The Collatz Conjecture and the Quantum Mechanical Harmonic Oscillator

Carlos Castro Perelman
Center for Theoretical Studies of Physical Systems
Clark Atlanta University, Atlanta, GA. 30314
Ronin Institute, 127 Haddon Pl., NJ. 07043
perelmanc@hotmail.com
Ramon Carbo-Dorca
Institute of Computational Chemistry and Catalysis
Universitat de Girona
Girona, Spain
ramoncarbodorca@gmail.com

March 21, 2020

Abstract

By establishing a dictionary between the QM harmonic oscillator and the Collatz process, it reveals very important clues as to why the Collatz conjecture most likely is true. The dictionary requires expanding any integer n into a binary basis (bits) $n=\sum a_{n l} 2^{l}$ (l ranges from 0 to $N-1$) that allows to find the correspondence between every integer n and the state $\left|\Psi_{n}\right\rangle$, obtained by a superposition of bit states $\left.|l\rangle\right\rangle$, and which are related to the energy eigenstates of the QM harmonic oscillator. In doing so, one can then construct the one-to-one correspondence between the Collatz iterations of numbers $n \rightarrow \frac{n}{2}$ (n even); $n \rightarrow 3 n+1$ (n odd) and the operators $\mathbf{L}_{\frac{n}{2}} ; \mathbf{L}_{3 n+1}$, which map Ψ_{n} to $\Psi_{\frac{n}{2}}$, or to $\Psi_{3 n+1}$, respectively, and which are constructed explicitly in terms of the creation \mathbf{a}^{\dagger}, annihilation a, and unit operator $\mathbf{1}$ of the QM harmonic oscillator. A rigorous analysis reveals that the Collatz conjecture is most likely true, if the composition of a chain of $\mathbf{L}_{\frac{n}{2}} ; \mathbf{L}_{3 n+1}$ operators (written as L_{*} in condensed notation) leads to the null-eigenfunction conditions $\left(\mathbf{L}_{*} \mathbf{L}_{*} \ldots \mathbf{L}_{*}-\mathcal{P}\right) \Psi_{n}=0$, where \mathcal{P} is the operator that projects any state Ψ_{n} into the ground state $\Psi_{1} \equiv$ $|0\rangle>$ representing the zero bit state $|0\rangle\left(\right.$ since $\left.2^{0}=1\right)$. In essence, one has a realization of the integer/state correspondence typical of QM such that the Collatz paths from n to 1 are encoded in terms of quantum transitions among the states Ψ_{n}, and leading effectively to an overall downward cascade to Ψ_{1}. The QM oscillator approach explains naturally

why the Collatz conjecture fails for negative integers because there are no states below the ground state.

1 Introduction

In the Wikipedia page it states that the Collatz conjecture is named after Lothar Collatz, who introduced the idea in 1937, two years after receiving his doctorate. [1]. It is also known as the $3 n+1$ problem, the $3 n+1$ conjecture, the Ulam conjecture (after Stanislaw Ulam), Kakutani's problem (after Shizuo Kakutani), the Thwaites conjecture (after Sir Bryan Thwaites), Hasse's algorithm (after Helmut Hasse), or the Syracuse problem. The sequence of numbers involved is sometimes referred to as the hailstone sequence or hailstone numbers (because the values are usually subject to multiple descents and ascents like hailstones in a cloud. As of 2020, the conjecture has been checked by computer for all starting values up to $2^{68} \sim 2.95 \times 10^{20}$ [3].

The conjecture is based on a very simple iteration process. For any positive even integer greater than 1 , the rule is $n \rightarrow \frac{n}{2}$. And for n odd, one takes $n \rightarrow$ $3 n+1$, leading to an even number. The Collatz conjecture states that starting from any integer $n>1$, the Collatz iteration process always ends up at 1 , after a finite number of steps. This is not the case for negative integers since there are nontrivial cycles. For instance $\{-5,-14,-7,-20,-10,-5, \ldots\}$ and one does not reach -1 . The Collatz process has the trivial cycle $\{1,4,2,1,4,2, \ldots\}$ if one continues iterating after reaching 1 . A computer program would never end in this case, so once we reach the final destination at 1 , the process should stop.

Inspired by the work of one of us (RCD) [4], [5] on Boolean Hypercubes, Natural Vector Spaces and the Collatz conjecture, we shall show next how one can establish a dictionary between operators associated with the QM harmonic oscillator and the Collatz process which reveals very important clues as to why the Collatz conjecture most likely is true. More precisely, we show that it is the very special decomposition of $3 n+1=n+2 n+1$ which leads to the operator representation for the process $\Psi_{n} \rightarrow \Psi_{3 n+1}$ to have the key diagonal form $\left(\mathbf{I}+\mathcal{L}^{+}+\mathcal{P}\right)_{n=o d d}$, where \mathbf{I} is the identity operator, \mathcal{L}^{+}is a ladder operator that increases the bit number by one, and $\mathcal{P}_{n=o d d}$ is a projection operator that maps any state Ψ_{n} into the ground state $\Psi_{1} \equiv|0\rangle>$ representing the zero bit state $|0\rangle\left(\right.$ since $\left.2^{0}=1\right)$.

A polynomial approach to the Collatz conjecture has been studied by [7]. By using polynomials based on a binary numeral system the authors [7] show that the degree of the polynomials, on average, decreases after a finite number of steps of the Collatz operation, which provides a weak proof of the conjecture by using induction with respect to the degree of the polynomials. It is warranted to explore this polynomial approach with our present work based on the QM oscillator and the Hermite polynomials.

2 The QM oscillator and the Collatz Conjecture

2.1 Dictionary between the QM oscillator and the Collatz process

The following dictionary between the QM oscillator and the Collatz process reveals very important clues as to why the Collatz conjecture might be true. Given an arbitrary number n it admits the binary expansion $\sum_{l=0}^{N-1} a_{n l} 2^{l}$, and whose binary coefficients are $a_{n l}=\{0,1\}$. The one-to-one correspondence between the number n and the state Ψ_{n} is

$$
\begin{equation*}
n=\sum_{l=0}^{N-1} a_{n l} 2^{l} \leftrightarrow\left|\Psi_{n}>\equiv \sum_{l=0}^{N-1} a_{n l}\right| l> \tag{1}
\end{equation*}
$$

where the superposition of bit states $\mid l>$, which are associated with the numbers 2^{l}, ranges from $l=0$ to $N-1$. The state $\mid \Psi_{n}>$ is a superposition of bit states $\mid l>$ and is a close relative of the coherent state $\left|z>\equiv e^{-\frac{|z|^{2}}{2}} \sum e^{z a^{\dagger}}\right| 0>$ with z a complex number. The state $\left|\Psi_{n}\right\rangle$ can be represented by a column vector whose entries are $\left\{a_{n 0}\left|0>, a_{n 1}\right| 1>, a_{n 2}\left|2>, \ldots, a_{n N-1}\right| N-1>\right\}$.

When n is even, the first Collatz iteration yields $\frac{n}{2}$, therefore one has a transition from the state $\left|\Psi_{n}\right\rangle$ to the state $\left|\Psi_{\frac{n}{2}}\right\rangle$ given by

$$
\begin{equation*}
\left.\left|\Psi_{\frac{n}{2}}>\equiv \sum_{l=0}^{N-1} a_{n l}\right| l-1>=\sum_{l=1}^{N-1} a_{n l} \right\rvert\, l-1> \tag{2}
\end{equation*}
$$

since dividing by two amounts to removing one bit $\frac{1}{2} 2^{l}=2^{l-1}$, and the first binary coefficient $a_{n 0}=0$ is always zero when n is even.

