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Abstract Intractable open problem in Number theory of Riemann hypothesis is the 1859-proposed conjecture
that all nontrivial zeros in Riemann zeta function, or its proxy Dirichlet eta function, lie on the critical line
denoted by parameter sigma = 1/2. Using correct and complete mathematical arguments, solving Riemann
hypothesis and explaining closely related two types of Gram points is completed by deriving Dirichlet Sigma-
Power Law which enables computing of required pseudo-zeroes that can all be converted to zeroes. By fully
complying with fundamental concepts from Information-Complexity conservation and Complex Container,
exact and inexact Dimensional analysis homogeneity will occur at appropriate times in total summation of all
fractional exponent (1 - sigma) that is always twice present in this Law. The most significant meta-property
to logically incorporate into our proof and explanation is that exact Dimensional analysis homogeneity always
and only occurs when sigma = 1/2.
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1 Introduction

Gram[x=0,y=0] points, Gram[y=0] points and Gram[x=0] points are three types of Gram points (GP) depen-
dently computed directly from Riemann zeta function (Rζ F or ζ (s)) [or its proxy Dirichlet eta function (DηF
or η(s))]. Respectively, these three entities are based on Origin intercept points, x-axis intercept points and
y-axis intercept points. Nontrivial zeros (NTZ) are synonymous with Gram[x=0,y=0] points. Prime and com-
posite numbers are two other entities dependently computed, respectively, directly and indirectly from Sieve of
Eratosthenes. We justify below how all these five well-defined entities will manifest Incompletely Predictable
properties. For Rζ F, its equivalent Euler product formula using product over prime numbers [instead of sum-
mation over natural numbers] will faithfully represent this function. Consequently, all prime [and, by default,
composite numbers] are intrinsically “encoded” in this function.

Regarded as primary spin-offs in peer-reviewed research paper[1] located in its entirety at
URL http://www.ccsenet.org/journal/index.php/jmr/article/download/0/0/43951/46679, relevant mathematical
arguments for solving Riemann hypothesis (viz, conjecture that all NTZ are located on σ = 1

2 critical line
of Rζ F) and explaining closely related two types of GP (viz, Gram[y=0] points and Gram[x=0] points) can
inherently be explained to belong to our coined Mathematics for Incompletely Predictable problems. We adapt
some of these mathematical arguments [but none of its other mathematical arguments on Polignac’s and Twin
prime conjectures] into this stand-alone paper. Considered as novel analytic tool, exact and inexact Dimensional
analysis homogeneity when applied to derived Dirichlet Sigma-Power Law (DSPL) symbolize rigorous proof
for Riemann hypothesis and precise explanation for two types of GP. Selected mathematical arguments or
concepts from this paper are reiterated or reformulated to facilitate optimal understanding on them.

With full permission from its author, significant sections of the text in this paper are openly declared to
be conveniently and largely copied verbatim from [1]. We justify our ethical conduct here to the scientific
community by citing this vital action allows us to optimally compose our paper in accordance with acceptable
publishing standard. We will minimally elaborate upon the profound statement “With this one solution, we
have proven five hundred theorems or more at once”. Regarded as secondary spin-offs arising out of solving
Riemann hypothesis, this statement apply to many important theorems in Number theory (mostly on prime
numbers) that rely on properties of Rζ F such as where trivial zeros and NTZ are / are not located. We will
not include discussion on previously derived innovative Fic-Fac Ratio[1] in 2020 [which is regarded as tertiary
spin-offs potentially serving as medical or epidemiological tool to help understand highly contagious SARS-
CoV-2 causing COVID-19 and 2020 Coronavirus Pandemic resulting in unprecedented negative global health
and economic impacts]. This Ratio (range: 0 - ∞) is roughly ‘Inverse Accuracy’ since it varies in opposite
direction to Accuracy (range: 0 - 1); and it connects seemingly unrelated subject of Medicine with frontier
Mathematics from Number theory.

Useful preliminary information: A variable e.g. n in f(n) = Rζ F, n1 in f(n1), and n2 in f(n2) represents
a model state and may change during simulation. A parameter, e.g. σ and t in Rζ F, is normally a constant
in a single simulation used to describe objects statically and is changed only when we need to adjust our
model behavior. A single-variable function e.g. f(n1) or multiple-variable function e.g. f(n1, n2) is a set of
input-output pairs that follows a few particular rules. An expression usually contains number(s), parameter(s),
variable(s) and operator(s). A particular function e.g. f(n1) is an expression involving variable n1 that is defined
for interval [a,b]. An equation is an assertion that two expressions are equal from which one can determine
a particular quantity. An algorithm is a precise step-by-step plan for a computational procedure that possibly
begins with an input value and yields an output value in a finite number of steps. A complex algorithm e.g. for
generating prime numbers is only defined at two end-points a,b (but not for interval [a,b] as it is not a function).
A formula is a fact or a rule written with mathematical symbols, and usually connects two or more quantities
with an equal to sign. The terms ‘variable’, ‘parameter’, ‘function’, ‘algorithm’, ‘equation’ and ‘formula’ could
be loosely used in some situations of this paper. Colloquially, we insightfully employ “∆x−→ 0” expression to
indicate continuous-type equations or functions and “∆x−→ 1” expression to indicate discrete-type equations
or functions. Antiderivative F(n) denotes the result obtained when performing integration on function f (n);
viz,

∫
f (n)dn = F(n)+C with F ′(n) = f (n).
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1.1 Full Compliance with Information-Complexity Conservation by Completely and Incompletely Predictable
Entities

The word “number” [singular noun] or “numbers” [plural noun] in reference to prime and composite numbers,
NTZ and two types of GP can interchangeably be replaced with the word “entity” [singular noun] or “entities”
[plural noun]. We propose an innovative method to validly classify certain appropriately chosen equations or
algorithms in two ways by using relevant locational properties of its output. This output consist of generated
entities either from function-based equations or from algorithms. Our classification system is formalized by
providing definitive definitions for Completely Predictable (CP) entities obtained from CP equations or algo-
rithms, and Incompletely Predictable (IP) entities obtained from IP equations or algorithms. ‘Container’ is a
useful analogy that metaphorically group CP entities and IP entities to be exclusively located in, respectively,
‘Simple Container’ and ‘Complex Container’.
Definitions for CP numbers and IP numbers: Respectively, using CP simple equation or algorithm, and IP
complex equation or algorithm; a generated CP number, and a generated IP number, is locationally defined as
a number whose position is independently determined by simple calculations without, and dependently deter-
mined by complex calculations with, needing to know related positions of all preceding numbers in neighbor-
hood. Simple properties are inferred from a sentence such as “This simple equation or algorithm by itself will
intrinsically incorporate actual location [and actual positions] of all CP numbers”. Solving CP problems with
simple properties amendable to simple treatments using usual mathematical tools such as Calculus gives ‘Sim-
ple Elementary Fundamental Laws’-based solutions. Complex properties, or “meta-properties”, are inferred
from a sentence such as “This complex equation or algorithm by itself will intrinsically incorporate actual lo-
cation [but not actual positions] of all IP numbers”. Solving IP problems with complex properties amendable
to complex treatments using unusual mathematical tools such as exact and inexact Dimensional analysis ho-
mogeneity, and Dimension (2x - N) system as well as using usual mathematical tools such as Calculus gives
‘Complex Elementary Fundamental Laws’-based solutions.

Classified as IP problems, solving and explaining our nominated open problems is intuitively perceived as
burdened with “Supramaximal Complexity”. Prime numbers are defined as “All Natural numbers apart from 1
that are evenly divisible by itself and by 1” and composite numbers are defined as “All Natural numbers apart
from 1 that are evenly divisible by numbers other than itself and 1”. We conduct [complex] exercise of solving
IP problem involving prime and composite numbers by proving their gaps are always varying (see P-C Pairing).
This is a mathematician’s paradigm of an ideal example for this type of problem and is in sharp contrast
to solving CP problem endowed with “Supraminimal Complexity” as demonstrated by [simple] exercise of
proving even and odd number gaps always equal to 2 (see E-O Pairing) whereby even number (n) is defined
as “Any integer that can be divided exactly by 2 with last digit always being 0, 2, 4, 6 or 8” and odd number
(n) is defined as “Any integer that cannot be divided exactly by 2 with last digit always being 1, 3, 5, 7 or 9”.
Congruence n = 0 (mod 2) holds for even n and congruence n = 1 (mod 2) holds for odd n. Thus, ‘0’ is an
even n when we consider all (non-negative) positive even and odd n obtained from whole numbers = 0, 1, 2,
3, 4, 5,.... For convenience, we shall only consider all positive even and odd n obtained from natural numbers
= 1, 2, 3, 4, 5, 6,... in this paper with following implication: The phrase “all even numbers” is generally taken
to denote 2, 4, 6, 8, 10, 12,...; viz, this phrase is equivalent to the expression “all even numbers 2, 4, 6, 8, 10,
12,... equate to all positive even numbers 0, 2, 4, 6, 8, 10, 12.... but with even number ‘0’ intentionally and
conveniently ignored”.

E-O Pairing: For i = 1, 2, 3,..., ∞; let it h Even and it h Odd numbers = Ei and Oi, and it h even and it h odd
number gaps = eGapi and oGapi. The positions of Ei and Oi are CP and their independence from each other is
shown below.

Ei 2 4 6 8 10 12 .....
eGapi 2 2 2 2 2 2

We can precisely, easily and independently calculate E5=2X5=10 and O5=(2X5)-1=9.
Oi 1 3 5 7 9 11 .....

oGapi 2 2 2 2 2 2
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Finite calculations shown here depict even and odd number gaps [= 2] are constant but even and odd num-
bers are infinite in magnitude requiring an infinite number of calculations (“mathematical impasse”) in order
to show these gaps will always be constant and non-varying. Obtaining rigorous proof for this property then
consist of recognizing it as CP problem which requires deriving a CP ‘non-varying’ equation for confirming all
even and odd numbers will [intrinsically] contain simple property “All even and odd number gaps = [constant]
2”. The [colloquially expressed-“∆x−→ 1”] discrete-type equation Ei = 2 X i and Oi = (2 X i) - 1 are, respec-
tively, for computing even and odd numbers [as zero-dimensional points]. When converted into [colloquially
expressed-“∆x −→ 0”] continuous-type equation E = 2 X i and O = (2 X i) - 1 for i = all real numbers ≥ 0
[as one-dimensional lines which include even number ‘0’ when i = 0 in E = 2 X i], calculating gradient ∆E/∆ i
or ∆O/∆ i (= 2) and differentiating dE/di or dO/di (= 2) is precisely equivalent to all even and odd number
gaps = 2. Using here notation x [instead of i] to illustrate computation of Area under the Curve (AUC) over

interval [a,b] for f(x) [instead of f(i)]: AUC (“precisely”) =
∫ b

a
f (x)dx [viz, definite integral]. AUC (“approx-

imately”) = lim
n→∞

n

∑
i=1

∆x · f (xi) [viz, lim
n→∞

Riemann sum] whereby i = 1 to n [and not i = 1 to ∞], ∆x =
b−a

n
and xi = a+∆x · i. Our precise AUC [straight line] between a and b [as two-dimensional area] is given by∫ b

a
(2i)di = [i2+C]ba = (b2 - a2) for even numbers and

∫ b

a
(2i−1)di = [i2 - i + C]b

a = (b2 - b - a2 + a) for

odd numbers. These discrete-type equations [given by ‘Even number’ variable vs ‘Integer’ variable and ‘Odd
number’ variable vs ‘Integer’ variable] represent two mutually exclusive ‘Simple Containers’ that contain or
generate all even and odd numbers with knowing their overall actual location [and their actual positions].

P-C Pairing: For i = 1, 2, 3,..., ∞; let it h Prime and it h Composite numbers = Pi and Ci, and it h prime and
it h composite number gaps = pGapi and cGapi. The positions of Pi and Ci are IP and their dependence on each
other is shown below.

Pi 2 3 5 7 11 13 .....
pGapi 1 2 2 4 2 4

We can precisely, tediously and dependently compute P6 = 13: 2 is 1st prime number, 3 is 2nd prime number,
4 is 1st composite number, 5 is 3rd prime number, 6 is 2nd composite number, 7 is 4t h prime number, 8 is 3rd

composite number, 9 is 4t h composite number, 10 is 5t h composite number, 11 is 5t h prime number, 12 is 6t h

composite number, and our desired 13 is 6t h prime number.
Ci 4 6 8 9 10 12 .....

cGapi 2 2 1 1 2 2

Finite calculations shown here depict prime number gaps = 1, 2, 2, 4, 2, 4,... and composite number gaps
= 2, 2, 1, 1, 2, 2,... are varying but prime and composite numbers are infinite in magnitude requiring an infinite
number of calculations (“mathematical impasse”) in order to show these gaps will always be varying. Obtain-
ing rigorous proof for this property then consist of recognizing it as IP [and not CP] problem which requires
deriving two IP [“∆x −→ 1”] ‘varying’ [and not ‘non-varying’] discrete-type algorithms Pi+1 = Pi + pGapi
and Ci+1 = Ci + cGapi for calculating all prime and composite numbers [as zero-dimensional points]. With
P1 = 2 and C1 = 4, ‘1’ is neither prime nor composite. For (arbitrarily) i = all real numbers ≥ 1, ‘varying’
continuous-type algorithm Pi+1 = Pi + pGapi and Ci+1 = Ci + cGapi [as one-dimensional lines] incorporate
all prime and composite numbers. Corresponding AUC [‘varying’ line] between a and b [as two-dimensional

area] can be metaphorically visualized as [mathematically invalid]
∫ b

a
(Pi + pGapi)di for prime numbers and∫ b

a
(Ci + cGapi)di for composite numbers. Respectively, the two algorithms will [intrinsically] contain com-

plex property “Apart from first prime gap = 1, all prime gaps consist of perpetually varying even numbers” and
“All composite gaps consist of perpetually varying numbers constituted by 1 and 2”. Note: The integration is
strictly invalid as these algorithms (and not functions) are only defined at end-points a, b (and not defined in
interval [a,b]). Given by ‘Prime number’ variable vs ‘Prime gap’ variable and ‘Composite number’ variable vs
‘Composite gap’ variable, they represent two mutually exclusive ‘Complex Containers’ that contain or generate
all prime and composite numbers with knowing their overall actual location [but not actual positions].
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Remark 1 We can validly embrace ‘Complex Container’ concept for discrete format versions [“∆x −→
1”] DηF via zeroes [proxy for [“∆x −→ 1”] Rζ F via zeroes] and [“∆x −→ 1”] simplified DηF (sim-DηF
or sim-η(s)) via zeroes whereby these functions (and the derived continuous format version [“∆x −→ 0”]
DSPL via pseudo-zeroes to zeroes conversion) are literally ‘σ = 1

2 Complex Containers’ containing three
types of mutually exclusive entities constituted by (i) NTZ viz, Origin intercept points or Gram[x=0,y=0]
points (G[x=0,y=0]P), (ii) x-axis intercept points viz, ‘usual’ Gram points (‘usual’ GP) or Gram[y=0] points
(G[y=0]P) and (iii) y-axis intercept points viz, Gram[x=0] points (G[x=0]P). Here, the term Gram points [as
zeroes] conveniently encompass (i), (ii) and (iii). The corollary is that ‘σ 6= 1

2 Complex Containers’ [e.g. for
σ = 2

5 or 3
5 ] will never contain any of these listed entities but instead contain two types of mutually exclusive

entities constituted by (i) virtual G[y=0]P and (ii) virtual G[x=0]P. Here, the term virtual Gram points [as
virtual zeroes] conveniently encompass (i) and (ii). These mutually exclusive ‘Complex Containers’ contain or
generate all relevant IP entities with knowing their overall actual location [but not actual positions].

