2 k+2} \cdot & \operatorname{sinhc}\left(\lambda x_{1} t+\mu x_{2} t\right) d t \\
< & <\left[\int_{-\infty}^{\infty} f(t) \cdot t^{2 k+2} \cdot \operatorname{sinhc}\left(x_{1} t\right) d t\right]^{\lambda} \cdot\left[\int_{-\infty}^{\infty} f(t) \cdot t^{2 k+2} \cdot \operatorname{sinhc}\left(x_{2} t\right) d t\right]^{\mu}
\end{aligned}
$$

where $\operatorname{sinhc}(x t)=\frac{\sinh (x t)}{x t}$. Note that $\operatorname{sinhc}(x t) \geq 1$ and even.
With the same manner we used before, it can be shown that

$$
G_{2 k}(i y)=(-1)^{k} \cdot \int_{-\infty}^{\infty} f(t) \cdot t^{2 k+2} \cdot \operatorname{sinc}(y t) d t
$$

is strictly \log-concave. The function $\operatorname{sinc}(y t)$ is defined as $\frac{\sin (x t)}{x t}$.
From (36),

$$
\begin{equation*}
F^{(2 k+1)}(x)=x \cdot G_{2 k}(x) \tag{39}
\end{equation*}
$$

and

$$
\begin{equation*}
F^{(2 k+1)}(i y)=(-1)^{k} \cdot y \cdot G_{2 k}(i y) \tag{40}
\end{equation*}
$$

$G_{2 k}(x)$ is log-convex but x is log-concave, therefore $F^{(2 k+1)}(x)$ is not log-convex for all $x \in \mathbb{R}$. $F^{(2 k+1)}(i y)$, however, is log-concave $\forall y \in \mathbb{R}$ because both $\pm y$ and $G_{2 k}(i y)$ are log-concave $\forall y \in$ \mathbb{R}.

Since $F(i y)$ is nothing but Fourier Transform of $f(t)$, we have shown that the Fourier transform of a non-negative even function satisfies the Laguerre inequalities.

4. The generalized Laguerre inequalities

From (1), the Laplace transform is defined as

$$
F(z) \equiv \int_{-\infty}^{\infty} f(t) \cdot e^{-z t} d t
$$

and therefore

$$
\begin{equation*}
|F(z)|^{2}=F(z) \cdot F^{*}(z)=F(x+i y) \cdot F(x-i y)=\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f\left(t_{1}\right) \cdot f\left(t_{2}\right) \cdot e^{-x \cdot\left(t_{1}+t_{2}\right)} \cdot e^{-i y\left(t_{1}-t_{2}\right)} d t_{1} \cdot d t_{2} \tag{41}
\end{equation*}
$$

By changing the variables $\mathrm{t}=t_{1}+t_{2}$ and $\tau=t_{1}$, we have

$$
\begin{equation*}
|F(x+i y)|^{2}=\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f(\tau) \cdot f(t-\tau) \cdot e^{-x t} \cdot e^{-i y \tau} \cdot e^{i y(t-\tau)} d \tau d t \tag{42}
\end{equation*}
$$

Letting $\tau \mapsto-\tau$, and assuming $f(t)$ is even, we have

$$
\begin{equation*}
|F(x+i y)|^{2}=\int_{-\infty}^{\infty}\left[\int_{-\infty}^{\infty} f(\tau) \cdot f(t+\tau) \cdot e^{i y \tau} \cdot e^{i y(t+\tau)} d \tau\right] e^{-x t} d t \tag{43}
\end{equation*}
$$

or simply,

$$
\begin{equation*}
|F(x+i y)|^{2}=\int_{-\infty}^{\infty} r_{y}(t) \cdot e^{-x t} d t \tag{44}
\end{equation*}
$$

where

$$
\begin{equation*}
r_{y}(t)=\int_{-\infty}^{\infty} f(\tau) \cdot f(t-\tau) \cdot e^{-i y \tau} \cdot e^{i y(t-\tau)} d \tau=\int_{-\infty}^{\infty} f(\tau) \cdot f(t+\tau) \cdot e^{i y \tau} \cdot e^{i y(t+\tau)} d \tau \tag{45}
\end{equation*}
$$

