Evaluating the Alignment of the Polarized Starlight from 99 Stars in a Region off the Disk of the Milky Way

Richard Shurtleff *

Abstract

Detecting polarized starlight projects an intriguing pattern of polarization directions on the Galaxy. Polarized starlight is a well known tracer of Galactic Magnetic fields and acts as a tool for understanding the electrodynamics of the dust that contaminates the view of more distant objects. Here, the alignment of the polarization directions of a sample of stars well off the Galactic Disk is investigated with a recently devised test. The Hub Test offers numerical metrics based on the geometry of spherical geodesics, i.e. great circles, to judge alignment. By comparing the directions of two vectors at a single point, the test avoids the issues related to parallel transport. The sample of 99 stars, located from longitude 15° to 35° and latitude 23° to $+35^{\circ}$, is among the most highly aligned regions. The alignment function provides a full-sphere depiction of the collective alignment. The metrics include the likelihood that random polarization directions would produce equal or better alignments. For the sample considered here, the alignment occurs at the 20σ level, far away from random alignments. The source of the polarization data is the Heiles 2000 agglomeration catalog appended with data from the Berdyugin 2014 catalog. This article is a Mathematica notebook which can be accessed and run via a link in the References.

Keywords: Polarized Starlight; Alignment; Computer Program; Uncertainties; Hub Test; Galactic Structure; Galactic Magnetic Field
*Department of Sciences, Wentworth Institute of Technology, 550 Huntington Avenue, Boston, MA, USA, 02115, orcid.org/0000-0001-5920-759X, e-mail addresses: shurtlefff@wit.edu, momentummatrix@yahoo.com
$\ln [1]:=$ Print["The date and time that this statement was evaluated: ", Now]
The date and time that this statement was evaluated: Sun 11 Apr 2021 16:07:50 GMT-4.
0 . Preface

The pdf version of this notebook is available online from the viXra archive. To find the ready-to-run notebook follow the link in Ref. 1.

Notes:
(1) The pdf version of this notebook reflects a large number of uncertainty runs that consumed considerable computer time. The ready-to run notebook is set up to generate fewer uncertainty runs. [Experimental uncertainties produce uncertainties in the results. The "uncertainty runs" follow the process of alignment evaluation but with polarization directions allowed to vary in a way that reflects the uncertainties in measurement.]
(2) The pdf version quotes some numerical values that are associated with the particular settings and uncertainty runs that were current when the pdf version was created. Other sets of uncertainty runs should alter those numerical values only slightly.
(3) A template for performing calculations similar to those in this notebook, but with other data, can be found online, Ref. 2. Or alter this notebook.
(4) These notebooks were created using Wolfram Mathematica, Version Number: 12.1, Ref. 3.
(5) The formulas for creating Aitoff plots were found on Wikipedia, Ref. 4.

The Hub Test

This notebook presents an application of the Hub Test, which is discussed more fully in Ref. 5. The basic idea is that polarization directions are well-aligned with each other when they are well-aligned with some point on the Celestial Sphere.

Consider the well-known prescription for finding Polaris, the North Star, based on the alignment of the direction from the Merak to Dubhe with Polaris. Guided by Fig. 1, let the source S be the star Merak, take the interval from Merak to Dubhe in place of the direction of polarization \hat{v}_{ψ}, and let Polaris be the point H. Then the alignment of the Merak to Dubhe direction \hat{v}_{ψ} with Polaris, the point H, illustrates the concept of alignment in the Hub Test. With Merak as S, Merak-Dubhe as \hat{v}_{ψ}, and Polaris as H, the angle η would be about $\eta=3.47^{\circ}$. In that case, the blue great circle and the purple great circle in Fig. 1 would almost coincide.

Figure 1: The Celestial sphere is pictured on the left and on the right is the plane tangent to the sphere at the source S. The linear polarization direction \hat{v}_{ψ} lies in the tangent plane and determines the purple great circle on the sphere. A point H on the sphere and the point S determine a second great circle, the blue circle drawn on the sphere at the left. Clearly, H and S must be distinct in order to determine a great circle.

In Fig. 1, we select the acute angle η between the great circles at $S, 0^{\circ} \leq \eta \leq 90^{\circ}$. This "alignment angle" η measures the alignment of the polarization direction \hat{v}_{ψ} with the point H. Perfect alignment occurs when $\eta=0^{\circ}$ and the two great circles overlap. Perpendicular great circles, $\eta=90^{\circ}$, indicates maximum "avoidance" of the polarization direction \hat{v}_{ψ} with the point H on the sphere. The halfway value, $\eta=45^{\circ}$, favors neither alignment nor avoidance.

With N sources $S_{i}, i=1, \ldots, N$, there are N alignment angles η_{iH} for the point H and an average alignment angle $\bar{\eta}$ at H,

$$
\begin{equation*}
\bar{\eta}(\mathrm{H})=\frac{1}{N} \sum_{i=1}^{N} \eta_{\mathrm{iH}} \tag{1}
\end{equation*}
$$

The alignment angle $\bar{\eta}(\mathrm{H})$ is a function of position H on the sphere. It is symmetric across diameters, $\bar{\eta}(\mathrm{H})=\bar{\eta}(-\mathrm{H})$, because great circles are symmetric across diameters.

The function $\bar{\eta}(\mathrm{H})$ measures convergence and divergence of the great circles determined by the polarization directions. For random polarization directions, the average $\bar{\eta}(\mathrm{H})$ should be near 45°, since each alignment angle η_{iH} is acute, $0^{\circ} \leq \eta_{\mathrm{iH}} \leq 90^{\circ}$, and random polarization directions should not favor any one value. Points H where the alignment angle $\bar{\eta}(\mathrm{H})$ is smaller than 45°, the great circles tend to converge, where $\bar{\eta}(\mathrm{H})$ is larger than 45°, the great circles can be said to diverge.

Thus the basic concept includes "avoidance", as well as alignment. Avoidance is high when the two directions \hat{v}_{ψ} and \hat{v}_{H} differ by a large angle, $\eta \rightarrow 90^{\circ}$. Perpendicular great circles at $S, \eta=90^{\circ}$, would indicate the maximum avoidance of the polarization direction and the point on the sphere. The N sources' polarization directions most avoid the points $H_{\max }$ and $-H_{\max }$ where the function $\bar{\eta}(\mathrm{H})$ takes its maximum value $\bar{\eta}_{\max }$. The locations of the most extreme divergence are called "avoidance hubs".

The N sources' polarization directions are best aligned with the points $H_{\min }$ and $-H_{\min }$ where the alignment angle is a minimum $\bar{\eta}_{\min }$. The locations $H_{\min }$ and $-H_{\min }$ of their most extreme convergence are called "alignment hubs". Alignment and avoidance are
equally viable, complementary concepts with the Hub Test.
The Hub test provides many calculated results to describe the collective behavior of the polarization directions in a sample. The alignment angle function $\bar{\eta}(\mathrm{H})$, Eq. (1), can be mapped on the Celestial Sphere to give a visual display. The smallest alignment angle $\bar{\eta}_{\min }$ and the largest avoidance angle $\bar{\eta}_{\max }$ quantify the agreement of the directions. Known formulas, see Sec. 4 below, are available to calculate the significance of the alignment, i.e. the likelihood that random polarization directions would yield better results. The locations of the convergence hubs $H_{\min }$ and the divergence hubs $H_{\max }$ may provide clues to magnetic field direction and such quantities.

CONTENTS

0 . Preface

1. Introduction
2. Coordinates, grid, and sundry basic formulas

2a. Coordinates
2b. Grid
2c. The mean and standard deviation are convenient functions. Set directories for getting and putting data.
3. Polarization and Position Data
4. Probability Distributions and Significance Formulas
5. Results using the Best Values $\psi \mathrm{n}$ of the Polarization Directions

5a. The alignment function $\bar{\eta}(\mathrm{H})$
5b. Plot of the Alignment Angle Function $\bar{\eta}(\mathrm{H})$
6. Uncertainty Runs

6a. Creating and Storing Uncertainty Runs
6b. The Effects of Uncertainty on the Smallest Alignment Angle $\bar{\eta}_{\text {min }}$
6c. The Effects of Uncertainty on the Largest Avoidance Angle $\bar{\eta}_{\max }$
6 d . The Effects of Uncertainty on the Locations (gLON,gLAT) of the Alignment Hubs $H_{\text {min }}$
6e. The Effects of Uncertainty on the Locations (gLON, gLAT) of the Avoidance Hubs $H_{\max }$.
6f. The Effects of Uncertainty on the angle between the planes of the Sample center to $H_{\min }$ Great Circle and the Sample to $H_{\max }$ Great Circle.

6 g . Map of the Hubs for the Uncertainty Runs
7. Concluding Remarks

References

1. Introduction

For those interested in the structure of the Milky Way, polarized starlight infers the direction of the Galactic magnetic field, see for example, Refs. 6 \& 7. For those interested in deep space objects on the far side of the Galaxy, polarized starlight helps uncover the physics of the contaminating dust that obscures the objects of interest, see, for example, Refs. $8 \& 9$.

The Hub Test, described briefly in the Preface, supplies several quantitative measures that may be helpful in understanding the implications of the polarization directions of a given sample.

This work looks at a very significantly aligned sample of 99 stars occupying a region about 30° off the Galactic Disk. The stars' polarization directions are aligned at the 20σ level, with the chance that the alignment is random being nil. The alignment is quite well known and not surprising. Yet evaluating the correlations numerically requires suitable tests. Analyzing this sample with the

Hub Test illustrates its numerical metrics.
Certainly, alignment is an important characteristic. However, one aspect of collective behavior that is often overlooked is the concept of avoidance. It may be useful to know where the polarization directions do-not-point, i.e. avoidance, as well as where the polarization directions do-point, i.e. alignment.

The sample is chosen because it is off the Galactic Disk and has extreme alignment behavior. Also, an accident of nature has put the alignment direction closely coincident with the Celestial Equator.

The known distances to many of the stars is information that is not utilized. All stars, no matter how distant, are plotted, planetarium-like, on the 2D Celestial Sphere. Some preliminary formulas and the construction of the grid are presented in Sec. 2 . The grid is a $2^{\circ} \times 2^{\circ}$ mesh of 10518 grid points that maintains equal spacings at high latitudes. The needed stellar data is taken from the catalogs Heiles 2000 and Berdyugin 2014, Ref. 10-13. Cuts were made for the $\%$ polarization, $\%$ p $\geq 0.1 \%$, the polarization direction uncertainty, $|\sigma \psi| \leq 7^{\circ}$, and the fractional uncertainty in \%polarization, $\sigma \mathrm{p} / \mathrm{p} \leq 0.25$. To keep this notebook selfcontained, the needed data is included in Sec. 3. A list of identifying numbers for the stars is provided for those who wish to check the stellar data. Sec. 4 has the probability and significance formulas imported from previous work with the Hub Test.

Sec. 5 presents the analysis of the "best" polarization directions, where "best" indicates the values listed in the catalog as the observed polarization directions. One finds values for the smallest alignment angle $\bar{\eta}_{\min }$, the largest avoidance angle $\bar{\eta}_{\max }$, and the locations hubs on the sphere where these extreme alignment angles are found. The uncertainty in the statistics formulas give the significance of these results some uncertainty.

Inevitably, but importantly, one must estimate the uncertainties in the numerical results. The uncertainty for each measured polarization direction is supplied in the catalogs. The task of estimating uncertainties occupies Sec. 6 and Sec. 7 finishes the article with some concluding remarks.
2. Coordinates, grid, and sundry basic formulas

2a. Coordinates

Consider the "Celestial Sphere", a sphere in 3 dimensional Euclidean space. See Fig. 1 in the Preface. The sphere is also called the "sphere" or sometimes "the sky". The center of the sphere is the origin of a 3D Cartesian coordinate system with coordinates (x, y, z). The direction of the positive z-axis is due "North". Galactic longitude, gLON and latitude, gLAT, are measured as in the Heiles 2000 catalog with the direction of the positive x-axis along (gLON, gLAT) $=\left(0^{\circ}, 0^{\circ}\right)$. The similar appearance of the letter " l " and the number " 1 " when typed keep us from using the (l, b) notation in this computer program.

The view of the Galaxy is generally from inside the sphere, let us say from the origin to be specific. Then the direction of increasing gLON, i.e. local East, is to the left with up toward North. Latitude gLAT $=90^{\circ}$ indicates the North Galactic Pole, the direction from the origin $(0,0,0)$ to $(0,0,1)$. We do not use the conventional $U V W$ notation.

Somewhat contrarily, from a point-of-view located outside the sphere, as in the sketch in Fig. 1, one pictures a source S plotted on the sphere and, in the 2D tangent plane at S, local North is upward and local East is to the right. A "position angle" at the point S on the sphere, such as the angle ψ in Fig. 1, is measured in the 2D plane tangent to the sphere at S. In the tangent plane as drawn in Fig.1, the position angle ψ is measured clockwise from local North with East to the right.

It is important to note that from a point of view inside the sphere, position angles are measured counterclockwise from North, since increasing gLON, i.e. East, is to the left when viewed from inside the sphere. But it is much easier to draw a sphere from the outside looking inward, as with Fig. 1.
Definitions:
er, eN, eE are unit vectors in a 3D Cartesian coordinate system

```
(gLON,gLAT) = galactic longitude and latitude
er(gLON,gLAT) = radial unit vectors from Origin
eN(gLON,gLAT) = local North at a point on the Celestial Sphere
eE(gLON,gLAT) = local East at a point on the Celestial Sphere
gLONFROMr(er) = gLON determined by radial unit vector er
gLATFROMr(er) = gLAT determined by radial unit vector er
```

Aitoff Plot Functions
$\alpha H(g L O N, g L A T), x H(g L O N, g L A T), y H(g L O N, g L A T), ~ w h e r e ~ x H ~ i s ~ c e n t e r e d ~ o n ~ g L O N ~=~ 0 ~ a n d ~ g L O N ~ i n c r e a s e s ~ f r o m ~ l e f t-t o-r i g h t . ~$ xH 180 (gLON,gLAT), yH 180 (gLON,gLAT), where xH is centered on gLON $=180^{\circ}$ and gLON increases from left-to-right.
$x H G a l(g L O N, g L A T), y H G a l(g L O N, g L A T)$, where xH is centered on gLON $=0$ and gLON increases from right-to-left, so gLON $=$ $+180^{\circ}$ is on the left and gLON $=-180^{\circ}$ is to the right.
(* For a Source at (gLON,gLAT) = (gLON,gLAT): er, eN,
eE are unit vectors from Origin to Source, local North, local East, resp. *)
$\operatorname{er}\left[g L O N_{-}, \operatorname{gLAT}\right]$] $:=\operatorname{er}[g L O N, \operatorname{gLAT}]=\{\operatorname{Cos}[g L O N] \operatorname{Cos}[g L A T], \operatorname{Sin}[g L O N] \operatorname{Cos}[g L A T], \operatorname{Sin}[g L A T]\}$
eN [gLON_, gLAT_] :=en[gLON, gLAT] $=\{-\operatorname{Cos}[g L O N] \operatorname{Sin}[g L A T],-\operatorname{Sin}[g L O N] \operatorname{Sin}[g L A T], \operatorname{Cos}[g L A T]\}$
$e \mathrm{eE}[\mathrm{gLON}, \mathrm{gLAT}] \quad:=\mathrm{eE}[\mathrm{gLON}, \mathrm{gLAT}]=\{-\operatorname{Sin}[\mathrm{gLON}], \operatorname{Cos}[g L O N], \theta\}$
\{"Check er.er = 1, er.eN = 0, er.eE = 0, eN.eN
= 1, eN.eE = 0,eE.eE = 1, erXeE = eN, eEXeN = er, eNXer = eE: ",
$\{0\}=$ Union [Flatten [Simplify [$\{\mathrm{er}[\mathrm{gLON}, \mathrm{gLAT}] . \operatorname{er}[\mathrm{gLON}, \mathrm{gLAT}]-1$, er[gLON, gLAT].en[gLON, gLAT], er [gLON, gLAT].eE[gLON, gLAT], eN[gLON, gLAT].eN[gLON, gLAT] - 1, eN[gLON, gLAT].
eE[gLON, gLAT], eE[gLON, gLAT].eE[gLON, gLAT] - 1, Cross[er[gLON, gLAT], eE[gLON, gLAT]] eN[gLON, gLAT], Cross[eE[gLON, gLAT], eN[gLON, gLAT]] -er[gLON, gLAT], Cross[eN[gLON, gLAT], er[gLON, gLAT]] -eE[gLON, gLAT]\}]]]\}
\{Check er.er $=1$, er.eN = 0, er.eE $=0$, eN.eN = 1 ,
$e N . e E=0, e E . e E=1$, erXeE $=e N$, eEXeN = er, eNXer = eE: , True \}
Get (gLON,gLAT) in radians from a radial vector r :
$\ln [6]=$
$\left.\operatorname{gLONFROMr}\left[r_{-}\right]:=\operatorname{N}[\operatorname{ArcTan}[\operatorname{Abs}[r[[2]] / r[[1]]]]] / ;(r[2]] \geq 0 \& \&[[1]]>0\right)$
$\left.\operatorname{gLONFROMr}\left[r_{-}\right]:=\mathrm{N}[\pi-\operatorname{ArcTan}[\operatorname{Abs}[r[[2]] / r[[1]]]]] / ;(r[2]] \geq 0 \& \&[[1]]<0\right)$
$\operatorname{gLONFROMr}\left[r_{-}\right]:=N[-\pi+\operatorname{ArcTan}[\operatorname{Abs}[r[[2]] / r[[1]]]] / ;(r[2]]<\theta \& \&[[1]]<0)$
$\left.\operatorname{gLONFROMr}\left[r_{-}\right]:=\mathrm{N}[-\operatorname{ArcTan}[\operatorname{Abs}[r[[2]] / r[[1]]]]] / ;(r[2]]<0 \& \&[[1]]>0\right)$
gLONFROMr[r_] $:=\pi / 2 . / ;(r[2]] \geq 0 \& \&[[1]]=0)$
gLONFROMr [r_] $:=-\pi / 2 . / ;(r[2]]<0 \& \&[[1]]=0)$
$\operatorname{gLATFROMr}\left[r_{-}\right]:=\mathrm{N}\left[\operatorname{ArcTan}\left[r[[3]] /\left(\sqrt{ }\left(r[[1]]^{\wedge} 2+r[[2]]^{\wedge} 2\right)\right)\right]\right] / ;\left(\sqrt{ }\left(r[[1]]^{\wedge} 2+r[[2]]^{\wedge} 2\right)>0\right)$
$\left.\operatorname{gLATFROMr}\left[r_{-}\right]:=\operatorname{Sign}[r[[3]]](\pi / 2.) / ;\left(\sqrt{ }(r[1]]^{\wedge} 2+r[[2]]^{\wedge} 2\right)=0\right)$