When n is odd, the first Collatz iteration yields $3 n+1$. The binary expansion of $3 n+1$ (an even number) is

$$
\begin{equation*}
3 n+1=1+\sum_{l=0}^{N-1} a_{n l} 2^{l}+\sum_{l=0}^{N-1} a_{n l} 2^{l+1} \tag{3}
\end{equation*}
$$

therefore one has a transition from the state $\mid \Psi_{n}>$ to the state $\mid \Psi_{3 n+1}>$ given by

$$
\begin{equation*}
\left|\Psi_{3 n+1}>\equiv\right| 0>+\sum_{l=0}^{N-1} a_{n l}\left|l>+\sum_{l=0}^{N-1} a_{n l}\right| l+1> \tag{4}
\end{equation*}
$$

since multiplying by two amounts to adding one bit $22^{l}=2^{l+1}$.
Given the binary expansion of any even number n in eq-(1), the first binary coefficient of an even number n is always $a_{n 0}=0$ zero, and in general one will have a set of non-zero binary coefficients at the specific locations $l_{1}, l_{2}, l_{3}, \ldots$, Namely $a_{n l_{1}}=a_{n l_{2}}=a_{n l_{3}}=\ldots=1$ and the rest of the binary coefficients are
zero. One may have all the binary coefficients to be non-vanishing except the first one $a_{n 0}=0$. Or one may have all the binary coefficients to be vanishing except the last one $a_{n N-1}=1$. And so forth. Using the well known relations involving the action of the creation and annihilation operators on the energy eigenstates $\mid l>(l=0,1,2, \ldots \ldots)$ of a harmonic oscillator $\mathbf{a}^{\dagger}|l>=\sqrt{l+1}| l+1>$ and $\mathbf{a}|l>=\sqrt{l}| l-1>$, one learns that the operator $\mathbf{L}_{\frac{n}{2}}$ which maps the state $\mid \Psi_{n}>$ to $\left\lvert\, \Psi_{\frac{n}{2}}>\right.$ (when n is even) is given by

$$
\begin{equation*}
\mathbf{L}_{\frac{n}{2}}=\operatorname{Diag}\left(\mathbf{1}, \mathbf{1}, \ldots, \frac{\mathbf{a}}{\sqrt{l_{1}}}, \mathbf{1}, \mathbf{1}, \ldots, \frac{\mathbf{a}}{\sqrt{l_{2}}}, \mathbf{1}, \mathbf{1}, \ldots, \frac{\mathbf{a}}{\sqrt{l_{3}}}, \ldots\right) \tag{5}
\end{equation*}
$$

which is a diagonal $N \times N$ matrix and whose entries are comprised of the annihilation operator a (up to judicious numerical coefficients) and the identity operator 1. The location of the unit operators 1 in eq-(5) correspond to the location of the vanishing binary coefficients. And the a operators will reduce the bits by one unit at each specific location where the binary coefficients are non-vanishing. For this reason we may rewrite $\mathbf{L}_{\frac{n}{2}}=\mathcal{L}^{-}$, where \mathcal{L}^{-}plays the role of a ladder operator that reduces the bits by one unit; i.e. it reduces the size of the column vector by one.

The operator $\mathbf{L}_{3 n+1}$ that maps $\mid \Psi_{n}>$ to $\mid \Psi_{3 n+1}>($ when n is odd) is given by

$$
\begin{gather*}
\mathbf{L}_{3 n+1}=\operatorname{Diag}(\mathbf{1}, \mathbf{1}, \mathbf{1}, \ldots, \mathbf{1})+ \\
\operatorname{Diag}\left(\mathbf{a}^{\dagger}, \mathbf{1}, \mathbf{1}, \ldots, \frac{\mathbf{a}^{\dagger}}{\sqrt{l_{1}+1}}, \mathbf{1}, \mathbf{1}, \ldots, \frac{\mathbf{a}^{\dagger}}{\sqrt{l_{2}+1}}, \mathbf{1}, \mathbf{1}, \ldots, \frac{\mathbf{a}^{\dagger}}{\sqrt{l_{3}+1}}, \ldots\right)+ \\
\operatorname{Diag}\left(\mathbf{1}, \mathbf{1}, \mathbf{1}, \ldots \mathbf{a}^{l_{1}+1}, \mathbf{1}, \mathbf{1}, \ldots \mathbf{a}^{l_{2}+1}, \mathbf{1}, \mathbf{1}, \ldots \mathbf{a}^{l_{3}+1}, \ldots\right) \tag{6}
\end{gather*}
$$

which is a diagonal $N \times N$ matrix whose entries are comprised of creation \mathbf{a}^{\dagger} and annihilation operators \mathbf{a}, in addition to the identity operators $\mathbf{1}$. We may rewrite $\mathbf{L}_{3 n+1}$ in condensed notation as $\mathbf{I}+\mathcal{L}^{+}+\mathcal{P}_{\text {odd }}$, respectively. I is the identity operator comprised of ones along the diagonal. \mathcal{L}^{+}is the ladder operator that increases the bits by one unit (increases the size of the column vector by one). And $\mathcal{P}_{\text {odd }}$ is the projection operator that maps the state Ψ_{n} (for n odd) to the ground state $\mathcal{P}_{\text {odd }} \Psi_{n}=\Psi_{1}=\mid 0>$.

Let us explain in detail the origins of the diagonal entries of $\mathcal{P}_{\text {odd }}$. For n odd, the binary coefficient $a_{n 0}=1$ is not zero, so the first unit 1 operator appearing in $\mathcal{P}_{\text {odd }}$ will act on the ground state $\mid 0>$ giving $\mid 0>$, as desired. The following 1's in $\mathcal{P}_{\text {odd }}$ appear at the locations of the vanishing binary coefficients, until one hits the first non-vanishing binary coefficient at the l_{1}-th entry. The next non-vanishing locations are situated at the l_{2}-th, l_{3}-th, \ldots. entries, respectively. Whereas, the location of the remaining 1's in between correspond to the respective vanishing binary coefficients. Finally, the action of the operators $\mathbf{a}^{l_{1}+1} ; \mathbf{a}^{l_{2}+1} ; \mathbf{a}^{l_{3}+1}, \ldots$ on the bit states $\left|l_{1}\right\rangle ;\left|l_{2}\right\rangle ;\left|l_{3}\right\rangle ; \ldots$, respectively, is going to be zero. Therefore, the overall effect of the projection operator $\mathcal{P}_{\text {odd }}$ on $\Psi_{\text {odd }}$ gives $\left|\Psi_{1}\right\rangle=|0\rangle$, as expected, due to the fact the $a_{n 0}=1 \neq 0$.

Therefore, one has in condensed notation

$$
\begin{equation*}
\mathbf{L}_{\frac{n}{2}} \equiv \mathcal{L}^{-}, \quad \mathbf{L}_{3 n+1} \equiv \mathbf{I}+\mathcal{L}^{+}+\mathcal{P}_{o d d} \tag{7}
\end{equation*}
$$

For n even, the projection operator that maps the state Ψ_{n} to the ground state $\mathcal{P}_{\text {even }} \Psi_{n}=\Psi_{1}=\mid 0>$ is

$$
\begin{equation*}
\mathcal{P}_{\text {even }} \equiv \operatorname{Diag}\left(\mathbf{1}, \mathbf{1}, \mathbf{1}, \ldots \frac{\mathbf{a}^{l_{1}}}{\sqrt{l_{1}!}}, \mathbf{1}, \mathbf{1}, \ldots \mathbf{a}^{l_{2}+1}, \mathbf{1}, \mathbf{1}, \ldots \mathbf{a}^{l_{3}+1}, \ldots\right) \tag{8a}
\end{equation*}
$$

The action of $\frac{\mathbf{a}^{l_{1}}}{\sqrt{l_{1}!}}\left|l_{1}\right\rangle=|0\rangle$ is what projects Ψ_{n} (n even) into the ground state; while the action of $\mathbf{a}^{l_{2}+1}\left|l_{2}\right\rangle=0 ; \mathbf{a}^{l_{3}+1}\left|l_{3}\right\rangle=0, \ldots$ is what projects out the other bit states. The action of the unit operators $\mathbf{1}$ in eq-(8a) is null because the location of the unit operators corresponds to the location of the vanishing binary coefficients.

Some important remarks are in order. Strictly speaking, the operators \mathcal{P}_{n} that map Ψ_{n} to Ψ_{1} are not projectors in the usual sense, since projection operators Π_{i} satisfy $\Pi_{i} \Pi_{j}=0$ when $i \neq j ; \mathbf{I}=\sum \Pi_{i}$, and $\left(\Pi_{i}\right)^{2}=\Pi_{i}$ for all i. Since the operators \mathcal{P}_{n} "collapse" any state down to Ψ_{1}, they should be coined "collapsors" (or "Collatzors" if one wishes to play with words).

