
R PACKAGE ARTICLE 1

datasailr - An R Package for Row by Row
Data Processing, Using DataSailr Script
by Toshihiro Umehara

Abstract Data processing and data cleaning are essential steps before applying statistical or machine
learning procedures. R provides a flexible way for data processing using vectors. R packages also
provide other ways for manipulating data such as using SQL and using chained functions. I present
yet another way to process data in a row by row manner using data manipulation oriented script,
DataSailr script. This article introduces datasailr package, and shows potential benefits of using
domain specific language for data processing.

Introduction

For data analysis and statistics, processing data is a very important step before applying statistical
procedures or machine learning procedures. R as a programming language provides a very flexible
way of data processing using vectors. There are also R packages that help users to manipulate data in
different ways, such as sqldf(Grothendieck, 2017) and dplyr(Wickham et al., 2021). sqldf enables users
to write SQL for data manipulation. dplyr enables users to write data manipulation procedures in a
sequential way by chaining functions, which has a great compatibility with forward-pipe operators
%>%1 and |>2.

Different from R, SAS3 software (SAS Institute, 1985), as one of the most famous commercial
statistical systems, provides another way to manipulate data. SAS software provides DATA blocks,
within which users can write a script that is specific for data manipulation in a row wise manner. The
separation of data manipulation steps and statistical procedures has a benefit to focus on each step
and improved readability. Its row wise data manipulation script is easy to understand and learn.

This paper describes the datasailr package, the package that enables row by row data processing,
using DataSailr script. I will explain how to use this package, the grammar of DataSailr script and its
limitations. Also, there is another aim of this paper. As mentioned about SAS software’s DATA block,
I would like to emphasize potential benefits of using domain specific language for data processing by
introducing this package.

Motivation

DataSailr, which package name is datasailr, brings intuitive row by row data manipulation to R. The
data manipulation instructions for each row is written in DataSailr script, which is an easy script
designed especially for data manipulation. In default R, data frames are manipulated using column
vectors and vector operations. It depends on each user’s preference and objective, but row wise
approach can reduce complexity compared to vector calculation.

A famous R package, dplyr, has been improving the same kind of points. It enables data manipu-
lation without thinking much about column vectors. Pipe operators, %>% or |>, and dplyr functions
realize intuitive data manipulation flow. DataSailr enables the same kind of things with a single
DataSailr script.

How DataSailr Works

Applying DataSailr Script to Data Frame

DataSailr has a main function called sail() function. It takes data frame and DataSailr script, and the
data frame is processed following the script. The first argument is data frame, and can work with pipe
operators. The second argument is DataSalr script, and each row is processed following this script as
described in Figure 1. UTF-8 encoding is strongly encouraged for both DataSailr scripts and input

1Forward-pipe operator was developed in magrittr(Bache and Wickham, 2020)
2This pipe operator is introduced in a developing version of R (https://developer.r-project.org/blosxom.

cgi/R-devel/NEWS/2021/01/15#n2021-01-15)
3SAS and all other SAS Institute Inc. product or service names are registered trademarks or trademarks of SAS

Institute Inc. in the USA and other countries.

https://CRAN.R-project.org/package=sqldf
https://CRAN.R-project.org/package=dplyr
https://CRAN.R-project.org/package=datasailr
https://CRAN.R-project.org/package=magrittr
https://developer.r-project.org/blosxom.cgi/R-devel/NEWS/2021/01/15##n2021-01-15
https://developer.r-project.org/blosxom.cgi/R-devel/NEWS/2021/01/15##n2021-01-15

R PACKAGE ARTICLE 2

Figure 1: How DataSailr Processes Data

data frame because some built-in functions and regular expression assume UTF-8 encoding for their
behaviors. Also, in writing DataSailr script, using raw character constant literal4 r"(...)" can help
when the script contains backslashes which are interpreted as parts of escape sequences of R string.

Example of DataSailr Script

The following example script conducts data processing for R’s built-in ’mtcars’ data. The example script
generates description, country and manufacturer columns for each car using hp and mpg columns and
row names. The script consists of variable assignment, if-else statements, special variables, regular
expression matching, backreference and built-in functions. These topics are explained in the section of
’Grammar of DataSailr Script’.

library(datasailr)
data(mtcars)

result = datasailr::sail(mtcars, '
// Comments in DataSailr start with double slashes
// if-else statement: Check if hp column value is larger than 150 or not.
if(hp > 150){
// Variable assignment: powerful column value is set "powerful"
powerful = "powerful "

}else {
powerful = "normal power "

}

// if-else can also be written like this
if(mpg > 20){ efficient = "efficient " }
else { efficient = "" }

// Regular expressions that match manufacturer names
// Assigning regular expressions to variables do not affect data frame
// , but can become reused at different lines.
germany = re/(^Merc|^Porsche|^Volvo)/
japan = re/(^Mazda|^Honda|^Toyota)/
datsun = re/(^Datsun)/
hornet = re/(^Hornet)/
valiant = re/(^Valiant)/
duster = re/(^Duster)/

// Regular expression matching with special variable _rowname_
if (_rowname_ =~ germany) {
country = "Germany"
// Backreference to matched strings
// rexp_matched(1) means the first grouped sub string.