The following Aitoff Plot formulas can be found in Wikipedia, Ref. 4.
For these formulas the angles gLON and gLAT should be in degrees.
They give an Aitoff Plot that is centered on $\left(0^{\circ}, 0^{\circ}\right)$

```
\(\ln [14]:=\alpha H\left[g L O N_{-}, g L A T \_\right]:=\alpha H[g L O N, g L A T]=\operatorname{ArcCos}[\operatorname{Cos}[((2 . \pi) / 360\).\() gLAT] \operatorname{Cos}[((2 . \pi) / 360\).\() gLON / 2.] ]\)
xH[gLON_, gLAT_]:=
    \(\mathrm{xH}[\mathrm{gLON}, \operatorname{gLAT}]=(2 \cdot \operatorname{Cos}[(2 . \pi) / 360.) \operatorname{gLAT}] \operatorname{Sin}[((2 . \pi) / 360.) \operatorname{gLON} / 2].) / \operatorname{Sinc}[\alpha H[g L O N, \operatorname{gLAT}]]\)
\(y H\left[g L O N_{-}, g L A T \_\right]:=y H[g L O N, g L A T]=\operatorname{Sin}[((2 . \pi) / 360) g L A T.] / \operatorname{Sinc}[\alpha H[g L O N, g L A T]]\)
```

Using the following functions produces an Aitoff Plot that is centered on $\left(180^{\circ}, 0^{\circ}\right)$
$\ln [17]$:=
xH180[gLON_, gLAT_] := xH180[gLON, gLAT] =
(2. $\operatorname{Cos}[((2 . \pi) / 360$.$) gLAT] \operatorname{Sin}[((2 . \pi) / 360).(g L O N-180) / 2.].) / \operatorname{Sinc}[\alpha H[(g L O N-180),. ~ g L A T]]$

For Galactic Coordinates, the following functions produces an Aitoff Plot that is centered on gLON $=0^{\circ}$ and the gLON axis runs from $+180^{\circ}$ on the left to 0° at the center to -180° on the right. The viewpoint is inside the Celestial Sphere, looking out.
(*The plots of the sky in Galactic coordinates have the gLON axis running from + 180° on the left to -180° on the right. Angles gLON and gLAT are in degrees*) xHGal[gLON_, gLAT_] := xHGal[gLON, gLAT] =
(2. Cos[($2 . \pi$) /360.) gLAT] $\operatorname{Sin}[-(2 . \pi / 360$.$) gLON / 2].) / \operatorname{Sinc}[\alpha H[-g L O N, g L A T]]$
$y H G a l\left[g L O N_{-}, g L A T _\right]:=y H G a l[g L O N, g L A T]=\operatorname{Sin}[((2 . \pi) / 360$.$) gLAT]/Sinc[\alpha \mathrm{H}[-g L O N, g L A T]]$

2b. Grid

We avoid bunching at the poles by taking into account the diminishing radii of constant latitude circles as the latitude approaches the poles. Successive grid points along any latitude or along any longitude make an arc that subtends the same central angle d θ.

We grid one hemisphere at a time, then the grids are combined.
Definitions:
\(\left.$$
\begin{array}{ll}\text { gridSpacing } & \begin{array}{l}\text { separation in degrees between grid points on and between constant latitude circles } \\
\text { grid spacing in radians }\end{array} \\
\mathrm{d} \theta 1 & \begin{array}{l}\text { dummy indices, ID \#s for grid points, longitude, latitude }\end{array}
$$

\mathrm{idN}, ai, ji \& gLON and gLAT of the grid points H_{j}\end{array}\right]\)| gLONpointH, gLATpointH | |
| :--- | :--- |
| grid, gridN, gridS | tables data associated with grid points, listings are below |
| nGrid | number of grid points |
| gLONGrid | longitudes at the grid points $(-\pi \leq$ gLON $\leq+\pi)$ |
| gLATGrid | latitudes at the grid points $(-\pi / 2 \leq$ gLON $\leq \pi / 2)$ |
| rGrid | radial unit vectors from origin to grid points, in 3D Cartesian coordinates |

Tables: grid, gridN and gridS

1. sequential point\# 2.gLON index 3.gLAT index 4.gLON (rad) 5.gLAT (rad) 6. Cartesian coordinates of the grid point
|n[21]:= gridSpacing = 2.(*, in degrees.*);
```
\(\ln [22]:=\)
    (*The Southern Grid "gridS". *)
d \(\theta 1=((2 . \pi) / 360\).\() gridSpacing; (*Convert gridSpacing to radians*)\)
gridS = \{\};idN = 1;
For [gLATj = 1., gLATj < \(\pi /\) (2. d \(\theta 1\) ), gLATj +, gLATpointH = -gLATj d \(\theta 1\);
    For [ai = 0., ai < Ceiling [( \(2 . \pi\) ) /de1) ( \(\operatorname{Cos}[\) gLATpointH] +0.01\()]\),
        ai ++, gLONpointH = ai dө1/(Cos[gLATpointH] + 0.01) ;
        AppendTo[gridS, \{idN, ai, gLATj, gLONpointH, gLATpointh, er[gLONpointh, gLATpointh] \}];
        idN = idN + 1
    ]]
(*KEEP this cell - DO NOT DELETE*)
grid = \{\}; j = 1;
For \([\mathrm{jN}=1, \mathrm{jN} \leq \operatorname{Length}[\operatorname{gridN}], j N++\), AppendTo \([\operatorname{grid},\{j, \operatorname{gridN}[[j N, 2]], \operatorname{gridN}[[j N, 3]]\),
    gLONFROMr[gridN[[jN, 6]] ], gLATFROMr[gridN[[jN, 6]] ], gridN[[jN, 6]]\}];
    \(\mathbf{j}=\mathbf{j}+1\) ]
For \(\left[j S=1, j S \leq\right.\) Length \([\operatorname{gridS}], j S_{++}, \operatorname{AppendTo}[\operatorname{grid},\{j, \operatorname{gridS}[[j S, 2]]\), gridS[[jS, 3]],
    gLONFROMr[gridS[[jS, 6]] ], gLATFROMr[gridS[[jS, 6]] ], gridS[[jS, 6]]\}];
    \(\mathbf{j}=\mathbf{j}+1\) ]
nGrid \(=\) Length \([\) grid \(]\);
gLONGrid = Table[grid[[j, 4]] , \{j, nGrid\}];
gLATGrid = Table[grid[[j, 5]] , \{j, nGrid\}];
rGrid = Table[grid[[j, 6]] , \{j, nGrid\}];
```

2c. The mean and standard deviation are convenient functions. And we identify directories for getting and putting data.

Definitions
mean the arithmetic average of a set of numbers, $\frac{1}{N} \sum_{i=1}^{N} n_{i}$
stanDev the standard deviation. Given a set of N numbers n_{i} with mean value m, the standard deviation is $\left(\frac{1}{N} \sum_{i=1}^{N}\left(n_{i}-m\right)^{2}\right)^{1 / 2}$, the square root of the average of the squares of the differences of the numbers with the mean. Note that we divide by N to get the average of the deviations squared.
catalogDirectory directory containing the catalog files
homeDirectory directory containing the notebook and data files

```
\(\ln [34]:=\) mean [data_] \(:=(1 /\) Length[data] \()\) Sum[data[[i4]], \{i4, Length[data] \}];
(* arithmetic average *)
stanDev[data_] :=
    \(\left((1 /\right.\) Length [data] \() \operatorname{Sum}\left[(\text { data [ [i5] ] - mean [data] })^{2}, \text { \{i5, Length[data] \}] }\right)^{1 / 2}\)
    (*standard deviation*)
\(\ln [36]:=\) catalogDirectory =
    "C:\\Users\\shurt\\Dropbox\\HOME_DESKTOP-0MRE50J\\SendXXX_CJP_CEJPetc\\SendViXra \\
        20210221StellarPolarization\\20210221Catalog";
    (* location of the catalog data file on my computer*)
\(\ln [37]:=\) homeDirectory =
    "C:\\Users\\shurt\\Diopbox\\HOME_DESKTOP-0MRE50J\\SendXXX_CJP_CEJPetc\\SendViXra\\
        20210221StellarPolarization \\20210221Notebooks \\20210228GalacticCoordsNotebooks \\
        20210320Lon30Lat30offDisk";
    (*The notebook file and data files for this notebook are put in this directory. *)
```

Section Summary
In[38]]= Print["The grid points are separated by gridSpacing = ", gridSpacing, "。 arcs along latitude and longitude."]
Print["The number of grid points is ", nGrid, " ."]
The grid points are separated by gridSpacing $=2 .^{\circ}$ arcs along latitude and longitude.
The number of grid points is 10518 .
3. Polarization and Position Data

Definitions:
cat
the catalog data, Heiles 2000 Ref. 10 combined with Berdyugin 2014 Ref. 12
allClumpsofStarsIDsInCatalog record numbers of the stars in the catalog for all clumps
clumpOfStarsIDinCatalog record numbers of the sample's stars in the catalog (we treat this clump)
$\mathrm{nSrc} \quad$ number of stars
gLONSrc galactic longitude (radians)
gLATSrc galactic latitude (radians)
$\psi \mathrm{n}$
Celestial Sphere.

$\sigma \psi \mathrm{n}$	uncertainty in PPA
percentPol	percentage of linear polarization
rSrc	unit vector from Origin to Sources on Celestial Sphere
eNSrc	Local North at the ith Source
eESrc	Local East at the ith Source
sourceCenter	unit radial vector to the arithmetic center of the sources
angleSourceToCenter	arc from Source to Center
showClump1	map of significance for alignments in the catalog, needed to discuss sample selection

Catalog data
The HD or BD numbers for the stars in the sample are given in the following cell.
Most records can be found by searching the Heiles 2000 or the Berdyugin 2014 catalogs for the HD or BD number. Just one star had neither an HD nor a BD number. The exceptional star is record \# 5361 in the Heiles 2000 catalog with $(g L O N, g L A T)=\left(16.726632\right.$ hours, $\left.6.0061^{\circ}\right)$. To find record \# 5361, one can search the Heiles 2000 catalog for the dec.RA entry which is " 60061.16726632 ".

```
starIDnumbers = { {"HD", 151061.` }, {"HD", 154445.` }, {"HD", 155195.`}, {"HD", 156247.` },
    {"HD", 152126.` } , {"HD", 150764.` } , {"HD", 145085.`} , {"HD", 152974.` }, {"HD", 151219.` },
    {"HD", 157999.` }, {"HD", 152310.` }, {"HD", 152087.` }, {"HD", 153115.` }, {"HD", 145892.` },
    {"HD", 150752.` }, {"HD", 151026.` }, {"HD", 151812.`}, {"HD", 153147.` }, {"HD", 152067.`},
    {"HD", 152466.` }, {"HD", 152897.` }, {"Heiles 2000", "Record # 5361"}, {"HD", 146815.`},
    {"HD", 151828.` }, {"HD", 158836.`}, {"HD", 160140.`}, {"HD", 153033.`}, {"HD", 157278.`},
    {"HD", 151556.` }, {"HD", 150873.` }, {"HD", 155593.`}, {"HD", 151494.` },
    {"HD", 153303.` }, {"HD", 152532.` }, {"HD", 156130.` } , {"HD", 153272.`} ,
    {"HD", 160311.` }, {"HD", 156655.` }, {"HD", 151291.` } , {"HD", 155500.`} ,
    {"HD", 156404.` }, {"HD", 154762.` } , {"HD", 153797.` } , {"HD", 156732.` },
    {"HD", 154619.` }, {"HD", 154302.` } , {"HD", 155644.` } , {"HD", 156681.` },
    {"HD", 153540.` }, {"HD", 155422.` }, {"HD", 153835.`}, {"HD", 152447.`},
    {"HD", 159082.` }, {"HD", 159005.` }, {"HD", 157606.`}, {"BD", 13.328` }, {"HD", 151627.` },
    {"HD", 151072.` }, {"HD", 151545.` }, {"HD", 159119.`}, {"HD", 155581.` },
    {"HD", 154512.` }, {"HD", 152308.` }, {"HD", 153898.`}, {"BD", 15.3104`},
    {"BD", 15.3101` } , {"HD", 157741.` } , {"HD", 151203.` }, {"HD", 148035} , { "HD", 148 512},
    { "HD", 146 047}, {"HD", 147 510} , {"HD", 149 755} , {"HD", 149 755} , { "HD", 147 189},
    { "HD", 149 413}, {"HD", 146 026} , {"HD", 145 568} , {"HD", 146 561} , {"HD", 148 622},
    {"HD", 147 548} , {"HD", 148 229}, {"BD", {"BD+10", 3004}} , {"HD", 150 305} ,
    {"HD", 147 252} , {"HD", 147 836}, {"HD", 150 123} , {"HD", 151 059}, {"HD", 150 268} ,
    {"HD", 151 879}, {"HD", 147 868} , {"HD", 150 905} , {"HD", 150 257} , {"HD", 148 765},
    {"HD", 153 225}, {"HD", 150 830} , {"HD", 150 568} , {"HD", 152 155} , {"HD", 153 301}};
```

For example, the Heiles 2000 catalog listing for the first star in the sample, Record \# 4698, HD151061. :
$\left\{\begin{array}{llllllllllllllllll}-30849.16753181 & 151061.0 & -2.424200-999.900000-999.900000 & 2.390 & 0.035 & 87.4 & 0.4 & 144.8 & 14.3393 & 26.1434 & 0.60 & -0.1\end{array}\right.$ 17.2 199.5 M6III 000000000000100000000010$\}$

The combined Heiles 2000 and Berdyugin 2014 data file that we use has the Heiles data first followed by Berdyugin 2014 data. The Heiles 2000 part of the file contains the original unaltered catalog entries, except that the declination and Right Ascension have been separated and the object's record number is appended to each record.
The Berdyugin 2014 catalog data requires some work to get it into the same form as the Heiles 2000 catalog. Some 39 stars appear in both catalogs and are deleted from the Berdyugin 2014 catalog.
We kept the 399 stars in the Berdyugin catalog that do not have polarization directions.
Also, the polarization direction in the Berdyugin 2014 catalog need to be converted from Equatorial to Galactic coordinates.
Once determined, the data was rearranged to conform to the Heiles 2000 catalog format. Any unknown quantities were flagged as "- 999 ", as in the Heiles 2000 catalog. The Bredyugin 2014 data is appended to the Heiles 2000 catalog, increasing the star count from 9286 to 11647 stars.

1. Declination (deg) 2 RA (hr) 3. HD number 4. Bonner DM number 5. Cordoba DM number 6. Cape DM number 7. Percentage polarization (\%) 8. rms uncertainty on $\mathrm{Pol}(\%) \quad 9$. Position angle, equatorial (deg.) 10. rms uncertainty on PA (deg.) 11. Position angle, Galactic (deg.) 12. Galactic longitude (deg.) 13. Galactic latitude (deg.) 14. Reddening
(mag.) 15. Discrepancy between PA and PAgal (deg.)