Secondly, the expression for the projection operator $\mathcal{P}_{\text {even }}$ in eq- $(8 a)$ is not unique. One could have chosen instead of eq-(8a) the following projection operator

$$
\begin{equation*}
\mathcal{P}_{\text {even }}^{\prime} \equiv \operatorname{Diag}\left(\mathbf{1}, \mathbf{1}, \mathbf{1}, \ldots \mathbf{a}^{l_{1}+1}, \mathbf{1}, \mathbf{1}, \ldots \frac{\mathbf{a}^{l_{2}}}{\sqrt{l_{2}!}}, \mathbf{1}, \mathbf{1}, \ldots \mathbf{a}^{l_{3}+1}, \ldots\right) \tag{8b}
\end{equation*}
$$

that maps the state $\left|\Psi_{n}\right\rangle$ to the ground state $\mathcal{P}_{\text {even }}^{\prime}\left|\Psi_{n}\right\rangle=\left|\Psi_{1}\right\rangle=|0\rangle$. And one could continue to find yet another projection operator

$$
\begin{equation*}
\mathcal{P}_{\text {even }}^{\prime \prime} \equiv \operatorname{Diag}\left(\mathbf{1}, \mathbf{1}, \mathbf{1}, \ldots \mathbf{a}^{l_{1}+1}, \mathbf{1}, \mathbf{1}, \ldots \mathbf{a}^{l_{2}+1}, \mathbf{1}, \mathbf{1}, \ldots \frac{\mathbf{a}^{l_{3}}}{\sqrt{l_{3}!}}, \ldots\right) \tag{8c}
\end{equation*}
$$

and so forth. For this reason one must choose a selection criteria which avoids any ambiguities in the expression for the projections $\mathcal{P}_{\text {even }}$ in the even n case. We shall choose the expression provided by eq-(8a) which is based on the location of the first non-vanishing binary coefficient. In this way, the expression for the $\mathcal{P}_{\text {odd }}$ projection operator in the odd n case is the one displayed by the last term in eq-(6). The reason being that for n odd, the first non-vanishing binary coefficient is $a_{n 0}=1$.

To sum up, the following operators

$$
\begin{equation*}
\mathbf{I}, \quad \mathcal{P}_{\text {even }}, \quad \mathcal{P}_{\text {odd }}, \quad \mathcal{L}^{+}, \quad \mathcal{L}^{-}, \quad \mathbf{L}_{3 n+1}=\mathbf{I}+\mathcal{L}^{+}+\mathcal{P}_{\text {odd }}, \quad \mathbf{L}_{\frac{n}{2}}=\mathcal{L}^{-} \tag{9}
\end{equation*}
$$

are the ones involved in the whole Collatz process. Except for the identity operator, all the other operators are state-dependent. Note that despite that these
operators are state dependent they are still linear involving powers of $\mathbf{a}, \mathbf{a}^{\dagger}$, because the latter powers are realized as higher order linear differential operators acting on the states Ψ_{n}, and which in turn, are given by a superposition of energy eigenstates of the harmonic oscillator.

The full Collatz symbolic process $C_{s(n)}[n]=1$ of an integer n, where $s(n)$ is the total number of steps required for n to reach 1, is represented (reformulated) as a concatenation of $\mathbf{L}_{(1)}, \mathbf{L}_{(2)}, \ldots \mathbf{L}_{(s(n))}$ operators acting on Ψ_{n}, and whose net final effect is to end at the ground state. For n even, one has

$$
\begin{equation*}
\mathbf{L}_{(s(n))} \mathbf{L}_{(s(n)-1)} \ldots \mathbf{L}_{(2)} \mathbf{L}_{(1)}\left|\Psi_{n}\right\rangle=\mathcal{P}_{\text {even }}\left|\Psi_{n}\right\rangle=\Psi_{1} \equiv|0\rangle \tag{10a}
\end{equation*}
$$

And for n odd

$$
\begin{equation*}
\mathbf{L}_{(s(n))} \mathbf{L}_{(s(n)-1)} \ldots \mathbf{L}_{(2)} \mathbf{L}_{(1)}\left|\Psi_{n}\right\rangle=\mathcal{P}_{o d d}\left|\Psi_{n}\right\rangle=\Psi_{1} \equiv|0\rangle \tag{10b}
\end{equation*}
$$

The column vector representing Ψ_{1} is comprised of a single entry $|0\rangle$.
Each step in the concatenation process will select also state dependent operators written as

$$
\begin{equation*}
\mathbf{L}_{(1)}, \mathbf{L}_{(2)}, \ldots, \mathbf{L}_{(s(n))} \tag{11}
\end{equation*}
$$

for simplicity due to the complexity of the Collatz iteration process. For example, given a positive integer n, the iteration process generates the sequence of numbers (a Collatz path)

$$
\begin{equation*}
n \rightarrow\left\{n \equiv n_{0}, n_{1}, n_{2}, n_{3}, \ldots, 8,4,2,1\right\} \tag{12a}
\end{equation*}
$$

and the corresponding eigenstates are

$$
\begin{equation*}
\left\{\Psi_{n}, \Psi_{n_{1}}, \Psi_{n_{2}}, \Psi_{n_{3}}, \ldots, \Psi_{8}, \Psi_{4}, \Psi_{2}, \Psi_{1}=|0\rangle\right\} \tag{12b}
\end{equation*}
$$

Therefore when one writes $L_{(i)}$ it represents the operator acting on the state $\Psi_{n_{i}} \neq \Psi_{i}$, because $n_{i} \neq i$. Extreme caution must be taken with the notation and the indices.

The key point now is to show how one performs the sequence of operations involving the string of operators in eqs-(10a, 10b). One must, firstly, start with the operation

$$
\begin{equation*}
\mathbf{L}_{(1)}\left|\Psi_{n}\right\rangle=\mathbf{L}\left[\Psi_{n}\right]\left|\Psi_{n}\right\rangle=\left|\Psi_{n_{1}}\right\rangle \tag{12c}
\end{equation*}
$$

Then continue

$$
\begin{equation*}
\mathbf{L}_{(2)}\left|\Psi_{n_{1}}\right\rangle=\mathbf{L}\left[\Psi_{n_{1}}\right]\left|\Psi_{n_{1}}\right\rangle=\left|\Psi_{n_{2}}\right\rangle \tag{12d}
\end{equation*}
$$

and proceed

$$
\begin{equation*}
\mathbf{L}_{(3)}\left|\Psi_{n_{2}}\right\rangle=\mathbf{L}\left[\Psi_{n_{2}}\right]\left|\Psi_{n_{2}}\right\rangle=\left|\Psi_{n_{3}}\right\rangle \tag{12d}
\end{equation*}
$$

and so forth until reaching $\left|\Psi_{1}\right\rangle=|0\rangle$. As stated above, the string of linear operators are state-dependent and this explains the above notation $\mathbf{L}\left[\Psi_{n}\right] ; \mathbf{L}\left[\Psi_{n_{1}}\right] ; \mathbf{L}\left[\Psi_{n_{2}}\right] ; \ldots$

These operators are represented by operator-valued entries of diagonal matrices of different sizes because the binary representation of the sequence of integers (12a) stops at different powers of two : $2^{N-1}, 2^{N_{1}-1}, 2^{N_{2}-1}, 2^{N_{3}-1}, \ldots$ and corresponding to the binary expansion of $n, n_{1}, n_{2}, n_{3}, \ldots . N, N_{1}, N_{2}, N_{3}, \ldots$ are the dimensions of the corresponding Boolean hypercubes.

For this reason we have to explain how to compose a string of operators associated with diagonal matrices of different sizes. In the Appendix we provide some examples of how to perform such composition of operators by adding a judicious string of unit operators 1 's to the left, and/or to the right, of the diagonal entries such that all the operators are now represented by diagonal matrices of the same size. The common size of all the diagonal matrices is provided by the value of the maximum dimension $N_{\max }$ of the Boolean hypercube associated with the binary expansion of the maximum number $n_{\max }=\sum_{l=0}^{N_{\max }-1} a_{n_{\max } l} 2^{l}$ attained in the Collatz chain (path, sequence) (12a). By the same token, the projection operators \mathcal{P}_{n} in the right-hand side of eqs-(10a, 10b) must also be represented by diagonal matrices of the same size $N_{\max }$ to match the size of the matrices in the left hand side. It is also necessary to embed all the column vectors into a column vector of maximal size $N_{\max }$ as well by adding extra zeros.