4available since R 4.0.0. Details can be seen by ?Quotes

R PACKAGE ARTICLE 3

manufacturer = rexp_matched(1)
}else if (_rowname_ =~ japan) {
// semicolons can be used as terminals of statements
country = "Japan"; manufacturer = rexp_matched(1)

}else if (_rowname_ =~ datsun) {
country = "Japan"; manufacturer = "Nissan"

}else if (_rowname_ =~ hornet) {
country = "USA"; manufacturer = "AMC"

}else if (_rowname_ =~ valiant) {
country = "USA"; manufacturer = "Chrysler"

}else if (_rowname_ =~ duster) {
country = "France"; manufacturer = "Renault"

}else{
country = ""
manufacturer = ""

}

// built-in function str_concat()
desc = str_concat("", powerful, efficient, "car")

')

show the first 10 rows of result data frame.
print(head(result[c("hp", "mpg", "desc", "country", "manufacturer")] , 10))

hp mpg desc country manufacturer
Mazda RX4 110 21.0 normal power efficient car Japan Mazda
Mazda RX4 Wag 110 21.0 normal power efficient car Japan Mazda
Datsun 710 93 22.8 normal power efficient car Japan Nissan
Hornet 4 Drive 110 21.4 normal power efficient car USA AMC
Hornet Sportabout 175 18.7 powerful car USA AMC
Valiant 105 18.1 normal power car USA Chrysler
Duster 360 245 14.3 powerful car France Renault
Merc 240D 62 24.4 normal power efficient car Germany Merc
Merc 230 95 22.8 normal power efficient car Germany Merc
Merc 280 123 19.2 normal power car Germany Merc

Grammar of DataSailr Script

In this section, I will explain the grammar of DataSailr script. After reading this section, the example
code above will become more interpretable.

Variables and Assignment

Variables in DataSailr script work in the same meaning as in statistics. They correspond to column
names of data frames. For example, the following code divides the horse power values in hp column
by the number of cylinder in cyl column. The result values are assigned to hp_per_cyl column. If
hp_per_cyl column does not exist yet, new column is created. Otherwise the column values are
updated.

datasailr::sail(mtcars, '
hp_per_cyl = hp / cyl

')

In general-purpose programming language like R, variables usually mean identifiers to point to
some memory or some objects. However, in statistics, data frame column names are usually called
variables. DataSailr scripts follow the statistics way. Variables in scripts correspond to the columns
with the same name.

Special Variables

There are variables called special variables which start and end with underscores. They are listed in
Table 1. They are prepared automatically, and read-only variables.

R PACKAGE ARTICLE 4

Table 1: Special Variables

Special Variables Description

rowname row name
n row number

Types

DataSailr scripts deal with Integer, Double and String. Integer values are automatically converted
to Double values when they are calculated with Double values. Between Integer or Double and
String, built-in functions need to be used for conversion, which are later explained. How R data
frame columns are recognized from DataSailr is summarized in Table 2. About integer, numeric and
character vectors, it is straightforward. R’s boolean vectors are treated as Integer of 0 or 1, and factors
are treated as String.

When you write Strings in DataSailr script, you can use a pair of single quotes or a pair of double
quotes. For single-quoted strings, single quote needs to be escaped by \’, and for double-quoted
strings. double quote needs to be escaped by \". Additionally, when using double quotes, backslashes
are interpreted as a part of escape sequences. \n, \r and \t are interpreted as newline, carriage return
and tab respectively.

Table 2: How R Column Types are Treated in DataSailr

Column of R Data Frame DataSailr

integer vector Integer
numeric (real or decimal) vector Double
character vector String
boolean vector Integer(1 for TRUE, 0 for FALSE)
factor String

In DataSailr, there are two more types, Boolean and Regular Expression. Both of them are not used
for data frame values, but are used for switching flows and string pattern matching. Boolean type
values usually appear within if-else’s condition parts, and are used to switch execution flows based
on the Boolean type values. Regular Expressions are usually used with regular expression matching
operator, which will be explained later in Regular Expression section. It is redundant to write the same
regular expression repeatedly, and regular expressions are allowed to be reused by assigning to some
variable, though this assignment does not affect data frame. This technique is used in the example
script above.

Arithmetic Operators

The following operators in Table 3 can be applied to numbers, or Integers and Doubles. Exceptionally,
only plus sign operator (+) can also be applied to strings, and concatenates them.