16. Primary stellar database	17. Visual magnitude (mag.) 18. Distance	
(pc) 19. Spectral type	20. Polarization catalog numbers	21. Distance catalog
22. Object \# in the catalog		

See the ReadMe files in Refs. 11 \& 13 for details.
$\ln [41]$: $=$ (*galactic longitude in radians, rounded to six places*)
(*gLONSrc $=$ Table[cat[[i, 12]] $\left(\frac{2 . \pi}{360 .}\right)$, \{i,clumpOfStarsIDinCatalog\}];*)
gLONSrc $=10^{-6}$. $\{250268,336777,349877,396797,371553,355747,264845,392120,373212$, 467 158, 393 484, 395 614, 416 793, 306 326, 383 883, $390549,404983,424726,410660$, 422 532, 429 238, 402 380, 339 266, 419 410, 513 891, 530055, 442034,497 609, 423 139, 413 503, 480 505, 426 869, 452 972, 443 167, 493094,456 224, $544635,502568,433076$, 499 134, 520949, 508 835, 505 271, 558 219, 532 561, 530 339, 547 761, 565 138, 527 496, 551 098, 535 399, $520166,610464,609671,619517,574278,553250,546$ 288, 553 193, 653 334, $616906,611382,587635,608045,618923,616325,660516,589513,270352$, $285536,290074,291470,314683,314683,338245,342$ 259, $345575,348193,366694$, $396015,405091,406662,436856,445059,460243,460941,464083,468970,471762$, 479 093, 487 121, 521 155, 524 297, 528 660, $580147,582940,588874,601790,602662\} ;$
$\ln [42]=$ nSrc $=$ Length[gLONSrc];
In[43]:= (*galactic latitude in radians, rounded to six places*)
(*gLATSrc $=$ Table[cat[[i, 13]] $\left(\frac{2 . \pi}{360 .}\right),\{i$, clumpOfStarsIDinCatalog $\left.\} ; *\right)$
gLATSrc =
10-6. \{456 288, $400235,383845,376501,488809,523040,650730,473078,516980,362236$, 494 295, 502 109, 481468,648 983, 537 656, 531 592, 514558,484 264, 509 903, 503908 , 493 726, 542 429, 640 304, 520 890, 361 623, 336 287, 495 586, $398525,531022,547522$, 437 666, 534 664, 493 298, 511650, 428 199, 495 468, 338716,417 793, 543 225, 449026 , 433 278, 475 457, 502 053, 440 561, 489 956, 498 113, 466 692, 444870,518 293, 474 419, 513 689, 547 677, 399 743, 401410,443 712, 534 818, 582 830, 596 885, 586 129, 416 671, 496 506, 524756,577 118, 540722,531 568, $538403,455449,608$ 338, 569675,560949 , 637 045, 596 204, 534 769, 534 769, 629017,559 378, 663923,677 188, 659 211, 611040, 647 866, 629 366, 635 998, 579 449, 678 235, $662702,593063,566010,592016,545066$, 671 254, 592 365, 613 134, 658 338, 549 779, 617 148, 626 224, 586082,555015$\}$;
(* galactic position angle in radians, rounded to six places*)
$\left(* \psi n=\operatorname{Table}\left[\operatorname{cat}[[i, 11]]\left(\frac{2 . \pi}{360 .}\right)\right.\right.$, $\{\mathrm{i}$, clumpOfStarsIDinCatalog $]$] $\left.*\right)$
$\psi \mathrm{n}=10^{-6}$. $\{2527$ 237, 2614 503, 2677 335, 2 590069, 2513 274, 2665 118, 3071 779, 2492 330, $2617994,2584833,2830924,2602$ 286, $2638938,2569125,2513$ 274, 2672 099, 2635447 , 2752 384, 2604 031, 2631957,2522 001, 2523 746, $2624975,2644174,2528982,2328$ 269, 2614 503, 2616 249, 2445 206, 2457 424, 2745 403, 2460 914, 2406 809, 2588 323, 2708 751, 2501 057, 2705 260, 2 352 704, 2 642 428, 2389 356, 2 513 274, 2972 296, 2227 040, 2560 398, 2993 240, 2 792 527, 2912 955, 2858 849, 2595 305, 2918 191, 2537 709, 2523 746, 2834 415, 2 647 664, 2888 520, 2724459,2499 311, 2703 515, 2560 398, 2412 045, $2679080,205949,2483604,2771583,2935$ 644, 2911 209, 2645 919, 2471 386, 2585 376, 2610 617, 2581 367, 2422 949, 2485 061, 2554 874, 2 607 604, 2604 617, 2440 555, 2548 246, 2 661401, 2566 889, 2593 929, 2731 882, 2801 263, 2482 942, 2681 701, 2783 884, 2424 506, 2579 781, $2480488,2494087,2764966$, $2522077,2597$ 706, 2732 176, 2784442,2749 822, $2824960,2454031,2725736\}$;
(*uncertainty in ψ in radians, rounded to six places*)
$\left(* \sigma \psi n=\operatorname{Table}\left[\operatorname{cat}[[i, 10]]\left(\frac{2 . \pi}{360 .}\right),\{i\right.\right.$, clumpOfStarsIDinCatalog $\left.\left.\}\right] ; *\right)$
$\sigma \psi \mathrm{n}=$
$10^{-6 .}$. $6981,3491,8727,8727,43633,15708,83776,15708,10472,17453,34907,3491,8727$, $50615,5236,6981,10472,10472,6981,6981,3491,20944,50615,41888,104720,38397$, $26180,19199,41888,61087,41888,12217,40143,47124,24435,3491,69813,29671$, $15708,116937,59341,50615,106465,36652,116937,66323,38397,26180,26180$, $54105,43633,71558,45379,80285,52360,83776,33161,41888,54105$, $97738,24435,90757,92502,102974,111701,55851,97738,62832,34907$, $34907,27925,34907,34907,34907,26180,52360,34907,52360,52360$, $34907,52360,104720,69813,34907,61087,34907,52360,34907,34907$, 52 360, $69813,69813,52360,69813,69813,34907,34907,69813,52360\} ;$
$\ln [46]:=$ (* \% polarization, rounded to six places*)
(*percentPol=Table[cat[[i,7]],\{i,clumpOfStarsIDinCatalog\}]; *)
percentPol =
$10^{-6 .}\{2390000,3420000,2300000,2002000,718000,154000,210000,493000,660000$, $1010000,199000,621000,1706000,340000,728000,645000,931000,1193000,563000$, $1009000,896000,623000,360000,585000,330000,590000,660000,1150000,545000$, $583000,700000,548000,698000,602000,1460000,811000,410000,1490000,554000$, $150000,610000,420000,340000,920000,150000,550000,460000,660000,680000$, $560000,490000,290000,380000,260000,330000,820000,540000,510000,460000$, $180000,710000,460000,190000,290000,390000,790000,180000,280000,443000$, $336000,484000,368000,489000,551000,575000,540000,469000,305000,272000$, $507000,306000,219000,375000,285000,211000,305000,481000,408000,390000$, $346000,200000,400000,212000,198000,359000,327000,346000,299000,382000\}$;
opercentPol =
$10^{-6 .}$ \{ $35000,24000,42000,34000,63000,5000,35000,16000,13000,35000,14000,5000$, $29000,35000,8000,10000,20000,26000,7000,15000,5000,27000,36000,50000$, $69000,46000,35000,46000,45000,72000,58000,14000,57000,57000,73000$, $5000,58000,87000,17000,35000,73000,42000,73000,69000,35000,73000$, $35000,35000,35000,60000,42000,42000,35000,42000,35000,138000$, $35000,42000,50000,35000,35000,83000,35000,60000,87000,87000,35000$, $35000,32000,23000,27000,25000,35000,40000,30000,49000,30000,26000$, $32000,36000,29000,43000,48000,24000,26000,26000,50000,31000,29000$, $34000,26000,61000,24000,27000,51000,25000,25000,38000,37000\}$;

In[48]:= Print["There are ", nSrc, " stars in the sample."]
Print["Check that the Sample obeys the data cuts:"]
Print [
"Check that the smallest \% polarization p in the sample is 0.1% or more. Smallest: ", Sort[percentPol][[1]], "\% ."]
Print["Check that the largest fractional uncertainty in \% polarization, $\sigma p / p$,
is less than 0.25. Largest: ", Sort[opercentPol/percentPol][[-1]], "."]
Print["Check that the largest PPA ψ uncertainty $\sigma \psi$ is less than 7°. Largest: ",
$\left.\operatorname{Sort}[\sigma \psi n][[-1]]\left(\frac{360 .}{2 . \pi}\right), " \circ . "\right]$

There are 99 stars in the sample.
Check that the Sample obeys the data cuts:
Check that the smallest \% polarization p in the sample is 0.1% or more. Smallest: 0.15\% .
Check that the largest fractional uncertainty
in \% polarization, $\sigma p / p$, is less than 0.25. Largest: 0.233333.
Check that the largest PPA ψ uncertainty $\sigma \psi$ is less than 7°. Largest: 6.7°.
rSrc = Table [er [gLONSrc[[i]], gLATSrc[[i]]], \{i, nSrc\}]; (*calculated from Input.*) eNSrc = Table[eN[gLONSrc[[i]], gLATSrc[[i]]], \{i, nSrc\}]; (*calculated from Input.*)
eESrc = Table[eE[gLONSrc[[i]], gLATSrc[[i]]], \{i, nSrc\}]; (*calculated from Input.*)
$\ln [56]:=\operatorname{sourceCenter} \theta=\frac{1}{\mathrm{nSrc}} \operatorname{Sum}[r \operatorname{Src}[[i]],\{\mathbf{i}, \mathrm{nSrc}\}] ;$
sourceCenter $=\frac{\text { sourceCenter0 }}{(\text { sourceCenter0.sourceCenter0) } 1 / 2} ;$
(*unit radial vector to the arithmetic center of the sources.*)
angleSourceToCenter = Table[ArcCos[rSrc[[i]].sourceCenter], \{i, nSrc\}];
The Selection Process:

The stars in the combined Heiles 2000 and Berdyugin 2014 catalog are filtered for $\%$ polarization and experimental uncertainty $\sigma \psi$. Then 5° radius regions are constructed on the 10518 grid points. There were 3632 populated regions with N stars, $314 \geq N \geq 7$, seven being the minimum required for the statistics formulas in Sec. 4 to be valid. Of these, 2983 had very significant alignment, sig $\leq 1 \%=1 \times 10^{-2}$, meaning at most one in a hundred samples with randomly directed polarization directions would be equally well aligned. See Fig. 2 for a plot of the significance of these very significantly aligned 5° radius regions. At each region's center point, the negative log of the significance is plotted for convenience, so the minimum value is $-\log _{10}\left(1 \times 10^{-2}\right)=+2$, which corresponds to a significance of 1%.

The stars selected for the sample studied are all the stars in all the 5° radius regions that (i) have 7 or more stars, (ii) have longitude $17^{\circ} \leq \operatorname{gLON} \leq 34^{\circ}$, (iii) have latitude $23^{\circ} \leq$ gLAT $\leq 35^{\circ}$, (iv) gLAT $<23^{\circ}-1.5\left(\mathrm{gLON}-36^{\circ}\right)$, and (v) whose stars have polarization directions aligned with a significance less than a billionth, sig $\leq 10^{-9}$. Requirement (iv) separated the region of interest from an adjacent peak. Look closely in Fig. 2. There are 35 regions satisfying $(i)-(v)$ containing a total of 99 stars. The sample, shaded green in Fig. 2, is among the lower hills in Fig. 2.

Figure 2. A whole-sky plot of the significance of 5° radius regions. Only very significant regions are shown. For convenience, the negative logarithm of the significance is plotted. The largest peaks occur along the Galactic Disk. The top-most peak on the left rises to a value of about 250 , meaning that fewer than one in 10^{250} randomly directed regions would have better aligned polarization directions. The hill shaded Green is composed of 35 of the 5° radius regions, located off-Disk and Northeast of the Galactic Center. These 35 regions combine to make the 99 -star sample considered here. The most significant of the 35 regions is better aligned than all but one in 10^{30} randomly directed regions.
fiveDegRegionsWithClump6=Get["20210409showClump6.dat"]
*)
$\operatorname{In}[60]:=\operatorname{ListPlot}\left[\operatorname{Table}\left[\{-\operatorname{gLONSrc}[[j]], \operatorname{gLATSrc}[[j]]\}\left(\frac{360 .}{2 . \pi}\right),\{j, \operatorname{nSrc}\}\right]\right.$,
PlotRange \rightarrow \{ $\{-180,180\},\{-90,90\}\}$,
$\operatorname{Ticks} \rightarrow\{\operatorname{Table}[\{\mathbf{i},-\mathbf{i}\},\{\mathbf{i},-180,180,60\}], \operatorname{Table}[\{j, j\},\{j,-90,90,30\}]\}$,
PlotLabel \rightarrow "Sources", AxesLabel \rightarrow \{" ${ }^{\circ}$ gLON", " ${ }^{\circ}$ gLAT"\}, PlotStyle \rightarrow Green]
Print ["Figure 3. The locations of the ", nSrc, " stars in the sample. "]
Print
"Sample Size: The angular separation of the furthest star from the sample center is ", Sort [angleSourceToCenter] [[-1]] $\left(\frac{360 .}{2 . \pi}\right)$, "०."]

Figure 3. The locations of the 99 stars in the sample.
Sample Size: The angular separation of the furthest star from the sample center is 11.84°.

4. Probability Distributions and Significance Formulas

The problem of "significance" is to determine the likelihood that random polarizations directions would have better alignment or avoidance than the observed polarization directions. To determine the probability distributions and related formulas, in a previous notebook, we made many runs with random data and fit the results.

For samples with randomly directed polarization vectors, the basic formula, Eq. 1, looks like the sum of random numbers each restricted to the range 0 to π. Such random sums can be related to well-known Random Walk scenarios. That connection helps explain the dependence on \sqrt{N} in the formulas below.

Definitions:

norm	a constant used to normalize the distribution so the integral of probability is 1.
probMIN0, probMAX0	probability distributions for alignment (MIN) and avoidance (MAX), functions of η, η_{0}, σ
ρ ciaiMIN,MAX	constants used in the formulas to mean η_{0} and uncertainty σ
$\sigma \rho$ ciaiMIN,MAX	uncertainty σ in the constants used in the formulas to mean η_{0} and uncertainty σ
regionRadiusChoices	radii used in random runs performed elsewhere, not in this notebook
regionChoice	determines the best choice for the current sample
rgnRadius	assumed radius of the region for the purpose of selecting the statistics constants c_{i} and a_{i}
i ρ	dummy variable used to select region radius

ciMIN,MAX and aiMIN,MAX parameters for statistics formulas for η_{0} and σ $\eta 0 \mathrm{MIN}, \mathrm{MAX} \quad$ function to estimate mean η_{0}
σ MIN, MAX
probMIN, probMAX probability distributions using estimated values of η_{0}, σ
signiMIN0, signiMAX0significance as a function of $\left(\eta, \eta_{0}, \sigma\right)$
signiMIN, signiMAX \quad significance of η using estimated values of η_{0}, σ
$\ln [63]:=$
(* $\mathbf{y}=((\eta-\eta 0) / \sigma)$; $\mathbf{d y}=\mathrm{d} \eta / \sigma$ *)
(* The normalization factor "norm" is needed for the probability density *)
norm $=\left(\frac{1}{(2 \pi)^{1 / 2}} \text { NIntegrate }\left[\left(1+e^{4(y-1)}\right)^{-1} e^{-\frac{y^{2}}{2}},\{y,-\infty, \infty\}\right]\right)^{-1} ;$
norm; (*Constant needed to make the integral
of the probability distribution equal to unity.*)
$\operatorname{probMIN} 0\left[\eta_{-}, \eta 0_{-}, \sigma_{-}\right]:=\left(\frac{\text { norm }}{\sigma(2 \pi)^{1 / 2}}\right)\left(1+e^{4 \frac{(\eta-n \theta-\sigma)}{\sigma}}\right)^{-1} e^{-\frac{1}{2}\left(\frac{n-n \theta}{\sigma}\right)^{2}}$
signiMIN0[$\left.\eta_{-}, \eta 0_{-}, \sigma_{-}\right]:=$NIntegrate[probMIN0[$\left.\left.\eta 1, \eta 0, \sigma\right],\{\eta 1,-\infty, \eta\}\right]$
$\ln [67]]=\operatorname{probMAX} 0\left[\eta_{-}, \eta \theta_{-}, \sigma_{-}\right]:=\left(\frac{\text { norm }}{\sigma(2 \pi)^{1 / 2}}\right)\left(1+e^{-4 \frac{(n-n+\sigma)}{\sigma}}\right)^{-1} e^{-\frac{1}{2}\left(\frac{\eta-\eta \theta}{\sigma}\right)^{2}}$
signiMAX0[$\left.\eta_{-}, \eta 0_{-}, \sigma_{-}\right]:=$NIntegrate[probMAX0[$\left.\left.\eta 1, \eta 0, \sigma\right],\{\eta 1, \eta, \infty\}\right]$

The significance signiMIN0 $[\eta, \eta \theta, \sigma]$ is the Integral of probMIN0, i.e. signiMIN0 $=\int_{-\infty}^{\eta} \mathbf{P}_{\text {MIN }}(\eta) d \eta$.

The significance signimaX0 $[\eta, \eta 0, \sigma]$ is the Integral of probMAX0, i.e. signiMAX0 $=\int_{\eta}^{\infty} \mathrm{P}_{\operatorname{MAX}}(\eta) \mathrm{d} \eta$.
The formulas for mean $\eta_{0}=\frac{\pi}{4} \pm \frac{c 1}{\mathrm{~N}^{\mathrm{a}^{11}}}$ and half-width $\sigma=\frac{\mathrm{c2}}{4 \mathrm{~N}^{22}}$ estimate η_{0} and σ by functions of the number N of sources.
These formulas depend on the size of the region (radius ρ) by the choice of parameters c_{i} and $a_{i}, i=1,2$. The following values for the parameters c_{i} and a_{i} are based on random runs. For each combination of $N=\{8,16,32,64,128,181,256,512\}$ and $\rho=$ $\left\{0^{\circ}, 5^{\circ}, 12^{\circ}, 24^{\circ}, 48^{\circ}, 90^{\circ}\right\}$, there were 2000 random runs completed.

A notation conflict between this notebook and the article, Ref. 5, should be noted. We doubled the exponent "a" so $N^{a / 2}$ appears in the article, whereas in the formulas here we see N^{a}. Thus $a \approx 1 / 2$ here, but the paper has $a_{\text {Article }} \approx 1$. That explains the " $/ 2$ " in the following arrays.