The conjugate of $r_{y}(t)$

$$
\begin{equation*}
r_{y}^{*}(t)=\int_{-\infty}^{\infty} f(\tau) \cdot f(t+\tau) \cdot e^{-i y \tau} \cdot e^{-i y(t+\tau)} d \tau \tag{46}
\end{equation*}
$$

and by substitution $\tau \mapsto \tau-t$, and assuming $f(t)$ is even, we have

$$
r_{y}^{*}(t)=\int_{-\infty}^{\infty} f(\tau-t) \cdot f(\tau) \cdot e^{-i y(\tau-t)} \cdot e^{-i y \tau} d \tau=\int_{-\infty}^{\infty} f(\tau) \cdot f(t-\tau) \cdot e^{-i y \tau} \cdot e^{i y(t-\tau)} \cdot d \tau
$$

which is the equation (34), therefore, $r_{y}(t)$ is real. Moreover, $r_{y}(t)$ is an even function which can be easily proved. The function $r_{y}(t)$ is real and even but does not hold the positivity, namely, It can be negative.

Since $|F(x+i y)|^{2}$ is even for x, the Eq. (44) can be written as

$$
\begin{equation*}
|F(x+i y)|^{2}=\sum_{n=0}^{\infty} A_{2 n} \cdot x^{2 n} \tag{47}
\end{equation*}
$$

where

$$
\begin{equation*}
A_{2 n}=\frac{1}{(2 n)!} \int_{-\infty}^{\infty} r_{y}(t) \cdot t^{2 n} d t \tag{48}
\end{equation*}
$$

Imagine $|F(x+i y)|^{2}$ on the horizontal line where y is constant. If $A_{2 n} \geq 0$ for all n, then we have a unique global minimum at $x=0$ and $|F(x+i y)|^{2}$ is increasing while $|x|$ increasing. Hence If $A_{2 n}$ is non-negative for all n, zeros of $|F(x+i y)|^{2}$ can exist only at $x=0$, i.e., iy-axis.

By reforming (45), so that

$$
\begin{equation*}
r_{y}(t)=\int_{-\infty}^{\infty} f(\tau) \cdot e^{i y \tau} \cdot f(t+\tau) \cdot e^{i y(t+\tau)} d \tau \tag{49}
\end{equation*}
$$

and by letting $g(\tau)=f(\tau) \cdot e^{-i y \tau}, r_{y}(t)$ is the cross-correlation function of $g(\tau)$ and $g^{*}(\tau)$ where $g^{*}(\tau)=f(\tau) \cdot e^{i y \tau}$. Let $F(\omega)$ be the Fourier transform of $f(\tau)$, then the Fourier transform of $g(\tau)$ is $F(\omega-y)$ and the Fourier transform of $g^{*}(\tau)$ is $F(\omega+y)$. By the cross-correlation theorem, we have

$$
r_{y}(t)=\frac{1}{2 \pi} \int_{-\infty}^{\infty} F(\omega-y) \cdot F(\omega+y) \cdot e^{i t \omega} d \omega
$$

and since $F(y)$ is even, we have

$$
\begin{equation*}
r_{y}(t)=\frac{1}{2 \pi} \int_{-\infty}^{\infty} F(y-\omega) \cdot F(y+\omega) \cdot e^{i t \omega} d \omega \tag{50}
\end{equation*}
$$

which is similar to the Wigner-Ville distribution function. By changing variable $x=i \theta$, from (44), we have

$$
\begin{equation*}
|F(i \theta+i y)|^{2}=\frac{1}{2 \pi} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} F(y-\omega) \cdot F(y+\omega) \cdot e^{i \omega t} \cdot e^{-i \theta t} d \omega d t \tag{51}
\end{equation*}
$$

and

$$
\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} F(y-\omega) \cdot F(y+\omega) \cdot e^{i \omega t} \cdot e^{-i \theta t} d \omega d t=\int_{-\infty}^{\infty} F(y-\omega) \cdot F(y-\omega) \cdot\left[\int_{-\infty}^{\infty} e^{i \omega t} \cdot e^{-i \theta t} d t\right] d \omega
$$

and

$$
\int_{-\infty}^{\infty} e^{i \omega t} \cdot e^{-i \theta t} d t=2 \pi \cdot \delta(\theta-\omega)
$$