After doing so, one may write eqs-(10a,10b) in the following symbolic form which reflect the state-dependence of the operators,
$\mathbf{L}\left[\Psi_{n_{s(n)}}\right] \mathbf{L}\left[\Psi_{n_{s(n)-1}}\right] \ldots \mathbf{L}\left[\Psi_{n_{3}}\right] \mathbf{L}\left[\Psi_{n_{2}}\right] \mathbf{L}\left[\Psi_{n_{1}}\right]\left|\Psi_{n}\right\rangle=\mathcal{P}_{n}\left|\Psi_{n}\right\rangle=\Psi_{1} \equiv|0\rangle$
and where \mathcal{P} is either the projection operator for the $n=$ even, or the $n=$ odd number case. From eq-(13) one infers the relations for all values of n

$$
\begin{equation*}
\left(\mathbf{L}\left[\Psi_{n_{s(n)}}\right] \mathbf{L}\left[\Psi_{n_{s(n)-1}}\right] \ldots \mathbf{L}\left[\Psi_{n_{3}}\right] \mathbf{L}\left[\Psi_{n_{2}}\right] \mathbf{L}\left[\Psi_{n_{1}}\right]-\mathcal{P}_{n}\right) \Psi_{n}=0 \tag{14}
\end{equation*}
$$

The main result of this work is that if, and only if, the Collatz conjecture is true the concatenation process of the operators must obey the relations (14) for all values of n even, odd, respectively. To verify these relations for all values of n is extremely difficult. By construction, the projection operator acting on Ψ_{n} always obeys $\mathcal{P}\left[\Psi_{n}\right] \Psi_{n}=\Psi_{1}=|0\rangle$, for all values of n. The reason we rewrite (13) in the form (14) will be explained below.

2.2 Operator Identities

On the other hand, if the Collatz conjecture is true, this is equivalent to stating $\left(\mathbf{L}_{*} \mathbf{L}_{*} \ldots \mathbf{L}_{*}-\mathcal{P}\right) \Psi_{n}=0$ as mentioned earlier in eq-(14). In the first case, this leads to the following operator relations (identities) $\mathbf{L}_{*} \mathbf{L}_{*} \ldots \mathbf{L}_{*}-\mathcal{P}=0$ which are very restrictive. With the definitions of the projection operators appearing in eqs-($6,8 \mathrm{a}$) one finds (see Appendix) that only in very special cases these operator relations (identities) are satisfied. However, one can find many other
different expressions for the projection operators and having the most general form

$$
\begin{gather*}
\mathcal{P}_{n=\text { odd }}=\operatorname{Diag}\left(P_{n 0}\left(\mathbf{a}, \mathbf{a}^{\dagger}\right), P_{n 1}\left(\mathbf{a}, \mathbf{a}^{\dagger}\right), P_{n 2}\left(\mathbf{a}, \mathbf{a}^{\dagger}\right), \ldots, P_{n N-1}\left(\mathbf{a}, \mathbf{a}^{\dagger}\right)\right) \tag{15}\\
\mathcal{P}_{n=\text { even }}=\operatorname{Diag}\left(\tilde{P}_{n 0}\left(\mathbf{a}, \mathbf{a}^{\dagger}\right), \tilde{P}_{n 1}\left(\mathbf{a}, \mathbf{a}^{\dagger}\right), \tilde{P}_{n 2}\left(\mathbf{a}, \mathbf{a}^{\dagger}\right), \ldots, \tilde{P}_{n N-1}\left(\mathbf{a}, \mathbf{a}^{\dagger}\right)\right) \tag{16}
\end{gather*}
$$

The diagonal entries of the most general projection operators are comprised of polynomial functions of the $\mathbf{a}, \mathbf{a}^{\dagger}$ operators. These projection operators must satisfy the key conditions

$$
\begin{equation*}
\mathcal{P}_{n=\text { odd }}\left|\Psi_{n=\text { odd }}\right\rangle=\left|\Psi_{1}\right\rangle=|0\rangle, \quad \mathcal{P}_{n=\text { even }}\left|\Psi_{n=\text { even }}\right\rangle=\left|\Psi_{1}\right\rangle=|0\rangle \tag{17}
\end{equation*}
$$

such that every positive finite integer n has a one-to-one correspondence with the state Ψ_{n} obeying the conditions (17) associated with the full Collatz cascading process downwards to the ground state.

Despite that $\mathbf{a}, \mathbf{a}^{\dagger}$ do not commute one can still reorder the monomials $\left.\left(\mathbf{a}^{p_{1}}\right)\left(\mathbf{a}^{\dagger}\right)^{p_{2}}\right)$ such that the annihilation operators appear to the right of the creation operators as it is customary in QFT. This reordering can be done in a pairwise step fashion by using the commutation relations $\left[\mathbf{a}, \mathbf{a}^{\dagger}\right]=\mathbf{1} \Rightarrow \mathbf{a a}^{\dagger}=$ $\mathbf{1}+\mathbf{a}^{\dagger} \mathbf{a}=\mathbf{1}+\mathbf{N}$, where the number operator is defined as $\mathbf{N} \equiv \mathbf{a}^{\dagger} \mathbf{a}$, such that $\mathbf{N}|l\rangle=l|l\rangle$. For example any power of $\left(\mathbf{a a}^{\dagger}\right)^{p}$ can be rewritten as $(\mathbf{1}+\mathbf{N})^{p}$ leading to $(\mathbf{1}+\mathbf{N}) \ldots(\mathbf{1}+\mathbf{N})|l\rangle=(1+l)^{p}|l\rangle$, due to number operator properties $\mathbf{N}|l\rangle=l|l\rangle$ for all values of l.

Given the key properties of the number operator, like $[\mathbf{N}, \mathbf{a}]=-\mathbf{a},\left[\mathbf{N}, \mathbf{a}^{\dagger}\right]=$ \mathbf{a}^{\dagger}, we shall propose the simplest ansatz possible and set all of the polynomial entries $P_{n l}\left(\mathbf{a}, \mathbf{a}^{\dagger}\right) ; \tilde{P}_{n l}\left(\mathbf{a}, \mathbf{a}^{\dagger}\right)$ in eqs- $(15,16)$ to be given solely by polynomials in the number operator $P_{n l}\left(\mathbf{N}=\mathbf{a}^{\dagger} \mathbf{a}\right) ; \tilde{P}_{n l}\left(\mathbf{N}=\mathbf{a}^{\dagger} \mathbf{a}\right)$. In this fashion the direct connection to number theory is more transparent.

Before proceeding, let us formally define the inverse of the polynomial projection operators $\mathcal{P}_{n}(\mathbf{N})$ from the condition

$$
\left(\mathcal{P}_{n}(\mathbf{N})\right)^{-\mathbf{1}}\left(\mathcal{P}_{\mathbf{n}}(\mathbf{N})=\left(\mathcal{P}_{\mathbf{n}}(\mathbf{N})\left(\mathcal{P}_{\mathbf{n}}(\mathbf{N})\right)^{-\mathbf{1}}=\mathbf{I}\right.\right.
$$

One can define the inverse operation of each one of the diagonal entries $P_{n l}$ which comprise \mathcal{P}_{n} by the usual Taylor series expansion taking into account that a proper radius of convergence domain must be specified. For instance, the power series

$$
\begin{equation*}
N^{-1}=\frac{1}{N}=\frac{1}{1-(1-N)}=1+(1-N)+(1-N)^{2}+(1-N)^{3} \ldots \tag{18}
\end{equation*}
$$

convergences when $|1-N|<1 \Rightarrow 0<N<2$. One can enlarge the radius of convergence by writing $N=M-(M-N)$ (with $M>1$) so that the power
series converges when $\left|1-\frac{N}{M}\right|<1 \Rightarrow 0<\frac{N}{M}<2 \Rightarrow 0<N<2 M$. Similar results apply when N is replaced by a polynomial $P(N)$.