$" \rho "$	$" c 1 "$	"a1"	"c2"	"a2"	
90	0.9423	$1.0046 / 2$	1.061	$0.954 / 2$	
48	0.9505	$1.0156 / 2$	1.166	$0.9956 / 2$	
In[69]]: ρ piaiMIN $=$	24	0.9235	$1.0069 / 2$	1.127	$0.964 / 2 ;$
12	0.8912	$1.0054 / 2$	1.238	$1.021 / 2$	
5	0.8363	$1.0088 / 2$	1.076	$0.940 / 2$	
0	0.5031	$1.0153 / 2$	1.522	$1.053 / 2$	

	"	"c1"	"a1"	"c2"	"a2"
	90	0.9441	1.0055 / 2	1.000	$0.931 / 2$
	48	0.9572	1.0165 / 2	1.090	$0.958 / 2$
$\ln [70]=$ ociaiMAX $=$	24	0.927	1.0068 / 2	1.101	0.964 / 2 ;
	12	0.9049	1.0090 / 2	1.228	1.018 / 2
	5	0.8424	1.0062 / 2	1.168	$0.992 / 2$
	0	0.4982	1.0093 / 2	1.543	$1.060 / 2$
	"	"c1"	"a1"	"c2"	"a2"
	90	0.0050	$0.0036 / 2$	0.026	0.016 / 2
	48	0.0079	$0.0057 / 2$	0.016	0.0095 / 2
$\ln [7] 1]=\mathrm{P}$ (ciaiMIN $=$	24	0.0024	0.0018 / 2	0.022	0.013 / 2 ;
	12	0.0034	0.0026 / 2	0.039	0.021/2
	5	0.0035	0.0028/2	0.030	$0.019 / 2$
	0	0.0059	0.0080 / 2	0.052	0.024 / 2
	"	"c1"	"a1"	"c2"	"a2"
	90	0.0061	0.0044 / 2	0.038	0.025 / 2
	48	0.0063	0.0045 / 2	0.026	0.016 / 2
$\ln [72]=$ P \quad ciaiMAX $=$	24	0.011	0.0079 / 2	0.019	0.011/2;
	12	0.0069	$0.0052 / 2$	0.039	0.022 / 2
	5	0.0038	0.0031/2	0.022	$0.013 / 2$
	0	0.0058	0.0080 / 2	0.057	$0.025 / 2$

$\ln [73]:=$ (*The region radius controls the constants c_{i} and a_{i} for statistics in Sec. 4.*) regionRadiusChoices $=\{90,48,24,12,5,0\} ;(* D o$ not change this statement*)
regionChoice = 4; (*This is a setting. The choice 24° is 3 rd in the list. *)
rgnRadius = regionRadiusChoices[[regionChoice]];
Print["The region radius ρ is set at ", rgnRadius, "o."]
The region radius ρ is set at 12°.
$\ln [7]]=\mathbf{i} \rho=$ regionChoice + 1; (* Parameters $\mathbf{c}_{\mathrm{i}}, \mathbf{a}_{\mathrm{i}}$, $\mathbf{i}=1,2$. *)
Print["These constants are for sources confined to regions with radii $\rho=$ ", ociaiMIN[[io, 1]], "。."]
\{c1MIN, a1MIN, c2MIN, a2MIN\} = Table[ρ ciaiMIN[$[i \rho, j]],\{j, 2,5\}]$
\{c1MAX, a1MAX, c2MAX, a2MAX $=$ Table[ρ ciaiMAX[$[i \rho, j]],\{j, 2,5\}]$
These constants are for sources confined to regions with radii $\rho=12^{\circ}$.
Out[79]= $\{0.8912,0.5027,1.238,0.5105\}$
$O u t[80]=\{0.9049,0.5045,1.228,0.509\}$
$\mathbf{i} \rho=$ regionChoice +1 ；（ $* \pm$ uncertainty for the Parameters c_{i} and $\left.a_{i}, i=1,2 . *\right)$ Print［＂These uncertainties are for sources confined to regions with radii $\rho=$＂， ociaiMAX［［io，1］］，＂。．＂］ \｛c1MINplusMinus，a1MINplusMinus，c2MINplusMinus，a2MINplusMinus\} = Table［ $\rho \Delta \mathrm{ciaiMIN}[\mathrm{i} \rho, \mathrm{j}]],\{j, 2,5\}]$ \｛c1MAXplusMinus，a1MAXplusMinus，c2MAXplusMinus，a2MAXplusMinus\} = Table［ $\rho \Delta \mathrm{ciaiMAX}[\mathrm{i} \rho, \mathrm{j}]],\{\mathrm{j}, 2,5\}]$

These uncertainties are for sources confined to regions with radii $\rho=12^{\circ}$ ．
Out［83］＝$\{0.0034,0.0013,0.039,0.0105\}$
$O u t[8]=\{0.0069,0.0026,0.039,0.011\}$
$\ln [85]]=\eta \operatorname{MIN}\left[n S r c_{-}, c 1_{-}, a 1_{-}\right]:=\frac{\pi}{4}-\frac{c 1}{n S r c^{\text {a1 }}}$
OMIN［nSrc＿，c2＿，a2＿］：＝$\frac{c 2}{4 \mathrm{nSrc}^{\mathrm{a} 2}}$
$\eta \operatorname{MAX}\left[n S r c_{-}, c 1_{-}, a 1_{-}\right]:=\frac{\pi}{4}+\frac{c 1}{n S r c^{\mathrm{a} 1}}$
$\sigma \operatorname{MAX}\left[\mathrm{nSrc}_{-}, c 2_{-}, a 2_{-}\right]:=\frac{c 2}{4 \mathrm{nSrc}^{\mathrm{a} 2}}$
The following probability distributions and significances make use of the above formulas for mean η_{0} and half－width σ ．They are functions of the alignment angle η and the number of sources N ．
$\operatorname{probMIN}\left[\eta_{-}, \operatorname{nSrc}\right]:=\operatorname{probMIN0}[\eta, \eta$ OMIN［nSrc，c1MIN，a1MIN］，oMIN［nSrc，c2MIN，a2MIN］］ signiMIN［ $\left.\eta_{-}, \operatorname{nSrc}\right]$ ：$=\operatorname{signiMIN0[~} \eta, \eta$ OMIN［nSrc，c1MIN，a1MIN］，$\left.\sigma M I N[n S r c, c 2 M I N, ~ a 2 M I N]\right]$
$\operatorname{probMAX}\left[\eta_{-}, \operatorname{nSrc}\right]:=\operatorname{probMAX}[\eta, \eta$ OMAX［nSrc，c1MAX，a1MAX］，oMAX［nSrc，c2MAX，a2MAX］］ signimax［ $\left.\eta_{-}, n S r c_{-}\right]:=\operatorname{signiMAX0[~} \eta, \eta$ OMAX［nSrc，c1MAX，a1MAX］，oMAX［nSrc，c2MAX，a2MAX］］

Section Summary
Print［＂The angular separation of the furthest star from the region center is＂， Sort［angleSourceToCenter］［［－1］］$\left(\frac{360 .}{2 . \pi}\right), " \circ . "$,
＂We choose the statistics constants a_{i} and $c_{i}, i=1,2$ ，for sources confined to regions with radii $\rho="$ ， $\operatorname{cciaiMIN[[i\rho ,~1]],"。."]~}$
Print［＂The formulas also depend on the number of sources，$n S r c=$＂，$n S r c, " . "]$ Print［＂For this sample，but with observed replaced by random polarization
directions，the expected smallest alignment angle $\bar{\eta}_{\text {min }}$ is $\bar{\eta}_{\text {min }}{ }^{\text {Random } \psi}="$ ，
η OMIN［nSrc，c1MIN，a1MIN］$\left(\frac{360 .}{2 . \pi}\right), " \circ \pm ", \sigma M I N[n S r c, ~ c 2 M I N, ~ a 2 M I N] ~\left(\frac{360 .}{2 . \pi}\right)$ ，
＂。．（Random ψ ）＂］
Print［＂For this sample，but with observed replaced by random polarization
directions，the expected largest avoidance angle $\bar{\eta}_{\max }$ is $\bar{\eta}_{\max }^{\text {Random } \psi}=\mathrm{l}$ ，
η ӨMAX［nSrc，c1MAX，a1MAX］$\left(\frac{360 .}{2 . \pi}\right), " \circ \pm ", \sigma \operatorname{MAX}[n S r c, ~ c 2 M A X, ~ a 2 M A X]\left(\frac{360 .}{2 . \pi}\right)$ ，
＂。．（Random ψ ）＂］

```
The angular separation of the furthest star from the region center is
    11.84*}. We choose the statistics constants a a and
    c
The formulas also depend on the number of sources, nSrc = 99.
For this sample, but with observed replaced by random polarization directions, the expected
```



```
For this sample, but with observed replaced by random polarization directions, the expected
    largest avoidance angle }\mp@subsup{\overline{\eta}}{\operatorname{max}}{}\mathrm{ is }\mp@subsup{\overline{\eta}}{\operatorname{max}}{}\mp@subsup{}{}{R+2,om}\psi=50.104\mp@subsup{2}{}{\circ}\pm1.6962\mp@subsup{2}{}{\circ}.(\mathrm{ (Random }\psi
```

5. Results using the Best Values $\psi \mathrm{n}$ of the Polarization Directions
"Best" means we use the $\psi \mathrm{n}$ that were listed in the catalog. We calculate the alignment function $\bar{\eta}(\mathrm{H})$ at the grid points H. Given the alignment function $\bar{\eta}(\mathrm{H})$, one can find the smallest alignment angle $\bar{\eta}_{\min }$ and the largest avoidance angle $\bar{\eta}_{\max }$ and determine the significances for the alignment and avoidance of the polarization directions.

Note that, in Sec. 6 below, we consider other values of the polarization directions that are not the best values, but that are consistent with uncertainty $\sigma \psi$ in the measured values.

5a. The alignment function $\bar{\eta}(\mathrm{H})$.

Definitions:

sigSmall η BarMax the smallest of the values in sigrange η BarMax
sigBig η BarMax the largest of the values in sigrange η BarMax

gLONHminDegrees	gLON of the point $H_{\min }$ where $\bar{\eta}(\mathrm{H})$ is the smallest
gLATHminDegrees	gLAT of the point $H_{\min }$ where $\bar{\eta}(\mathrm{H})$ is the smallest
gLONHmaxDegrees	gLON of the point $H_{\max }$ where $\bar{\eta}(\mathrm{H})$ is the largest
gLATHmaxDegrees	gLAT of the point $H_{\max }$ where $\bar{\eta}(\mathrm{H})$ is the largest

(* $\mathbf{v}_{\psi}, \mathrm{e}_{\mathrm{N}}, \mathrm{e}_{\mathrm{E}}$ unit vectors in the tangent plane of each source S_{i}, pointing along the polarization direction, local North, and local East, respectively. See Fig. 1.*)
$\mathrm{v} \psi \mathrm{Src}=\mathrm{Table}[\operatorname{Cos}[\psi \mathrm{n}[[\mathrm{i}]]] \mathrm{eN}[\mathrm{gLONSrc}[[\mathrm{i}]], \operatorname{gLATSrc}[[\mathrm{i}]]$] +
Sin [$\psi n[$ [i]]] eE[gLONSrc[[i]], gLATSrc[[i]]], \{i, nSrc\}];
(* Analysis using Eq (5) in Ref. 5 to get $\bar{\eta}\left(H_{j}\right)$. First $\eta_{i H}$,
$\cos \left(\eta_{\mathrm{iH}}\right)=\left|\hat{\mathbf{v}}_{\mathrm{H}} \cdot \hat{\mathbf{v}}_{\psi_{\mathrm{i}}}\right|$, and then $\bar{\eta}\left(H_{j}\right)$, by Eq. (1). *)
$\mathrm{j} \eta \mathrm{BarHj}=$

rSrc[[i]]) rSrc[[i]]) $\cdot(\operatorname{rGrid}[[j]]-(\operatorname{rGrid}[[j]] . r S r c[[i]])$
$\left.\left.\left.\left.\left.r \operatorname{Src}[[\mathrm{i}]]))^{1 / 2}\right]-0.000001\right],\{i, n S r c\}\right]\right\},\{j, n G r i d\}\right] ;$
sortj η BarHj = Sort[j η BarHj, \#1[[2]] < \#2[[2]] \&];
$j \eta B a r M i n=\operatorname{sortj} \eta \operatorname{BarHj}[[1]] ;\left(* \quad\left\{\mathrm{j}, \bar{\eta}\left(\mathrm{H}_{\mathrm{j}}\right)\right\}\right.$ for smallest $\bar{\eta}\left(\mathrm{H}_{\mathrm{j}}\right) \quad$ *)
η BarMin = j η BarMin[[2]];
j η BarMax $=\operatorname{sortj} \eta \operatorname{BarHj}[[-1]]$; (* $\left\{\mathbf{j}, \bar{\eta}\left(\mathrm{H}_{\mathrm{j}}\right)\right\}$ for largest $\bar{\eta}\left(\mathrm{H}_{\mathrm{j}}\right)$ *)
η BarMax = j η BarMax[[2]] ;
(*Significance of the smallest alignment angle $\bar{\eta}_{\text {min }} . *$)
$\operatorname{sig} \eta$ BarMin = signiMIN[η BarMin, nSrc];
sigrange η BarMin = Sort [Partition [Flatten [Table [
\{signiMIN0[η BarMin, η OMIN[nSrc, c1MIN + $\gamma 1$ c1MINplusMinus, a1MIN + $\alpha 1$ a1MINplusMinus],
$\sigma M I N[n S r c, ~ c 2 M I N+\gamma 2 c 2 M I N p l u s M i n u s, ~ a 2 M I N+\alpha 2$ a2MINplusMinus]], $\gamma 1, \alpha 1, \gamma 2, \alpha 2\}$,
$\{\gamma 1,-1,1\},\{\alpha 1,-1,1\},\{\gamma 2,-1,1\},\{\alpha 2,-1,1\}]], 5]$];
$\{$ sigrange η BarMin [[1]], sigrange η BarMin [[-1]]\};
sigSmall η BarMin = sigrange η BarMin $[[1,1]]$;
sigBig η BarMin = sigrange η BarMin [[-1, 1]];
(*Significance of the largest avoidance angle $\bar{\eta}_{\max } . *$)
$\operatorname{sig} \eta$ BarMax = signiMAX [η BarMax, nSrc];
sigrange η BarMax $=$ Sort [Partition [Flatten [Table [
\{signiMAX0[η BarMax, η 0MAX[nSrc, c1MAX $+\gamma 1$ c1MAXplusMinus, a1MAX $+\alpha 1$ a1MAXplusMinus],
σ MAX [nSrc, c2MAX + $\gamma 2$ c2MAXplusMinus, a2MAX $+\alpha 2$ a2MAXplusMinus]], $\gamma 1, \alpha 1, \gamma 2, \alpha 2\}$,
$\{\gamma 1,-1,1\},\{\alpha 1,-1,1\},\{\gamma 2,-1,1\},\{\alpha 2,-1,1\}]$], 5$]$];
\{sigrange η BarMax[[1]], sigrange η BarMax[[-1]]\};
sigSmall η BarMax = sigrange η BarMax [[1, 1]];
sigBig η BarMax = sigrange η BarMax [[-1, 1]];
$\operatorname{In}[114]:=$ (* Galactic coordinates (gLON, gLAT) for the hubs $H_{\text {min }}$ and $H_{\max }$.*)
gLONHminDegrees = gLONGrid[[j η BarMin [[1]]]] (360/(2 $\pi)$) ; (* $\left.\mathrm{H}_{\text {min }} *\right)$
gLATHminDegrees $=$ gLATGrid $[[j \eta B a r M i n[[1]]]](360 /(2 \pi)) ;$
gLONHmaxDegrees = gLONGrid[[j η BarMax [[1]]] $](360 /(2 \pi)) ;\left(* \mathrm{H}_{\max } *\right)$
gLATHmaxDegrees $=\operatorname{gLATGrid}[[\mathrm{j} \eta \operatorname{BarMax}[[1]]]](360 /(2 \pi))$;
$\ln [118]:=$ (*The names "j$\eta B a r M i n ", ~ " j \eta B a r M a x "$ are similar to quantities below, so save the current values labeled by "Best".*)
(* j η Bar entries: 1. grid point \# , 2. alignment angle .*) $\{j \eta$ BarMinBest, j η BarMaxBest $\}=\{j \eta B a r M i n, j \eta B a r M a x\} ;$

In[119]:= Print["The min alignment angle is η min = ", j η BarMinBest [[2]] * (360. / (2. π)), "० , which has a significance of sig. = ", signBarMin, ", plus/minus = + ", sigBignBarMin - sig BarMin, " and - ", sig $\eta_{B a r M i n-s i g S m a l l \eta B a r M i n, ~}^{\text {- }}$ " , giving a range from sig. = ", sigSmall η BarMin, " to ", sigBig η BarMin, " ."] Print["The max avoidance angle is η max $=$ ", j η BarMaxBest[[2]] * (360./(2. π)), "o , which has a significance of sig. = ", signBarMax, ", plus/minus = + ", sigBig η BarMax - sig η BarMax, " and - ", sig η BarMax-sigSmall η BarMax, " , giving a range from sig. = ", sigSmall $\left.{ }^{\prime} B a r M a x, ~ " ~ t o ~ ", ~ s i g B i g \eta B a r M a x, ~ " ~ . "\right] ~$ Print ["These uncertainties are due to the uncertainties in the constants c_{i}, a_{i}."]