thus, we have

$$
|F(i \theta+i y)|^{2}=\int_{-\infty}^{\infty} F(y-\omega) \cdot F(y+\omega) \cdot \delta(\omega-\theta) d \omega
$$

and by omitting i for convenience, we have,

$$
\begin{equation*}
|F(\theta+y)|^{2}=F(y-\theta) \cdot F(y+\theta) \tag{52}
\end{equation*}
$$

which is the characteristic equation of $|F(x+i y)|^{2}$ where $\mathrm{x}=i \theta$, hence, from (44)

$$
\begin{equation*}
|F(\theta+y)|^{2}=\int_{-\infty}^{\infty} r_{y}(t) \cdot e^{-i \theta t} d t \tag{53}
\end{equation*}
$$

The $n^{\text {th }}$ moment of $|F(x+i y)|^{2}$, which is denoted as M_{n}, is defined as follows

$$
\begin{equation*}
M_{n}(y)=\int_{-\infty}^{\infty} t^{n} \cdot r_{y}(t) d t \tag{54}
\end{equation*}
$$

or

$$
\begin{equation*}
M_{n}(y)=\left.(-1)^{n} \cdot D_{x}^{n}|F(x+i y)|^{2}\right|_{x=0} \tag{55}
\end{equation*}
$$

Another method to get $M_{n}(y)$ is differentiating (53), that is,

$$
M_{n}(y)=\left.\frac{1}{(-i)^{n}} \cdot D_{\theta}^{n}|F(\theta+y)|^{2}\right|_{\theta=0}
$$

or by (52), $M_{n}(y)$ is $\frac{1}{(-i)^{n}} \cdot D_{\theta}^{n}[F(\theta-y) \cdot F(\theta+y)]_{\theta=0}$ which can be computed using the Leibniz rule, that is,

$$
\begin{equation*}
M_{n}(y)=\frac{1}{(-i)^{n}} \cdot D_{\theta}^{n}[F(y-\theta) \cdot F(y+\theta)]_{\theta=0}=\frac{1}{(-i)^{n}} \cdot \sum_{k=0}^{n}(-1)^{k} \cdot\binom{n}{k} \cdot F^{(k)}(y) \cdot F^{(n-k)}(y) \tag{56}
\end{equation*}
$$

However, since $r_{y}(t)$ is an even function, $M_{n}(y)$ vanishes when n is odd and we need to compute only for even n, hence,

$$
\begin{equation*}
M_{2 n}(y)=D_{\theta}^{2 n}[F(y-\theta) \cdot F(y+\theta)]_{\theta=0}=(-1)^{n} \sum_{k=0}^{2 n}(-1)^{k} \cdot\binom{2 n}{k} \cdot F^{(k)}(y) \cdot F^{(2 n-k)}(y) \tag{57}
\end{equation*}
$$

and we have

$$
\begin{equation*}
|F(x+i y)|^{2}=\sum_{n=0}^{\infty} \frac{1}{(2 n)!} \cdot M_{2 n}(y) \cdot x^{2 n}=\sum_{n=0}^{\infty} L_{n}(y) \cdot x^{2 n} \tag{58}
\end{equation*}
$$

where

$$
\begin{equation*}
L_{n}(y)=(-1)^{n} \cdot \frac{1}{(2 n)!} \sum_{k=0}^{2 n}(-1)^{k} \cdot\binom{2 n}{k} \cdot F^{(k)}(y) \cdot F^{(2 n-k)}(y) \tag{59}
\end{equation*}
$$

Theorem 4: The generalized Laguerre inequalities

The zeros of $F(z)$ locate only on the $i y$-axis if and only if $L_{n}(y) \geq 0$ for any y and n.

Definition: The copositive-definite function

A function $f(x)$ is copositive-definite if and only if

$$
\begin{equation*}
\sum_{n=1}^{N} \sum_{k=1}^{N} c_{n} c_{k}^{*} f\left(x_{n}+\mathrm{x}_{k}\right) \geq 0 \tag{60}
\end{equation*}
$$

for any complex values c_{n}, real values x_{n} and non-negative integer $N>0$.

Some properties of the copositive-definite function

1. If $f(x)$ is copositive-definite, $f(0) \geq 0$.
2. If $f(x)$ is copositive-definite, its $(2 n)^{t h}$ derivatives, i.e., $f^{(2 n)}(x)$ is also copositive-definite.
3. If $f(x)$ and $g(x)$ are copositive-definite, $f(x) \cdot g(x)$ is also copositive-definite.