Corresponding [perpetually varying] GP gaps or virtual GP gaps [both being transcendental numbers]
are defined as the difference between any two nominated [consecutive] σ = 1

2 GP or σ 6= 1
2 virtual GP. All

NTZ in Rζ F are proposed by Riemann hypothesis to only be located at σ = 1
2 (critical line) of this function.

Remark 1 above connotes σ = 1
2 and σ 6= 1

2 situations represent two mutually exclusive ‘Complex Containers’.
In principle, the preceding two sentences when combined together should allow rigorous proof for Riemann
hypothesis to materialize. This rigorous proof is successfully obtained by rigidly applying exact [denoting σ

= 1
2 ] and inexact [denoting σ 6= 1

2 ] Dimensional analysis homogeneity to DSPL (as pseudo-zeroes to zeroes
conversion) which is rigorously derived from DηF (as zeroes) [proxy for Rζ F (as zeroes)] via intermediate
sim-DηF (as zeroes). An identical procedure is used to precisely explain two types of GP.

Net Area Values and Total Area Values:
∫

f (n)dn = F(n)+C with F ′(n) = f (n). Consider a nominated
function f (n) for interval [a,b]. We define Net Area Value (NAV) calculated using its antiderivative F(n) as
the net difference between positive area value(s) [above horizontal x-axis] and negative area value(s) [below
horizontal x-axis] in interval [a,b]; viz, NAV = all +ve value(s) + all -ve value(s). Again calculated using F(n),
we define Total Area Value (TAV) as the total sum of (absolute value) positive area value(s) [above horizontal
x-axis] and (absolute value) negative area value(s) [below horizontal x-axis] in interval [a,b]; viz, TAV = all
|+ve value(s)| + all |-ve value(s)|. Calculated NAV and TAV are precise using antiderivative F(n) obtained from
integration of f (n) but will only be approximate when using the Riemann sum on f (n).

Zeroes and Pseudo-zeroes: [We will progressively explain these two entities below.] There are three
types of stationary points in a given periodic f(n) involving sine and/or cosine functions that could act as
x-axis intercept points via three types of f(n)’s zeroes with corresponding three types of F(n)’s pseudo-zeroes:
maximum points e.g. with f(n) or F(n) = sin n - 1; minimum points e.g. with f(n) or F(n) = sin n + 1; and points
of inflection e.g. with f(n) or F(n) = sin n [which also has Origin intercept point as a zero or pseudo-zero].
A fourth type of f(n)’s zeroes and F(n)’s pseudo-zeroes consist of non-stationary points occurring e.g. with f(n)
or F(n) = sin n + 0.5.

With (j - i) = (l - k) = 2π [viz, one Full cycle], let a given zero be located in f(n)’s interval [i,j] viz, i <
zero < j; and its corresponding pseudo-zero be located in F(n)’s pseudo-interval [k,l] viz, k < pseudo-zero <
l. For this zero and pseudo-zero characterized by either point of inflection or non-stationary point; both will
comply with preserving positivity [going from (-ve) below x-axis to (+ve) above x-axis] as explained using the
zero case [with the pseudo-zero case following similar lines of explanations]. This can be stated as follow for
interval [i,j]: If j > i, then computed f(j) > computed f(i). In particular, the condition “If i ≥ 0, then computed
f(i)≥ 0” must not be present for these two particular types of zero to validly exist in interval [i,j]. With reversal
of inequality signs, the converse situation for j < zero < i and corresponding l < pseudo-zero < k will be
equally true in preserving negativity [going from (+ve) above x-axis to (-ve) below x-axis]. These are useful
observed properties for zeroes and pseudo-zeroes.

Preservation or conservation of Net Area Value and Total Area Value: For f(n)’s interval [a,b] whereby
a = initial zero and b = next zero, and F(n)’s pseudo interval [c,d] whereby c = initial pseudo-zero and d =
next pseudo-zero; we show below how compliance with preservation or conservation of NAV and TAV will
simultaneously occur in both f(n)’s zeroes and F(n)’s pseudo-zeroes given by their sine and/or cosine functions
only when zero gap = (b - a) = pseudo-zero gap = (d - c) = 2π [viz, involving one Full cycle].
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Fig. 1: Plot of f (n) = sin(n+ 3
4 π)+ cos(n+ 3

4 π) =−
√

2sin n and F(n) =
√

2cos n [+ C].

Consider a (first) randomly chosen example of single-variable [simple] periodic sin and/or cosine function
f (n) = (cosn)

1
3 − (sinn)

1
3 which has zeroes and two individual exponents 1

3 [with their sum 2
3 ] being persis-

tently fractional numbers. Observed characteristics of exponents from this first example [and second example
below] as CP problems with perpetually present [intrinsic] simple properties could hint at possible invalidity of
exact and inexact DA homogeneity as useful analytic tool used for IP problems. However, these are irrelevant
(counter)examples since exact and inexact DA homogeneity in this research paper for our IP problems are per-
petually present [intrinsic] complex properties that clearly do not refer to these CP recurring zeroes but instead
validly refer to totally different IP recurring zeroes calculated as axes-intercept points in DηF and approximate
NAV = 0 from Riemann sum interpretation of sim-DηF.

Derived complex properties of exact and inexact DA homogeneity in our IP problems may be assumed by
some to be just associations and not proper explanations. We advocate this assumption to be incorrect since
these perpetually present [intrinsic] complex properties are, nevertheless, valid properties fully supported by
irrefutable [albeit convoluted] correct and complete set of mathematical arguments with proper explanations
behind them based on, for instance, valid analysis on modulus of DηF, valid mathematical definition for NTZ,
and valid compliance with preserving or conserving NAV = 0 condition.

Consider a (second) randomly chosen example of single-variable [simple] periodic sin and/or cosine func-
tion f(n) = (sin (n+ 3

4 π))1 + (cos (n+ 3
4 π))1 which has zeroes [that also include the Origin intercept point

as a zero]. Depicted in Figure 1, this function is also equivalently simplified to f(n) = −
√

2(sinn)1 with non-

negotiable trigonometric identity cosn− sinn =
√

2sin
(

n+
3
4

π

)
application. We note the individual or sum

exponents of all involved sine and/or cosine terms is 1 or 2, being persistently whole numbers.
We compare and contrast the f(n)’s sine and cosine terms in the above two mentioned (unrelated) examples

resulting in following two non-specific observations [without detailed discussion on their limited generaliza-
tion to two other unrelated examples below]: [I] The dual sine and cosine f(n) with individual exponent =
whole number 1 and sum exponent = whole number 2 in second example, which has zeroes, can only be non-
negotiably simplified (using trigonometric identity) to be expressed in [solitary] sine term with exponent =
whole number 1. [II] The dual sine and cosine f(n) with individual exponent = fractional number 1

3 and sum
exponent = fractional number 2

3 in first example, which has zeroes, cannot be simplified further and remains
expressed in [combined] sine and cosine terms. Two other unrelated examples: The f(n) = (sin n)1 + (cos n)1

which has zeroes and endowed with whole number 1 for its individual exponent with their sum = whole number
2 contradicts observation [I] as this function cannot be simplified further and remains expressed in [combined]
sine and cosine terms. The f(n) = (sin n)

1
2 + (cos n)

1
2 [conveniently considered here as a different f(n) variety

that do not have zeroes] endowed with two fractional exponent 1
2 but with their sum = whole number 1, cannot

be simplified further and remains expressed in [combined] sine and cosine terms – this case validly comply
with observation [II] but sum of exponents being a whole number, and not a fractional number, could also be
non-specifically interpreted to (partially) contradict observation [I].
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Two useful points about f(n)’s Zeroes and F(n)’s Pseudo-zeroes involving sine and/or cosine terms;
and exact and inexact Dimensional analysis homogeneity:
(I) With (Zeroes) = (Pseudo-zeroes) – ( π

2 ) [given in terms of Full cycles] being valid in both CP problems
and IP problems, the zeroes obtained from IP DηF via axes-intercept points and IP sim-DηF via approximate
NAV = 0 are exactly related to the pseudo-zeroes obtained via precise NAV = 0 calculated using IP DSPL
[the antiderivative for integration of sim-DηF]. Summary of useful shorthand notations: DηF [as Zeroes],
sim-DηF [as Zeroes], and DSPL [as Pseudo-zeroes to Zeroes conversion].
(II) Parameter σ = (i) 1

2 [viz, exact Dimensional analysis homogeneity for IP problem with full presence of
Origin intercept points that compulsorily involve trigonometric identity cosn− sinn] and (ii) 6= 1

2 [viz, inex-
act Dimensional analysis homogeneity for IP problem with full absence of Origin intercept points] situations
are, respectively, the non-specific analogy of (i) CP f(n) from second example with individual / sum exponent
= whole number [ala exact Dimensional analysis homogeneity for CP problem with full presence of Origin
intercept point that compulsorily involve trigonometric identity cosn− sinn] and (ii) CP f(n) from first ex-
ample with individual / sum exponent 6= whole number [ala inexact Dimensional analysis homogeneity for CP
problem with full absence of Origin intercept point]. Supplementary materials in Conclusion include math-
ematical explanation why nontrivial zeros must inevitably exist in sim-DηF [as zeroes] uniquely and
only at [fractional number] individual exponent σ = 1

2 (viz, complying with exact Dimensional analysis
homogeneity for IP problem based on [whole number] sum of two exponents = 2(1−σ ) = 1

2 +
1
2 = 1) in

Dirichlet Sigma-Power Law [as pseudo-zeroes to zeroes conversion].

Full cycle-zeroes and Half cycle-zeroes of f(n) = −
√

2sinn from above second example are its recurring
x-axis intercept points as seen in Figure 1. The term Full cycle symbolizes “non-varying CP full loop from 0π

to 2π”; and “Half cycle” symbolizes “non-varying CP half loop from 0π to 1π or from 1π to 2π”. From +ve to
-ve; x-axis line is denoted by 0π to 1π , and y-axis line is denoted by π

2 to 3π

2 . In interval [0,2π], f (n) = 0 when
n = 0π [Full cycle-zero], 1π [Half cycle-zero] and 2π [Full cycle-zero]. Ignore the 1π [Half cycle-zero] and
conveniently name 0π [Full cycle-zero] and 2π [Full cycle-zero] as the initial zero and next zero. F(n) is the

antiderivative of integral
∫

f (n)dn since F ′(n) = f (n). Precise NAV is given by
∫ 2π

0
f (n)dn = F(n) for the same

interval [0,2π]. This NAV = 0 as F(n) = [
√

2cos n +C]2π
0 = (

√
2 ·1)− (

√
2 ·1) = 0. In pseudo interval [ π

2 , 5π

2 ]
of F(n), π

2 and 5π

2 are its pseudo x-axis intercept points which we conveniently name here as initial pseudo-zero
and next pseudo-zero. Both f(n)’s zero gap (initial zero minus next zero) and F(n)’s pseudo-zero gap (initial
pseudo-zero minus next pseudo-zero) = 2π which resulted in f(n)’s interval gap and F(n)’s pseudo interval gap
being also of identical magnitude 2π . As a direct consequence, calculated precise NAV = 0 will also apply to
F(n) on this pseudo interval with (

√
2 ·0)− (

√
2 ·0) = 0. Since NAV =−

√
2 + +

√
2 = 0 for (different) interval

[0,π] and NAV = −
√

2 + −
√

2 = −2
√

2 for its corresponding pseudo-interval [ π

2 , 3π

2 ], we observe in Figure
1 that NAV is not preserved or conserved when the interval and pseudo-interval do not involve a Full cycle.
Hence, NAV is preserved or conserved for corresponding CP f(n)’s zeroes and CP F(n)’s pseudo-zeroes
only if the interval and pseudo-interval involve a Full cycle.

With f (n) and F(n) involving [cofunctions] sine and cosine, we see in Figure 1 that calculated precise
TAV 6= 0 for given interval e.g. [0, π

2 ] with interval gap = π

2 when derived using F(n) =
√

2cos n +C [=
|
√

2 · 0|+ |
√

2 · 1| =
√

2] will be identical in magnitude to corresponding pseudo-interval [ π

2 ,π] with interval
gap = π

2 when derived using F(n) =
√

2cos n +C [= |
√

2 ·−1|+ |
√

2 ·0| =
√

2]. Similarly for one Full cycle
with interval [0,2π] and corresponding pseudo-interval [ π

2 , 5π

2 ], the calculated precise TAV = 4
√

2 for both.
Hence, TAV is preserved or conserved for corresponding CP f (n)’s zeroes and CP F(n)’s pseudo-zeroes
that involve any given interval and pseudo-interval.

Always being π

2 out-of-phase with each other, sine and cosine are cofunctions with sin n = cos ( π

2 - n), cos
n = sin ( π

2 - n), d(sinn)
dn = cosn, d(cosn)

dn =−sinn,
∫

sinn ·dn =−cosn+C [= sin (n - π

2 ) + C] and
∫

cosn ·dn =
sinn+C [= cos (n - π

2 ) + C]. Last two integrals explain valid relation between f(n)’s zeroes and F(n)’s pseudo-
zeroes when they involve sine and/or cosine terms viz, f(n)’s CP Zeroes = F(n)’s CP Pseudo-zeroes – π

2 .
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1.2 Valid application of both f(n)’s zeroes and F(n)’s pseudo-zeroes [when converted to zeroes] to represent
Gram points and virtual Gram points

Whereby f(n) and F(n) have parameters σ and t; the above crucial findings are validly extrapolated to single-
variable [complex] periodic (sine and cosine) functions: (i) f(n) DηF (proxy for Rζ F) = 0 to obtain zeroes, (ii)
f(n) sim-DηF = 0 to obtain zeroes, and (iii) F(n) DSPL = 0 to obtain pseudo-zeroes [which can be converted
to zeroes]. At σ = 1

2 [critical line], the GP consisting of NTZ, G[y=0]P and G[x=0]P precisely correspond to t
values for these f(n)’s zeroes. The t values for F(n)’s pseudo-zeroes can be used to calculate t values for f(n)’s
zeroes since f(n)’s IP Zeroes (t values) = F(n)’s IP Pseudo-zeroes (t values) – π

2 . In addition, NAV and TAV
are preserved or conserved for corresponding IP f(n)’s zeroes and IP F(n)’s pseudo-zeroes since both f(n)’s
[varying] zero gap (initial zero minus next zero) and F(n)’s [varying] pseudo-zero gap (initial pseudo-zero
minus next pseudo-zero) is given by 2π [denotes one Full cycle traversed by parameter t].

At σ 6= 1
2 [or non-critical lines], the virtual GP consisting of virtual G[y=0]P and virtual G[x=0]P precisely

correspond to t values for these f(n)’s virtual zeroes. [Virtual NTZ do not exist.] The t values for F(n)’s virtual
pseudo-zeroes can be used to calculate t values for f(n)’s virtual zeroes since f(n)’s IP Virtual Zeroes (t
values) = F(n)’s IP Virtual Pseudo-zeroes (t values) – π

2 . NAV and TAV will also be preserved or conserved
for these corresponding IP f(n)’s virtual zeroes and IP F(n)’s virtual pseudo-zeroes since both f(n)’s virtual zero
gap (initial virtual zero minus next virtual zero) and F(n)’s virtual pseudo-zero gap (initial virtual pseudo-zero
minus next virtual pseudo-zero) is given by 2π [denotes one Full cycle traversed by parameter t].