Let us now provide an specific example to see how one can implement the operator identities $\mathbf{L}_{*} \mathbf{L}_{*} \ldots \mathbf{L}_{*}=\mathcal{P}$ if, and only if, one recurs to the most general form of projection operators given by eqs- $(15,16)$ and obeying (17). Upon writing the operators in symbolic notation $\mathbf{L}\left[\Psi_{\text {odd }}\right]=\mathbf{I}+\mathcal{L}^{+}+\mathcal{P}_{\text {odd }}$, and $\mathbf{L}\left[\Psi_{\text {even }}\right]=\mathcal{L}^{-}$, the Collatz sequence $\{3,10,5,16,8,4,2,1\}$ yields the following relation

$$
\begin{equation*}
\mathcal{L}_{2}^{-} \mathcal{L}_{4}^{-} \mathcal{L}_{8}^{-} \mathcal{L}_{16}^{-}\left(\mathbf{I}+\mathcal{L}_{5}^{+}+\mathcal{P}_{5}\right) \mathcal{L}_{10}^{-}\left(\mathbf{I}+\mathcal{L}_{3}^{+}+\mathcal{P}_{3}\right)=\mathcal{P}_{3} \tag{19}
\end{equation*}
$$

The subscripts in the operators in (19) denote on what specific states $\Psi_{n_{i}}$ the operators are acting. From the Collatz chain process in eq-(19) one can then infer the following nested sequence of operations

$$
\begin{gather*}
\mathcal{L}_{2}^{-}=\mathcal{P}_{2}, \mathcal{L}_{2}^{-} \mathcal{L}_{4}^{-}=\mathcal{P}_{4} \Rightarrow \mathcal{L}_{4}^{-}=\mathcal{P}_{2}^{-1} \mathcal{P}_{4} \tag{20a}\\
\mathcal{L}_{2}^{-} \mathcal{L}_{4}^{-} \mathcal{L}_{8}^{-}=\mathcal{P}_{8} \Rightarrow \mathcal{L}_{8}^{-}=\mathcal{P}_{4}^{-1} \mathcal{P}_{8} \tag{20b}\\
\mathcal{L}_{2}^{-} \mathcal{L}_{4}^{-} \mathcal{L}_{8}^{-} \mathcal{L}_{16}^{-}=\mathcal{P}_{16} \Rightarrow \mathcal{L}_{16}^{-}=\mathcal{P}_{8}^{-1} \mathcal{P}_{16} \tag{20c}\\
\mathcal{P}_{16}\left(\mathbf{I}+\mathcal{L}_{5}^{+}+\mathcal{P}_{5}\right)=\mathcal{P}_{5} \Rightarrow\left(\mathbf{I}+\mathcal{L}_{5}^{+}+\mathcal{P}_{5}\right)=\mathcal{P}_{16}^{-1} \mathcal{P}_{5} \tag{20d}\\
\mathcal{P}_{5} \mathcal{L}_{10}^{-}=\mathcal{P}_{10} \Rightarrow \mathcal{L}_{10}^{-}=\mathcal{P}_{5}^{-1} \mathcal{P}_{10} \tag{20e}\\
\mathcal{P}_{10}\left(\mathbf{I}+\mathcal{L}_{3}^{+}+\mathcal{P}_{3}\right)=\mathcal{P}_{3} \Rightarrow\left(\mathbf{I}+\mathcal{L}_{3}^{+}+\mathcal{P}_{3}\right)=\mathcal{P}_{10}^{-1} \mathcal{P}_{3} \tag{20f}
\end{gather*}
$$

And finally, after assuming that the products of operators are associative, and by performing the "telescoping" product of all of the relevant terms in eqs-(20) one arrives straightforwardly to the operator relation (identity) of eq-(19) due to pairwise cancellations of the form $\mathcal{P} \mathcal{P}^{-1}=\mathbf{I}$.

Note that despite that the ladder operators are linear in $\mathbf{a}, \mathbf{a}^{\dagger}$, eqs-(20) are not as simple as they seem because each diagonal projection operator \mathcal{P}_{n}, and the diagonal ladder operators $\mathcal{L}_{n}^{ \pm}$, must be expanded into their "binary" components: $\mathcal{P}_{n}=\left\{P_{n 0}, P_{n 1}, \ldots, P_{n N-1}\right\}, \mathcal{L}_{n}^{ \pm}=\left\{L_{n 0}^{ \pm}, L_{n 1}^{ \pm}, \ldots, L_{n N-1}^{ \pm}\right\}$. Hence, eqs-(20) involve an intricate set of nested (loop) relations involving all of the Polynomials in the $\mathbf{a}, \mathbf{a}^{\dagger}$ operators displayed explicitly by eqs- $(15,16)$. This is the reason why the ansatz in setting all the polynomials as functions of the number operator $P_{n l}\left(\mathbf{N}=\mathbf{a}^{\dagger} \mathbf{a}\right) ; \tilde{P}_{n l}\left(\mathbf{N}=\mathbf{a}^{\dagger} \mathbf{a}\right)$ will simplify matters considerably.

To conclude, we propose that a plausible proof of the Collatz conjecure could be attained based on this construction which relies on the binary decomposition of numbers, the QM oscillator algebra and an infinite associative Loop algebra comprised of the infinite number of $\left\{\mathbf{I}, \mathcal{L}^{ \pm}, \mathcal{P}\right\}$ operators, corresponding to each value of n (even, odd). It is interesting that the Monster group construction by Conway involves the binary Golay code, the 24 -dim Leech lattice and a non-associative loop algebra discovered by Parker [8].

2.3 Null Eigenfunctions

Another approach that can be explored if one finds the previous operator avenue too cumbersome, is to find a different set of projection operators that are more closely related to those displayed in eqs-(6,8a). And instead of imposing the previous operator identities one has the following Null Eigenfunctions conditions $\left(\mathbf{L}_{*} \mathbf{L}_{*} \ldots \mathbf{L}_{*}-\mathcal{P}\right) \Psi_{n}=0$, with zero eigenvalue, on each state Ψ_{n}. This is possible because the operators themselves are state dependent. The composition of the \mathbf{L} operators leads to higher order linear differential equations of the functions Ψ_{n} by recalling the definitions of the operators

$$
\begin{equation*}
\mathbf{a}=\sqrt{\frac{m \omega}{2 \hbar}}\left(\hat{x}+\frac{i}{m \omega} \hat{p}\right), \quad \mathbf{a}^{\dagger}=\sqrt{\frac{m \omega}{2 \hbar}}\left(\hat{x}-\frac{i}{m \omega} \hat{p}\right) \tag{21}
\end{equation*}
$$

in the QM harmonic oscillator, obeying $\left[\mathbf{a}, \mathbf{a}^{\dagger}\right]=\mathbf{1}$, where m is the particle's mass, ω is the angular frequency, and \hbar is the reduced Planck's constant $\left(\frac{h}{2 \pi}\right)$.

The Heisenberg uncertainty relations reveal that the momentum operator \hat{p} in (21) can be realized as a differential operator $\hat{p} \leftrightarrow-i \hbar \frac{d}{d x}$. And vice versa, the \hat{x} operator can be realized in terms of momentum derivatives $\frac{d}{d p}$. Because the \mathbf{L}, \mathcal{P} operators are explicitly constructed in terms of the $\mathbf{1}, \mathbf{a}, \mathbf{a}^{\dagger}$ operators, and which in turn, can be realized in terms of x and $\frac{d}{d x}$, the full operator $\left(\mathbf{L}_{*} \mathbf{L}_{*} \ldots \mathbf{L}_{*}-\mathcal{P}\right)$ turns into a (higher order) linear differential operator acting on Ψ_{n}.

Consequently, in this case it is appropriate to say that Ψ_{n} is a null eigenfunction of the full operator encompassed inside the parenthesis, with zero eigenvalue. This implies that the Ψ_{n} 's (for all n) are the null eigenfunctions of the infinite set of (higher order) linear differential equations $\left(\mathbf{L}_{*} \mathbf{L}_{*} \ldots \mathbf{L}_{*}-\mathcal{P}\right) \Psi_{n}=0$, with zero eigenvalue. Since the Ψ_{n} 's themselves are a superposition of the QM harmonic oscillator eigenstates (bits), the latter linear differential equations can be decomposed themselves into an even larger set of linear differential equations involving the harmonic oscillator energy eigenstates $\phi_{l}(x),(l=0,1,2, \ldots)$, which are given by the product of Gaussian exponentials $e^{-x^{2}}$ times the Hermite polynomials $H_{l}(x)$. Hence, one ends with a very large number of differential constraints on the harmonic oscillator energy eigenstates that can only be satisfied, if, and only if, the diagonal entries of $\mathbf{L}_{*} \mathbf{L}_{*} \ldots \mathbf{L}_{*}$ have the following form for n odd

$$
\begin{equation*}
\left(\left(\mathbf{a a}^{\dagger}\right)^{\alpha} ; Q_{n 1}\left(\mathbf{a}, \mathbf{a}^{\dagger}\right) ; \ldots, Q_{n l_{1}}\left(\mathbf{a}, \mathbf{a}^{\dagger}\right) \mathbf{a}^{l_{1}+1} ; Q_{n l_{1}+1}\left(\mathbf{a}, \mathbf{a}^{\dagger}\right) ; \ldots, Q_{n l_{2}}\left(\mathbf{a}, \mathbf{a}^{\dagger}\right) \mathbf{a}^{l_{2}+1}, \ldots\right) \tag{22}
\end{equation*}
$$

where $Q_{n l}$ are polynomials in $\mathbf{a}, \mathbf{a}^{\dagger}$ and α is an integer.
Because the first binary coefficient is nonvanishing for n odd, the action of the first entry of (22) on any Ψ_{n} is $\left(\mathbf{a a}^{\dagger}\right)^{\alpha}|0\rangle>=|0\rangle>$. The action of the remaining entries of (22) on the bits components $|l\rangle$ of Ψ_{n} are trivially zero at the location of the vanishing binary coefficients (in the binary expansion of Ψ_{n}).