Indeed, $F(y+\theta)=F(i y+i \theta)=F[i(y+\theta)]$, i.e., this function lies on the $i y$-axis. $F(y-\theta)$ is the same. We will map $F(y-\theta) \cdot F(y+\theta)$ on x-axis, i.e., $F(x-\theta) \cdot F(x+\theta)$, and we have

$$
\begin{equation*}
F(x-\theta)=\int_{-\infty}^{\infty} f(t) \cdot e^{-x t} \cdot e^{\theta t} d t \tag{61}
\end{equation*}
$$

and

$$
\begin{equation*}
F(x+\theta)=\int_{-\infty}^{\infty} f(t) \cdot e^{-x t} \cdot e^{-\theta t} d t \tag{62}
\end{equation*}
$$

$F(x-\theta)$ is copositive-definite for θ, because

$$
\begin{gathered}
\sum_{n=1}^{N} \sum_{k}^{N} c_{n} c_{k}^{*} F\left(x-\left(\theta_{n}+\theta_{k}\right)\right)=\int_{-\infty}^{\infty} f(t) \cdot e^{-x t} \cdot \sum_{n=1}^{N} \sum_{k}^{N} c_{n} c_{k}^{*} e^{\left(\theta_{n}+\theta_{k}\right) t} d t \\
=\int_{-\infty}^{\infty} f(t) \cdot e^{-x t} \cdot\left|\sum_{n=1}^{N} c_{n} e^{\theta_{n} t}\right|^{2} d t \geq 0
\end{gathered}
$$

In the same way, $F(x+\theta)$ is also copositive-definite for θ, thus $F(x-\theta) \cdot F(x+\theta)$ is copositivedefinite for θ by the property 3 .

Since $F(x-\theta) \cdot F(x+\theta)$ is copositive-definite for $\theta, D_{\theta}^{2 n}[F(x-\theta) \cdot F(x+\theta)]$ is copositivedefinite by the property 3 . Also, $D_{\theta}^{2 n}[F(x-\theta) \cdot F(x+\theta)]_{\theta=0} \geq 0$ and we have

$$
\begin{equation*}
M_{2 n}(x)=D_{\theta}^{2 n}[F(x-\theta) \cdot F(x+\theta)]_{\theta=0}=\sum_{k=0}^{2 n}(-1)^{k} \cdot\binom{2 n}{k} \cdot F^{(k)}(x) \cdot F^{(2 n-k)}(x) \geq 0 \tag{63}
\end{equation*}
$$

and

$$
L_{n}(x)=\frac{1}{(2 n)!} \cdot M_{2 n}(y)
$$

$F^{(k)}(x) \cdot F^{(2 n-k)}(x)$ is an even function, and therefore $M_{2 n}(x)$ is an even function, hence the power series of $M_{2 n}(x)$ has only even powers of x. Thus by the proposition $1, P_{2 n}(x) \equiv M_{2 n}(\sqrt{x})$ does not change the sign for $x \geq 0$, and $Q_{2 n}(x) \equiv P_{2 n}(-x)$ does not change the sign for $x \leq 0$.

From (7), we have

$$
F(x)=u(x, 0)=\int_{-\infty}^{\infty} f(t) \cdot e^{-x t} d t=\int_{-\infty}^{\infty} f(t) \cdot e^{x t} d t
$$

and

$$
\begin{equation*}
F^{(k)}(x) \cdot F^{(2 n-k)}(x)=\int_{-\infty}^{\infty} f(t) \cdot t^{k} \cdot e^{x t} d t \cdot \int_{-\infty}^{\infty} f(t) \cdot t^{2 n-k} \cdot e^{x t} d t \tag{64}
\end{equation*}
$$

Let $p_{k}(x)=\left.F^{(k)}(x) \cdot F^{(2 n-k)}(x)\right|_{x=\sqrt{x}}=F^{(k)}(\sqrt{x}) \cdot F^{(2 n-k)}(\sqrt{x})$, and $q_{k}(x)=p_{k}(-x)$, then

$$
p_{k}(-x)=\int_{-\infty}^{\infty} f(t) \cdot t^{k} \cdot e^{-\sqrt{x} \cdot t} d t \cdot \int_{-\infty}^{\infty} f(t) \cdot t^{2 n-k} \cdot e^{-\sqrt{x} \cdot t} d t
$$