Cartesian Coordinates (x,y) is related to Polar Coordinates (r,θ ) with r =
√

x2 + y2 and θ = tan−1(
y
x
). In

anti-clockwise direction, it has four quadrants defined by the + or - of (x,y); viz, Quadrant I as (+,+), Quadrant
II as (-,+), Quadrant III as (-,-), and Quadrant IV as (+,-). Figure 3 is the polar graph of ζ ( 1

2 + ıt) plotted
along critical line for real values of t running from 0 to 34, horizontal axis: Re{ζ ( 1

2 + ıt)}, and vertical axis:
Im{ζ ( 1

2 + ıt)}. NTZ are Origin intercept points or G[x=0,y=0]P. With ‘gap’ being synonymous with ‘interval’,
NTZ gap is given by initial NTZ t-value minus next NTZ t-value. Running a Full cycle from 0π to 2π , size of
each IP varying loop in Figure 3 is proportional to magnitude of its corresponding IP NTZ varying gap. We
note the 2π here as observed in Figure 3 [on GP], Figure 4 [on virtual GP] and Figure 5 [on virtual GP] refers
to IP varying loops transversed by parameter t with NTZ corresponding to t at Origin intercept (G[x=0,y=0]P);
G[y=0]P and virtual G[y=0]P corresponding to t at x-axis intercept on x-axis’ (+ve) 0π part and (-ve) 1π part;
and G[x=0]P and virtual G[x=0]P corresponding to t at y-axis intercept on y-axis’ (+ve) π

2 part and (-ve) 3π

2
part. The virtual NTZ entity do not exist; viz, Origin intercept points do not occur in Figure 4 and Figure 5.

Sin and/or cosine f(n)’s IP (virtual) zeroes and F(n)’s IP (virtual) pseudo-zeroes:
Property I: At parameter σ = 1

2 , we denote zeroes to represent t-values for NTZ, G[y=0]P and G[x=0]P.
f (n) as DηF = 0 or sim-DηF = 0 gives rise to zeroes with varying zeroes gaps and F(n) as DSPL = 0 gives rise
to pseudo-zeroes with varying pseudo-zeroes gaps [whereby pseudo-zeroes can be converted to zeroes]. Since
the corresponding zeroes gaps and pseudo-zeroes gaps are always identical in magnitude; NAV = 0 condition
is validly preserved or conserved. [For simplicity, we will not discuss TAV 6= 0 condition which is also validly
preserved or conserved.] Property I is usefully abbreviated as: NAV = 0 condition is validly preserved or
conserved for f(n)’s IP zeroes and F(n)’s IP pseudo-zeroes. Ditto for f(n)’s IP virtual zeroes and F(n)’s
IP virtual pseudo-zeroes at parameter σ 6= 1

2 as previously explained above; viz, NAV = 0 condition is
validly preserved or conserved for f(n)’s IP virtual zeroes and F(n)’s IP virtual pseudo-zeroes.

Property II: At parameter σ = 1
2 , [IP t-values for NTZ, G[y=0]P and G[x=0]P obtained from f (n)] is equal

to [IP (different) t-values for pseudo-NTZ, pseudo-G[y=0]P and pseudo-G[x=0]P obtained from F(n)] minus
[Constant π

2 ]. Property II is usefully abbreviated as: f(n)’s IP zeroes (t values) = F(n)’s IP pseudo-zeroes
(t values) – π

2 . Ditto for f(n)’s IP virtual zeroes and F(n)’s IP virtual pseudo-zeroes at parameter σ 6= 1
2

as previously explained above; viz, f(n)’s IP virtual zeroes (t values) = F(n)’s IP virtual pseudo-zeroes (t
values) – π

2 .
Deduction I: The x variable used in Riemann sum above in E-O Pairing is now replaced by the n variable

used in sim-DηF. Conventionally, for a left [finite-interval] Riemann sum, i = 0, 1, 2, 3,..., n-1; and for a right
[finite-interval] Riemann sum, i = 1, 2, 3, 4,..., n. Analogically, sim-DηF as a complex function with n = 1,
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2, 3, 4,..., ∞ is now itself (interpreted as) a right [infinite-interval] Riemann sum given by
n

∑
i=1

∆n · f (ni) =

∞

∑
n=1

∆n · f (n) =
∞

∑
n=1

f (n) since ∆n = 1 in this function. As (i)
∫ n=∞

n=1
f (n)dn and (ii)

∞

∑
n=1

f (n) are proportional;

their f(n)’s zeroes derived from corresponding (i) DSPL [as pseudo-zeroes converted to zeroes] and (ii) sim-
DηF [as zeroes] when interpreted as Riemann sum must agree whereby f(n) has parameters σ and t. Again,
we note f(n)’s zeroes can be obtained from DSPL [viz, the antiderivative F(n)] because corresponding F(n)’s
pseudo-zeroes (t values) = f(n)’s zeroes (t values) + π

2 whereby F(n) also has same parameters σ and t.
Deduction II: The f(n)-in-isolation from sim-DηF is usefully perceived to give rise to one-dimensional

lines whereas its corresponding full function with summation
∞

∑
n=1

[which can be interpreted as Riemann sum]

give rise to approximate two-dimensional NAV; viz, sim-DηF is validly and usefully regarded as Riemann sum.
Precise two-dimensional NAV are obtained with integration application to sim-DηF [as zeroes] viz, definite

integral
∫

∞

1
(sim-DηF)dn = antiderivative DSPL [as pseudo-zeroes converted to zeroes]. As opposed to (a)

x-axis intercept, (b) y-axis intercept and (c) Origin intercept which are usefully depicted with vertical axis:
Im{η(σ + ıt)} and horizontal axis: Re{η(σ + ıt)}; their corresponding two-dimensional NAVs can be usefully
depicted with vertical axis: (a) Im{η(σ + ıt)}, (b) Re{η(σ + ıt)} and (c) ReIm{η(σ + ıt)}, and horizontal
axis: t.

Information-Complexity conservation. Formulae can consist of (1) equations e.g. CP two ‘non-varying’
discrete-type and two continuous-type equations to independently calculate and incorporate all even and odd
numbers, and IP ‘varying’ discrete-type equations DηF [as zeroes] (proxy for Rζ F [as zeroes]) and sim-DηF
[as zeroes] or ‘varying’ continuous-type equation DSPL [as pseudo-zeroes converted to zeroes] to dependently
calculate all NTZ and two types of GP; or (2) algorithms e.g. Sieve of Eratosthenes giving rise to IP two ‘vary-
ing’ discrete-type algorithms to dependently compute all prime and composite numbers. Thus, a given formula
is simply a Black Box generating Output (having qualitative-like structural ‘Complexity’) when supplied with
Input (having quantitative-like data ‘Information’).

A set of correct and complete [“formulae-laden”] mathematical arguments depicted as lemmas, corollaries
and propositions must fully comply with Information-Complexity conservation. Intuitively, this is synonymous
with Information-based complexity and can be considered as a unique all-purpose [quantitative and qualitative]
analytic tool used with Mathematics for Completely Predictable problems and Mathematics for Incompletely
Predictable problems. Respectively, these problems can literally be perceived as “simple systems” containing
well-defined CP entities such as even and odd numbers; and “complex systems” containing well-defined IP
entities such as prime and composite numbers, NTZ and two types of GP.

Complying with Information-Complexity conservation by DηF (proxy for Rζ F) in a qualitative-like man-
ner will always result in maximum three types of axes-intercepts (viz, x-axis, y-axis and Origin intercepts as
three types of GP) occurring at σ = 1

2 and minimum two types of axes-intercepts (viz, x-axis and y-axis inter-
cepts as two types of virtual GP) occurring at σ 6= 1

2 . Complying with Information-Complexity conservation,
preservation or conservation of approximate NAV = 0 using sim-DηF [as (virtual) zeroes] in a quantitative-like
manner occur at σ = 1

2 as three types of GP, and occur at σ 6= 1
2 as two types of virtual GP. Corresponding

preservation or conservation of precise NAV = 0 using DSPL [as (virtual) pseudo-zeroes to (virtual) zeroes
conversion] occur at σ = 1

2 as three types of GP, and occur at σ 6= 1
2 as two types of virtual GP.

The following are two key concepts from Information-Complexity conservation:
(I) Relevant end-product Laws [with obtained pseudo-zeroes converted to zeroes], equations or algorithms (i)
will generate or incorporate CP entities such as even and odd numbers with simple properties consistently man-
ifested by these entities; and (ii) will generate or incorporate IP entities such as prime and composite numbers,
NTZ and two types of GP with complex properties consistently manifested by these entities.
(II) In principle, [A] CP ‘non-varying’ two discrete-type and two continuous-type equations to independently
compute and incorporate all even and odd numbers, [B] IP two ‘varying’ discrete-type algorithms to depen-
dently compute all prime and composite numbers, and [C] IP ‘varying’ discrete-type equations DηF [as zeroes]
(proxy for Rζ F [as zeroes]) and sim-DηF [as zeroes] to dependently compute all NTZ and two types of GP
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could, respectively and correspondingly, be derived in a reverse-engineered manner from [A] two ‘non-varying’
discrete-type equations when language-expressed [in one combined table] using Dimension (2x - N) system[1],
[B] two ‘varying’ discrete-type algorithms when language-expressed [in one combined table] using Dimension
(2x - N) system[1], and [C] ‘varying’ continuous-type equation DSPL [as pseudo-zeroes converted to zeroes].

Our mathematical-formated and geometrical-formated treatises containing pure and applied mathematics
in relevant “Mathematics for Incompletely Predictable problems” encompass new signatory ideas that will
overcome insurmontable difficulties present in many previously attempted mathematical proofs for nominated
open problem of Riemann hypothesis and explanations for its closely related two types of Gram points. These
difficulties are advocated to inevitably arise simply because of failure during previous attempts to specifically
treat Riemann zeta function (or its proxy Dirichlet eta function) as unique mathematical object for full intrinsic
analysis on its derived de novo complex properties. As an intractable open problem in Number theory, Riemann
hypothesis historically belongs to one of USD $1,000,000 Millennium Prize Problems in field of mathematics
that were identified by Clay Mathematics Institute at turn of new millennium on May 24, 2000.

1.3 Open Problems in Number Theory with Incompletely Predictable Entities

[“∆x−→ 0”] DSPL is the continuous format version of discrete format [“∆x−→ 1”] DηF (proxy for [“∆x−→
1”] Rζ F) and [“∆x −→ 1”] sim-DηF. Colloquially speaking, they enable either quantitative-like calculations
on NAV or qualitative-like computations on axes-intercept points. As previously explained, these actions will
result in the desired zeroes and pseudo-zeroes with Zeroes (t values) = Pseudo-zeroes (t values) – π

2 . We take
note, firstly, the unique situation of Origin intercept points (NTZ) obtained via approximate NAV = 0 giving
zeroes t-values or via precise NAV = 0 giving pseudo-zeroes [which can be converted to zeroes] t-values will
only occur when σ = 1

2 ; and, secondly, the critical line of Riemann zeta function (or its proxy Dirichlet eta
function) is also uniquely denoted by σ = 1

2 whereby, in Riemann hypothesis, all NTZ are conjectured to be
located.

The Number ‘1’ is neither prime nor composite. [“∆x −→ 1”] Sieve of Eratosthenes is a simple ancient
algorithm for finding all prime numbers up to any given limit by iteratively marking as composite (i.e., not
prime) the multiples of each prime, starting with first prime number 2. Multiples of a given prime are generated
as a sequence of numbers starting from that prime, with constant difference between them equal to that prime.
Dimension (2x - N) system can dependently generate all prime and composite numbers [and “extrapolated”
Number ‘1’ which is uniquely represented by Dimension (2x - 2)] whereas Sieve of Eratosthenes directly and
indirectly give rise to prime and composite numbers (but not Number ‘1’). In using the unique Dimension
(2x - N) system with N = 2x - ΣPCx-Gap [see [1] for full details] and x = all integers commencing from 1;
Dimension (2x - N) when fully expanded is numerically just equal to ΣPCx-Gap since Dimension (2x - N) =
2x - 2x + ΣPCx-Gap = ΣPCx-Gap.

To be complete, definition for the above system is fully explained using two examples for position x = 31
and 32. For i and x ∈ N [as per data from Table 5 in [1]]; ΣPCx-Gap = ΣPCx−1-Gap + Gap value at Pi−1 or
Gap value at Ci−1 whereby (i) Pi or Ci at position x is determined by whether relevant x value belongs to a P
or C, and (ii) both ΣPC1-Gap and ΣPC2-Gap = 0. Example, for position x = 31: 31 is P (P11). Desired Gap
value at P10 = 2. Thus ΣPC31-Gap (55) = ΣPC30-Gap (53) + Gap value at P10 (2). Example, for position x
= 32: 32 is C (C20). Desired Gap value at C19 = 2. Thus ΣPC32-Gap (57) = ΣPC31-Gap (55) + Gap value at
C20 (2).

For i = natural numbers, [“∆x −→ 1”] equations Ei = 2 X i and Oi = (2 X i) - 1 independently give rise to
all even and odd numbers (which are obtained from natural numbers thus excluding even number ‘0’). For i =
real numbers≥ 0, [“∆x−→ 0”] equations E = 2 X i and O = (2 X i) - 1 independently incorporates all even and
odd numbers (including even number ‘0’ at i = 0). Then, Origin intercept (0,0) will only occur in equation E =
2 X i when Output E = 0 is uniquely generated by Input i = 0. Dimension (2x - N) system can independently
generate all even and odd numbers [including the (“zeroth”) even number ‘0’ which is uniquely represented
by Dimension (2x - 0) obtained by incorporating x = 0]. In using the unique Dimension (2x - N) system with
N = 2x - ΣEOx-Gap [see [1] for full details] and x = all integers commencing from 1 [with even number ‘0’
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Table 1: Two options to solve open problems in Number theory

Riemann zeta function Sieve of Eratosthenes
↓ [Path A option] ↓ ↓ [Path A option] ↓

Nontrivial zeros and two types of Gram points Prime and Composite numbers
↑ [Path B option] ↑ ↑ [Path B option] ↑

Dirichlet Sigma-Power Laws Dimension (2x - N), N = 2x - ΣPCx-Gap

arbitrarily excluded]; Dimension (2x - N) when fully expanded is numerically just equal to ΣEOx-Gap since
Dimension (2x - N) = 2x - 2x + ΣEOx-Gap = ΣEOx-Gap.

To be complete, definition for the above system is fully explained using two examples for position x = 31
and 32. For i and x ∈ N [as per data from Table 6 in [1]]; ΣEOx-Gap = ΣEOx−1-Gap + Gap value at Ei−1 or
Gap value at Oi−1 whereby (i) Ei or Oi at position x is determined by whether relevant x value belongs to E or
O, and (ii) both ΣEO1-Gap and ΣEO2-Gap = 0. Example, for position x = 31: 31 is O (O16). Our desired Gap
value at O15 = 2. Thus ΣEO31-Gap (58) = ΣEO30-Gap (56) + Gap value at O15 (2). Example, for position x
= 32: 32 is E (E16). Our desired Gap value at E15 = 2. Thus ΣEO32-Gap (60) = ΣEO31-Gap (58) + Gap value
at E15 (2).