The min alignment angle is η min $=7.00977^{\circ}$, which has a significance of sig. $=$ 6.2843×10^{-84}, plus/minus $=+1.01537 \times 10^{-71}$ and -6.2843×10^{-84} , giving a range from sig. $=1.84974 \times 10^{-98}$ to 1.01537×10^{-71}.
The max avoidance angle is η max $=83.1133^{\circ}$, which has a significance of sig. $=$ 1.45299×10^{-84}, plus/minus $=+1.08832 \times 10^{-71}$ and -1.45299×10^{-84} , giving a range from sig. $=5.33528 \times 10^{-100}$ to 1.08832×10^{-71}.
These uncertainties are due to the uncertainties in the constants c_{i}, a_{i}.

5b. Plot of the Alignment Angle Function $\bar{\eta}(\mathrm{H})$

Definitions

gLATGreatMin (Max)	galactic latitude at the point for θ
xyAitoffGreatMin (Max)	Aitoff plot coordinates for the great circles
crossMin (Max)	unit vector perpendicular, normal to the plane of the great circle
θ minMAXgreatcircles	angle between the vectors normal to the planes of the two great circles

This sample is an extreme case, both alignment and avoidance are highly significant. This not unusual with stellar polarization in the Galaxy, there are many samples that qualify as extreme in this way. By drawing the great circles connecting the sources to the hubs, we see that the two great circles are perpendicular.

We include the Great Circle from the center of the sources to the alignment hub $H_{\min }$ on the map. We also draw the Great Circle from source center to the avoidance hub $H_{\max }$ because the two Great Circles divide the sphere quite evenly, an extreme case of collective behavior of polarization directions. The two Great Circles are perpendicular at the two points where they cross, within experimental error.

Also supporting celebrity status for this sample is the near perfect coincidence of one of the Great Circles, the $H_{\text {min }}$ one, with the Celestial Equator

```
\(\ln [122]:=\operatorname{rCenterSrc} 0=\frac{1}{n S r c} \operatorname{Sum}[r \operatorname{Src}[[i]],\{\mathbf{i}, \operatorname{Length}[r \operatorname{Src}]\}] ;\)
rCenterSrc \(=\frac{\text { rCenterSrc0 }}{(\text { rCenterSrce.rCenterSrce })^{1 / 2 .}} ;\)
rHmin \(=\operatorname{er}\left[\right.\) gLONHminDegrees \(\left(\frac{2 . \pi}{360 .}\right)+\pi,-\) gLATHminDegrees \(\left.\left(\frac{2 . \pi}{360 .}\right)\right]\);
rPerpHmin0 \(=\) rHmin - (rHmin.rCenterSrc) rCenterSrc;
rPerpHmin \(=\frac{\text { rPerpHmin0 }}{(\mathrm{rPerpHmin} 0 . r P e r p H m i n \theta)^{1 / 2}}\);
rGreatMinCircle[ \(\theta_{-}\)] := Cos[ \(\theta\) ] rCenterSrc + Sin [ \(\theta\) ] rPerpHmin
gLONGreatMin [ \(\theta_{-}\)] := gLONFROMr [rGreatMinCircle[ \(\theta\) ]]
gLATGreatMin [ \(\theta_{-}\)] : = gLATFROMr [rGreatMinCircle[ \(\theta\) ]]
xyAitoffGreatMin =
    Table [\{xHGal[ gLONGreatMin [ \(\theta\) ] \((360 /(2 \pi))\), gLATGreatMin [ \(\theta\) ] \((360 /(2 \pi))]\),
        yHGal[ gLONGreatMin [ \(\theta\) ] \((360 /(2 \pi)), \operatorname{gLATGreatMin}[\theta](360 /(2 \pi))]\},\{\theta, 1,360\}]\);
rHmax \(=\operatorname{er}\left[\right.\) gLonHmaxDegrees \(\left(\frac{2 . \pi}{360 .}\right)+\pi,-\) gLATHmaxDegrees \(\left.\left(\frac{2 . \pi}{360 .}\right)\right]\);
rPerpHmax0 = rHmax - (rHmax.rCenterSrc) rCenterSrc;
rPerpHmax \(=\frac{r \text { PerpHmax0 }}{(\mathrm{rPerpHmax} 0 . r P e r p H \max 0)^{1 / 2} .}\);
rGreatMaxCircle[ \(\theta_{-}\)] := Cos [ \(\theta\) ] rCenterSrc + Sin [ \(\theta\) ] rPerpHmax
gLONGreatMax[ \(\theta_{-}\)] := gLONFROMr[rGreatMaxCircle[ \(\left.{ }^{[ }\right]\)]
gLATGreatMax[ \(\theta_{-}\)] := gLATFROMr [rGreatMaxCircle[ \(\left.\theta\right]\) ]
xyAitoffGreatMax =
    Table \([\{x H G a l[\operatorname{gLONG}\) eatMax \([\theta](360 /(2 \pi)), \operatorname{gLATGreatMax}[\theta](360 /(2 \pi))]\),
        yHGal[ gLONGreatMax[ \(\theta](360 /(2 \pi)), \operatorname{gLATGreatMax}[\theta](360 /(2 \pi))]\},\{\theta, 1,360\}] ;\)
```

$\ln [138]:=$

```
crossMin0 \(=\) Cross [rHmin, rCenterSrc];
crossMin \(=\frac{\text { crossMin0 }}{(\operatorname{crossMin} 0 . \operatorname{crossMin} 0)^{1 / 2}}\);
crossMax0 = Cross [rHmax, rCenterSrc];
\(\operatorname{crossMax}=\frac{\operatorname{crossMax} 0}{(\operatorname{crossMax} 0 . \operatorname{crossMax} 0)^{1 / 2}} ;\)
ӨminMAXgreatcircles \(=\) ArcCos [crossMax. crossMin] \(\left(\frac{360 .}{2 . \pi}\right)\);
```


yielding a smooth function η BarHjSmooth of the alignment angle $\bar{\eta}(H)$ over the sphere.*)

(* Table gLONjgLATj η BarHjTable
entries: 1. gLON 2. gLAT 3. alignment angle η BarRgnkj at grid point (all in degrees)*)
gLONjgLATj η BarHjTable $=($ gLONjgLATj η BarHjTable0 $=\{ \} ;$
For $[\mathbf{j}=1, \mathrm{j} \leq \operatorname{Length}[\mathrm{j} \eta \mathrm{BarHj}], \mathrm{j}++$, AppendTo[gLONjgLATj η BarHjTable0,
$\{\operatorname{gLONGrid}[[j]] *(360 . /(2 . \pi)), \operatorname{gLATGrid}[[j]] *(360 . /(2 . \pi))$, $\mathrm{j} \eta \mathrm{BarHj}[[\mathrm{j}, 2]] *(360 . /(2 . \pi))\}] \quad ; \operatorname{If}[180 \geq \operatorname{gLONGrid}[[j]] *(360 . /(2 . \pi))>174 .$,
AppendTo[gLONjgLATj η BarHjTable0, $\{$ gLONGrid $[[j]] *(360 . /(2 . \pi))-360 .$, $\operatorname{gLATGrid}[[j]] *(360 . /(2 . \pi)), \operatorname{j} \eta \operatorname{BarHj}[[\mathbf{j}, 2]] *(360 . /(2 . \pi))\}] \quad$; If $[-174 .>$ gLONGrid $[[j]] *(360 . /(2 . \pi)) \geq-180 .$, AppendTo[gLONjgLATj $\eta B a r H j T a b l e 0$, $\{\operatorname{gLONGrid}[[j]] *(360 . /(2 . \pi))+360, \operatorname{gLATGrid}[[j]] *(360 . /(2 . \pi))$, $\mathrm{j} \eta \mathrm{BarHj}[[\mathrm{j}, 2]] *(360 . /(2 . \pi))\}] \quad]$] gLONjgLATj η BarHjTable0);
η BarHjSmooth = Interpolation [gLONjgLATj η BarHjTable] (*The smooth alignment angle function $\bar{\eta}(H) . *)$
... Interpolation: Interpolation on unstructured grids is currently only supported for InterpolationOrder->1 or InterpolationOrder->All. Order will be reduced to 1.

InterpolatingFunction $[$
Domain: \{\{-186., 186.\}, \{-88., 88.\}\} Output: scalar
(*Transcribe the alignment function $\bar{\eta}(H)$, the location of the sources, and the Celestial Equator onto an Aitoff plot.*)
$x y \eta$ BarAitoffTable =
Partition[Flatten[Table[\{xHGal[gLON, gLAT], yHGal[gLON, gLAT], η BarHjSmooth [gLON, gLAT] $\}$,
\{gLON, -178., 178., 2.\}, \{gLAT, -88., 88., 2.\}]], 3];
(* The smooth alignment angle function $\bar{\eta}(H)=\eta$ BarHjSmooth mapped
onto a 2D Aitoff projection of the sphere. *)
xyAitoffSources = Table [$\{$ xHGal [gLONSrc [[n]] (360/(2 π)), gLATSrc [[n]] (360/(2 π))],

(*The Aitoff coordinates for the sources' locations.*)
(* Contour plot of the alignment function η BarHjSmooth. *)
d η ContourPlot $=10$;
(*, in degrees. *) listCP = ListContourPlot [Union [xy η BarAitoffTable (*, \{\{xHGal[gLONHminDegrees, gLATHminDegrees], yHGal[gLONHminDegrees, gLATHminDegrees], η BarMin* (360./(2. π)) -1.0\}\}, \{ \{xHGal[gLONHmaxDegrees, gLATHmaxDegrees], yHGal[gLONHmaxDegrees, gLATHmaxDegrees], η BarMax* (360./(2. π)) +1.0\}\}*)], AspectRatio $\rightarrow 1 / 2$, Contours \rightarrow Table $[\eta$, $\{\eta$, Floor $[j \eta B a r M i n[[2]] *(360 . /(2 . \pi))]+1$, Ceiling[j η BarMax[[2]] * (360./(2. $\pi)$)] -1, d η ContourPlot $\}$, ColorFunction \rightarrow "TemperatureMap", PlotRange $\rightarrow\{\{-7,7\},\{-3,3\}\}$, Axes $->$ False, Frame \rightarrow False, PlotLabel \rightarrow "The alignment function $\bar{\eta}(H)$ ", PlotLegends \rightarrow Automatic] ;
$\ln [148]:=$ (*Construct the map of $\bar{\eta}(\boldsymbol{H}) \cdot *$)
mapOf η Bar =
Show [\{listCP, Table[ParametricPlot[\{xHGal[gLON, gLAT], yHGal[gLON, gLAT] \}, $\{$ gLAT, $-90,90\}$, PlotStyle $\rightarrow\{$ Black, Thickness [0.002] $\},(* M e s h \rightarrow\{11,5,0\}$ $(*\{23,11,0\} *)$, MeshStyle \rightarrow Thick, *) PlotPoints $\rightarrow 60],\{g L O N,-180,180,30\}]$,
Table[ParametricPlot[\{xHGal[gLON, gLAT], yHGal[gLON, gLAT]\}, \{gLON, -180, 180\}, PlotStyle $\rightarrow\{$ Black, Thickness [0.002] $\},(* \operatorname{Mesh} \rightarrow\{11,5,0\}(*\{23,11,0\} *)$, MeshStyle \rightarrow Thick, *) PlotPoints $\rightarrow 60$], \{gLAT, $-60,60,30\}$], Graphics[\{PointSize[0.004], Text[StyleForm["N", FontSize -> 10, FontWeight -> "Plain"], \{0, 1.85\}], (*Sources S:*) Green, Point[xyAitoffSources], Gray, PointSize[0.002], Point [xyAitoffGreatMin], Point [xyAitoffGreatMax], Black, Text[StyleForm["Hmin", FontSize \rightarrow 8, FontWeight $->$ "Bold"], \{-3.3, -1.0\}], \{Arrow[BezierCurve[\{\{-3.3, -1.2\}, \{-2.3, -2.0\}, \{xHGal[gLONHminDegrees + 180, -gLATHminDegrees], yHGal[gLONHminDegrees + 180, -gLATHminDegrees]\}\}]]\}, Text[StyleForm[" $H_{\text {max }}$ ", FontSize $\rightarrow 8$, FontWeight -> "Bold"], \{3.3, -1.0\}], \{Arrow[BezierCurve[\{\{3.3, -1.2\}, \{2.3, -2.0\}, \{xHGal[gLONHmaxDegrees, gLATHmaxDegrees], yHGal[gLONHmaxDegrees, gLATHmaxDegrees]\}\}]] , Text[StyleForm["H max", FontSize \rightarrow 8, FontWeight -> "Bold"], \{-3.3, 1.0\}], \{Arrow[BezierCurve [\{\{-3.3, 1.2\}, \{-2.3, 2.0\}, \{xHGal[gLONHmaxDegrees +180, -gLATHmaxDegrees], yHGal [gLONHmaxDegrees + 180, -gLATHmaxDegrees] \} \}]] , Text[StyleForm[" $H_{\text {min }}$ ", FontSize $\rightarrow 8$, FontWeight $->$ "Bold"], \{3.3, 1.0\}] , \{Arrow[BezierCurve $[\{\{3.3,1.2\},\{2.3,2.0\},\{x H G a l[g L O N H m i n D e g r e e s, ~ g L A T H m i n D e g r e e s]$, yHGal[gLONHminDegrees, gLATHminDegrees]\}\}]]\} \}] \}, ImageSize \rightarrow 2 \times 432];

Section Summary

In[149]:= mapOf η Bar
Print
"Figure 4: The alignment function $\bar{\eta}(H)$, Eq. (1). The map is centered on (gLON, gLAT) $\left.=\left(0^{\circ}, 0^{\circ}\right), "\right]$ Print ["with gLON $=+180^{\circ}$ on the left and gLON $=-180^{\circ}$ on the right."] Print["The sources are located at the dots, shaded ", Green, " ."] Print["The smallest alignment angle is $\bar{\eta}_{\text {min }}=$ ", Round[j η BarMinBest[[2]] (360./(2. π))], "०, located at the"]
Print["alignment hubs $H_{\text {min }}$ and $-H_{\text {min }}$ in the areas shaded ", Blue, " . "]
Print ["The hubs are located at (gLON, gLAT) $="$, Round[\{gLONHminDegrees, gLATHminDegrees \}],
" and ", Round [\{gLONHminDegrees + 180, -gLATHminDegrees \}], " , in degrees."]
Print["The largest avoidance angle is $\bar{\eta}_{\max }=$ ",
Round[j η BarMaxBest[[2]] (360. / (2. π))], "。, located at the"]
Print ["avoidance hubs $H_{\max }$ and $-\mathrm{H}_{\max }$ in the areas shaded ", Red, " . "]
Print["The hubs are located at (gLON, gLAT) = ",
Round [\{gLONHmaxDegrees + 180, -gLATHmaxDegrees \}], " and at ",
Round [\{gLONHmaxDegrees, gLATHmaxDegrees \}], " , in degrees."]
Print["To guide the eye, two Great Circles are plotted, one through the sources' center and the avoidance hubs $H_{\max }$ and $-H_{\max }$. The other connects the center of the sources' locations
with the alignment hubs $H_{\text {min }}$ and $-H_{\text {min }}$. The Great Circles are shaded Gray, ", Gray, ". "]
Print["Notes: Although somewhat obscured by the distortion needed to plot a
sphere on a flat surface, the function $\bar{\eta}(H)$ is symmetric across diameters.
Diametrically opposite points $-H$ and H have the same alignment angle $\bar{\eta}(H) . "]$

The alignment function $\bar{\eta}(H)$

Figure 4: The alignment function $\bar{\eta}(H)$, Eq. (1). The map is centered on (gLON,gLAT) $=\left(0^{\circ}, 0^{\circ}\right)$, with gLON $=+180^{\circ}$ on the left and $\operatorname{gLON}=-180^{\circ}$ on the right.