If $x \leq 0$, then

$$
\begin{equation*}
p_{k}(-x)=\int_{-\infty}^{\infty} f(t) \cdot t^{k} \cdot e^{-i \sqrt{|x|} \cdot t} d t \cdot \int_{-\infty}^{\infty} f(t) \cdot t^{2 n-k} \cdot e^{-i \sqrt{|x|} \cdot t} d t=p_{k}(-i \cdot|x|) \tag{65}
\end{equation*}
$$

By changing variable $|x| \mapsto y^{2}$, we have

$$
\left.p_{k}(-i \cdot|x|)\right|_{|x|=y^{2}}=p_{k}\left(-i \cdot y^{2}\right)=\int_{-\infty}^{\infty} f(t) \cdot t^{k} \cdot e^{-i \cdot|y| \cdot t} d t \cdot \int_{-\infty}^{\infty} f(t) \cdot t^{2 n-k} \cdot e^{-i \cdot|y| \cdot t} d t
$$

and since
$\int_{-\infty}^{\infty} f(t) \cdot t^{k} \cdot e^{i \cdot|y| \cdot t} d t \cdot \int_{-\infty}^{\infty} f(t) \cdot t^{2 n-k} \cdot e^{i \cdot|y| \cdot t} d t=\int_{-\infty}^{\infty} f(t) \cdot t^{k} \cdot e^{-i \cdot|y| \cdot t} d t \cdot \int_{-\infty}^{\infty} f(t) \cdot t^{2 n-k} \cdot e^{-i \cdot|y| \cdot t} d t$
we have

$$
p_{k}\left(-i \cdot y^{2}\right)=\int_{-\infty}^{\infty} f(t) \cdot t^{k} \cdot e^{-i \cdot y t} d t \cdot \int_{-\infty}^{\infty} f(t) \cdot t^{2 n-k} \cdot e^{-i y \cdot t} d t
$$

which is nothing but

$$
\begin{equation*}
\left.p_{k}(-i \cdot|x|)\right|_{|x|=y^{2}}=(-1)^{n} \cdot F^{(k)}(i \cdot y) \cdot F^{(2 n-k)}(i \cdot y) \tag{66}
\end{equation*}
$$

From (63) we can write

$$
\begin{equation*}
Q_{2 n}(x) \equiv P_{2 n}(-x)=\sum_{k=0}^{2 n}(-1)^{k} \cdot\binom{2 n}{k} \cdot p_{k}(-x) \cdot p_{2 n-k}(-x) \tag{67}
\end{equation*}
$$

where $Q_{2 n}(x)$ does not change the sign for $x \leq 0$, hence

$$
M_{2 n}(y)=D_{\theta}^{2 n}[F(y-\theta) \cdot F(y+\theta)]_{\theta=0}=(-1)^{n} \cdot \sum_{k=0}^{2 n}(-1)^{k} \cdot\binom{2 n}{k} \cdot F^{(k)}(i y) \cdot F^{(2 n-k)}(i y)
$$

or since $F^{(k)}(i y) \cdot F^{(2 n-k)}(i y)$ is real, i can be omitted. Thus

$$
\begin{equation*}
M_{2 n}(y)=(-1)^{n} \cdot \sum_{k=0}^{2 n}(-1)^{k} \cdot\binom{2 n}{k} \cdot F^{(k)}(y) \cdot F^{(2 n-k)}(y) \tag{68}
\end{equation*}
$$

does not change sign for all $y \in \mathbb{R}$ and $n \geq 0$, which yields $M_{2 n}(y) \geq 0$ or $M_{2 n}(y) \leq 0$ for all $y \in \mathbb{R}$ and $n \geq 0$.