To solve Riemann hypothesis, Polignac’s and Twin prime conjectures (and explain two types of Gram
points) while fully complying with Information-Complexity conservation; we could theoretically follow Path
A or Path B as schematically depicted in Table 1. Both options require Mathematics for IP problems. Our
utilized Path B option involves deriving DSPL and using Dimension (2x - N) system.

Riemann hypothesis (1859) proposed all NTZ in Riemann zeta function to be located on its critical line.
Defined as IP problem is essential to correctly prove this hypothesis. All of infinite magnitude, NTZ when
geometrically depicted as corresponding Origin intercept points together with two types of Gram points when
geometrically depicted as corresponding x- and y-axes intercept points explicitly confirm they intrinsically
form relevant component of point-intersections in these functions at σ = 1

2 . The equivalence of axes-intercept
points are precise NAV = 0 [as pseudo-zeroes which can be converted to zeroes] calculated using DSPL and
approximate NAV = 0 [as zeroes] calculated using Riemann sum when sim-DηF is interpreted as such. Defined
as IP problems is essential for these explanations to be correct.

Remark 2 Mathematics for Incompletely Predictable problems equates to sine qua non (correctly) clas-
sifying problems involving Incompletely Predictable entities as Incompletely Predictable problems. This is
achieved by incorporating certain identifiable (non-negotiable) mathematical steps with this procedure ulti-
mately enabling us to rigorously prove or precisely explain our nominated open problems in Number theory.

Refined information on Incompletely Predictable entities of Gram and virtual Gram points: These entities
all of infinite magnitude are dependently calculated using complex equation Riemann zeta function, ζ (s), or its
proxy Dirichlet eta function, η(s), in critical strip (denoted by 0 < σ < 1) thus forming the relevant component
of point-intersections. In Figure 3, Gram[y=0], Gram[x=0] and Gram[x=0,y=0] points are, respectively, geo-
metrical x-axis, y-axis and Origin intercepts at critical line (denoted by σ = 1

2 ). Gram[y=0] and Gram[x=0,y=0]
points are, respectively, synonymous with traditional ‘Gram points’ and nontrivial zeros. In Figures 4 and 5,
virtual Gram[y=0] and virtual Gram[x=0] points are, respectively, geometrical x-axis and y-axis intercepts at
non-critical lines (denoted by σ 6= 1

2 ). Virtual Gram[x=0,y=0] points do not exist.
Refined information on Incompletely Predictable entities of prime and composite numbers: These entities

all of infinite magnitude are dependently computed (respectively) directly and indirectly using complex algo-
rithm Sieve of Eratosthenes. Denote C to be uncountable complex numbers, R to be uncountable real numbers,
Q to be countable rational numbers or roots [of non-zero polynomials], R–Q to be uncountable irrational num-
bers, A to be countable algebraic numbers, R–A to be uncountable transcendental numbers, Z to be countable
integers, W to be countable whole numbers, N to be countable natural numbers, E to be countable even num-
bers, O to be countable odd numbers, P to be countable prime numbers, and C to be countable composite
numbers. A are C (including R) that are countable rational or irrational roots. (i) Set N = Set E + Set O, (ii)
Set N = Set P + Set C + Number ‘1’, (iii) Set A = Set Q + Set irrational roots, and (iv) Set N ⊂ Set W ⊂ Set
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Z ⊂ Set Q ⊂ Set R ⊂ Set C. Then Set R–Q = Set irrational roots + Set R–A. Note: With E and O obtained
from N, we did not include ‘0’ as E in above discussion.

Cardinality of a given set: With increasing size, arbitrary Set X can be countable finite set (CFS), countable
infinite set (CIS) or uncountable infinite set (UIS). Cardinality of Set X, |X|, measures “number of elements” in
Set X. E.g. Set negative Gram[y=0] point has CFS of negative Gram[y=0] point with |negative Gram[y=0]
point| = 1, Set even P has CFS of even P with |even P| = 1, Set N has CIS of N with |N| = ℵ0, and Set R has
UIS of R with |R| = c (cardinality of the continuum).

We compare and contrast CP entities (obeying Simple Elementary Fundamental Laws) against IP entities
(obeying Complex Elementary Fundamental Laws) using examples:
(I) E are CP entities constituted by CIS of Q 2, 4, 6, 8, 10, 12.... Note: These are (positive) E derived from N
which then do not include ‘0’ as even number.
(II) O are CP entities constituted by CIS of Q 1, 3, 5, 7, 9, 11....
(III) P are IP entities constituted by CIS of Q 2, 3, 5, 7, 11, 13....
(IV) C are IP entities constituted by CIS of Q 4, 6, 8, 9, 10, 12....
(V) With values traditionally given by parameter t, nontrivial zeros in Riemann zeta function are IP entities
constituted by CIS of R–A [rounded off to six decimal places]: 14.134725, 21.022040, 25.010858, 30.424876,
32.935062, 37.586178,....
(VI) Traditional ‘Gram points’ (or Gram[y=0] points) are x-axis intercepts with choice of index ‘n’ for ‘Gram
points’ historically chosen such that first ‘Gram point’ [by convention at n = 0] corresponds to the t value which
is larger than (first) nontrivial zero located at t = 14.134725. ‘Gram points’ are IP entities constituted by CIS of
R–A [rounded off to six decimal places] with the first six given at n = -3, t = 0; at n = -2, t = 3.436218; at n =
-1, t = 9.666908; at n = 0, t = 17.845599; at n = 1, t = 23.170282; at n = 2, t = 27.670182. We will not calculate
any values for Gram[x=0] points.

Denoted by parameter t; nontrivial zeros, ‘Gram points’ and Gram[x=0] points all belong to well-defined
CIS of R–A which will twice obey the relevant location definition [in CIS of R–A themselves and in CIS of
numerical digits after decimal point of each R–A]. First and only negative ‘Gram point’ (at n = -3) is obtained
by substituting CP t = 0 resulting in ζ ( 1

2 + ıt) = ζ ( 1
2 ) = -1.4603545, a R–A number [rounded off to seven

decimal places] calculated as a limit similar to limit for Euler-Mascheroni constant or Euler gamma with its
precise (1st ) position only determined by computing positions of all preceding (nil) ‘Gram point’ in this case.
‘0’ and ‘1’ are special numbers being neither P nor C as they represent nothingness (zero) and wholeness (one).
In this setting, the idea of having factors for ‘0’ and ‘1’ is meaningless. All entities derived from well-defined
simple/complex algorithms or equations are “dual numbers” as they can be simultaneously depicted as CP and
IP numbers. For instance, Q ‘2’ as P (and E), ‘97’ as P (and O), ‘98’ as C (and E), ‘99’ as C (and O); CP ‘0’
values in x=0, y=0 and simultaneous x=0, y=0 associated with various IP t values in ζ (s).

Proposed by German mathematician Bernhard Riemann (September 17, 1826 – July 20, 1866) in 1859,
Riemann hypothesis is mathematical statement on Riemann zeta function, ζ (s) [or its proxy Dirichlet eta
function, η(s)] that critical line denoted by σ = 1

2 contains complete Set nontrivial zeros with |nontrivial
zeros| = ℵ0. Alternatively, this hypothesis is geometrical statement on ζ (s) [or its proxy η(s)] that generated
curves at σ = 1

2 contain complete Set Origin intercepts with |Origin intercepts| = ℵ0.

Remark 3 Confirming first 10,000,000,000,000 nontrivial zeros location on critical line implies but does
not prove Riemann hypothesis to be true.

Locations of first 10,000,000,000,000 nontrivial zeros on critical line have previously been computed to be
correct. Hardy[2], and with Littlewood[3], showed infinite nontrivial zeros on critical line (denoted by σ = 1

2 )
by considering moments of certain functions related to ζ (s). This discovery cannot constitute rigorous proof
for Riemann hypothesis because they have not exclude theoretical existence of nontrivial zeros located away
from this line (when σ 6= 1

2 ). Furthermore, it is literally a mathematical impossibility (“mathematical impasse”)
to be able to computationally check [in a complete and successful manner] the locations of all infinitely many
nontrivial zeros to correctly lie on critical line.
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2 Riemann Zeta Function and its proxy Dirichlet Eta Function

An L-function consists of a Dirichlet series with a functional equation and an Euler product. Examples of L-
functions come from modular forms, elliptic curves, number fields, and Dirichlet characters, as well as more
generally from automorphic forms, algebraic varieties, and Artin representations. They form an integrated com-
ponent of ‘L-functions and Modular Forms Database’ (LMFDB) with far-reaching implications. In perspective,
ζ (s), being the simplest example of an L-function, is a function of complex variable s (= σ ± ıt) that analyti-

cally continues sum of infinite series ζ (s) =
∞

∑
n=1

1
ns =

1
1s +

1
2s +

1
3s + · · ·. The common convention is to write

s as σ + ıt with ı =
√
−1, and with σ and t real. Valid for σ > 0, we write ζ (s) as Re{ζ (s)}+ıIm{ζ (s)} and

note that ζ (σ + ıt) when 0 < t <+∞ is the complex conjugate of ζ (σ − ıt) when −∞ < t < 0.
Also known as alternating zeta function, η(s) must act as proxy for ζ (s) in critical strip (viz. 0 < σ < 1)

containing critical line (viz. σ = 1
2 ) because ζ (s) only converges when σ > 1. This implies ζ (s) is undefined to

left of this region in critical strip which then requires η(s) representation instead. They are related to each other

as ζ (s) = γ ·η(s) with proportionality factor γ =
1

(1−21−s)
and η(s) =

∞

∑
n=1

(−1)n+1

ns =
1
1s −

1
2s +

1
3s −·· ·.

ζ (s) =
∞

∑
n=1

1
ns (2.1)

=
1
1s +

1
2s +

1
3s + · · ·

= Πp prime
1

(1− p−s)

=
1

(1−2−s)
.

1
(1−3−s)

.
1

(1−5−s)
.

1
(1−7−s)

.
1

(1−11−s)
· · · 1

(1− p−s)
· · ·

Eq. (2.1) is defined for only 1 < σ < ∞ region where ζ (s) is absolutely convergent with no zeros located here.
In Eq. (2.1), equivalent Euler product formula with product over prime numbers [instead of summation over
natural numbers] also represents ζ (s) =⇒ all prime and, by default, composite numbers are (intrinsically)
“encoded” in ζ (s). This observation represents a strong reason to conveniently combine proofs for Riemann
hypothesis, Polignac’s and Twin prime conjectures as was done in the previous 2020 research paper[1].

ζ (s) = 2s
π

s−1 sin
(

πs
2

)
·Γ (1− s) ·ζ (1− s) (2.2)

With σ = 1
2 as symmetry line of reflection, Eq. (2.2) is Riemann’s functional equation valid for −∞ < σ < ∞.

It can be used to find all trivial zeros on horizontal line at ıt = 0 occurring when σ = -2, -4, -6, -8, -10,. . . , ∞

whereby ζ (s) = 0 because factor sin(
πs
2
) vanishes. Γ is gamma function, an extension of factorial function [a

product function denoted by ! notation whereby n! = n(n−1)(n−2). . . (n− (n−1))] with its argument shifted
down by 1, to real and complex numbers. That is, if n is a positive integer, Γ (n) = (n−1)!

ζ (s) =
1

(1−21−s)

∞

∑
n=1

(−1)n+1

ns (2.3)

=
1

(1−21−s)

(
1
1s −

1
2s +

1
3s −·· ·

)
Eq. (2.3) is defined for all σ > 0 values except for simple pole at σ = 1. As alluded to above, ζ (s) without
1

(1−21−s)
viz.

∞

∑
n=1

(−1)n+1

ns is η(s). It is a holomorphic function of s defined by analytic continuation and is
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Fig. 2: INPUT for σ = 1
2 , 2

5 , and 3
5 . ζ (s) has countable infinite set (CIS) of Completely Predictable trivial zeros

at σ = all negative even numbers and [proposed] CIS of Incompletely Predictable nontrivial zeros at σ = 1
2 for

various t values.

Fig. 3: OUTPUT for σ = 1
2 as Gram points. Figures 3 represents schematically depicted polar graph of ζ ( 1

2 + ıt)
plotted along critical line for real values of t running from 0 to 34, horizontal axis: Re{ζ ( 1

2 + ıt)}, and vertical
axis: Im{ζ ( 1

2 + ıt)}. There are presence of Origin intercept points which are totally absent in Figures 4 and 5
[with identical axes definitions but, respectively, adjusted to σ = 2

5 and σ = 3
5 ]

mathematically defined at σ = 1 whereby analogous trivial zeros with presence for η(s) [but not for ζ (s)] on

vertical straight line σ = 1 are found at s = 1± ı
2πk
ln(2)

where k = 1, 2, 3, 4,. . . , ∞.

Figure 2 depict complex variable s (= σ± ıt) as INPUT with x-axis denoting real part Re{s} associated with
σ , and y-axis denoting imaginary part Im{s} associated with t. Figures 3, 4 and 5 respectively depict ζ (s) as
OUTPUT for real values of t running from 0 to 34 at σ = 1

2 (critical line), σ = 2
5 (non-critical line), and σ = 3

5
(non-critical line) with x-axis denoting real part Re{ζ (s)} and y-axis denoting imaginary part Im{ζ (s)}. There
are infinite types-of-spirals (loops) possibilities associated with each σ value arising from all infinite σ values
in critical strip. Mathematically proving all nontrivial zeros location on critical line as denoted by solitary
σ = 1

2 value equates to geometrically proving all Origin intercepts occurrence at solitary σ = 1
2 value. Both

result in rigorous proof for Riemann hypothesis.
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Fig. 4: OUTPUT for σ = 2
5 as virtual Gram points. Incompletely Predictable loops are shifted to the left of

Origin with horizontal axis: Re{ζ ( 2
5 + ıt)}, and vertical axis: Im{ζ ( 2

5 + ıt)}. There are total absence of Origin
intercept points.

Fig. 5: OUTPUT for σ = 3
5 as virtual Gram points with horizontal axis: Re{ζ ( 3

5 + ıt)}, and vertical axis:
Im{ζ ( 3

5 + ıt)}. Incompletely Predictable loops are shifted to the right of Origin. There are total absence of
Origin intercept points.

3 Equations for Riemann Hypothesis and Two Types of Gram Points

Calculations using Dirichlet eta function, η(s) [proxy for Riemann zeta function, ζ (s)] in discrete (summation)
format for all σ values result in infinitely many equations [and all Gram points entities at σ = 1

2 as zeroes
t-values axes-intercept points solutions] for 0 < σ < 1 critical strip region of interest with n = 1, 2, 3, 4, 5,. . . ,
∞ as discrete integer number values. These equations geometrically represent entire plane of critical strip, thus
(at least) allowing our proposed proof to be of a complete nature. We note sim-η(s) in discrete (summation)
format is obtained by applying Euler formula to η(s) and when interpreted as Riemann sum, it gives rise to
approximate Net Area Value = 0 solutions to obtain all Gram points entities at σ = 1

2 [as zeroes t-values]
with n = 1, 2, 3, 4, 5,. . . , ∞ as discrete integer number values. Dirichlet Sigma-Power Law is the antiderivative
derived from solving the improper integrals of sim-η(s) (lower limit a = 1 and upper limit b = ∞) whereby
n = 1 to ∞ are continuous real number values. This Law will have its [multiple] +ve (above x-axis) and -ve
(below x-axis) numerical precise Net Area Value = 0 solutions to obtain all Gram points entities at σ = 1

2
[as pseudo-zeroes t-values which are converted to zeroes t-values] successfully computed – see Proposition
1.2 in Appendix A for greater details.