Table 3: Arithmetic Operators

Operator Explanation

+ add
- subtract
* multiply
/ divide
** power
ˆ power

R PACKAGE ARTICLE 5

If-else statement

DataSailr script only allows if-else statement as its control flow structure. There are no ’for’ or ’while’
loops. The result of evaluating if’s condition part needs to be DataSailr’s Boolean type, which is true
or false. As to be mentioned, comparison operators, regular expression matching operator and logical
operators return Boolean type values, and they can be used within if’s condition parts.

Comparison and Logical Operators

Comparison and logical operators are listed in Table 4. Equal-to operator can be used for numbers and
strings. Other comparison operators are used for numbers. Logical operators are used for Boolean
values.

Table 4: Comparison and Logical Operators

Operator Explanation

== equal to
> is larger than
>= is larger than or equal to
< is smaller than
<= is smaller than or equal to
&& logical operator AND
|| logical operator OR
! unary logical operator NOT

Built-in Functions

In DataSailr script, built-in functions can be used. Currently, most of the built-in functions are for
manipulating string values. Table 5 shows a list of built-in functions. These functions only conduct
calculation within each row and return values, and can be assigned to variables.

Table 5: Built-in Functions

Function Return Type Description

num_to_str(num) String convert number to string
str_strip(str) String remove white spaces on both sides
str_lstrip(str) String remove white spaces on the left side
str_rstrip(str) String remove white spaces on the right side
str_concat(str1, str2 ...) String concatenate strings
str_repeat(str , num) String repeat str in num times
str_subset(str, num1, num2) String subset str from num1 to num2.

Index starts from 1 (UTF8 compatible)
str_to_num(str) Integer convert string to number

or Double
rexp_matched(num) String backreference for the last regular

expression matched sub strings
print(str1, str2 ...) NA print out values (for debug purpose)

DataSailr Specific Functions

There are also other types of functions such as discard!() and push!() as listed in Table 6. These
functions are used to delete rows and push additional rows respectively. discard!() function drops the
current row from the result data frame. A common usage of this function is to filter out specific rows
with the use of if-else statements. push!() function pushes the current variable values onto the result
data frame. Even after push!() function is executed, the script execution continues on the same input

R PACKAGE ARTICLE 6

row. This results in creating multiple rows from one input row. For example, it is useful to convert
wide format data frame into long format.

The behaviors of these functions are different from builtin-functions in that the number of data
frame rows changes. These functions are not implemented in the same way as built-in functions, but
are implemented in a different layer, which is why they are called DataSailr Specific Functions. Details
are mentioned in source repository’s README file5.

Table 6: DataSailr Specific Functions

Function Description

discard!() drop current row
push!() push the current variable values as an additional row

Missing Values

In DataSailr scripts, single dots (.) represent missing values for numbers, and they are equivalent
to NA values in data frame’s numeric columns. For strings, there are not special signs to represent
missing values, but empty strings ("") represent missing values. It should be noted that NA values in
data frame’s string columns are dealt as empty strings, and also empty strings in data frames are dealt
as empty strings. When you need to differentiate NA and empty strings in data frames, you need to
convert one of them to some string before applying it to DataSailr.

Table 7: Missing Value Representation

Missing value DataSailr

numeric missing value .
string missing value ""

The following code shows how missing values work in DataSailr script. In name column, empty
strings are converted to "Anonymous", and NA is treated as an empty string. Arithmetic calculation
with NA results in NA. Assigning missing value(.) to overweight column results in NA.

col1 = c("Tom", "Jack", NA, "Henry", "Bob")
col2 = c(1.7, 1.5 , 1.5 , 1.65 , 1.5)
col3 = c(50 , 60 , 80 , NA , 100)
df = data.frame(name = col1, height = col2, bw = col3)

datasailr::sail(df, '
// missing value in name string column is set "Anonymous"
if(name == ""){name = "Anonymous"}

// calculation with missing values results in missing values
bmi = bw / (height ^ 2)
if(bmi >= 40){ overweight = 4 }
else if(bmi >= 30){ overweight = 3 }
else if(bmi >= 25){ overweight = 2 }
else if(bmi >= 20){ overweight = 1 }
else { overweight = . } // When bmi is less than 20 or missing.
')

name height bw bmi overweight
1 Tom 1.70 50 17.30104 NA
2 Jack 1.50 60 26.66667 2
3 Anonymous 1.50 80 35.55556 3
4 Henry 1.65 NA NA NA
5 Bob 1.50 100 44.44444 4

5https://github.com/niceume/datasailr/blob/master/README.md

https://github.com/niceume/datasailr/blob/master/README.md

R PACKAGE ARTICLE 7

Regular Expression

Regular expressions can be used to check whether string values have specific patterns of character
sequences, and also can be used to extract sub strings. In DataSailr script, regular expression literal is
re/pattern/ which starts with re/ and ends with /. Regular expression matching can be conducted
using regular expression matching operator =˜. When regular expression matches strings, it results in
true, otherwise false. This matching operator can be used in if-else’s condition parts, and data process-
ing can be switched based on the matching result. In the example code above, regular expressions are
used for pattern matching with automobile names.