To determine the sign of $M_{2 n}(y)$, we simply substitute $n=0$ and $y=0$, because the sign of $M_{2 n}(y)$ does not change for all $y \in \mathbb{R}$ and $n \geq 0$. Hence

$$
M_{0}(0)=[f(0)]^{2}=a_{0}^{2}>0
$$

where a_{0} is defined in (3). Therefore $M_{2 n}(y) \geq 0$ for all $y \in \mathbb{R}$ and $n \geq 0$.
Another way to determine the sign of $M_{2 n}(y)$ is the substitution x to $i y$. Since

$$
\left.F^{(k)}(x) \cdot F^{(2 n-k)}(x)\right|_{x=0}=\left.\frac{d^{k}}{d(i y)^{k}} F(y) \cdot \frac{d^{2 n-k}}{d(i y)^{2 n-k}} F(y)\right|_{y=0}
$$

and $M_{2 n}(x)$ and $M_{2 n}(i y)$ do not change the sign, from (63) we have

$$
M_{2 n}(i y)=\sum_{k=0}^{2 n}(-1)^{k} \cdot\binom{2 n}{k} \cdot \frac{d^{k}}{d(i y)^{k}} F(y) \cdot \frac{d^{2 n-k}}{d(i y)^{2 n-k}} F(y) \geq 0
$$

which is

$$
M_{2 n}(i y)=\frac{1}{i^{k} \cdot i^{2 n-k}} \sum_{k=0}^{2 n}(-1)^{k} \cdot\binom{2 n}{k} \cdot \frac{d^{k}}{d(i y)^{k}} F(y) \cdot \frac{d^{2 n-k}}{d(i y)^{2 n-k}} F(y) \geq 0
$$

Hence

$$
M_{2 n}(i y)=M_{2 n}(y)=(-1)^{n} \cdot \sum_{k=0}^{2 n}(-1)^{k} \cdot\binom{2 n}{k} \cdot F^{(k)}(y) \cdot F^{(2 n-k)}(y) \geq 0
$$

Since $L_{n}(x)=\frac{1}{(2 n)!} \cdot M_{2 n}(y) \geq 0$, the generalized Laguerre inequalities are valid for a two-sided Laplace transform $F(z)$ of a non-negative even function $f(t)$ as long as $F(z)$ converses.

5. The Riemann hypothesis

The Riemann zeta function $\zeta(\mathrm{s})$ is defined

$$
\zeta(\mathrm{s})=\sum_{n=1}^{\infty} \frac{1}{n^{s}}=1+\frac{1}{2^{s}}+\frac{1}{3^{s}}+\cdots
$$

where $s=\sigma+i \omega$.
It is known that the zeros of ζ (s) are located only on the strip $0<\sigma<1$. Riemann conjectured that all the zeros of $\zeta(\mathrm{s})$ are located on the line $\sigma=\frac{1}{2}$, so-called "Riemann hypothesis".

Using the Riemann's functional equation, an entire and symmetric function can be obtained which is called the xi function $\xi(\mathrm{s})$ where

$$
\begin{equation*}
\xi(\mathrm{s})=\frac{1}{2} \pi^{-\frac{s}{2}} s(s-1) \Gamma\left(\frac{s}{2}\right) \zeta(\mathrm{s}) \tag{69}
\end{equation*}
$$

The function $\xi($ s) can be written as

$$
\begin{equation*}
\xi(\mathrm{s})=\int_{-\infty}^{\infty} \varphi(\mathrm{t}) \cdot e^{-\left(s-\frac{1}{2}\right) t} d t \tag{70}
\end{equation*}
$$

where

$$
\begin{equation*}
\varphi(\mathrm{t})=2 \pi \sum_{n=1}^{\infty} n^{2} \cdot e^{-\pi n^{2} e^{2 t}} \cdot\left(2 \pi n^{2} e^{\frac{9}{2} t}-3 e^{\frac{5}{2} t}\right) \tag{71}
\end{equation*}
$$

and it can be shown that $\varphi(\mathrm{t})>0$ for all t and an even function.
By substitution $\mathrm{z}=s-\frac{1}{2}$ where $z=x+\mathrm{i} y$, and $\varphi(\mathrm{t})$ is even, we have

$$
\begin{equation*}
\Phi(z)=\int_{-\infty}^{\infty} \varphi(\mathrm{t}) \cdot e^{-z t} d t=\int_{-\infty}^{\infty} \varphi(\mathrm{t}) \cdot \cosh (z t) d t \tag{74}
\end{equation*}
$$