Notice to Readers: In this paper, we will not invoke the additional use of “inequations” mentioned in [1] as
their use is simply a luxury which is not essential when providing rigorous proof for Riemann hypothesis and
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precise explanations for two types of Gram points. Prerequisite lemmas, corollaries and propositions on η(s)
with associated extensive Calculus to derive necessary equations corresponding to relevant Dirichlet Sigma-
Power Laws [as pseudo-zeroes to zeroes conversion] for nontrivial zeros (Riemann hypothesis) and two types
of Gram points are, respectively, outlined in Appendix A and Appendix B. These derived equations – same ones
as outlined in Appendix A and Appendix B – are given below in full by [additionally] incorporating constant
of integration ‘C’ whereby ‘C’ is inconsistently used in Appendix A and Appendix B:

I. Gram[x=0,y=0] points (or nontrivial zeros) for Riemann hypothesis obtained via pseudo-zeroes to zeroes
conversion

1
2(t2 +(σ −1)2)

·
[
(2n)1−σ ((t +σ −1)sin(t ln(2n))+(t−σ +1)

· cos(t ln(2n)))− (2n−1)1−σ ((t +σ −1)

· sin(t ln(2n−1))+(t−σ +1)cos(t ln(2n−1)))+C
]∞

1 = 0

(3.1)

II. Gram[y=0] points (or ‘usual’ Gram points) obtained via pseudo-zeroes to zeroes conversion
− 1

2(t2+(σ−1)2)
·
[
(2n)1−σ ((σ −1)sin(t ln(2n))+ t cos(t ln(2n)))−

(2n−1)1−σ ((σ −1)sin(t ln(2n−1))+ t cos(t ln(2n−1)))+C
]∞

1 = 0 (3.2)

III. Gram[x=0] points obtained via pseudo-zeroes to zeroes conversion
1

2(t2+(σ−1)2)
·
[
(2n)1−σ (t sin(t ln(2n))− (σ −1)cos(t ln(2n)))−

(2n−1)1−σ (t sin(t ln(2n−1))− (σ −1)cos(t ln(2n−1)))+C
]∞

1 = 0 (3.3)

Critical line is denoted by σ = 1
2 and is conjectured in Riemannn hypothesis to be the unique location

for all nontrivial zeros of Riemann zeta function. For nontrivial zeros, (1) its mathematical definition: ζ (s)
= 0 or η(s) = 0 or sim-η(s) = 0, and (2) its geometrical definition: Origin intercept points (Gram[x=0,y=0]
points) [as zeroes] or precise NAV = 0 [as pseudo-zeroes converted to zeroes] in Dirichlet Sigma-Power Law
or approximate NAV = 0 [as zeroes] in sim-η(s) when interpreted as Riemann sum will only be uniquely valid
when σ = 1

2 . Thus, presence of Origin intercept points only occur when σ = 1
2 ; and absence of Origin intercept

points only occur when σ 6= 1
2 . Also supported by arguments involving modulus of η(s) in Lemma 1.1 from

Appendix A and fully complying with Information-Complexity conservation, all nontrivial zeros when σ = 1
2

are deduced to exist at (i) ζ (s) or η(s) or sim-η(s) = 0 as Origin intercept points [viz, zeroes], (ii) Dirichlet
Sigma-Power Law = 0 as precise NAV = 0 [viz, pseudo-zeroes converted to zeroes], or (iii) Riemann sum
interpretation of sim-η(s) = 0 as approximate NAV = 0 [viz, zeroes].

From subsection 3.1, exact Dimensional analysis (DA) homogeneity at σ = 1
2 denotes ∑(all fractional ex-

ponents) as 2(1−σ ) uniquely equates to [“exact”] whole number ‘1’; and inexact DA homogeneity at σ 6= 1
2

denotes ∑(all fractional exponents) as 2(1−σ ) uniquely equates to [“inexact”] fractional number ‘6=1’. As
will also be subsequently accomplished in Appendix A and Appendix B, we leave it as a simple exercise here
for readers to confirm all above equations for substituted σ = 1

2 and σ 6= 1
2 [e.g. for σ = 2

5 and 3
5 ] values

will, respectively, fully comply with exact and inexact DA homogeneity. We logically deduce this exercise will
definitively equate to substantiating rigorous proof for Riemann hypothesis and providing precise explanations
for two types of Gram points. In effect, original Dirichlet eta function [as zeroes], proxy for Riemann zeta
function [as zeroes], is dependently treated as an unique mathematical object with direct application of Rie-
mann integral to simplified Dirichlet eta function [as zeroes] to derive relevant Dirichlet Sigma-Power Laws
[as pseudo-zeroes converted to zeroes]. Key complex properties or behaviors as exact and inexact Dimen-
sional analysis homogeneity [that can uniquely represent mutually exclusive sets of Gram points and virtual
Gram points] are elucidated from subsequent analysis of these Laws. We emphasize here that, strictly speak-
ing, Dirichlet Sigma-Power Laws can ultimately only be directly derived from Dirichlet eta function and not
Riemann zeta function with the later function not converging, and is thus undefined, in the critical strip (0 < σ

< 1) of interest [whereby the critical line (σ = 1
2 ) is located].
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3.1 Exact and Inexact Dimensional Analysis Homogeneity for Equations

Respectively for ‘base quantities’ such as length, mass and time; their fundamental SI ‘units of measurement’
meter (m) is defined as distance travelled by light in vacuum for time interval 1/299 792 458 s with speed of
light c = 299,792,458 ms−1, kilogram (kg) is defined by taking fixed numerical value Planck constant h to be
6.626 070 15 X 10−34 Joules·second (Js) [whereby Js is equal to kgm2s−1] and second (s) is defined in terms
of ∆vCs = ∆ (133Cs)h f s = 9,192,631,770 s−1. Derived SI units such as J and ms−1 respectively represent ‘base
quantities’ energy and velocity. The word ‘dimension’ is commonly used to indicate all those mentioned ‘units
of measurement’ in well-defined equations.

Dimensional analysis (DA) is an analytic tool with DA homogeneity and non-homogeneity (respectively)
denoting valid and invalid equation occurring when ‘units of measurements’ for ‘base quantities’ are “bal-
anced” and “unbalanced” across both sides of the equation. E.g. equation 2 m + 3 m = 5 m is valid and
equation 2 m + 3 kg = 5 ‘m·kg’ is invalid (respectively) manifesting DA homogeneity and non-homogeneity.

Remark 4 We can validly apply exact and inexact Dimensional analysis homogeneity to certain well-
defined equations.

Let (2n) and (2n-1) be ‘base quantities’ in our derived versions of [continuous-format] Dirichlet Sigma-
Power Laws formatted in simplest forms as equations. E.g. DA on exponent 1

2 in (2n)
1
2 when depicted in

simplest form is desirable for our purpose but DA on exponent 1
4 in equivalent (22n2)

1
4 not depicted in sim-

plest form is undesirable for our purpose. Fractional exponents as ‘units of measurement’ given by (1−σ ) for
equations when σ = 1

2 coincide with exact DA homogeneity1; and (1−σ ) for equations when σ 6= 1
2 coincide

with inexact DA homogeneity2. Respectively, exact DA homogeneity at σ = 1
2 denotes ∑(all fractional expo-

nents) as 2(1−σ ) equates to [“exact”] whole number ‘1’; and inexact DA homogeneity at σ 6= 1
2 denotes ∑(all

fractional exponents) as 2(1−σ ) equates to [“inexact”] fractional number ‘6=1’ [Range: 0 < 2(1−σ ) < 1 and
1 < 2(1−σ ) < 2]. Note: For calculations involving 2(1−σ ) or 2(−σ ) below, it is inconsequential whether σ

values in these fractional exponents are depicted in simplest form or not in simplest form.

Footnote 1, 2: (i) Exact and (ii) inexact DA homogeneity is applicable to Dirichlet Sigma-Power Laws as
equations to calculate precise Net Area Values = 0 for (i) σ = 1

2 (critical line) Gram points (given as pseudo-
zeroes t-values which can be converted to zeroes t-values) and for (ii) σ 6= 1

2 (non-critical lines) virtual Gram
points (given as virtual pseudo-zeroes t-values which can be converted to virtual zeroes t-values). Law of
Continuity is a heuristic principle whatever succeed for the finite, also succeed for the infinite. These Laws
which inherently manifest themselves on finite and infinite time scale should “succeed for the finite, also
succeed for the infinite”.

Additional comments and deductions: Performing exact and inexact Dimensional analysis homogeneity
on versions of [discrete-format] simplified Dirichlet eta functions is equally valid. Again, (2n) and (2n-1) are
‘base quantities’. Fractional exponents as ‘units of measurement’ are now given by (−σ ). Respectively, exact
DA homogeneity at σ = 1

2 denotes ∑(all fractional exponents) as 2(−σ ) equates to [“exact”] (negative) whole
number ‘-1’; and inexact DA homogeneity at σ 6= 1

2 denotes ∑(all fractional exponents) as 2(−σ ) equates to
[“inexact”] (negative) fractional number ‘ 6=-1’ [Range: -2 < 2(−σ ) < -1 and -1 < 2(−σ ) < 0]. Geometrically,
computation with at σ = 1

2 (critical line) using simplified Dirichlet eta function [when interpreted as Riemann
sum] will give rise to approximate Net Area Value = 0 condition. This condition enable obtaining results of
relevant zeroes t-values and virtual zeroes t-values which, respectively, represent all Gram points and virtual
Gram points.

Dirichlet eta function, η(s), at s = σ + ıt with ı =
√
−1, σ and t real is valid for σ > 0. Here, η(s) =

Re{η(s)}+ıIm{η(s)}. Then, η(σ + ıt) when 0 < t < +∞ is the complex conjugate of η(σ − ıt) when −∞ <
t < 0 [which is also valid for σ > 0]. Given as [identical] ±t values; CIS nontrivial zeros or Gram[x=0,y=0]
points (Origin intercepts) occurring when η(s) [as zeroes] = ζ (s) [as zeroes] = simplified Dirichlet eta function
= 0 [as zeroes] with calculated CIS of approximate Net Area Value = 0 is equivalent to Dirichlet Sigma-Power
Law = 0 [as pseudo-zeroes which can be converted to zeroes] with calculated CIS of precise Net Area Value =
0. This situation which uniquely occur only when σ = 1

2 can essentially represent Riemann hypothesis.
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3.2 Summary of Rigorous Proof for Riemann Hypothesis

Outline of proof for Riemann hypothesis. To simultaneously satisfy two mutually inclusive conditions: I.
With rigid manifestation of exact DA homogeneity, Set nontrivial zeros with |nontrivial zeros| = ℵ0 is located
on critical line (viz. σ = 1

2 ) when 2(1−σ ) as ∑(all fractional exponents) = whole number ‘1’ in Dirichlet
Sigma-Power Law3 [as pseudo-zeroes which are converted to zeroes]. II. With rigid manifestation of inexact
DA homogeneity, Set nontrivial zeros with |nontrivial zeros| = ℵ0 is not located on non-critical lines (viz.
σ 6= 1

2 ) when 2(1−σ ) as ∑(all fractional exponents) = fractional number ‘ 6=1’ in Dirichlet Sigma-Power Law3

[as virtual pseudo-zeroes which are converted to virtual zeroes].
Footnote 3: Ultimately derived from η(s) [proxy for ζ (s)], this Law [as ‘Complex Elementary Fundamen-

tal Laws’-based solution results in (virtual) pseudo-zeroes which are converted to (virtual) zeroes] symbolizes
end-product proof on Riemann hypothesis.

Riemann hypothesis mathematical foot-prints. Six identifiable steps to prove Riemann hypothesis: Step
1 Use η(s), proxy for ζ (s), in critical strip. Step 2 Apply Euler formula to η(s). Step 3 Obtain simplified
Dirichlet eta function which intrinsically incorporates actual location [but not actual positions] of all nontrivial
zeros4. Step 4 Apply Riemann integral to simplified Dirichlet eta function in discrete (summation) format
results in continuous (integral) format. Step 5 Obtain its antiderivative Dirichlet Sigma-Power Law [as pseudo-
zeroes which are converted to zeroes] which also intrinsically incorporates actual location [but not actual
positions] of all nontrivial zeros. Step 6 Confirm exact DA homogeneity or inexact DA homogeneity for ∑(all
fractional exponents) in this Law to, respectively, validate presence of nontrivial zeros or absence of nontrivial
zeros.

Footnote 4: Respectively, Gram[y=0] points, Gram[x=0] points and nontrivial zeros are Incompletely Pre-
dictable entities with actual positions determined by setting ∑ Im{η(s)} = 0, ∑Re{η(s)} = 0 and ∑ReIm{η(s)}=
Re{η(s)}+ Im{η(s)} = 0 to dependently calculate relevant positions of all preceding entities in neighbor-
hood. Respectively, actual location of Gram[y=0] points, Gram[x=0] points and nontrivial zeros; and virtual
Gram[y=0] points, virtual Gram[x=0] points and “absent” nontrivial zeros occur precisely at σ = 1

2 ; and σ 6= 1
2 .

Euler formula is commonly stated as eıx = cosx+ ı ·sinx. Step 2 is linked to Step 3 since simplified Dirichlet eta
function is obtained by applying Euler formula to η(s) whereby ζ (s) = γ ·η(s) = γ · [Re{η(s)}+ ı·Im{η(s)}].

Proportionality factor γ =
1

(1−21−s)
, Re{η(s)} =

∞

∑
n=1

((2n−1)−σ cos(t ln(2n−1))− (2n)−σ cos(t ln(2n))) and

Im{η(s)} =
∞

∑
n=1

((2n)−σ sin(t ln(2n))− (2n−1)−σ sin(t ln(2n−1))). Complex number s in critical strip is des-

ignated by s = σ + ıt for 0 < t < +∞ and s = σ − ıt for −∞ < t < 0. Step 4 is linked to Step 5 since applying
Riemann integral to simplified Dirichlet eta function will give rise to Dirichlet Sigma-Power Law.

Overall Proof for Riemann Hypothesis given by Theorem Riemann I – IV. Our elementary proof for
Riemann hypothesis is now summarized in an overall manner by Theorem Riemann I – IV. For completeness
and clarification of this proof, we supply the following underlying important (simple) mathematical arguments.

For 0 < σ < 1, then 0 < 2(1−σ ) < 2. The only whole number between 0 and 2 is ‘1’ which coincide with
σ = 1

2 . When 0 < σ < 1
2 and 1

2 < σ < 1, then [correspondingly] 0 < 2(1−σ ) < 1 and 1 < 2(1−σ ) < 2.
Legend: R = all real numbers. For 0 < σ < 1, σ consist of 0 < R < 1. For 0 < 2(1−σ ) < 2, 2(1−σ ) must

(respectively) consist of 0 < R < 2. An important caveat is that previously used phrases such as “∑(all fractional
exponents) = whole number ‘1’ / fractional number ‘ 6=1’”, although not incorrect per se, should respectively
be replaced by “∑(all real exponents) = whole number ‘1’ / real number ‘6=1’” for complete accurracy. We
additionally note that as whole numbers ⊂ real numbers, we could also validly depict this phrase as “∑(all real
exponents) = real number ‘1’ / real number ‘6=1’”. We apply this caveat to Theorem Riemann I – IV.