The regular expression engine6 used in DataSailr is the same one as the default regular expression
engine in Ruby7. DataSailr’s regular expression syntax and functionalities are similar to Ruby’s one.
Metacharacters, escapes, character classes, repetition, capturing, alternation, character properties and
anchors are supported8. Backreference can be used for the purpose of extracting sub strings, and
rexp_matched() function extract nth sub string from the last matched string. This function is also used
in the example code above.

Limitations

I have described how to use datasailr package, grammar of DataSailr script, and how useful it is.
There are also some limitations. First, users need to learn DataSailr script which is different from R
script, though it is simple and easy to learn. Second, the performance is not good compared to R’s
default way and dplyr way, partially because performance optimization is not enough conducted yet.
The result of benchmarks is listed in Table 8.

code to create million rows of data frame
data(mtcars)
mtcarsMillion = data.frame()
n = 30000 # Add mtcars 30000 times
mtcarsMillion = do.call("rbind", replicate(n, mtcars , simplify = FALSE))

codes to add new column with benchmarking
R-base
system.time({
result = mtcarsMillion
result["hp_per_cyl"] = mtcarsMillion["hp"] / mtcarsMillion["cyl"]
})

dplyr
system.time({
result = dplyr::mutate(mtcarsMillion, hp_per_cyl = hp / cyl)
})

datasailr
system.time({
result = datasailr::sail(mtcarsMillion, code='
hp_per_cyl = hp / cyl

')
})

dplyr using rowwise()
library(magrittr)
system.time({
result = dplyr::rowwise(mtcarsMillion) %>%
dplyr::mutate(hp_per_cyl = hp / cyl)

})

6Onigmo https://github.com/k-takata/Onigmo
7http://www.ruby-lang.org
8https://docs.ruby-lang.org/en/3.0.0/doc/regexp_rdoc.html

https://github.com/k-takata/Onigmo
http://www.ruby-lang.org
https://docs.ruby-lang.org/en/3.0.0/doc/regexp_rdoc.html

R PACKAGE ARTICLE 8

Table 8: Performance Comparison

Method Elapsed Time (seconds)

R-base(4.0.4) 0.159
dplyr(1.0.4) 0.471
datasailr(0.8.7) 3.171
dplyr using rowwise() 10.777

Summary

The datasailr package offers a yet another way to process data. Its row by row data processing
approach using DataSailr script can be intuitive and can improve readability. This approach also
differentiates data manipulation steps from statistical analysis and machine learning steps, which
allows users to focus on each step. This package shows potential benefits using domain specific
language(DSL) for data processing..

Acknowledgement

I would like to thank my family, Yuki, Joichiro and Kaoruko for always giving me joy.

Bibliography

S. M. Bache and H. Wickham. magrittr: A Forward-Pipe Operator for R, 2020. URL https://CRAN.R-
project.org/package=magrittr. R package version 2.0.1. [p1]

G. Grothendieck. sqldf: Manipulate R Data Frames Using SQL, 2017. URL https://CRAN.R-project.
org/package=sqldf. R package version 0.4-11. [p1]

SAS Institute. SAS user’s guide: Statistics, volume 2. Sas Inst, 1985. [p1]

H. Wickham, R. François, L. Henry, and K. Müller. dplyr: A Grammar of Data Manipulation, 2021. URL
https://CRAN.R-project.org/package=dplyr. R package version 1.0.4. [p1]

Toshihiro Umehara
NA
Japan
toshi@niceume.com

https://CRAN.R-project.org/package=magrittr
https://CRAN.R-project.org/package=magrittr
https://CRAN.R-project.org/package=sqldf
https://CRAN.R-project.org/package=sqldf
https://CRAN.R-project.org/package=dplyr
mailto:toshi@niceume.com

	datasailr - An R Package for Row by Row Data Processing, Using DataSailr Script
	 Introduction
	 Motivation
	 How DataSailr Works
	 Applying DataSailr Script to Data Frame
	Example of DataSailr Script

	Grammar of DataSailr Script
	Variables and Assignment
	Special Variables
	Types
	Arithmetic Operators
	 If-else statement
	 Comparison and Logical Operators
	 Built-in Functions
	 DataSailr Specific Functions
	 Missing Values
	 Regular Expression

	 Limitations
	Summary
	Acknowledgement