The sources are located at the dots, shaded-

The smallest alignment angle is $\bar{\eta}_{\text {min }}=7^{\circ}$, located at the
alignment hubs $\mathrm{H}_{\text {min }}$ and $-\mathrm{H}_{\text {min }}$ in the areas shaded \square
The hubs are located at $(g L O N, g L A T)=\{-107,48\}$ and $\{73,-48\}$, in degrees.
The largest avoidance angle is $\bar{\eta}_{\max }=83^{\circ}$, located at the
avoidance hubs $\mathrm{H}_{\max }$ and $-\mathrm{H}_{\max }$ in the areas shaded
The hubs are located at $($ gLON, gLAT $)=\{118,32\}$ and at $\{-62,-32\}$, in degrees.
To guide the eye, two Great Circles are plotted, one through the sources' center and the avoidance hubs $H_{\max }$ and $-\mathrm{H}_{\max }$. The other connects the center of the sources' locations with the alignment hubs $\mathrm{H}_{\mathrm{min}}$ and $-\mathrm{H}_{\text {min }}$. The Great Circles are shaded Gray, \square -

Notes: Although somewhat obscured by the distortion needed to plot a
sphere on a flat surface, the function $\bar{\eta}(H)$ is symmetric across diameters.
Diametrically opposite points $-H$ and H have the same alignment angle $\bar{\eta}(H)$.

```
ln[161]:= (*StatisticS*)
Print["Statistics of the Alignment Function }\overline{\eta}(H):"
Print[" "]
Print["The number of sources: N = ", nSrc]
Print["The min alignment angle, \etamin = ", j \etaBarMinBest[[2]] * (360. / (2. \pi)),
    "%, is ", (\eta0MIN[nSrc, c1MIN, a1MIN] - j \etaBarMinBest[[2]]) * (360. / (2.\pi)),
    "\circ below the most likely value, ",
    \etaOMIN[nSrc, c1MIN, a1MIN] * (360. / (2. \pi)), "0, for random runs."]
Print["Since the uncertainty \sigma is ", \sigmaMIN[nSrc, c2MIN, a2MIN] * (360. / (2. \pi) ),
    "\circ, the difference ", (\etaOMIN[nSrc, c1MIN, a1MIN] - j \etaBarMinBest[[2]]) * (360./ (2.\pi)),
    "\circ is ", (\eta0MIN[nSrc, c1MIN, a1MIN] - j \etaBarMinBest[[2]]) / \sigmaMIN[nSrc, c2MIN, a2MIN],
    "\sigmas from the most likely random run value."]
Print["Thus, the smallest alignment angle }\mp@subsup{\overline{\eta}}{\mathrm{ min }}{}\mathrm{ is ",
    (\eta0MIN[nSrc, c1MIN, a1MIN] - j \etaBarMinBest[[2]]) / \sigmaMIN[nSrc, c2MIN, a2MIN],
    "\sigmas below the most likely random run value."]
Print[""]
Print["The largest avoidance angle, \etamax = ", j \etaBarMaxBest[[2]]* (360./ (2.\pi)),
    "o, is ", - (\eta0MAX[nSrc, c1MAX, a1MAX] - j\etaBarMaxBest[[2]]) * (360. / (2. \pi) ),
    "O above the most likely value, ",
    \eta@MAX[nSrc, c1MAX, a1MAX] * (360./ (2. \pi)), "0, for random runs."]
Print["Since the uncertainty \sigma is ", \sigmaMAX[nSrc, c2MAX, a2MAX] * (360. / (2. \pi) ),
    "०, the difference ", - (\eta0MAX[nSrc, c1MAX, a1MAX] - j \etaBarMaxBest[[2]]) * (360./ (2. \pi)),
    "。 is ", - ((\eta0MAX[nSrc, c1MAX, a1MAX] - j \etaBarMaxBest[[2]]) / \sigmaMAX[nSrc, c2MAX, a2MAX]),
    "\sigmas from the most likely random run value."]
Print["Thus, the largest avoidance angle }\mp@subsup{\overline{\eta}}{\mathrm{ max }}{}\mathrm{ is " ,
    (j \etaBarMaxBest[[2]] - \eta⿴囗MAX[nSrc, c1MAX, a1MAX]) / \sigmaMAX[nSrc, c2MAX, a2MAX],
    "\sigmas above the most likely random run value."]
```

Statistics of the Alignment Function $\bar{\eta}(\boldsymbol{H})$:

The number of sources： $\mathrm{N}=99$
The min alignment angle，η min $=7.00977^{\circ}$ ，is
32.9216° below the most likely value， 39.9314° ，for random runs．
Since the uncertainty σ is 1.69829° ，the difference 32.9216° is 19.3852σ s from the most likely random run value．

Thus，the smallest alignment angle $\bar{\eta}_{\text {min }}$ is 19.3852σ s below the most likely random run value．

The largest avoidance angle，η max $=83.1133^{\circ}$ ，is
33.0091° above the most likely value， 50.1042° ，for random runs．
Since the uncertainty σ is 1.69622° ，the difference
33.0091° is $19.4604 \sigma s$ from the most likely random run value．
Thus，the largest avoidance angle $\bar{\eta}_{\max }$ is 19.4604σ s above the most likely random run value．

```
In[171]:= Print["The center of the sources is a point that makes a great circle, shaded ",
    Gray, " in Fig. 4, with the alignment hub Hmin."]
Print["The center of the sources makes a second great circle, shaded ",
    Gray, " in Fig. 4, with the avoidance hub H Hax."]
Print["The angle between the planes of the two great circles is ",
        \ThetaminMAXgreatcircles, "o."]
    The center of the sources is a point that makes a great circle, shaded
        in Fig. 4, with the alignment hub Hmin}\mathrm{ .
    The center of the sources makes a second great circle, shaded
        in Fig. 4, with the avoidance hub Hmax
    The angle between the planes of the two great circles is 89.915 .
```

6. Uncertainty Runs

6a. Creating and Storing Uncertainty Runs

For each "uncertainty run", the polarization direction ψ for each source is allowed to differ from the best value ψ n by an amount $\delta \psi$ chosen according to a Gaussian distribution with mean (best) value $\psi \mathrm{n}$ and half-width $\sigma \psi, \psi=\psi \mathrm{n}+\delta \psi$. Both values $\psi \mathrm{n}$ and $\sigma \psi$ are taken from the catalogs.

Definitions:
rSrcxrGrid unit vector $S_{i} \times H_{j}$ in the direction of the cross product of the radial vector S_{i} to a source with the radial vector H_{j} to a grid point
$\mu \quad$ the mean value μ of the measurement Gaussian for ψ
$\sigma \quad$ the uncertainty of the measured polarization position angle ψ
ψ Data \quad polarization directions $\psi=\psi \mathrm{n}+\delta \psi$
runData collection of data to save from the uncertainty runs, see below for content list
nRunPrint dummy index controlling when current TimeUsed and MemoryInUse are printed
$\psi \operatorname{Src} \quad$ the polarization direction ψ for the run.
$\operatorname{rSrcx} \psi \operatorname{Src} \quad$ unit vector, $S_{i} \times \psi_{i}$, cross product of the radial vector S_{i} to the source with the vector \hat{v}_{ψ} in the direction of the polariza-
tion
$\mathrm{j} \eta$ BarToGrid $\left\{\mathrm{j}, \bar{\eta}\left(H_{j}\right)\right\}$, where j is the index for the grid point H_{j} and $\bar{\eta}\left(H_{j}\right)$ is the alignment angle function, (1), at H_{j}
sortj η BarToGrid sort $\left\{\mathrm{j}, \bar{\eta}\left(H_{j}\right)\right\}$, with the smaller angle $\bar{\eta}(\mathrm{H})$ first.
$\mathrm{j} \eta$ BarMin1 $\quad\{j, \bar{\eta}(\mathrm{H})\}$ for the smallest value of $\bar{\eta}(\mathrm{H})$, best alignment
$\mathrm{j} \eta$ BarMax $1 \quad\{j, \bar{\eta}(\mathrm{H})\}$, for the largest value of $\bar{\eta}(\mathrm{H})$, most avoided
η BarMinData \quad values of $\bar{\eta}_{\text {min }}$ from uncertainty runs, alignment
η BarMaxData values of $\bar{\eta}_{\text {max }}$ from uncertainty runs, avoidance
HmingLONData values of $\mathrm{gLON}=\mathrm{gLON}$ for hub $H_{\text {min }}$ from uncertainty runs, alignment
HmingLATData values of gLAT $=$ gLAT for hub $H_{\text {min }}$ from uncertainty runs, alignment
HmaxgLONData values of $\mathrm{gLON}=\mathrm{gLON}$ for hub $H_{\max }$ from uncertainty runs, avoidance
HmaxgLATData \quad values of gLAT $=$ gLAT for hub $H_{\max }$ from uncertainty runs, avoidance

Tables:
ψ Data
entries: 1. Run \# 2. $\psi \mathrm{Src}$, list of polarization position angles ψ
runData
entries: 1. Run \# 2. $\left\{\bar{\eta}_{\min },\{\mathrm{gLON}, \mathrm{gLAT}\}\right.$ at $\left.H_{\min }\right\} \quad$ 3. $\left\{\bar{\eta}_{\max },\{\mathrm{gLON}, \mathrm{gLAT}\}\right.$ at $\left.H_{\max }\right\}$

To create Uncertainty Runs, first calculate "rSrcxrGrid" and then evaluate the "For" statement in the following two cells. One can save the results with the "Put[]" statements.
Once saved, there is no need to repeat the runs. Comment out the "rSrcxrGrid" and "For" statements by enclosing each in (*comment brackets*). The data can be retrieved with the "Get" statements.
$\ln [174]$] $=$

```
(*
rSrcxrGrid1=Table[ Cross[ rSrc[[i]],rGrid[[j]] ] , {i,nSrc},{j,nGrid}];
(*first step: gLONw cross product, not unit vectors*)
rSrcxrGrid=Table[ rSrcxrGrid1[[i,j]]/
    (rSrcxrGrid1[[i,j]].rSrcxrGrid1[[i,j]]+0.000001) 1/2. , {i,nSrc},{j,nGrid}];
Clear[rSrcxrGrid1];
*)
```

(*rSrcxrGrid: table of the unit vectors perpendicular to the plane of the great circle containing the source S_{i} and the grid point Hj *)

```
(*
nR=2000;
(*number of runs with the PPA \psi allowed by measurement uncertainty. *)
\mu=\psin;\sigma=\sigma\psin; runData={};\psiData={};nRunPrint=0;
For[nRun=1, nRun\leqnR, nRun++,
    If[nRun>nRunPrint,Print["At the start of run ",nRun,", the time is ",
        TimeUsed[]," seconds and the memory in use is ",MemoryInUse[]," bytes."];
    nRunPrint=nRunPrint+200];
        \psiSrc=Table[RandomVariate[NormalDistribution[\mu[[i]],\sigma[[i]]]],{i,nSrc}];
    (*table of PPA angles \psi for the sources in region j0, in radians*)
    rSrcx\psiSrc = Table[ Sin[\psiSrc[[i]]]eNSrc[[i]]-Cos[\psiSrc[[i]]] eESrc[[i]], {i,nSrc}];
    (*table of the cross product of rSrc and vector in direction of \psiSrc,
    a unit vector*) j\etaBarToGrid = Table[{j, (1/nSrc) Sum[ArcCos[
        Abs[ rSrcx\psiSrc[[i]].rSrcxrGrid[[i,j]] ] - 0.000001 ],{i,nSrc}]},{j,nGrid}];
    (*
    {grid point #, value of the alignment angle \etanHj[j] averaged over all sources,
    in radians}*) sortj\etaBarToGrid=Sort[j\etaBarToGrid,#1[[2]]<#2[[2]]&];
    (*j\etaBarToGrid, {j, \mp@subsup{\eta}{j}{}}\mathrm{ , but sorted with the smallest alignment angles first}
*)
j\etaBarMin1=sortj\etaBarToGrid[[1]]; (* {j, }\mp@subsup{\eta}{j}{}}\mathrm{ , at the grid point Hj with minimum }\mp@subsup{\overline{\eta}}{}{*}\mathrm{ )
j\etaBarMax1=sortj\etaBarToGrid[[-1]]; (* {j, }\mp@subsup{\eta}{j}{\prime}}\mathrm{ ,
at the grid point }\mp@subsup{H}{j}{}\mathrm{ with maximum }\mp@subsup{\overline{\eta}}{*}{*}\mathrm{ ) AppendTo[ [ Data,{nRun, }\psi\textrm{SrC}}]
AppendTo[runData,{nRun, { j\etaBarMin1[[2]],{gLONGrid [ [ j \etaBarMin1[[1]] ]],
        gLATGrid [[ j\etaBarMin1[[1]] ]]}},{ j\etaBarMax1[[2]],{gLONGrid [[
        j\etaBarMax1[[1]] ]],gLATGrid [[ j\etaBarMax1[[1]] ]]}}} ](*collect data*) ]
*)
```

Hint: You can save memory if you do not get the " ψ Data". The table ψ Data is needed to reconstruct the exact values of the runData table, but it is not needed in any following calculation.
ln[176]:= SetDirectory [homeDirectory]; (*Save memory space; ψ Data is not used below.*) (*Put [ψ Data, "20210407PsiDataLon30Lat30offDiskHB.dat"] *) (*Save a new " ψ Data"*)

Hint: Saving "runData" to a file avoids the time it takes to complete the "For" statement. Make the above "For" statement into a remark so that it doesn't evaluate.

In[177]]: SetDirectory [homeDirectory];
(*Put[runData,"20210407runDataLon30Lat30offDiskHB.dat"] *)
(*Save a new "runData".*)
runData $=$ Get["20210407runDataLon30Lat30offDiskHB.dat"]; (*Get an old "runData".*)

In[179]:= Print["The number of uncertainty runs is ", Length[runData], "."]
The number of uncertainty runs is 2000.

```
In[180]:= \etaBarMinData = Table[runData[[i1, 2, 1]], {i1, Length[runData]}];
\etaBarMaxData = Table[runData[[i1, 3, 1]] , {i1, Length[runData] }];
HmingLONData = Table[ runData[[i1, 2, 2, 1]] , {i1, Length[runData]}];
HmingLATData = Table[runData[[i1, 2, 2, 2]], {i1, Length[runData]}];
HmaxgLONData = Table[ runData[[i1, 3, 2, 1]] , {i1, Length[runData]}];
HmaxgLATData = Table[runData[[i1, 3, 2, 2]], {i1, Length[runData]}];
```

6b. The Effects of Uncertainty on the Smallest Alignment Angle $\bar{\eta}_{\text {min }}$
This section fits a Gaussian distribution to the $\bar{\eta}_{\text {min }}$ from the uncertainty runs.
Definitions

sort η BarMin	sort the list of $\bar{\eta}_{\text {min }}$ from the uncertainty runs
$\eta 0 \mathrm{~B}$	estimated mean of the Gaussian fit
$\sigma \mathrm{B}$	estimated half-width of the Gaussian fit
histogramrange	\{min $\eta, \max \eta, \Delta \eta\}$ for the histogram
hl0, hl	histogram $\{\eta$, bin height $\}$ tables needed to set up the NonlinearModelFit
nlmB	non-linear model fit of a Gaussian to the $\bar{\eta}_{\text {min }}$ histogram
showNLMB	plot of Gaussian and histogram
ParametersNLMB	amplitude, half-width, and mean of the Gaussian fit
pTableNLMB	table of parameter attributes, including standard error

```
In[186]:= sort }\eta\mathrm{ BarMin = Sort[ }\eta\mathrm{ BarMinData];
\eta0B = mean[\etaBarMinData ]; (*Guess the mean for the Gaussian. *)
\sigmaB=stanDev[ }\eta\mathrm{ BarMinData ];(*Guess the half-width.*)
histogramrange = {\eta0B-5\sigmaB, \eta0B + 5 \sigmaB, 0.4 \sigmaB};
hl0 = HistogramList[sort \etaBarMin, histogramrange];
hl =
    Table[{(1/2) (hl0[[1, i1]] + hl0[[1, i1 + 1]]), hl0[[2, i1]]}, {i1, Length[ hl0[[2]] ]}];
nlmB = NonlinearModelFit[hl, a Exp[-(1/2.) ((x-x0)/b)}\mp@subsup{}{}{2}]
    {{a, Length[sort\etaBarMin/6]}, {b,\sigmaB}, {x0, \eta0B}}, x];(*x is \etaBarMin*)
```

showNLMB = Show[Histogram[sort η BarMin, histogramrange,
PlotLabel \rightarrow " $\bar{\eta}_{\text {min }} ", A x e s L a b e l \rightarrow\left\{" \bar{\eta}_{\text {min }}\right.$, radians", " $\left.\left.\Delta \mathrm{R} "\right\}\right]$,
Plot [Normal[nlmB], $\{x, \eta 0 B-5 \sigma B, \eta 0 B+5 \sigma B\}$, PlotLabel \rightarrow " $\left.\bar{\eta}_{\text {min }} "\right]$,
ListPlot [hl, PlotLabel \rightarrow " $\left.\left.\left.\bar{\eta}_{\text {min }} "\right]\right\}\right]$
Print["Figure 5: The Gaussian fit to the alignment angle
$\bar{\eta}_{\text {min }}$ histogram, where the height is the number "]
Print ["of runs $\Delta \mathrm{R}$ in each bin of width $\Delta \bar{\eta}_{\text {min }}=$ ", $0.4 \sigma \mathrm{~B}$, " radians. "]
Print["The total number of runs is $R=\Sigma(\Delta R)=$ ", Length[runData], "."]

Figure 5: The Gaussian fit to the alignment angle $\bar{\eta}_{\text {min }}$ histogram, where the height is the number of runs $\Delta \mathrm{R}$ in each bin of width $\Delta \bar{\eta}_{\text {min }}=0.00194171$ radians.

The total number of runs is $R=\Sigma(\Delta R)=2000$.
$\ln [196]:=$ ParametersNLMB = \{a, b, x0\} /. nlmB["BestFitParameters"];
pTableNLMB = nlmB["ParameterTable"]
$\{\sigma \eta$ BarMinFit, η BarMinFit $\}=\{$ ParametersNLMB[[2]] , ParametersNLMB[[3]] \}; (*radians*)

Out[197] $=$| | Estimate | Standard Error | t -Statistic | P -Value |
| :--- | :--- | :--- | :--- | :--- |
| a | 326.618 | 5.14978 | 63.4237 | 2.07943×10^{-26} |
| b | 0.00468516 | 0.0000852987 | 54.9265 | 4.83034×10^{-25} |
| $\mathrm{x0}$ | 0.126568 | 0.0000852987 | 1483.83 | 1.66713×10^{-56} |

6 c . The Effects of Uncertainty on the Largest Avoidance Angle $\bar{\eta}_{\max }$
This section fits a Gaussian distribution to the $\bar{\eta}_{\max }$ returned by the uncertainty runs.