Theorem Riemann I. Derived from Dirichlet eta function (proxy for Riemann zeta function), simplified
Dirichlet eta function will exclusively contain de novo property for actual location [but not actual positions] of
all nontrivial zeros.

Proof. We logically advocate the phrase “actual location [but not actual positions] of all nontrivial zeros”
can validly be shortened to “actual location of all nontrivial zeros” which is also used in Theorem Riemann
II, III and IV below. Theorem Riemann I essentially equates to Lemma 1.1 except without mentioning Euler
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formula application to Dirichlet eta function as required in the derivation of simplified Dirichlet eta function
[which contains de novo property for elucidating “actual location of all nontrivial zeros”]. The proof for Theo-
rem Riemann I is now complete as it successfully incorporates proof for Lemma 1.12.

Theorem Riemann II. Dirichlet Sigma-Power Law (as pseudo-zeroes to zeroes conversion) [antiderivative
in continuous (integral) format], which is derived from simplified Dirichlet eta function (as zeroes) [in discrete
(summation) format], will exclusively manifest exact DA homogeneity only when real number exponent σ =
1
2 .

Proof. Proposition 1.2 refers to rigorous derivation of Dirichlet Sigma-Power Law (as pseudo-zeroes to
zeroes conversion) [which contains de novo property for elucidating “actual location of all nontrivial zeros”]
from simplified Dirichlet eta function (as zeroes). Proposition 1.3 refers to unique manifestation of exact DA
homogeneity in Dirichlet Sigma-Power Law (as pseudo-zeroes to zeroes conversion) when real number expo-
nent σ = 1

2 . Therefore Theorem Riemann II successfully incorporate the proofs from Propositions 1.2 and 1.3.
The proof for Theorem Riemann II is now complete2.

Theorem Riemann III. Real number exponent σ [= 1
2 ] parameter, being part of real number exponent (1 -

σ ) in Dirichlet Sigma-Power Law (as pseudo-zeroes to zeroes conversion) that satisfy exact DA homogeneity,
is identical to real number exponent σ parameter mentioned in Riemann hypothesis which propose σ to also
have exclusive value of 1

2 (representing critical line) for “actual location of all nontrivial zeros”, thus confirming
this hypothesis to be true with full support and clarification provided by Theorem Riemann IV.

Proof. Since s = σ ± ıt, complete set of nontrivial zeros which is defined by η(s) = 0 is exclusively associ-
ated with one (and only one) particular η(σ± ıt) = 0 value solution, and by default one (and only one) particular
σ [conjecturally] = 1

2 value solution. When performing exact DA homogeneity on Dirichlet Sigma-Power Law
(as pseudo-zeroes to zeroes conversion) [which contains de novo property to elucidate “actual location of all
nontrivial zeros”], the expression “If real number exponent σ parameter has exclusively 1

2 value, only then
will exact DA homogeneity be satisfied” implies one (and only one) possible mathematical solution. Theo-
rem Riemann III reflect Theorem Riemann II on presence of exact DA homogeneity for σ = 1

2 in Dirichlet
Sigma-Power Law (as pseudo-zeroes to zeroes conversion). Consider three defining reasons: (i) σ parame-
ter is intrinsically present in both Riemann zeta function and Dirichlet eta function, (ii) σ [= 1

2 ] parameter
is used to denote critical line of Riemann zeta function as part of the original Riemann hypothesis [whereby
all nontrivial zeros are conjectured to be located on critical line], and (iii) Dirichlet Sigma-Power Law [with
converting its pseudo-zeroes to zeroes to obtain nontrivial zeros] containing σ parameter is ultimately derived
from Dirichlet eta function, which is proxy for Riemann zeta function. Then this Law definitely has identical
σ parameter that is referred to by Riemann hypothesis. The proof for Theorem Riemann III is now complete as
we have simultaneous confirmation of (i) solitary σ = 1

2 value in Dirichlet Sigma-Power Law [with converting
its pseudo-zeroes to zeroes to obtain nontrivial zeros] satisfying exact DA homogeneity and (ii) critical line
defined by solitary σ = 1

2 value being the logically deduced “actual location [but with no request to determine
actual positions] of all nontrivial zeros” as was proposed in original Riemann hypothesis2.

Theorem Riemann IV. Condition 1. All σ 6= 1
2 values representing (infinitely many) non-critical lines, viz.

0 < σ < 1
2 and 1

2 < σ < 1, will exclusively not contain “actual location of all nontrivial zeros” [and manifest
de novo inexact DA homogeneity in Dirichlet Sigma-Power Law (as virtual pseudo-zeroes to virtual zeroes
conversion with non-existent virtual nontrivial zeros)], together with Condition 2. One (and only one) σ = 1

2
value representing (solitary) critical line will exclusively contain “actual location of all nontrivial zeros” [and
manifest de novo exact DA homogeneity in Dirichlet Sigma-Power Law (as pseudo-zeroes to zeroes conversion
to obtain all nontrivial zeros)], now confirm Riemann hypothesis to be true when these two mutually inclusive
conditions are met.
Proof. Condition 2 Theorem Riemann IV simply reflect proof from Theorem Riemann III [which also incor-
porates Proposition 1.3 as alluded to by Theorem Riemann II] for “actual location of all nontrivial zeros” to
exclusively be on critical line (given by σ = 1

2 value) with manifesting de novo exact DA homogeneity ∑(all
real number exponents) = real number ‘1’ for this Law [with converting its pseudo-zeroes to zeroes to obtain
all nontrivial zeros]. The proof for Condition 2 Theorem Riemann IV is now complete2. Corollary 1.4 confirms
de novo inexact DA homogeneity in this Law (as virtual pseudo-zeroes to virtual zeroes conversion with non-
existent virtual nontrivial zeros) [manifested as ∑(all real number exponents) = real number ‘ 6=1’] for all σ 6= 1

2
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values (non-critical lines) which are exclusively not associated with “actual location of all nontrivial zeros”.
This can also be rigorously confirmed by further applying inclusion-exclusion principle: Exclusive presence of
nontrivial zeros on critical line for Condition 2 Theorem Riemann IV implies exclusive absence of nontrivial
zeros on non-critical lines for Condition 1 Theorem Riemann IV. The proof for Condition 1 Theorem Riemann
IV is now complete2.

We logically deduce that explicit mathematical explanations why presence and absence of nontrivial ze-
ros should (respectively) coincide precisely with σ = 1

2 and σ 6= 1
2 [which are literally the meta-properties

(‘overall’ complex properties)] will require “complex” or convoluted mathematical arguments. Attempting
to provide explicit mathematical explanation with “simple” mathematical arguments would intuitively mean
nontrivial zeros have to be (incorrectly and impossibly) treated as Completely Predictable entities. These meta-
properties are: Gram points equate to “Presence of three entities (i) nontrivial zeros, (ii) Gram[y=0] points and
(iii) Gram[x=0] points that coincide precisely with σ = 1

2 ”; and virtual Gram points equate to “Presence of two
entities (i) virtual Gram[y=0] points and (ii) virtual Gram[x=0] points that coincide precisely with σ 6= 1

2 ”.

4 Conclusions

We envisage two mutually exclusive groups of entities: [totally] Unpredictable entities and [totally] Predictable
entities. The first group dubbed Type I entities or Completely Unpredictable entities can arise as [totally] ran-
dom physical processes in nature e.g. radioactive decay is a stochastic (random) process occurring at level
of single atoms. According to Quantum theory, it is impossible to predict when a particular atom will decay
regardless of how long the atom has existed. For a collection of atoms, expected decay rate is characterized
in terms of their measured decay constants or half-lives. The second group is constituted by two subgroups:
dubbed Type II entities or Completely Predictable entities e.g. Even-Odd number pairing and dubbed Type
III entities or Incompletely Predictable entities e.g. Prime-Composite number pairing. Intuitively, every single
mathematical argument from complete set of mathematical arguments required to fully solve a given Incom-
pletely Predictable problem (containing dependent types of Incompletely Predictable entities) must be correct
obeying Mathematics for Completely Predictable problems. Then Mathematics for Incompletely Predictable
problems is literally the mathematical framework for describing complex properties present in these entities.

Harnassed properties: (1) Nontrivial zeros and two types of Gram points are [dependently] derived from
“Axes intercept relationship interface” using Riemann zeta function, or its proxy Dirichlet eta function; and (2)
Prime and composite numbers are [dependently] derived from “Numerical relationship interface” using Sieve
of Eratosthenes. Using prime gaps as analogy, there are (for instance) “nontrivial zeros gaps” between two
consecutive nontrivial zeros with these gaps being Incompletely Predictable entities. Prime number theorem
describes asymptotic distribution of prime numbers among positive integers by formalizing intuitive idea that
prime numbers become less common as they become larger through precisely quantifying rate at which this
occurs using probability. An important secondary spin-off arising out of solving Riemann hypothesis result
in absolute and full delineation of prime number theorem. This theorem relates to prime counting function
which is usually denoted by π(x) with π(x) = number of prime numbers ≤ x. In other words, solving Riemann
hypothesis is instrumental in proving efficacy of techniques that estimate π(x) efficiently. This confirm “best
possible” bound for error (“smallest possible” error) of prime number theorem.

In mathematics, logarithmic integral function or integral logarithm li(x) is a special function. Relevant to
problems of physics with number theoretic significance, it occurs in prime number theorem as an estimate of
π(x) whereby its form is defined so that li(2) = 0; viz. li(x) =

∫ x
2

du
lnu = li(x) - li(2). There are less accurate ways

of estimating π(x) such as conjectured by Gauss and Legendre at end of 18th century. This is approximately
x/lnx in the sense limx→∞

π(x)
x/ lnx = 1. Skewes’ number is any of several extremely large numbers used by South

African mathematician Stanley Skewes as upper bounds for smallest natural number x for which li(x)<π(x).
These bounds have since been improved by others: there is a crossing near e727.95133 but it is not known
whether this is the smallest. John Edensor Littlewood who was Skewes’ research supervisor proved in 1914[4]
that there is such a [first] number; and found that sign of difference π(x) - li(x) changes infinitely often. This
refute all prior numerical evidence that seem to suggest li(x) was always > π(x). The key point is [100%
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accurate] perfect π(x) mathematical tool being “wrapped around” by [less-than-100% accurate] approximate
li(x) mathematical tool infinitely often via this ‘sign of difference’ changes meant that li(x) is the most efficient
approximate mathematical tool. Contrast this with “crude” x/lnx approximate mathematical tool where studied
values diverge away from π(x) at increasingly greater rate for larger range of prime numbers.

Critical line of Riemann zeta function is denoted by σ = 1
2 whereby all nontrivial zeros are proposed to be

located in the 1859 Riemann hypothesis. Treated as Incompletely Predictable problems, we gave a relatively
elementary proof on Riemann hypothesis while also explaining the existence of three types of Gram points
and two types of virtual Gram points by analyzing the complex (meta-) properties of relevant Dirichlet Sigma-
Power Laws viz. (1) exact DA homogeneity [occurring only once when σ = 1

2 ] in these Laws with ability to
convert their obtained pseudo-zeroes to zeroes in order to obtain nontrivial zeros (Origin intercept points or
Gram[x=0,y=0] points) as one type of Gram points and two other closely related types of Gram points [since
f(n)’s IP zeroes (t values) = F(n)’s IP pseudo-zeroes (t values) – π

2 ]; and (2) inexact DA homogeneity [occurring
infinitely many times when σ 6= 1

2 ] in these Laws with ability to convert their obtained virtual pseudo-zeroes
to virtual zeroes in order to obtain two types of virtual Gram points [since f(n)’s IP virtual zeroes (t values) =
F(n)’s IP virtual pseudo-zeroes (t values) – π

2 ].

4.1 Supplementary materials:

Completely Predictable even numbers with regular intervals of ‘non-varying’ even gaps of 2 as worked ex-

ample for E-O Pairing: Approximate area (given as Riemann sum) from lim
n→∞

n

∑
i=0

∆x · (2i) = lim
n→∞

n

∑
i=0

(2i) [as ∆x

= 1] = Precise area from
∫ n

0
(2i)di = [i2+C]n0 = (n2 - 02). The zero at i = 0 [which mathematically equates

to i = 0 to 0] can always be identically given by (i) the Riemann sum
0

∑
i=0

(2i) = (2X0) + (2X0) = 0 [zero

area] and (ii) the solved integral (antiderivative)
∫ 0

0
(2i)di = (02 - 02) = 0 [zero area]. We further note for

i = 0 to (say) 3 viz, first four [whole] even numbers E0 = 0, E1 = 2, E2 = 4 and E3 = 6 [with sum to-

tal 0 + 2 + 4 + 6 = 12]; then the perpetual phenomenon (Approximate area)
3

∑
i=0

(2i) =
1

∑
i=0

(2i)+
3

∑
i=2

(2i) =

(2X0)+(2X1)+(2X2)+(2X3) = 12 that overestimate and is non-varyingly related to (Precise area)
∫ 3

0
(2i)di

=
∫ 1

0
(2i)di+

∫ 2

1
(2i)di+

∫ 3

2
(2i)di = [i2+C]30 = (32 - 02) = 9 will be validly observed.

Incompletely Predictable prime numbers with irregular intervals of ‘varying’ prime gaps as worked exam-

ple for P-C Pairing: Approximate area (given as Riemann sum) from lim
n→∞

n

∑
i=1

∆x · (Pi + pGapi)= lim
n→∞

n

∑
i=1

(Pi +

pGapi)[as ∆x = 1] = Precise area from
∫ n

1
(Pi + pGapi)di. We further note for i = 1 to (say) 4 viz, first four

prime numbers 2, 3, 5 and 7 [with sum total 2 + 3 + 5 + 7 = 17]; then the perpetual phenomenon (Approximate

area)
4

∑
i=1

(Pi + pGapi) =
2

∑
i=1

(Pi + pGapi) +
4

∑
i=3

(Pi + pGapi) = (2+1) + (3+2) + (5+2) + (7+4) = 26 that [arbitrar-

ily] underestimate and is varyingly related to (Precise area)
∫ 4

1
(Pi + pGapi)di =

∫ 2

1
(Pi + pGapi)di +

∫ 3

2
(Pi

+ pGapi)di +
∫ 4

3
(Pi + pGapi)di =

∫ 2

1
(3+2)+(2+1)di +

∫ 3

2
(5+2)+(3+2)di +

∫ 4

3
(7+4)+(5+2)di =

[8i+C]21 +[12i+C]32 + [18i + C]4
3 = 8 + 12 + 18 = 38 can only be metaphorically, but without true mathemat-

ical validity, observed. This is because our algorithm, using variable i and given as Pi+1 = Pi + pGapi, is only
defined at end-points a, b. It is not a function and is thus not defined in interval [a,b].
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Eq. (A.3) is the only version of simplified Dirichlet eta function (as zeroes) that can uniquely and non-

negotiably incorporate trigonometry identity cos(n)− sin(n) =
√

2sin
(

n+
3
4

π

)
application and mathemati-

cally allow / explain Origin intercept points (nontrivial zeros or Gram[x=0,y=0] points) to exist when σ = 1
2

[with sum exponents = 2(−σ ) = -1 being a (negative) whole number]. This trigonometry identity only involve
sine and cosine terms with exponent being whole number 1 and not fractional number. Thus, we can only
comply with exact Dimensional analysis homogeneity for this Incompletely Predictable problem with sum ex-
ponents = 2(1−σ ) = 1 being also a whole number for derived Dirichlet Sigma-Power Law (as pseudo-zeroes
to zeroes conversion). Eq. (A.3) is reproduced here:

∞

∑
n=1

(2n)−σ
√

2sin(t ln(2n)+
3
4

π) −
∞

∑
n=1

(2n−1)−σ
√

2sin(t ln(2n−1)+
3
4

π) = 0.