Whereas the action at the location of the non-vanishing binary coefficients is also zero because

$$
\begin{equation*}
Q_{n l_{1}}\left(\mathbf{a}, \mathbf{a}^{\dagger}\right) \mathbf{a}^{l_{1}+1}\left|l_{1}\right\rangle=0, \quad Q_{n l_{2}}\left(\mathbf{a}, \mathbf{a}^{\dagger}\right) \mathbf{a}^{l_{2}+1}\left|l_{2}\right\rangle=0, \ldots \tag{23}
\end{equation*}
$$

Consequently, the only non-vanishing entry-result of the composition of the operators $\mathbf{L}_{*} \mathbf{L}_{*} \ldots \mathbf{L}_{*}\left|\Psi_{n}\right\rangle$ turns out to be $\left(\mathbf{a a}^{\dagger}\right)^{\alpha}|0\rangle=|0\rangle$, and which agrees precisely with $\mathcal{P}_{n=o d d}\left|\Psi_{n}\right\rangle=\left|\Psi_{1}\right\rangle=|0\rangle$.

When n is even, the diagonal entries of $\mathbf{L}_{*} \mathbf{L}_{*} \ldots \mathbf{L}_{*}$ must have the following form
$\left(\tilde{Q}_{n 0}\left(\mathbf{a}, \mathbf{a}^{\dagger}\right), \tilde{Q}_{n 1}\left(\mathbf{a}, \mathbf{a}^{\dagger}\right), \ldots,\left(\mathbf{a a}^{\dagger}\right)^{\beta} \frac{\mathbf{a}^{l_{1}}}{\sqrt{l_{1}!}}, \tilde{Q}_{n l_{1}+1}\left(\mathbf{a}, \mathbf{a}^{\dagger}\right), \ldots, Q_{n l_{2}}\left(\mathbf{a}, \mathbf{a}^{\dagger}\right) \mathbf{a}^{l_{2}+1}, \ldots\right)$
with β an integer. Following the same arguments as above, one learns that the only non-vanishing result from the action of $\mathbf{L}_{*} \mathbf{L}_{*} \ldots \mathbf{L}_{*}\left|\Psi_{n}\right\rangle$ is in the entry

$$
\begin{equation*}
\left(\mathbf{a a}^{\dagger}\right)^{\beta} \frac{\mathbf{a}^{l_{1}}}{\sqrt{l_{1}!}}\left|l_{1}\right\rangle=\left(\mathbf{a a}^{\dagger}\right)^{\beta}|0\rangle=|0\rangle \tag{25}
\end{equation*}
$$

and which agrees with $\mathcal{P}_{n=\text { even }}\left|\Psi_{n}\right\rangle=\left|\Psi_{1}\right\rangle=|0\rangle$. (A word of caution, the values of l_{1}, l_{2}, \ldots in eq-(22) do not necessarily match those in eqs-(24). Instead of writing $l_{1}^{\prime}, l_{2}^{\prime}, \ldots$ in (24) we just dropped the primes).

In order to prove eqs- $(22,24)$ one has to introduce suitable Polynomials (to be determined afterwards) $\left\{B_{n l}\left(\mathbf{a}, \mathbf{a}^{\dagger}\right), C_{n l}\left(\mathbf{a}, \mathbf{a}^{\dagger}\right)\right\}$ in the diagonal entries of the early expressions for the projection operators in eqs- $(6,8 \mathrm{a})$, and corresponding to the location of the non-vanishing binary coefficients, as follows
$\mathcal{P}_{o d d}=\operatorname{Diag}\left(\mathbf{1}, \mathbf{1}, \mathbf{1}, \ldots B_{n l_{1}} \mathbf{a}^{l_{1}+1}, \mathbf{1}, \mathbf{1}, \ldots B_{n l_{2}} \mathbf{a}^{l_{2}+1}, \mathbf{1}, \mathbf{1}, \ldots B_{n l_{3}} \mathbf{a}^{l_{3}+1}, \ldots\right)$
$\mathcal{P}_{\text {even }}=\operatorname{Diag}\left(\mathbf{1}, \mathbf{1}, \mathbf{1}, \ldots \frac{\mathbf{a}^{l_{1}}}{\sqrt{l_{1}!}}, \mathbf{1}, \mathbf{1}, \ldots C_{n l_{2}} \mathbf{a}^{l_{2}+1}, \mathbf{1}, \mathbf{1}, \ldots C_{n l_{3}} \mathbf{a}^{l_{3}+1}, \ldots\right)$
In order to simplify the task enormously one may choose again the ansatz by setting the polynomials to be functions $B_{n l}(\mathbf{N}), C_{n l}(\mathbf{N})$ of the number operator $\mathbf{N}=\mathbf{a}^{\dagger} \mathbf{a}$ only. The expressions of these Polynomials $\left\{B_{n l}(\mathbf{N}), C_{n l}(\mathbf{N})\right\}$ are determined in three steps : firstly, one inserts the modified expression for the projection operators provided by eqs- $(26,27)$; secondly, one performs the composition of the operators $\mathbf{L}_{*} \mathbf{L}_{*} \ldots \mathbf{L}_{*}$ and equates it with the diagonal entries of eqs- $(22,24)$ (for n odd, even). This procedure leads to a set of equations from which one can deduce the functional form of the polynomials $\left\{B_{n l}(\mathbf{N}), C_{n l}(\mathbf{N})\right\}$. Thirdly, the expressions of the unspecified polynomials $Q_{n l}(\mathbf{N}) ; \tilde{Q}_{n l}(\mathbf{N})$ in eqs$(22,24)$ are finally determined in terms of $\left\{B_{n l}(\mathbf{N}), C_{n l}(\mathbf{N})\right\}$. The reason eqs$(22,24)$ have such diagonal form in terms of the polynomials $Q_{n l}\left(\mathbf{a}, \mathbf{a}^{\dagger}\right), \tilde{Q}_{n l}\left(\mathbf{a}, \mathbf{a}^{\dagger}\right)$,
is because the \mathbf{a}^{\dagger} terms are always present whenever the operators $\mathbf{L}_{3 n+1}=$ $\mathbf{I}+\mathcal{L}^{+}+\mathcal{P}$ appear in the composition $\mathbf{L}_{*} \mathbf{L}_{*} \ldots \mathbf{L}_{*}$.