Definitions: Check the list of Definitions in Sec. 6b. Trade avoidance (Max) here for alignment (Min) there.

```
In[199]:= sort }\eta\mathrm{ BarMax = Sort[ }\eta\mathrm{ BarMaxData];
\etaӨMaxB = mean[ }\eta\mathrm{ BarMaxData ]; (*Guess the mean for the Gaussian. *)
\sigmaMaxB = stanDev[ }\eta\mathrm{ BarMaxData ];(*Guess the half-width.*)
histogramrangeMAX = { \eta0MaxB - 5 \sigmaMaxB, \eta0MaxB + 5 \sigmaMaxB, 0.4 \sigmaMaxB};
hl0Max = HistogramList[sort\etaBarMax, histogramrangeMAX];
hlMax = Table[{(1/2) (hl0Max[[1, i1]] + hl0Max[[1, i1 + 1]]), hl0Max[[2, i1]]},
    {i1, Length[ hl0Max[[2]] ]}];
nlmMaxB = NonlinearModelFit[hlMax, a Exp[-(1/2.) ((x-x0)/b) 2],
    {{a, 300.}, {b, \sigmaMaxB}, {x0, \eta0МахВ}}, x];(*x is \etaBarMax *)
```


$\ln [205]:=$

```
showNLMMaxB = Show[{Histogram[sort\etaBarMax,
```



```
    Plot[Normal[nlmMaxB], {x, \eta0MaxB - 5 \sigmaMaxB, \eta0MaxB + 5 \sigmaMaxB}, PlotLabel }->\mathrm{ " }\mp@subsup{\overline{\eta}}{\mathrm{ max "] ,}}{
    ListPlot[hlMax, PlotLabel }->\mathrm{ " }\mp@subsup{\overline{\eta}}{\mathrm{ max }}{
Print["Figure 6: The Gaussian fit to the avoidance angle }\mp@subsup{\overline{\eta}}{\mathrm{ max }}{
    histogram. The bins have a width }\Delta\mp@subsup{\overline{\eta}}{\operatorname{max}}{}= ",0.4 \sigmaMaxB
    " radians and have a height equal to the number of runs }\DeltaR\mathrm{ in the bin."]
Print["The total number of runs is R = \Sigma(\DeltaR) = ", Length[runData], "."]
```


Figure 6: The Gaussian fit to the avoidance angle $\bar{\eta}_{\max }$ histogram. The bins have a width $\Delta \bar{\eta}_{\max }=$ 0.00190934 radians and have a height equal to the number of runs ΔR in the bin.

The total number of runs is $R=\Sigma(\Delta R)=2000$.
$\ln [208]:=$
ParametersNLMMaxB = \{a, b, x0\} /. nlmMaxB["BestFitParameters"];
pTableNLMMaxB = nlmMaxB["ParameterTable"]
\{onBarMaxFit, η BarMaxFit $\}=\{$ ParametersNLMMaxB[[2]], ParametersNLMMaxB[[3]] \};
(*radians*)

Out[209] $=$| | Estimate | Standard Error | t -Statistic | P -Value |
| :--- | :--- | :--- | :--- | :--- |
| a | 323.477 | 4.15262 | 77.8972 | 2.30356×10^{-28} |
| b | 0.00465072 | 0.0000689394 | 67.4609 | 5.38538×10^{-27} |
| | x0 | 1.44511 | 0.0000689394 | 20962.1 |

6d. The Effects of Uncertainty on the Locations (gLON,gLAT) of the Alignment Hubs $H_{\text {min }}$

Each uncertainty run returns an alignment hub $H_{\min }$. In this section, we calculate the mean and standard deviation to approximate the distribution of the locations the Alignment Hubs $H_{\text {min }}$.

An Issue: In any one run, the analysis produces an alignment angle $\bar{\eta}$ at each grid point. There can be just one minimum alignment angle $\bar{\eta}_{\min }$, but there are two hubs, $H_{\min }$ and $-H_{\min }$, by the symmetry across a diameter. So we collect all the hubs together by moving the $-H_{\min }$ hubs across a diameter to join the $H_{\min }$ hubs.

Definitions

HmingLON	gLON in radians for $H_{\text {min }}$
HmingLAT	gLAT in radians for $H_{\text {min }}$
σ gLONMinFit1	half-width for gLON uncertainty runs
gLONMinFit1	mean for gLON uncertainty runs

\(\left.\begin{array}{lc}\sigma g L A T M i n F i t 1 \& half-width for gLAT uncertainty runs

gLATMinFit1 \& mean for gLAT uncertainty runs\end{array}\right]\)| HmingLONAVE | average over all uncertainty runs of gLON for $H_{\min }$ |
| :--- | :---: |
| HmingLONgLAT | (gLON,gLAT) table for ListPlot |
| lpHmin | plot Hmin hubs from uncertainty runs |
| gLON1,2Min1 | values needed for framing the most likely hubs |
| gLAT1,2Min1 | ditto for latitude |

$\ln [211]:=$ (* Gather the hubs. Move the hubs across diameters,
$\Delta \mathrm{gLON}=\pi$, or around a complete circle, $\Delta \mathrm{gLON}=360^{\circ}$,
if necessary, so that all hubs satisfy $0^{\circ} \leq \operatorname{gLON}<180^{\circ}$.*)
HmingLON0 = HmingLONData;
HmingLAT0 = HmingLATData;
HmingLONBy180n = Round [HmingLON0 / π];
HmingLON1 = Table [HmingLON0 [[i1]] - HmingLONBy180n [[i1]] π, $\{i 1$, Length [HmingLON0] \}];
HmingLAT1 = Table [(-1) HmingLONBy180n [[i1]] HmingLAT0 [[i1]] , \{i1, Length [HmingLAT0] \}];
HmingLON = Table [If [HmingLON1[[i1]] < 0, HmingLON1[[i1]] + π, HmingLON1[[i1]], "huh?"], \{i1, Length[HmingLON1] \}];
HmingLAT = Table[If [HmingLON1[[i1]] < 0, - HmingLAT1[[i1]], HmingLAT1[[i1]], "huh?"], \{i1, Length[HmingLAT1] \}];
$\ln [217]:=\left(*\right.$ Check that $0^{\circ} \leq \operatorname{gLON}<180^{\circ}$ and $-90^{\circ} \leq$ gLAT $<90^{\circ}$ *)
(*ListPlot [\{Sort [HmingLON], Sort [HmingLAT] \},
PlotLabel \rightarrow "gLON and gLAT for $H_{m i n}, ~ r a d i a n s ", A x e s L a b e l \rightarrow\{$ Run \#", "gLON,gLAT"\}]*)

$\ln [218]:=$

\{ogLONMinFit1, gLONMinFit1\} $=$ \{stanDev[HmingLON], mean [HmingLON] \}; (*radians*)
\{ogLATMinFit1, gLATMinFit1\} $=$ \{stanDev[HmingLAT], mean [HmingLAT] \}; (*radians*)
$\ln [220]:=$
(*Define quantities for the plot of the $H_{\text {min }}$ from the uncertainty runs. *) HmingLONgLAT = Sort [Table [\{-HmingLON [[i5]], HmingLAT [[i5]] \}, \{i5, Length [HmingLON] \}]];
\{HmingLONgLAT [[1]], HmingLONgLAT [[-1]] \} ; (*radians*)
\{HmingLONgLAT [[1]], HmingLONgLAT [[-1]] \} (360. / (2. π)) ; (*degrees*)
lpHmin = ListPlot [HmingLONgLAT (360./ (2. π)) , PlotRange $\rightarrow\{\{-180,180\},\{-90,90\}\}$,
PlotMarkers \rightarrow Automatic, AxesLabel \rightarrow \{"-gLON, degrees", "gLAT, degrees"\},
PlotLabel \rightarrow " (-gLON,gLAT) for the $H_{\text {min }}$ hubs",
Ticks \rightarrow \{Table[\{t, -t$\},\{\mathrm{t},-180,180,45\}$], Automatic $\}$];
gLON1Min1 $=($ gLONMinFit1 - ogLONMinFit1) $(360 . /(2 . \pi)) ;$
gLON2Min1 $=($ gLONMinFit1 + ogLONMinFit1) $(360 . /(2 . \pi)) ;$
gLAT1Min1 $=($ gLATMinFit1 - ogLATMinFit1) $(360 . /(2 . \pi)) ;$
gLAT2Min1 $=($ gLATMinFit1 $+\sigma g L A T M i n F i t 1)(360 . /(2 . \pi)) ;$

6e. The Effects of Uncertainty on the Locations (gLON, gLAT) of the Avoidance Hubs $H_{\max }$.

Each uncertainty run returns an alignment hub $H_{\max }$. In this section, we calculate the mean and standard deviation all such hubs to approximate the distribution of the locations of the Avoidance Hubs $H_{\max }$.

Definitions: Explore the definitions for $H_{\min }$ at the start of Sec. 6d. Find the similarly named quantity by interchanging Max for Min. Adjust the definition to the present context.

```
\(\ln [228]:=\left(*\right.\) Move hubs, if necessary, so that \(0^{\circ} \leq \operatorname{gLON}<360^{\circ}\) *)
    HmaxgLON0 = HmaxgLONData;
    HmaxgLAT0 = HmaxgLATData;
    HmaxgLONBy180n = Round [HmaxgLON0 / \(\pi\) ];
    HmaxgLON1 = Table [HmaxgLON0 [ [i1] ] - HmaxgLONBy180n [ [i1] ] \(\pi,\{i 1, ~ L e n g t h[H m a x g L O N 0] ~\}] ; ~\)
    HmaxgLAT1 = Table [(-1) HmaxgLONBy180n [ [i1]] HmaxgLAT0 [ [i1] ] , \{i1, Length [HmaxgLAT0] \}];
    HmaxgLON = Table [If[0 > HmaxgLON1[ [i1]], HmaxgLON1[ [i1] ] + \(\pi\), HmaxgLON1[ [i1]], "huh?"],
        \{i1, Length[HmaxgLON1] \}];
    HmaxgLAT = Table [If [0 > HmaxgLON1 [ [i1] ], - HmaxgLAT1[ [i1] ], HmaxgLAT1[ [i1] ], "ah"] ,
        \{i1, Length [HmaxgLAT1] \}];
\(\ln [234]:=\left(*\right.\) Check that \(0^{\circ} \leq \operatorname{gLON}<180^{\circ}\) and \(-90^{\circ} \leq \operatorname{gLAT}<90^{\circ}\) *)
    (*ListPlot [ \{Sort [HmaxgLON] , Sort [HmaxgLAT] \}, PlotRange \(\rightarrow\{-2 \pi, 2 \pi\}\),
    AxesLabel \(\rightarrow\) \{"Run \#", "gLON,gLAT radians"\}, PlotLabel \(\rightarrow\) "gLONs, gLATs for \(H_{\max }\) "]*)
\(\ln [235]:=\{\sigma g L O N M a x F i t\), gLONMaxFit \(\}=\) \{stanDev[HmaxgLON], mean [HmaxgLON] \}; (*radians*)
    \{ogLATMaxFit, gLATMaxFit \(\}=\) \{stanDev [HmaxgLAT], mean [HmaxgLAT] \}; (*radians*)
\(\ln [237]:=\) (* Define quantities for the plot of the
    locations of the \(H_{\max }\) from the uncertainty runs. *)
    HmaxgLONgLAT = Table[\{-HmaxgLON[ [i8]], HmaxgLAT[ [i8]] \}, \{i8, Length[HmaxgLAT ]\}];
    \{HmaxgLONgLAT [ [1] ], HmaxgLONgLAT [ [-1] ] \} ; (*radians*)
    \{HmaxgLONgLAT [ [1] ], HmaxgLONgLAT [ [-1] ] \} (360. / (2. \(\pi\) )) ; (*degrees*)
    lpHmax1 = ListPlot[HmaxgLONgLAT (360./ (2. \(\pi\) )) , PlotRange \(\rightarrow\{\{-180,+180\},\{-90,90\}\}\),
        PlotMarkers \(\rightarrow\) Automatic, AxesLabel \(\rightarrow\) \{"-gLON, degrees", "gLAT, degrees"\},
        PlotLabel \(\rightarrow\) " \(H_{\max }\) hubs with the most likely region indicated ",
        Ticks \(\rightarrow\) \{Table[\{t, -t,\(\{t,-180,180,45\}\) ], Automatic \(\}\) ];
    gLON1Max \(=(\) gLONMaxFit \(-\sigma g L O N M a x F i t)(360 . /(2 . \pi)) ;\)
    gLON2Max \(=(\) gLONMaxFit \(+\sigma\) gLONMaxFit) \((360 . /(2 . \pi))\);
    gLAT1Max \(=(\) gLATMaxFit \(-\sigma g L A T M a x F i t)(360 . /(2 . \pi)) ;\)
    gLAT2Max \(=(\) gLATMaxFit \(+\sigma\) LATMaxFit) \((360 . /(2 . \pi))\);
6f. The Effects of Uncertainty on the angle \(\theta\) between the planes of the Sample to \(H_{\min }\) Great Circle and the Sample to \(H_{\max }\) Great Circle.
```

These are the Gray lines in Fig. 4.

Definitions:
"uRuns" prefix results from the uncertainty runs
uRunsCrossMin unit vector normal to the Great Circle connecting the center of the source region with the alignment hub $H_{\text {min }}$ uRunsCrossMax unit vector normal to the Great Circle connecting the center of the source region with the alignment hub $H_{\max }$ uRuns θ minMAXgreatcircles angle between the two normals in degrees
sort θ minMAX sort "uRuns θ minMAXgreatcircles", smallest θ first
See Definitions above in Secs. 6a,6b for other quantities below. There you should find similarly named quantities.
$\ln [245]:=$ uRunsCrossMin0 =
Table[Cross[er [HmingLON[[i]], HmingLAT[[i]]], sourceCenter], \{i, Length[HmingLON]\}];
uRunsCrossMin $=\operatorname{Table}\left[\frac{\text { uRunsCrossMine[[i]] }}{(\text { uRunsCrossMine[[i]].uRunsCrossMine[[i]] })^{1 / 2 .}}\right.$,
\{i, Length [HmingLON] \}];
uRunsCrossMax0 = Table [Cross [er [HmaxgLON[[i]], HmaxgLAT [[i]]], sourceCenter],
\{i, Length [HmaxgLON] \}];
uRunsCrossMax $=\operatorname{Table}\left[\frac{\text { uRunsCrossMax0[[i]] }}{(\text { uRunsCrossMax0[[i]].uRunsCrossMax0[[i]] })^{1 / 2 .}}\right.$,
\{i, Length[HmaxgLON] \}];
uRunsөminMAXgreatcircles = Table[ArcCos[uRunsCrossMax[[i]].uRunsCrossMin [[i]]] ($\left.\frac{360 .}{2 . \pi}\right)$,
\{i, Length[HmaxgLON] \}];
$\ln [250]=$

$\eta \theta \theta=$ mean [uRuns θ minMAXgreatcircles]; (*Guess the mean for the Gaussian. *)
$\sigma \theta=$ stanDev[uRuns θ minMAXgreatcircles]; (*Guess the half-width.*)
histogramrange $=\{\eta \theta \theta-5 \sigma \theta, \eta \theta \theta+5 \sigma \theta, 0.4 \sigma \theta\}$;
hl0 = HistogramList [sortӨminMAX, histogramrange];
hl =
Table [\{(1/2) (hl0[[1, i1]] +hl0[[1, i1 + 1]]), hl0[[2, i1]]\}, \{i1, Length[hl0[[2]]]\}];

$\{\{a, \operatorname{Length}[\operatorname{sort\theta minMAX/6]\} ,\{ b,\sigma \theta \} ,\{ x\theta ,\eta \theta \theta \} \} ,x];(*x\text {is}\theta \operatorname {minMAX}*)~}$
$\ln [256]:=$
showNLM $=$ Show [$\{$ Histogram [sortӨminMAX, histogramrange,
PlotLabel \rightarrow "Angle θ between the Two Gray Great Circles in Fig. 4",
AxesLabel \rightarrow \{" θ, degrees", " $\Delta R "\}]$,
Plot [Normal [nlm $]$, $\{x, \eta \theta \theta-5 \sigma \theta, \eta \theta \theta+5 \sigma \theta\}$], ListPlot [hl] \}]
Print["Figure 7: The Gaussian fit to the angle θ histogram,
where the height is the number of runs ΔR in"]
Print[" each bin of width $\Delta \theta=$ ", $0.4 \sigma \theta$, " degrees."]
Print[" The total number of runs is $R=\Sigma(\Delta R)=$ ", Length [runData], "."]

Figure 7: The Gaussian fit to the angle θ histogram, where the height is the number of runs $\Delta \mathrm{R}$ in each bin of width $\Delta \theta=0.165476$ degrees.

The total number of runs is $R=\Sigma(\Delta R)=2000$.

```
ln[260]:=
```

ParametersNLM $=\{a, b, x 0\} / . n l m \theta[" B e s t F i t P a r a m e t e r s "] ;$
pTableNLM $\theta=n l m \theta[$ "ParameterTable"]
\{бӨminMAXFit, $\Theta m i n M A X F i t\}=\{P a r a m e t e r s N L M \Theta[2]]$, ParametersNLMӨ [[3]] \}; (*degrees*)

	Estimate	Standard Error	t-Statistic	P -Value
a	362.52	19.4077	18.6791	5.52892×10^{-15}
b	0.34016	0.0210279	16.1766	1.06491×10^{-13}
$\mathrm{x0}$	89.9605	0.0210279	4278.15	1.27292×10^{-66}

6 g . Map of the Hubs for the Uncertainty Runs

In this subsection, we map the locations of the many alignment hubs $H_{\min }$ and the locations of the avoidance hubs $H_{\max }$ that are found in the uncertainty runs.