It can also be equivalently written as
∞

∑
n=1
−(2n)−σ (sin(t ln(2n))− cos(t ln(2n))) –

∞

∑
n=1
−(2n−1)−σ (sin(t ln(2n−1))− cos(t ln(2n−1))) = 0 that contains both sine and cosine terms. This will

stop unsuspecting readers from incorrectly treating this function [without
√

2 and
3
4

π constants] as
∞

∑
n=1

(2n)−σ sin(t ln(2n)−
∞

∑
n=1

(2n−1)−σ sin(t ln(2n−1) = 0. Serendipitously, this last equation is precisely the

simplified Dirichlet eta function for Gram[y=0] points.
Just as dE/di = d(2i)/di = (constant) 2 mentioned in E-O Pairing for even numbers has its perpetually

valid [intrinsic] simple property to precisely indicate even number gaps = 2; so are presence of exact and
inexact Dimensional analysis (DA) homogeneity in simplified Dirichlet eta function [as zeroes] or Dirichlet
Sigma-Power Law [as pseudo-zeroes to zeroes conversion] has its perpetually valid [intrinsic] complex (meta-)
property to precisely differentiate between Gram points and virtual Gram points.

The word ‘Dimension’ or ‘Dimensional’ in DA is traditionally, conveniently and arbitrarily used to indicate
[but not used to define] analysis on ‘units of measurement’ [such as kg, m and, advocated by us, exponents in-
volving σ and ‘1’] for corresponding ‘base quantities’ [such as mass, length and, advocated by us, (2n), (2n-1)
and Dimension (2x - N) = Dimension (2x - N)1]. Here, the two possible scenarios are [mathematically valid]
DA homogeneity and [mathematically invalid] DA non-homogeneity. But the word Dimension is an English
word with nil acceptance by anyone that it can even remotely indicate or resemble ‘units of measurement’
such as kg or m instead of exponents. We advocate use of [mathematically valid] exact and inexact DA homo-
geneity which are mathematically fully defined in the very specific context of Dirichlet Sigma-Power Law [as
pseudo-zeroes to zeroes conversion] and simplified Dirichlet eta function [as zeroes] is also conveniently and
arbitrarily correct; viz. mathematically, this action is justifiably correct.
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A Prerequisite Lemma, Corollary and Propositions on Riemann Hypothesis

Lemma 1.1. Simplified Dirichlet eta function is derived directly from Dirichlet eta function with Euler formula application and it
will intrinsically incorporate actual location [but not actual positions] of all nontrivial zeros.

Proof. Denote complex number (C) as z = x + ı·y. Then z = Re(z) + ı·Im(z) with Re(z) = x and Im(z) = y; modulus of z, |z| =√
Re(z)2 + Im(z)2 =

√
x2 + y2; and |z|2 = x2 + y2.

Euler formula is commonly stated as eıx = cosx+ ı · sinx. Euler identity (where x = π) is eıπ = cosπ + ı · sinπ = −1+ 0 [or
stated as eıπ +1 = 0]. The ns of ζ (s) is expanded to ns = n(σ+ıt) = nσ et ln(n)·ı since nt = et ln(n). Apply Euler formula to ns result in
ns = nσ (cos(t ln(n))+ ı · sin(t ln(n)). This is written in trigonometric form [designated by short-hand notation ns(Euler)] whereby
nσ is modulus and t ln(n) is polar angle (argument).

Apply ns(Euler) to Eq. (2.1). Then ζ (s) =Re{ζ (s)}+ ı·Im{ζ (s)} with Re{ζ (s)} =
∞

∑
n=1

n−σ cos(t ln(n)) and Im{ζ (s)} =

−
∞

∑
n=1

n−σ sin(t ln(n)). As ζ (s) in Eq. (2.1) is absolutely convergent only when σ>1 where zeros never occur, we will not carry

out further treatment here on this equation.
Apply ns(Euler) to Eq. (2.3). Then η(s) = γ−1 ·ζ (s) = Re{η(s)}+ ı·Im{η(s)} whereby Re{η(s)} =

∞

∑
n=1

((2n−1)−σ cos(t ln(2n−1))− (2n)−σ cos(t ln(2n))) and Im{η(s)} =−
∞

∑
n=1

((2n−1)−σ sin(t ln(2n−1))−(2n)−σ sin(t ln(2n)))

=
∞

∑
n=1

((2n)−σ sin(t ln(2n))− (2n−1)−σ sin(t ln(2n−1))) with proportionality factor γ =
1

(1−21−s)
.

Complex number s in critical strip is designated by s = σ + ıt for 0 < t <+∞ and s = σ − ıt for −∞ < t < 0. Nontrivial zeros
equating to ζ (s) = 0 give rise to our desired η(s) = 0. Modulus of η(s), |η(s)|, is defined as

√
(Re{η(s)})2 +(Im{η(s)})2 with

|η(s)|2 = (Re{η(s)})2 +(Im{η(s)})2. Mathematically |η(s)| = |η(s)|2 = 0 is an unique condition giving rise to η(s) = 0 occurring
only when Re{η(s)} = Im{η(s)} = 0 as any non-zero values for Re{η(s)} and/or Im{η(s)} will always result in |η(s)| and |η(s)|2
having non-zero values. Important implication is that sum of Re{η(s)} and Im{η(s)} equating to zero [given by Eq. (A.1)] must
always hold when |η(s)| = |η(s)|2=0 and consequently η(s)=0.

∑ReIm{η(s)}= Re{η(s)}+ Im{η(s)}= 0 (A.1)

Advocating for existence of theoretical s values leading to non-zero values in Re{η(s)} and Im{η(s)} depicted as possibility
+Re{η(s)} = -Im{η(s)} or -Re{η(s)} = +Im{η(s)} could, in principle, satisfy Eq. (A.1). In reality, the reverse implication is not
necessarily true as these s values will not result in |η(s)| = |η(s)|2 = 0. In any event, we need not consider these two possibilities
since solving Riemann hypothesis involves nontrivial zeros [which are rigidly defined by η(s) = 0] with non-zero values in Re{η(s)}
and/or Im{η(s)} not compatible with η(s) = 0. Note that η(s) = 0 (uniquely) occurring once when σ = 1

2 as Gram points [viz,
zeroes] and (non-uniquely) occurring infinitely often when σ 6= 1

2 as virtual Gram points [viz, virtual zeroes] will always happen at
appropriate times.

While fully complying with Information-Complexity conservation, preservation of quantitative NAV = 0 [(uniquely) occurring
once when σ = 1

2 as zeroes and (non-uniquely) occurring infinitely often when σ 6= 1
2 as virtual zeroes] will always happen at

appropriate times for Dirichlet Sigma-Power Law [as (virtual) pseudo-zeroes to (virtual) zeroes conversion] and simplified Dirichlet
eta function [as (virtual) zeroes] when interpreted as Riemann sum. Again with direct connection to Riemann hypothesis through
the common presence of parameter σ , critical line (denoted by σ = 1

2 ) is inevitably and logically conjectured to also be uniquely
associated with presence of exact DA homogeneity (occurring only when σ = 1

2 ) in this Law [as pseudo-zeroes to zeroes conversion
obtained via precise NAV = 0] and Riemann sum [as zeroes obtained via approximate NAV = 0].

Eq. (A.1) is intrinsically incorporated into Dirichlet Sigma-Power Law [ultimately derived from Dirichlet eta function (proxy
for Riemann zeta function)] since Eq. (A.1) can literally be taken to constitute an intermediate or common step for deriving this
Law with this situation also simultaneously satisfying three conditions: I. The η(s) = 0 [as zeroes] definition for nontrivial zeros
[conjectured to be located at σ = 1

2 critical line] equates to Eq. (A.1), II. Precise NAV = 0 situation in Dirichlet Sigma-Power Law
= 0 [as pseudo-zeroes to zeroes conversion] only occurs when σ = 1

2 , and III. [logically, as was originally proposed on the Riemann
zeta function in Riemann hypothesis] “All nontrivial zeros must (consequently) be located on critical line of Riemann zeta function
which is uniquely denoted only by σ = 1

2 ”.

Apply trigonometry identity cos(n)− sin(n) =
√

2sin
(

n+
3
4

π

)
to Re{η(s)}+ Im{η(s)} to get Eq. (A.2) with terms in last

line built by mixture of terms from Re{η(s)} and Im{η(s)}.
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∑ReIm{η(s)}=
∞

∑
n=1

[(2n−1)−σ cos(t ln(2n−1))− (2n−1)−σ sin(t ln(2n−1)) −(2n)−σ cos(t ln(2n))+(2n)−σ sin(t ln(2n))]

=
∞

∑
n=1

[(2n−1)−σ
√

2sin(t ln(2n−1)+
3
4

π)− (2n)−σ
√

2sin(t ln(2n)+
3
4

π)] (A.2)

When depicted in terms of Eq. (A.1), Eq. (A.2) becomes
∞

∑
n=1

(2n)−σ
√

2sin(t ln(2n)+
3
4

π) =
∞

∑
n=1

(2n−1)−σ
√

2sin(t ln(2n−1)+
3
4

π)

∞

∑
n=1

(2n)−σ
√

2sin(t ln(2n)+
3
4

π)−
∞

∑
n=1

(2n−1)−σ
√

2sin(t ln(2n−1)+
3
4

π) = 0 (A.3)

Eq. (A.3) can also be expanded as
∞

∑
n=1
−(2n)−σ (sin(t ln(2n))− cos(t ln(2n))) –

∞

∑
n=1
−(2n−1)−σ (sin(t ln(2n−1))− cos(t ln(2n−1))) = 0

which contains both sine and cosine terms. η(s) calculations for all σ values result in infinitely many of these type of equations
for 0<σ<1 critical strip region of interest with n = 1, 2, 3, 4, 5,. . . , ∞ as discrete integer number values. All these equations will
geometrically represent entire plane of critical strip, thus (at least) allowing our proposed proof to be of a complete nature.

Eq. (A.3), which is our simplified Dirichlet eta function [with trigonometry identity cos(x)− sin(x) being incorporated], is
derived directly from Dirichlet eta function and it will intrinsically incorporate actual location [but not actual positions] of all
nontrivial zeros. The proof is now complete for Lemma 1.12.

Proposition 1.2. Dirichlet Sigma-Power Law [as pseudo-zeroes to zeroes conversion] representing continuous (integral) format
and given as antiderivative can be derived directly from simplified Dirichlet eta function [as zeroes] in discrete (summation) format
with Riemann integral application. Note: This Law [as pseudo-zeroes to zeroes conversion] representing continuous (integral)
format refers to end-product obtained from “key step of converting Dirichlet eta function [as zeroes], proxy for Riemann zeta
function [as zeroes], into its continuous format version”.

Proof. In Calculus, integration is reverse process of differentiation viewed geometrically as the Area enclosed by curve of
function and x-axis in a given interval. Apply definite integral I between limits (or points) a and b is to compute its value when

∆x −→ 0, i.e. I = lim
∆x−→0

n

∑
i=1

f (xi)∆xi =
∫ b

a
f (x)dx. This is Riemann integral of function f(x) in interval [a, b] where a<b. Apply

Riemann integral to simplified Dirichlet eta function [as zeroes] in [“∆x −→ 1”] discrete (summation) format which intrinsically
incorporates actual location [but not actual positions] of all nontrivial zeros criterion in order to obtain Dirichlet Sigma-Power
Law [as pseudo-zeroes to zeroes conversion] in [“∆x −→ 0”] continuous (integral) format with the later validly representing the
former. Then Dirichlet Sigma-Power Law [as pseudo-zeroes to zeroes conversion] will also fullfil this criterion. Due to resemblance
to power law functions in σ from s = σ + ıt being exponent of a power function nσ , logarithm scale use, and harmonic ζ (s) series
connection in Zipf’s law; we elect to call this Law by its given name. A characteristic of this “discrete function” or “continuous
Law” is the exact formula expression in usual mathematical language y = f (x1) format description for a single-variable function.
The variable is n obtained from (2n) and (2n−1) as ‘base quantities’ with parameters σ and t. Thus, y = f (n) with discrete n = 1,
2, 3, 4, 5,. . . , ∞ or continuous n = 1 to ∞ whereby -∞ < t < +∞ and 0 < σ < 1 are the two parameters.

A proper integral is a definite integral which has neither limit a or b infinite and from which the integrand does not approach
infinity at any point in the range of integration. An improper integral is a definite integral that has either or both limits a and b
infinite or an integrand that approaches infinity at one or more points in the range of integration.

Involving sine and/or cosine functions, [multiple] +ve (above x-axis) and -ve (below x-axis) numerical Net Area Value = 0 solu-
tions can be successfully computed for simplified Dirichlet eta function [as zeroes] when interpreted as Riemann sum and Dirichlet
Sigma-Power Law [as pseudo-zeroes to zeroes conversion]. Here, Dirichlet Sigma-Power Law (antiderivative) is the solution to
improper integral (with lower limit a = 1 and upper limit b = ∞) obtained from [validly] applying Riemann integral to simplified
Dirichlet eta function. All relevant antiderivatives in this paper are derived from improper integrals with format

∫
∞

1 f (n)dn based

on Eqs. (A.3), (B.2) and (B.4). Example for Eq. (A.3), involved improper integrals are from
∫

∞

1
(2n)−σ

√
2sin(t ln(2n)+

3
4

π)dn

-
∫

∞

1
(2n−1)−σ

√
2sin(t ln(2n−1)+

3
4

π)dn = 0. These improper integrals are seen to involve [periodic] sine and/or cosine func-

tion between limits 1 and ∞. Each improper integral can be validly expanded as
∫ n=2

n=1 f (n)dn +
∫ n=3

n=2 f (n)dn +
∫ n=4

n=3 f (n)dn +...+∫ n=∞

n=∞−1 f (n)dn which, for all sufficiently large n as n−→ ∞, will manifest divergence by oscillation (viz. for all sufficiently large n
as n−→ ∞, this cummulative total will not diverge in a particular direction to a solitary well-defined limit value such as sin π/2 = 1
or less well-defined limit value such as +∞).

With steps of manual integration shown using indefinite integrals [for simplicity], we solve definite integral based on T1 (first
term) with (2n) parameter in Eq. (A.3):∫

∞

1

2
1
2−σ sin

(
t ln(2n)+ 3π

4

)
nσ

dn =
∫

∞

1
− sin(t ln(2n))− cos(t ln(2n))

2σ nσ
dn.

We deduce the remaining two important integrals located in Proposition 2.2 to be “variations” of this particular integral here for
nontrivial zero (with Right Hand Side term above involving both sine and cosine functions); viz, the integral with its term involving
only sine function (for Gram[y=0] points) and the integral with its term involving only cosine function (for Gram[x=0] points). We
check all derived antiderivatives to be correct using computer algebra system Maxima in this paper.
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Simplifying and applying linearity, we obtain 2
1
2−σ

∫ sin
(
t ln(2n)+ 3π

4

)
nσ

dn.

