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Abstract 
• Classical superconducting circuit simulators are powerful and 

available. 

• Include Josephson junction as basic element. 

• Provide efficient time-domain simulations of complex circuits. 

• May show effects otherwise attributed to quantum circuits. 

• Circuits of coupled superconducting qubits are being developed 
for quantum computing (QC). 

• Entangled quantum theory incompatible with classical simulators. 

• Quantum model difficult to simulate on conventional computers 
for complex circuits already being tested. 

• Classical circuit simulations should provide the baseline to 
compare with quantum effects, but this is seldom done. 

• Coupled oscillators are delocalized even in classical limit. 
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Superconducting Circuit Simulators 

• Based on standard semiconductor circuit simulation tool 
“SPICE” with Josephson junction (JJ) added as standard 
element. 

• Available on a variety of computer platforms, with some in 
public domain [1]. 

• Widely used to simulate operation of classical superconducting 
digital and analog circuits. 

• Provide currents and voltages on ps time-scale. 

• Simulators can also include effects of noise and thermal 
fluctuations. 
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JJs in Classical and Quantum Circuits 

• A JJ is a tunable inductor in parallel with a nonlinear resistor 
and a capacitor. 

• The maximum current through the lossless inductor is the 
critical current IC. 

• For larger currents, the JJ is resistive. 

• The JJ is also an LC resonator, with frequency ~ 10 GHz, 
which is low-loss (high-Q) only for very low T. 

• Classical circuits generally switch between lossless and 
lossy states. 

• Quantum circuits (qubits) generally function using high-Q 
resonators at very low T. 
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Circuit Model vs. Quantum State Model 

• A classical circuit has a definite I(t) and V(t), with random 
thermal noise contributions. 

• A quantum-modified circuit may have a quantum noise 
contribution at low T, but is otherwise described by a classical 
circuit model. 

• A circuit with quantum superposition does NOT have a 
definite I(t) and V(t), and cannot be described by a classical 
circuit model. 

• This is believed to require a quantum state model, leading 
to entanglement if two or more states are coupled. 
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Entanglement and the Promise of 
Quantum Computing 

• In an N-bit classical computing system, there are 2N possible 
states, but only one at a time. 

• In an N-qubit QC system with entanglement, 2N quantum 
states may be processed in parallel. 

– When N = 300, 2N is greater than the number of atoms in 
the known universe. 

– This massive parallelism could enable QC to solve 
problems impossible by any classical computer. 

– This theoretical parallelism also explains why this cannot 
be simulated efficiently on a classical computer. 
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Why use classical simulator for quantum problem? 

• Because these are circuits with classical inputs and outputs, 
and the baseline performance should be that predicted by the 
classical circuit model. 

• Researchers may identify effects as “quantum” that actually 
follow from a classical model. 

• Re-analysis of “quantum” experiments  in JJs using classical 
circuit simulators has reproduced “quantum” results [2-4].  

– However, this analysis has been ignored by the QC  
community. 

• QC is the first technology promising revolutionary 
performance based on quantum entanglement. 

– We should be skeptical until we have clear proof [5]. 
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Thermal and Quantum Switching of JJ 

• A JJ just below IC can switch to the normal state if driven by 
noise or fluctuations. 

• Experiments as far back as the 1980s [6] showed that the 
thermal fluctuation current decreased as the JJ was cooled to 
very low T, but then this decrease saturated. 

• These results were accepted as proving “macroscopic quantum 
tunneling” (MQT) associated with quantum fluctuations. 

– This MQT in JJs provided the basis for later suggestions to 
use JJs for qubits. 

• However, more recent reconsideration of the same data 
showed that this could be simulated using fully classical circuit 
simulations [3], suggesting that MQT may not be needed. 
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Ising Model for Optimization Problems 

• One type of special-purpose computer is based on the Ising 
Model, which minimizes the energy of a 2D array of magnets. 

– One can obtain “simulated annealing” of this model by 
gradually cooling the arrays of magnets. 

– This classical model maps onto general optimization 
problems in computer science. 