2.4 Cycle Identities

The Collatz conjecture would be false if there are nontrivial cycles besides the trivial one $\{1,4,2,1,4,2,1, \ldots\}$. If there exists at least one nontrivial cycle, this implies that there is at least one value of n such that Ψ_{n} satisfies $\left(\mathbf{L}_{*} \mathbf{L}_{*} \ldots \mathbf{L}_{*}-\mathbf{I}\right) \Psi_{n}=0$, with zero eigenvalue, where the identity operator \mathbf{I} is the one responsible for the cycle. This very special null eigenfunction condition would lead, again, to many differential constraints imposed on the harmonic oscillator energy eigenstates appearing in the binary decomposition of Ψ_{n}. Such differential constraints could be satisfied if, and only if, the diagonal entries of $\mathbf{L}_{*} \mathbf{L}_{*} \ldots \mathbf{L}_{*}$ have the following form for n odd

$$
\begin{equation*}
\left(\left(\mathbf{a a}^{\dagger}\right)^{\alpha_{o}} ; Q_{n 1}^{\prime}\left(\mathbf{a}, \mathbf{a}^{\dagger}\right) ; \ldots, \frac{\left(\mathbf{a a}^{\dagger}\right)^{\alpha_{l_{1}}}}{\left(1+l_{1}\right)^{\alpha_{l_{1}}}} ; Q_{n l_{1}+1}^{\prime}\left(\mathbf{a}, \mathbf{a}^{\dagger}\right) ; \ldots, \frac{\left(\mathbf{a a}^{\dagger}\right)^{\alpha_{l_{2}}}}{\left(1+l_{1}\right)^{\alpha_{l_{2}}}}, \ldots\right) \tag{28}
\end{equation*}
$$

where $Q_{n l}^{\prime}$ are polynomials in $\mathbf{a}, \mathbf{a}^{\dagger}$ and the exponents α 's (corresponding to the locations of the non-vanishing binary coefficients) are integers. When n is even, the diagonal entries of $\mathbf{L}_{*} \mathbf{L}_{*} \ldots \mathbf{L}_{*}$ must have the following form
$\left(\tilde{Q}_{n 0}^{\prime}\left(\mathbf{a}, \mathbf{a}^{\dagger}\right), \tilde{Q}_{n 1}^{\prime}\left(\mathbf{a}, \mathbf{a}^{\dagger}\right), \ldots, \frac{\left(\mathbf{\mathbf { a a } ^ { \dagger }}\right)^{\beta_{l_{1}}}}{\left(1+l_{1}\right)^{\beta_{l_{1}}}}, \tilde{Q}_{n l_{1}+1}^{\prime}\left(\mathbf{a}, \mathbf{a}^{\dagger}\right), \ldots, \frac{\left(\mathbf{a a}^{\dagger}\right)^{\beta_{l_{2}}}}{\left(1+l_{2}\right)^{\beta_{l_{2}}}}, \ldots\right)$
where the exponents β 's are positive integers and $\tilde{Q}_{n l}^{\prime}$ are polynomials in $\mathbf{a}, \mathbf{a}^{\dagger}$. Once again, to simplify the task enormously one may choose the ansatz by setting the polynomials to be functions $Q_{n l}^{\prime}(\mathbf{N}), \tilde{Q}_{n l}^{\prime}(\mathbf{N})$ of the number operator $\mathbf{N}=\mathbf{a}^{\dagger} \mathbf{a}$ only.

One may note that the action of $\frac{\left(\mathbf{a a}^{\dagger}\right)^{p}}{(1+l)^{p}}$ on the bit states $|l\rangle$ yelds $\frac{(1+l)^{p}}{(1+l)^{p}}|l\rangle=$ $|l\rangle$ and effectively behaves like a unit operator. Whereas the action of the entries involving the Polynomials $Q_{n l}^{\prime}, \tilde{Q}_{n l}^{\prime}$ yields trivially zero because they correspond to the locations of the vanishing binary coefficients (in the expansion of Ψ_{n}).

The key question is : can one find a judicious choice of yet another set of different diagonal projection operators \mathcal{P}_{n} (for n odd, even) and such that the diagonal entries of $\mathbf{L}_{*} \mathbf{L}_{*} \ldots \mathbf{L}_{*}$ match those in eqs- $(28,29)$? If so, this will lead to the existence of a nontrivial cycle. However, if the Collatz conjecture is true this implies that one cannot find such a judicious set of projection operators \mathcal{P}_{n} for any values of n. Therefore, the question of whether or not there are nontrivial cycles appears to be a "simpler" way in proving/disproving the conjecture.

Concluding, we found that the Collatz conjecture can be encoded in the infinite number of equations $\left(\mathbf{L}_{*} \mathbf{L}_{*} \ldots \mathbf{L}_{*}-\mathcal{P}\right)\left|\Psi_{n}\right\rangle=0$, associated to every
positive integer, even or odd. We studied the particular case about the existence of (non-trivial) null eigenfunctions, and the more restrictive case of the operator identities $\mathbf{L}_{*} \mathbf{L}_{*} \ldots \mathbf{L}_{*}-\mathcal{P}=0$. In the latter case, because one has an infinite number of operators at our disposal, in principle, one could have an infinite number of operator identities $\mathbf{L}_{*} \mathbf{L}_{*} \ldots \mathbf{L}_{*}-\mathcal{P}=0$, if, and only if, all of these relations are mutually consistent (as shown in eqs-(20)). The null egenfunctions and operator identities cases, both require finding the suitable expressions for the projection operators \mathcal{P}_{n} that map every state Ψ_{n} to the ground state Ψ_{1}, and which in turn, are provided in terms of a family of Polynomials of the $\mathbf{a}, \mathbf{a}^{\dagger}$ operators. To simplify the calculations one may postulate the anstaz that all of the polynomials are functions of the number operator $\mathbf{N}=\mathbf{a}^{\dagger} \mathbf{a}$. If these two (extremely laborious) procedures turn out to be satisfactory, then the Collatz conjecture is true.

If one replaced the $3 n+1$ iteration (n odd) for $3 n+b$, with b odd and greater than 1, the operator representation for the process $\Psi_{n} \rightarrow \Psi_{3 n+b}$ will no longer have the diagonal form $\left(\mathbf{I}+\mathcal{L}^{+}+\mathcal{P}\right)_{n=o d d}$, and which is intrinsically tied up to the very special decomposition of $3 n+1=n+2 n+1$, but it is going to have another expression given by $\mathbf{L}_{3 n+b}=\left(\mathbf{I}+\mathcal{L}^{+}+\mathcal{P}\right)_{n=o d d}+\Delta_{n, b-1}$, where $\Delta_{n, b-1}$ is now an off-diagonal operator-valued matrix whose entries are comprised of $\mathbf{1}, \mathbf{a}, \mathbf{a}^{\dagger}$, and that maps Ψ_{n} to Ψ_{b-1}.

Consequently, due to the presence of this extra off-diagonal operator-valued matrix $\Delta_{n, b-1}$, it is now possible to find null eigenfunctions $\left(\mathbf{L}_{*} \mathbf{L}_{*} \ldots \mathbf{L}_{*}-\right.$ I) $\Psi_{n}=0$ and obtain nontrivial cycles for very specific values of b and n. In this case, the generalization of the Collatz conjecture would be false. For example, when $b=n$ one has the trivial cycle $\{b, 4 b, 2 b, b, 4 b, 2 b, b, \ldots\}$. Nowak [6] has found that when $a=2000003$, any iteration process of $n=n_{o}$ that is not a multiple of 2000003 will end up in the cycle involving the Mersenne prime $127=2^{7}-1$. This cycle based on 127 has a length of 15126 steps and a maximum value (number) of 48382644622 . Nowak uses the iteration $\frac{3 n+b}{2}$ for n odd, and $\frac{n}{2}$ for n even as usual.

To finalize we should add that an heuristic explanation as to why there are no divergences in the Collatz process can be found if one proceeds with the Syracuse iteration (proposed by Hasse) $n \rightarrow \frac{3 n+1}{2}$, when n is odd, and $n \rightarrow \frac{n}{2}$ when n is even. The former leads to a dilation with a factor of $\frac{3}{2}$. The latter leads to a contraction by a factor of $\frac{1}{2}$. Because there are an equal number of even and odd numbers, on average, the overall scaling factor is $\frac{3}{2} \times \frac{1}{2}=\frac{3}{4}<1$, leading to a contraction, and the Collatz process does not diverge. If one uses, for example, the iteration $\frac{5 n+1}{2}$ for n odd, the overall scaling factor would be $\frac{5}{2} \times \frac{1}{2}=\frac{5}{4}>1$, and the process should diverge.

APPENDIX

In the Appendix we provide two examples of how to perform the composition of operators by adding a judicious string of unit operators 1's to the left, and/or to the right, of the diagonal entries such that all the operators are now represented by diagonal matrices of the same size. It is also necessary to embed
all the column vectors into a column vector of maximal size $N_{\max }$ as well by adding extra zeros.

Let us consider the Collatz process $\{8,4,2,1\}$ associated with the states $\left\{\Psi_{8}, \Psi_{4}, \Psi_{2}, \Psi_{1}=|0\rangle\right\}$. The projection operator $\mathcal{P}\left[\Psi_{8}\right]=\operatorname{Diag}\left(\mathbf{1}, \mathbf{1}, \mathbf{1}, \frac{\mathbf{a}^{3}}{\sqrt{3}!}\right)$ maps Ψ_{8} into Ψ_{1}, where Ψ_{8} is represented by the column vector of maximal size whose entries are $\{0,0,0,|3\rangle\}$.