Now solving
∫ sin

(
t ln(2n)+ 3π

4

)
nσ

dn. Substitute u = t ln(2n)+
3π

4
−→ dn =

n
t

du,

use n1−σ = e
(1−σ)(u−t ln(2)− 3π

4 )
t =

e
(σ−1)(4t ln(2)+3π)

4t

t

∫
e
(1−σ)u

t sin(u)du.

Now solving
∫

e
(1−σ)u

t sin(u)du. We integrate by parts twice in a row:
∫
fg′ = fg−

∫
f′g.

First time: f= sin(u), g′ = e
(1−σ)u

t

Then f′ = cos(u) , g =
(1−σ) te

(1−σ)u
t

σ2−2σ +1
:

=
(1−σ) te

(1−σ)u
t sin(u)

σ2−2σ +1
−
∫

(1−σ) te
(1−σ)u

t cos(u)
σ2−2σ +1

du

Second time: f= cos(u) , g′ =
(1−σ) te

(1−σ)u
t

σ2−2σ +1

Then f′ =−sin(u), g=
t2e

(1−σ)u
t

σ2−2σ +1
:

=
(1−σ) te

(1−σ)u
t sin(u)

σ2−2σ +1
−

(
t2e

(1−σ)u
t cos(u)

σ2−2σ +1
−
∫
− t2e

(1−σ)u
t sin(u)

σ2−2σ +1
du

)
Apply linearity:

=
(1−σ) te

1−σu
t sin(u)

σ2−2σ +1
−

(
t2e

(1−σ)u
t cos(u)

σ2−2σ +1
+

t2

σ2−2σ +1

∫
e
(1−σ)u

t sin(u) du

)
As integral

∫
e
(1−σ)u

t sin(u) du appears again on Right Hand Side, we solve for it:

=
(1−σ)e

(1−σ)u
t sin(u)

t − e
(1−σ)u

t cos(u)
σ2−2σ+1

t2 +1

Plug in solved integrals:
e
(σ−1)(4t ln(2)+3π)

4t

t

∫
e
(1−σ)u

t sin(u) du

=

e
(σ−1)(4t ln(2)+3π)

4t

(
(1−σ)e

(1−σ)u
t sin(u)

t − e
(1−σ)u

t cos(u)

)
(

σ2−2σ+1
t2 +1

)
t

Undo substitution u = t ln(2n)+ 3π

4 and simplifying:

=

e
(σ−1)(4t ln(2)+3π)

4t

 (1−σ)e
(1−σ)(t ln(2n)+ 3π

4 )
t sin(t ln(2n)+ 3π

4 )
t − e

(1−σ)(t ln(2n)+ 3π
4 )

t cos
(
t ln(2n)+ 3π

4

)
(

σ2−2σ+1
t2 +1

)
t

Plug in solved integrals: 2
1
2−σ

∫ sin
(
t ln(2n)+ 3π

4

)
nσ

dn

=

2
1
2−σ e

(σ−1)(4t ln(2)+3π)
4t

 (1−σ)e
(1−σ)(t ln(2n)+ 3π

4 )
t sin(t ln(2n)+ 3π

4 )
t − e

(1−σ)(t ln(2n)+ 3π
4 )

t cos
(
t ln(2n)+ 3π

4

)
(

σ2−2σ+1
t2 +1

)
t

By rewriting and simplifying,
∫

∞

1

2
1
2−σ sin

(
t ln(2n)+ 3π

4

)
nσ

dn is finally solved as

 (2n)1−σ ((t +σ −1)sin(t ln(2n))+(t−σ +1)cos(t ln(2n)))

2
(

t2 +(σ −1)2
) +C

∞

1

(A.4)
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For T2 (second term) with (2n−1) parameter in Eq. (A.3), Eq. (A.4) equates to (2n−1)1−σ ((t +σ −1)sin(t ln(2n−1))+(t−σ +1)cos(t ln(2n−1)))

2
(

t2 +(σ −1)2
) +C

∞

1

(A.5)

Without incorporating constant of integration ‘C’, Dirichlet Sigma-Power Law as equation derived from Eq. (A.3) is given by:

1
2(t2 +(σ −1)2)

·
[
(2n)1−σ ((t +σ −1)sin(t ln(2n))+(t−σ +1)

· cos(t ln(2n)))− (2n−1)1−σ ((t +σ −1)

· sin(t ln(2n−1))+(t−σ +1)cos(t ln(2n−1)))
]∞

1 = 0

(A.6)

Intended derivation of Dirichlet Sigma-Power Law [with intrinsic ability for pseudo-zeroes to zeroes conversion] as equation has
been successful. The proof is now complete for Proposition 1.22.

Proposition 1.3. Exact Dimensional analysis homogeneity at σ = 1
2 in Dirichlet Sigma-Power Law [pseudo-zeroes to zeroes

conversion] as equation is indicated by ∑(all fractional exponents) = whole number ‘1’.
Proof. Without incorporating constant of integration ‘C’, Dirichlet Sigma-Power Law as equation for σ = 1

2 value is given by:
1

2t2+ 1
2
·
[
(2n)

1
2
((

t− 1
2

)
sin(t ln(2n))+

(
t + 1

2

)
cos(t ln(2n))

)
−

(2n−1)
1
2

((
t− 1

2

)
sin(t ln(2n−1))+

(
t +

1
2

)
cos(t ln(2n−1))

)]∞

1
= 0 (A.7)

Evaluation of definite integrals Eq. (A.7), Eq. (B.7) and Eq. (B.8) using limit as n → +∞ for 0 < t < +∞ enable countless
computations resulting in t values for (respectively) CIS nontrivial zeros, CIS Gram[y=0] and CIS Gram[x=0] points [as pseudo-
zeroes to zeroes conversion]. Larger n values used for computations will correspond to increasing accuracy of these entities (which
are all transcendental numbers). Complying with Information-Complexity conservation, preservation or conservation of quantitative
Net Area Value = 0 when σ = 1

2 will always happen at appropriate times for Eq. (A.7), Eq. (B.7) and Eq. (B.8). Otherwise,
preservation or conservation of quantitative Net Area Value = 0 when σ 6= 1

2 will always happen at appropriate times for Eq. (A.8),
Eq. (B.9) and Eq. (B.10), respectively, enabling countless computations resulting in t values for CIS virtual Gram[y=0] and CIS
virtual Gram[x=0] points [as virtual pseudo-zeroes to virtual zeroes conversion] with absent (virtual) nontrivial zeros.

∑(all fractional exponents) as 2(1− σ ) = whole number ‘1’ for Eq. (A.7). This finding signify presence of complete set
nontrivial zeros [as pseudo-zeroes to zeroes conversion] for Eq. (A.7). The proof is now complete for Proposition 1.32.

Corollary 1.4. Inexact Dimensional analysis homogeneity at σ 6= 1
2 [illustrated using σ = 2

5 ] in Dirichlet Sigma-Power Law
[virtual pseudo-zeroes to virtual zeroes conversion] as equation is indicated by ∑(all fractional exponents) = fractional number
‘6=1’.

Proof. Without incorporating constant of integration ‘C’, Dirichlet Sigma-Power Law as equation for σ = 2
5 value is given by:

1
2t2+ 18

25
· [(2n)

3
5
(
(t− 3

5 )sin(t ln(2n))+(t + 3
5 )cos(t ln(2n))

)
−

(2n−1)
3
5

((
t− 3

5

)
sin(t ln(2n−1))+

(
t +

3
5

)
cos(t ln(2n−1))

)]∞

1
= 0 (A.8)

∑(all fractional exponents) as 2(1−σ ) = fractional number ‘6=1’ for Eq. (A.8). This finding signify absence of complete set
nontrivial zeros [as virtual pseudo-zeroes to virtual zeroes conversion] for Eq. (A.8). The proof is now complete for Corollary 1.42.

B Prerequisite Lemma, Corollary and Propositions on Two Types of Gram Points

For Gram[y=0] & Gram[x=0] points (and corresponding virtual Gram[y=0] & virtual Gram[x=0] points with totally different
values), we apply a parallel procedure carried out on nontrivial zeros but only depict abbreviated treatments and discussions.

Lemma 2.1. Simplified Gram[y=0] and Gram[x=0] points-Dirichlet eta functions are derived directly from Dirichlet eta func-
tion with Euler formula application and (respectively) they will intrinsically incorporate actual location [but not actual positions] of
all Gram[y=0] and Gram[x=0] points.

Proof. For Gram[y=0] points, the equivalent of Eq. (A.1) and Eq. (A.3) are respectively given by Eq. (B.1) and Eq. (B.2) below.

∑ReIm{η(s)}= Re{η(s)}+0, or simply Im{η(s)}= 0 (B.1)
∞

∑
n=1

(2n)−σ sin(t ln(2n)) =
∞

∑
n=1

(2n−1)−σ sin(t ln(2n−1))

∞

∑
n=1

(2n)−σ sin(t ln(2n))−
∞

∑
n=1

(2n−1)−σ sin(t ln(2n−1)) = 0 (B.2)
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For Gram[x=0] points, the equivalent of Eq. (A.1) and Eq. (A.3) are respectively given by Eq. (B.3) and Eq. (B.4) below.

∑ReIm{η(s)}= 0+ Im{η(s)}, or simply Re{η(s)}= 0 (B.3)

∞

∑
n=1

(2n)−σ cos(t ln(2n)) =
∞

∑
n=1

(2n−1)−σ cos(t ln(2n−1))

∞

∑
n=1

(2n)−σ cos(t ln(2n))−
∞

∑
n=1

(2n−1)−σ cos(t ln(2n−1)) = 0 (B.4)

Eq. (B.2) and Eq. (B.4) being the simplified Gram[y=0] and Gram[x=0] points-Dirichlet eta functions derived directly from
η(s) will intrinsically incorporate actual location [but not actual positions] of (respectively) all Gram[y=0] and Gram[x=0] points.
The proof is now complete for Lemma 2.12.

Proposition 2.2. Gram[y=0] and Gram[x=0] points-Dirichlet Sigma-Power Laws [as pseudo-zeroes to zeroes conversion] rep-
resenting continuous (integral) format and given as antiderivatives are derived directly from simplified Gram[y=0] and Gram[x=0]
points-Dirichlet eta functions [as zeroes] in discrete (summation) format with Riemann integral application. Note: This Law [as
pseudo-zeroes to zeroes conversion] representing continuous (integral) format refers to end-product obtained from “key step of
converting Dirichlet eta function [as zeroes], proxy for Riemann zeta function [as zeroes], into its continuous format version”.

Proof. Antiderivatives below using (2n) parameter help obtain all subsequent equations: first one for Gram[y=0] points and
second one for Gram[x=0] points.∫

∞

1 (2n)−σ sin(t ln(2n))dn =

[
− (2n)1−σ ((σ−1)sin(t ln(2n))+t cos(t ln(2n)))

2(t2+(σ−1)2)
+C
]∞

1∫
∞

1 (2n)−σ cos(t ln(2n))dn =

[
(2n)1−σ (t sin(t ln(2n))−(σ−1)cos(t ln(2n)))

2(t2+(σ−1)2)
+C
]∞

1
For Gram[y=0] points-Dirichlet Sigma-Power Law as equation [which is the equivalent of Eq. (A.6)], it is given by Eq. (B.5)

[without incorporating constant of integration ‘C’].
− 1

2(t2+(σ−1)2)
·
[
(2n)1−σ ((σ −1)sin(t ln(2n))+ t cos(t ln(2n)))−

(2n−1)1−σ ((σ −1)sin(t ln(2n−1))+ t cos(t ln(2n−1)))
]∞

1 = 0 (B.5)

For Gram[x=0] points-Dirichlet Sigma-Power Law as equation [which is the equivalent of Eq. (A.6)], it is given by Eq. (B.6)
[without incorporating constant of integration ‘C’].

1
2(t2+(σ−1)2)

·
[
(2n)1−σ (t sin(t ln(2n))− (σ −1)cos(t ln(2n)))−

(2n−1)1−σ (t sin(t ln(2n−1))− (σ −1)cos(t ln(2n−1)))
]∞

1 = 0 (B.6)

Intended derivation of Gram[y=0] and Gram[x=0] points-Dirichlet Sigma-Power Laws [both with intrinsic ability for pseudo-zeroes
to zeroes conversion] as equations is successful. The proof is now complete for Proposition 2.22.

Proposition 2.3. Exact Dimensional analysis homogeneity at σ = 1
2 in Gram[y=0] and Gram[x=0] points-Dirichlet Sigma-

Power Laws [pseudo-zeroes to zeroes conversion] as equations are indicated by ∑(all fractional exponents) = whole number ‘1’.
Proof. Without incorporating constant of integration ‘C’, Gram[y=0] points-Dirichlet Sigma-Power Law as equation for σ = 1

2
value is given by:

− 1
2t2 + 1

2

· [(2n)
1
2

(
t cos(t ln(2n))− 1

2
sin(t ln(2n))

)
−

(2n−1)
1
2

(
t cos(t ln(2n−1))− 1

2
sin(t ln(2n−1))

)]∞

1
= 0 (B.7)

Without incorporating constant of integration ‘C’, Gram[x=0] points-Dirichlet Sigma-Power Law as equation for σ = 1
2 value is

given by:
1

2t2+ 1
2
· [(2n)

1
2
(
t sin(t ln(2n))+ 1

2 cos(t ln(2n))
)
−

(2n−1)
1
2

(
t sin(t ln(2n−1))+

1
2

cos(t ln(2n−1))
)]∞

1
= 0 (B.8)

∑(all fractional exponents) as 2(1− σ ) = whole number ‘1’ for Eqs. (B.7) and (B.8). These findings signify presence of
complete sets Gram[y=0] points for Eq. (B.7) and Gram[x=0] points for Eq. (B.8) [both as pseudo-zeroes to zeroes conversion].
The proof is now complete for Proposition 2.32.

Corollary 2.4. Inexact Dimensional analysis homogeneity at σ 6= 1
2 [illustrated using σ = 2

5 ] in Gram[y=0] and Gram[x=0]
points-Dirichlet Sigma-Power Laws [virtual pseudo-zeroes to virtual zeroes conversion] as equations are indicated by ∑(all frac-
tional exponents) = fractional number ‘6=1’.

Proof. Without incorporating constant of integration ‘C’, Gram[y=0] points-Dirichlet Sigma-Power Law as equation for σ = 2
5

value is given by:
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− 1
2t2 + 18

25

· [(2n)
3
5

(
t cos(t ln(2n))− 3

5
sin(t ln(2n))

)
−

(2n−1)
3
5

(
t cos(t ln(2n−1))− 3

5
sin(t ln(2n−1))

)]∞

1
= 0 (B.9)

Without incorporating constant of integration ‘C’, Gram[x=0] points-Dirichlet Sigma-Power Law as equation for σ = 2
5 value is

given by:
1

2t2 + 18
25

· [(2n)
3
5

(
t sin(t ln(2n))+

3
5

cos(t ln(2n))
)
−

(2n−1)
3
5

(
t sin(t ln(2n−1))+

3
5

cos(t ln(2n−1))
)]∞

1
= 0 (B.10)

∑(all fractional exponents) as 2(1−σ ) = fractional number ‘ 6=1’ for Eqs. (B.9) and (B.10). These findings signify presence of
complete sets virtual Gram[y=0] points for Eq. (B.9) and virtual Gram[x=0] points for Eq. (B.10) [both as virtual pseudo-zeroes to
virtual zeroes conversion]. The proof is now complete for Corollary 2.42.
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