• In addition to solving this on a general-purpose digital 
computer, this has also been implemented in several classical 
physical systems at room temperature. 

– CMOS chips and Photonic oscillator arrays [7,8]. 

9 



Is “Quantum Annealer” a Quantum Computer? 

• Another implementation of Ising model is a 2D array of 
Josephson junctions in coupled inductive loops 

– This superconducting analog computer is being sold by D-
Wave Systems as a “Quantum Annealer” [9]. 

– This superconducting chip operates at 20 mK in a dilution 
refrigerator, and solves optimization problems. 

– This operates as a classical superconducting circuit using 
thermal fluctuations, but D-Wave claims that this is 
quantum-enhanced by quantum fluctuations and MQT 
(but not an entanglement-based quantum computer). 

– Circuits should be modeled with classical circuit simulators, 
and operation compared to classical Ising computers. 
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Quantum Entanglement of Supercond. Qubits 

• Other superconducting QC programs (Google, IBM) use 
entangled superconducting qubits to form quantum logic 
gates (such as CNOT). 

– Qubits such as transmons are superconducting resonators with 
tunable frequencies, each 2 quantum states – no classical limit. 

– Resonators are weakly coupled to each other or to a common 
transmission line -- necessary to enable quantum entanglement. 

• Designed to solve complex quantum algorithms for fully 
entangled circuit of ~100 logical qubit gates, but not soon. 

– Noisy environment destroys quantum coherence, creating 
errors. 

– In principle, quantum error correction could use extra qubits to 
correct errors in logical qubits, but not clear how. 
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Noisy Intermed.-Scale Quantum (NISQ) Systems  

• Accepted by QC researchers that near-term systems of ~ 50-
100 superconducting qubits are NISQ circuits without full 
quantum coherence [10-12]. 

– Massive parallel performance not possible with NISQ. 

– Several practical algorithms have been suggested for 
similar NISQ circuits, such as quantum chemistry [13]. 

• “Quantum Supremacy” over classical computers has been 
claimed for some NISQ superconducting circuits. 

– This means that the fully entangled quantum model 
cannot be simulated on a classical computer, because of 
the 2N parallelism required. 

– It does NOT mean that this NISQ circuit is solving a useful 
computationally difficult problem. 
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Coupled Superconducting Oscillators 
• Classical circuit simulations can provide baseline performance 

of NISQ superconducting circuits, even relatively large ones. 
– This is seldom done, but it should be. 

• Note that these coupled qubits are coupled oscillators, which 
are well known in classical and quantum physics. 
– A linear array of coupled identical classical oscillators forms a band of 

delocalized collective modes, analogous to energy bands in crystals. 

• Ref. [14] examined a chain of 9 coupled qubit oscillators. 
– With all tuned to the same resonant frequency, an excitation coupled 

at one end propagated to the other end. 

– With the middle resonator detuned, the two ends were decoupled. 

– This was interpreted in terms of entangled qubits, but it also follows 
from classical coupled modes. 

– So does this really validate entangled quantum theory? 
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Quantized Classical Oscillators? 

• Experimental evidence for quantized energy levels in 
superconducting oscillators. 
– Cannot be obtained from classical circuit model. 

• Consider model for classical oscillators with quantized energies 
E = (n+½) hf. 
– These have currents and voltages I(t) and V(t), but only amplitudes 

with these total energies permitted. 

– This allows zero-point oscillation in ground state at T=0, and excited 
states coupled by photons with hf. 

• Such a semi-classical model would slightly modify the classical 
circuit model, without any superposition or entanglement. 
– This might provide an alternative simple model to compare with 

experiments. 
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Conclusions 

• Superconducting circuit simulators including Josephson 
junctions can describe the classical dynamics of complex 
classical circuits. 

• These simulators do not include the quantum state model or 
entanglement, but should still provide a first approximation 
for superconducting quantum annealing and quantum gate 
circuits. 

• To the extent that classical simulators reproduce the essential 
properties of prototype superconducting quantum circuits, 
those circuits are unlikely to provide a significant quantum 
advantage. 
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