The lowering operators \mathcal{L}^{-}that reduce the bits by one unit are

$$
\begin{equation*}
\mathbf{L}\left[\Psi_{8}\right]=\operatorname{Diag}\left(\mathbf{1}, \mathbf{1}, \mathbf{1}, \frac{\mathbf{a}}{\sqrt{3}}\right) ; \mathbf{L}\left[\Psi_{4}\right]=\operatorname{Diag}\left(\mathbf{1}, \mathbf{1}, \frac{\mathbf{a}}{\sqrt{2}}\right) ; \quad \mathbf{L}\left[\Psi_{2}\right]=\operatorname{Diag}(\mathbf{1}, \mathbf{a}) \tag{A.1}
\end{equation*}
$$

Since the last two diagonal operators do not have the same size as the first diagonal operator of maximal size, we add the sufficient number of $\mathbf{1}$'s entries to their left and arrive at

$$
\begin{equation*}
\mathbf{L}\left[\Psi_{4}\right] \rightarrow \operatorname{Diag}\left(\mathbf{1}, \mathbf{1}, \mathbf{1}, \frac{\mathbf{a}}{\sqrt{2}}\right), \mathbf{L}\left[\Psi_{2}\right] \rightarrow \operatorname{Diag}(\mathbf{1}, \mathbf{1}, \mathbf{1}, \mathbf{a}) \tag{A.2}
\end{equation*}
$$

Now one can verify that the products obey the relation
$\operatorname{Diag}(\mathbf{1}, \mathbf{1}, \mathbf{1}, \mathbf{a}) \operatorname{Diag}\left(\mathbf{1}, \mathbf{1}, \mathbf{1}, \frac{\mathbf{a}}{\sqrt{2}}\right) \operatorname{Diag}\left(\mathbf{1}, \mathbf{1}, \mathbf{1}, \frac{\mathbf{a}}{\sqrt{3}}\right)=\operatorname{Diag}\left(\mathbf{1}, \mathbf{1}, \mathbf{1}, \frac{\mathbf{a}^{3}}{\sqrt{3!}}\right)=\mathcal{P}\left[\Psi_{8}\right]$
and, therefore one has the operator relation $\mathbf{L}_{*} \mathbf{L}_{*} \ldots \mathbf{L}_{*}-\mathcal{P}=0$ in this very special case. It is also necessary to embed the column vector Ψ_{4} with entries $\{0,0,|2\rangle\}$ into a column vector with entries $\{0,0,0,|2\rangle\}$; and the column vector Ψ_{2} with entries $\{0,|1\rangle$) into the one with entries $\{0,0,0,|1\rangle\}$. In this way the latter column vectors will have the same number of entries as Ψ_{8} whose entries are $\{0,0,0,|3\rangle\}$.

In the second example we shall see the case where we add the sufficient number of 1's entries to their right, instead. Let us consider the Collatz process $\{3,10,5,16,8,4,2,1\}$ associated with the states $\left\{\Psi_{3}, \Psi_{10}, \Psi_{5}, \Psi_{16}, \Psi_{8}, \Psi_{4}, \Psi_{2}, \Psi_{1}=\right.$ $|0\rangle\}$. One can read-off the maximum value given by 16 in the Collatz chain. The binary representation of 16 is 2^{4}, thus the diagonal matrix of maximal size will have $4+1=5$ entries since Ψ_{16} is represented by a column vector whose entries are $\{0,0,0,0,|4\rangle\}$.

Because Ψ_{3} is represented by a column vector whose entries are $\{|0\rangle,|1\rangle\}$ one needs to add 3 extra zeros $\{|0\rangle,|1\rangle\}, 0,0,0\}$ in order to match the same number of entries as Ψ_{16} which will appear in the Collatz chain process.

The expression for the operator $\mathbf{L}\left[\Psi_{3}\right]$ that maps Ψ_{3} into Ψ_{10} has the $\mathbf{I}+$ $\mathcal{L}^{+}+\mathcal{P}$ form given by

$$
\begin{equation*}
\mathbf{L}\left[\Psi_{3}\right]=\operatorname{Diag}(\mathbf{1}, \mathbf{1})+\operatorname{Diag}\left(\mathbf{a}^{\dagger}, \frac{\mathbf{a} \dagger}{\sqrt{2}}\right)+\operatorname{Diag}\left(\mathbf{1}, \mathbf{a}^{2}\right) \tag{A.4}
\end{equation*}
$$

A careful inspection of the Collatz chain process reveals that now we must add three 1's entries to their right, leading to diagonal operators of the maximal size

$$
\begin{equation*}
\mathbf{L}\left[\Psi_{3}\right] \rightarrow \operatorname{Diag}(\mathbf{1}, \mathbf{1}, \mathbf{1}, \mathbf{1}, \mathbf{1})+\operatorname{Diag}\left(\mathbf{a}^{\dagger}, \frac{\mathbf{a} \dagger}{\sqrt{2}}, \mathbf{1}, \mathbf{1}, \mathbf{1}\right)+\operatorname{Diag}\left(\mathbf{1}, \mathbf{a}^{2}, \mathbf{1}, \mathbf{1}, \mathbf{1}\right) \tag{A.5}
\end{equation*}
$$

and that matches the number of entries of the column vector of maximal size Ψ_{16}, whose entries are $\{0,0,0,0,|4\rangle\}$. Finally one can show that $\mathbf{L}\left[\Psi_{3}\right] \Psi_{3}=\Psi_{10}$ after using the binary composition rules
$|1\rangle+|1\rangle=|2\rangle ;|2\rangle+|2\rangle=|3\rangle,|l\rangle+|l\rangle=|l+1\rangle,|l+1\rangle+|l+1\rangle=|l+2\rangle, \ldots$
with

$$
\begin{equation*}
\Psi_{3} \equiv\{|0\rangle,|1\rangle, 0,0,0\}, \quad \Psi_{10} \equiv\{0,|1\rangle, 0,|3\rangle, 0\} \tag{A.6}
\end{equation*}
$$

In other words, one has a map from $\Psi_{3}=\{|0\rangle,|1\rangle, 0,0,0\}$ into $\Psi_{10}=\{0,|1\rangle, 0,|3\rangle, 0\}$ corresponding to the first Collatz iteration $\mathcal{C}(3)=10$. Despite this very tedious process, one can show that the composition of all the 7 string of operators acting on Ψ_{3} will lead finally, and effectively, to the projection operator acting on $\Psi_{3}: \mathcal{P}\left[\Psi_{3}\right] \Psi_{3}=\Psi_{1}=|0\rangle$.

Acknowledgements

We (CCP) thank M. Bowers for invaluable assistance.

References

[1] The Collatz Conjecture. Wikipedia, https://en.wikipedia.org/wiki/Collatz_conjecture
[2] Lagarias, Jeffrey C., ed. (2010). The ultimate challenge: the $3 x+1$ problem. Providence, R.I.: American Mathematical Society. p. 4.
Lagarias, Jeffrey C. (1985). "The $3 \mathrm{x}+1$ problem and its generalizations". The American Mathematical Monthly. 92 (1): 323.
[3] Barina, David (2020). "Convergence verification of the Collatz problem". The Journal of Supercomputing. doi:10.1007/s11227-020-03368-
[4] R. Carbo-Dorca, "Boolean Hypercubes, Mersenne numbers and the Collatz conjecture", J. Math. Sic. Mod. 3 (2020) 120-129.
[5] R. Carbo-Dorca, "Natural Vector Spaces : Inward Power and Minkowski Norm of a Natural Vector, Natural Boolean Hypercubes and Fermat's Last Theorem", J. Math. Chem. 55 (2017) 914-940.
R. Carbo-Dorca, "Boolean Hypercubes and the Structure of Vector Spaces:, J. Math. Sci. Mod 1 (2018) 1-14.
[6] H. Nowak, "Collatz Conjecture and Emergent Properties" https://www.youtube.com/watch?v=QrzcHhBQ2b0
[7] F. Oan and J. P. Draayer, "A polynomial approach to the Collatz conjecture", arXiv.org : 1905.08462 [math.NT].
[8] J.H.Conway, N.J.A Sloane, Sphere Packings, Lattices and Groups (Springer 1999).