and since $\Phi(\mathrm{z})$ is a shifted function by $\frac{1}{2}$ of $\xi(\mathrm{s}), \Phi(\mathrm{z})$ is entire and the zeros of $\Phi(\mathrm{z})$ should be located on the strip $-\frac{1}{2}<x<\frac{1}{2}$. From (69), we have

$$
\begin{equation*}
\Phi(z)=\frac{1}{2} \pi^{-\frac{1}{4}} \cdot \pi^{-\frac{z}{2}} \cdot\left(z^{2}-\frac{1}{4}\right) \cdot \Gamma\left(\frac{z}{2}+\frac{1}{4}\right) \cdot \zeta\left(z+\frac{1}{2}\right) \tag{75}
\end{equation*}
$$

which is Riemann's original definition of xi-function.
We consider the function $\varphi(\mathrm{t})$ defined in (71). It is positive and even. Moreover, it is decreasing very rapidly ${ }^{4}$, thus $\Phi(i y)$ belongs to the Laguerre-Pólya class and has only real zeros. It means that all the zeros of $\Phi(\mathrm{z})$ are located at $\mathrm{x}=0$, and hence, all the zeros of $\xi(\mathrm{s})$ and $\zeta(\mathrm{s})$ are located at $\sigma=\frac{1}{2}$. Thus, the Riemann hypothesis is true.

Another popular definition $\Phi(z)$ is:

$$
\Phi(i z)=\int_{-\infty}^{\infty} \varphi(\mathrm{t}) \cdot \cos (z t) d t=2 \int_{0}^{\infty} \varphi(\mathrm{t}) \cdot \cos (z t) d t
$$

and by substitution $t \mapsto 2 t$, we have

$$
\begin{equation*}
\Phi(i z)=4 \int_{0}^{\infty} \varphi(2 \mathrm{t}) \cdot \cos (2 z t) d t \tag{76}
\end{equation*}
$$

We define $\emptyset(t)$ as

$$
\emptyset(\mathrm{t})=\pi \sum_{n=1}^{\infty} n^{2} \cdot e^{-\pi n^{2} e^{2 t}} \cdot\left(2 \pi n^{2} e^{9 t}-3 e^{5 t}\right)
$$

then $\emptyset(t)=\frac{1}{2} \varphi(2 t)$ and eq. (74) will be

$$
\Phi(i z)=8 \int_{0}^{\infty} \varnothing(\mathrm{t}) \cdot \cos (2 z t) d t
$$

and by defining $\Xi(z)=\frac{1}{8} \Phi(\mathrm{iz} / 2)$, we have

$$
\begin{equation*}
\Xi(\mathrm{z})=\int_{0}^{\infty} \varnothing(\mathrm{t}) \cdot \cos (z t) d t \tag{77}
\end{equation*}
$$

or simply,

$$
\begin{equation*}
\Xi(z)=2 \Phi(i z) \tag{78}
\end{equation*}
$$

This function is called the big-xi or upper-case xi function and used to prove the Riemann hypothesis and to find the location of zeros in most literatures. Since $\Phi(i z)$ is only the rotation of $\Phi(z)$ by 90°, the zeros of $\Xi(z)$ locate only on the x-axis.

[^3]
[^0]: ${ }^{1}$ Since we are only dealing with the two-sided Laplace transform, the term "two-sided" will be omitted afterward.

[^1]: ${ }^{2}$ If $F(x)<0$, then $\ln [f(x)]$ is not defined. In this case, we assume that $F(x)$ is log-convex if $F(x) \cdot F^{\prime \prime}(y)-\left[F^{\prime}(y)\right]^{2} \geq 0$ and logconcave if $\left[F^{\prime}(y)\right]^{2}-F(x) \cdot F^{\prime \prime}(y) \geq 0$.

[^2]: ${ }^{3}$ Indeed, $F^{(2 k)}(i y)=\left.(-1)^{k} \cdot F^{(2 k)}(x)\right|_{x=i y}$, but the sign of $F^{(2 k)}(i y) \cdot F^{(2 k+2)}(i y)$ and $\left[F^{(2 k+1)}(i y)\right]^{2}$ is same for all k.

[^3]: ${ }^{4}$ According to rule of thumb (10), $\frac{\Phi(1)}{\Phi(0)}-1 \approx 0.0233$, which is much smaller than $f(t)=e^{-t^{2}}$