Definitions:

xyAitoffHmin	Aitoff coordinates for the alignment hubs $H_{\min }$ from the uncertainty runs
xyAitoffHmax	Aitoff coordinates for the avoidance hubs $H_{\max }$ from the uncertainty runs
xyAitoffOppositeHmin	Aitoff coordinates for the $-H_{\min }$
xyAitoffOppositeHmax	Aitoff coordinates for the $-H_{\max }$
mapOf $\sigma \psi H \min H m a x$	plot of the alignment and avoidance hubs $H_{\min },-H_{\min }, H_{\max }$, and $-H_{\max }$

$\operatorname{In}[263]:=$ (*The Aitoff coordinates for the hubs $H_{\text {min }}$ locations.*)xyAitoffHmin = Table [\{xHGal[HmingLON [[n]] $(360 /(2 \pi))$, HmingLAT [[n]] (360/(2 π))], yHGal[HmingLON [[n]] $(360 /(2 \pi))$, $\operatorname{HmingLAT}[[n]](360 /(2 \pi))]\},\{n$, Length [HmingLAT] \}];
(*The Aitoff coordinates for the hubs $H_{\max }$ locations.*) xyAitoffHmax =
Table [\{xHGal[HmaxgLON [[n]] $(360 /(2 \pi))$, $\operatorname{HmaxgLAT}[[n]](360 /(2 \pi))]$, yHGal[$\operatorname{HmaxgLON}[[n]](360 /(2 \pi)), \operatorname{HmaxgLAT}[[n]](360 /(2 \pi))]\},\{n$, Length[HmingLAT]\}];
(*The Aitoff coordinates for the hubs $-H_{m i n}$ locations.*)
xyAitoffOppositeHmin = Table [\{xHGal[If[0 $\leq \operatorname{HmingLON}[[n]](360 /(2 \pi))<+180$, $\operatorname{HmingLON}[[n]](360 /(2 \pi))-180, \operatorname{If}[0>\operatorname{HmingLON}[[n]](360 /(2 \pi))>-180$, HmingLON [[n]] $(360 /(2 \pi))+180]]$, - $\operatorname{HmingLAT}[[n]](360 /(2 \pi))]$,
yHGal [If [0 $\leq \operatorname{HmingLON}[[n]](360 /(2 \pi))<+180$, HmingLON [[n]] (360/(2 π)) - 180, $\operatorname{If}[0>\operatorname{HmingLON}[[n]](360 /(2 \pi))>-180, \operatorname{HmingLON}[[n]](360 /(2 \pi))+180]]$, - HmingLAT [[n]] (360/(2 π))]\}, \{n, Length [HmingLAT] \}];
(*The Aitoff coordinates for the hubs $-H_{\max }$ locations.*)
xyAitoffoppositeHmax =
Table [\{xHGal [If [$0 \leq \operatorname{HmaxgLON}[[n]](360 /(2 \pi))<+180, \operatorname{HmaxgLON}[[n]](360 /(2 \pi))-180$, $\operatorname{If}[0>\operatorname{HmaxgLON}[[n]](360 /(2 \pi))>-180, \operatorname{HmaxgLON}[[n]](360 /(2 \pi))+180]]$, - HmaxgLAT [[n]] $(360 /(2 \pi))]$,
yHGal [If [0 $\leq \operatorname{HmaxgLON}[[n]](360 /(2 \pi))<+180, \operatorname{HmaxgLON}[[n]](360 /(2 \pi))-180$, $\operatorname{If}[0>\operatorname{HmaxgLON}[[n]](360 /(2 \pi))>-180, \operatorname{HmaxgLON}[[n]](360 /(2 \pi))+180]]$, - HmaxgLAT [[n]] (360/(2 π))]\}, n, Length [HmaxgLAT] \}];
(*Construct the map of uncertainty run $H_{\min }$ and $H_{\max }$ hubs with \pm regions indicated.*)
mapOfo ψH minHmax $=$
Show [\{Table[ParametricPlot[\{xHGal[gLON, gLAT], yHGal[gLON, gLAT] \}, \{gLAT, $-90,90\}$, PlotStyle $\rightarrow\{$ Black, Thickness [0.002] \}, PlotPoints \rightarrow 60, PlotRange $\rightarrow\{\{-7,7\},\{-3,3\}\}$, Axes \rightarrow False], \{gLON, -180, 180, 30\}],
Table[ParametricPlot[\{xHGal[gLON, gLAT], yHGal[gLON, gLAT] \}, \{gLON, -180, 180\}, PlotStyle \rightarrow \{Black, Thickness [0.002] \}, PlotPoints \rightarrow 60], \{gLAT, $-60,60,30\}$],
Graphics[\{PointSize[0.007], Text[StyleForm["N", FontSize -> 10, FontWeight -> "Plain"], $\{0,1.85\}$], LightBlue, (*Hmin:*) Point [xyAitoffHmin], (*-Hmin:*) Point [xyAitoffOppositeHmin], LightRed, (*Hmax:*) Point [xyAitoffHmax], (*-Hmax:*) Point[xyAitoffOppositeHmax] \}],
Table[ParametricPlot[\{xHGal[gLON, gLAT], yHGal[gLON, gLAT]\}, \{gLAT, gLAT1Max, gLAT2Max\}, PlotStyle \rightarrow \{Purple, Thickness [0.002]\}, PlotPoints \rightarrow 60], \{gLON, gLON1Max, gLON2Max, gLON2Max - gLON1Max\}],
Table[ParametricPlot[\{xHGal[gLON, gLAT], yHGal[gLON, gLAT] \}, \{gLON, gLON1Max, gLON2Max\}, PlotStyle \rightarrow \{Purple, Thickness [0.002] \}, PlotPoints \rightarrow 60],
\{gLAT, gLAT1Max, gLAT2Max, gLAT2Max - gLAT1Max\}],
Table[ParametricPlot [\{xHGal[gLON, gLAT], yHGal[gLON, gLAT]\}, \{gLAT, -gLAT2Max, -gLAT1Max\}, PlotStyle \rightarrow \{Purple, Thickness [0.002] \}, PlotPoints \rightarrow 60],
\{gLON, gLON1Max - 180, gLON2Max - 180, gLON2Max - gLON1Max \}],
Table[ParametricPlot[\{xHGal[gLON, gLAT], yHGal[gLON, gLAT]\}, \{gLON, gLON1Max - 180, gLON2Max - 180\}, PlotStyle \rightarrow \{Purple, Thickness [0.002] \}, PlotPoints \rightarrow 60], \{gLAT, -gLAT2Max, -gLAT1Max, gLAT2Max - gLAT1Max \}],
Table[ParametricPlot [\{xHGal[gLON, gLAT], yHGal[gLON, gLAT]\}, \{gLAT, -gLAT2Min1, -gLAT1Min1\}, PlotStyle \rightarrow \{Purple, Thickness [0.002] \}, PlotPoints \rightarrow 60],
\{gLON, gLON1Min1 - 180, gLON2Min1 - 180, gLON2Min1 - gLON1Min1\}],
Table[ParametricPlot[\{xHGal[gLON, gLAT], yHGal[gLON, gLAT]\},
$\{g L O N, ~ g L O N 1 M i n 1-180, ~ g L O N 2 M i n 1-180\}, ~ P l o t S t y l e ~ \rightarrow\{$ Purple, Thickness [0.002] \},
PlotPoints $\rightarrow 60$], \{gLAT, -gLAT2Min1, -gLAT1Min1, gLAT2Min1-gLAT1Min1\}],
Table[ParametricPlot[\{xHGal[gLON, gLAT], yHGal[gLON, gLAT]\}, \{gLAT, gLAT1Min1, gLAT2Min1\}, PlotStyle \rightarrow \{Purple, Thickness [0.002] \}, PlotPoints \rightarrow 60],
\{gLON, gLON1Min1, gLON2Min1, gLON2Min1-gLON1Min1\}],
Table[ParametricPlot[\{xHGal[gLON, gLAT], yHGal[gLON, gLAT]\}, \{gLON, gLON1Min1, gLON2Min1\}, PlotStyle \rightarrow \{Purple, Thickness [0.002] \}, PlotPoints \rightarrow 60],
\{gLAT, gLAT1Min1, gLAT2Min1, gLAT2Min1 - gLAT1Min1\}]\},
ImageSize $\boldsymbol{\rightarrow} \mathbf{2 \times 4 3 2}$, PlotLabel $\boldsymbol{\rightarrow}$ "The Hubs Found from the Uncertainty Runs"];
Section Summary

In[268]:= Print["To estimate the effects of experimental uncertainty, there were ", Length[runData], " uncertainty runs."] Print["Uncertainty runs have polarization directions $\psi=\psi \mathrm{n}+\delta \psi$, ", "where $\delta \psi$ is chosen with a normal
distribution of half-width $\sigma \psi$ about the best value $\psi \mathrm{n} . \mathrm{"}]$
Print["The uncertainty runs determine the smallest alignment angle to be $\bar{\eta}_{\text {min }}=$ ",
η BarMinFit (360./(2. π)) , "。 \pm ", $\sigma \eta$ BarMinFit (360./(2. π)) , "。."]
Print["The uncertainty runs determine the largest avoidance angle to be $\bar{\eta}_{\max }=$ ",

Print ["The uncertainty runs give the location for
one of the alignment hub $H_{\text {min }}$ as (gLON, gLAT) $="$,
$\{$ gLONMinFit1 (360./ (2. π)) , gLATMinFit1 (360./(2. π)) \}, " \pm ", $\{\sigma g L O N M i n F i t 1(360 . /(2 . \pi)), \operatorname{\sigma gLATMinFit1}(360 . /(2 . \pi))\}, ~ "$, in degrees."]
Print ["The other hub, $-\mathrm{H}_{\text {min }}$, is located diametrically opposite from $\mathrm{H}_{\text {min }}$."] Print $[$
"The uncertainty runs give the location of the avoidance hub $\mathrm{H}_{\max }$ as (gLON, gLAT) = ", $\{$ gLONMaxFit (360./(2. π)) , gLATMaxFit (360./(2. π)) \}, " \pm ", $\{\sigma g L O N M a x F i t(360 . /(2 . \pi)), \operatorname{\sigma gLATMaxFit}(360 . /(2 . \pi))\}, "$, in degrees."]
Print["The other hub, $-\mathrm{H}_{\max }$, is located diametrically opposite from $\mathrm{H}_{\max }$."]
Print["The uncertainty runs determine the angle θ between the two

Print["For θ, see the caption to Fig. 4."]
To estimate the effects of experimental uncertainty, there were 2000 uncertainty runs.
Uncertainty runs have polarization directions $\psi=\psi \mathrm{n}+\delta \psi$, where $\delta \psi$ is chosen with a normal distribution of half-width $\sigma \psi$ about the best value $\psi \mathrm{n}$.

The uncertainty runs determine the smallest alignment angle to be $\bar{\eta}_{\text {min }}=7.25184^{\circ} \pm 0.26844^{\circ}$.
The uncertainty runs determine the largest avoidance angle to be $\bar{\eta}_{\max }=82.7989^{\circ} \pm 0.266467^{\circ}$.
The uncertainty runs give the location for one of the alignment hub $\mathrm{H}_{\text {min }}$ as (gLON, gLAT) = $\{77.8876,-50.612\} \pm\{6.91636,3.96099\}$, in degrees.
The other hub, $-\mathrm{H}_{\text {min }}$, is located diametrically opposite from $\mathrm{H}_{\text {min }}$.
The uncertainty runs give the location of the avoidance hub $H_{\max }$ as (gLON, gLAT) $=$ $\{120.901,31\} \pm.\{4.84243,2.31603\}$, in degrees.

The other hub, $-\mathrm{H}_{\max }$, is located diametrically opposite from $\mathrm{H}_{\max }$.
The uncertainty runs determine the angle θ between the two grey Great Circles to be $\theta=$ $89.9605^{\circ} \pm 0.34016^{\circ}$.

For θ, see the caption to Fig. 4.
mapOfouHminHmax
Print["Figure 8: The ", Length[runData], " sets of hubs found for the uncertainty runs."]
Print ["The alignment hubs $H_{m i n}$ and $-H_{m i n}$ are plotted as light blue dots, ", LightBlue, ". "]
Print ["The avoidance hubs $H_{\max }$ and $-H_{\max }$ are plotted as pink dots, ", LightRed, "."]
Print ["The most likely locations of the hubs are outlined in purple, ", Purple, "."]
The Hubs Found from the Uncertainty Runs

Figure 8: The 2000 sets of hubs found for the uncertainty runs.
The alignment hubs $H_{m i n}$ and $-H_{m i n}$ are plotted as light blue dots, \square •
The avoidance hubs $\mathrm{H}_{\max }$ and $-\mathrm{H}_{\max }$ are plotted as pink dots,
The most likely locations of the hubs are outlined in purple,
As a final image, we superimpose the map of the uncertainty run hubs $H_{\min },-H_{\min }, H_{\max }$, and $-H_{\max }$ in Fig. 8 on the graph of the alignment angle function $\bar{\eta}(H)$, Fig. 4.
$\ln [283]:=$
Show [\{mapOf η Bar, mapOfo ψ HminHmax \}]
Print [
Print [
"Figure 9: Overlay Fig. 8, Uncertainty Run Hubs, onto Fig. 4, Alignment Function $\bar{\eta}(H)$ using Best Values $\psi \mathrm{n}$. Note that the light blue alignment hubs from the uncertainty runs closely follow the areas of convergence (blue) for the best values $\psi \mathrm{n}$. And the pink avoidance hubs follow the areas of extreme divergence (red). One sees that shifting the polarization directions slightly due to experimental uncertainty, shifts the locations of the hubs slightly. The shifted hubs favor areas, in blue and red, that are close to the extremes for the alignment function $\bar{\eta}(H)$ in Fig. 4."]

The alignment function $\bar{\eta}(H)$

Figure 9: Overlay Fig. 8, Uncertainty Run Hubs, onto Fig. 4, Alignment Function $\bar{\eta}(H)$ using Best Values ψn. Note that the light blue alignment hubs from the uncertainty runs closely follow the areas of convergence (blue) for the best values $\psi \mathrm{n}$. And the pink avoidance hubs follow the areas of extreme divergence (red). One sees that shifting the polarization directions slightly due to experimental uncertainty, shifts the locations of the hubs slightly. The shifted hubs favor areas, in blue and red, that are close to the extremes for the alignment function $\bar{\eta}(\boldsymbol{H})$ in Fig. 4 .

The polarization of starlight is a well-known phenomenon that has been important in understanding the structure of the magnetic field of the Milky Way Galaxy. The scale of the magnetic fields is large enough that starlight from regions containing large numbers of stars should confront similar environments on the way to being detected. So, it is not surprising to find that the polarization directions for stars in many good-sized regions of the Galaxy are well aligned.

The stars in the sample and the surrounding region are well-known to be polarized in the general direction from southeast to northwest, see Fig. 4 in Ref. 7 and Fig. 3 in Ref. 12, for example. If the 99 stars in the sample had randomly directed polarization directions, they would have more widely scattered polarization directions with an alignment angle near 40° and an avoidance angle near 50°. The observed polarization directions converge to a value of $\bar{\eta}_{\text {min }}$ of about 7° and an avoidance angle $\bar{\eta}_{\max }$ of about 83°. Both for alignment and for avoidance, i.e. for the observed $\bar{\eta}_{\min }$ and $\bar{\eta}_{\max }$, the results occur about $20 \sigma \mathrm{~s}$ from the results with random polarization values. The significance is infinitesimal, about 10^{-83} or less. One concludes that the alignment is not explained by chance. Note that the Hub Test supplies numerical values to help make that determination.

The 99 stars in this region have polarization correlations that illustrate an extreme case. With samples of Galactic stellar polarization, the extreme case may not be unusual. However, when, as here, the polarization directions are all nearly equal, the smallest alignment angles $\bar{\eta}(H)$ arrange themselves along an "equator", a Great Circle moving away from the sources in the direction of the best convergence point at the alignment hubs $H_{\text {min }}$ and $-H_{\text {min }}$. The sample is an extreme case because the directions perpendicular to the polarization directions are also well-correlated, making a second Great Circle through the avoidance hubs $H_{\max }$ and $-H_{\text {max }}$. See the Grey circles in Fig. 4. The two Great Circles are perpendicular within experimental uncertainty at the points of intersection. The Hub Test treats alignment and avoidance equally, with symmetry between avoidance and alignment. In the extreme case here, both alignment and avoidance are remarkably strong.

References

1. R. Shurtleff, the ready-to-run Mathematica version of this notebook is available at the following URL:
https://www.dropbox.com/s/jhsztq9wp557bqu/20210406Clump6Lon30Lat30offDisk3HB.nb?dl=0
2. R. Shurtleff, Evaluating the Alignment of Astronomical Linear Polarization Data, Intermediate Level Software, viXra:2101.0144 (2021).
3. Wolfram Research, Inc., Mathematica, Version 12.1, Champaign, IL (2020).
4. Wikipedia contributors. "Aitoff projection." Wikipedia, The Free Encyclopedia. Wikipedia, The Free Encyclopedia, 25 May. 2017. Web. (3 Jan. 2018).
5. R. Shurtleff, "Indirect polarization alignment with points on the sky, the Hub Test", https://vixra.org/abs/2011.0026 (2020).
6. Boulanger, F., Ensslin, T., Fletcher, A., et al., JCAP, 08, 049 (2018).
7. Ian W. Stephens et al, The Galactic Magnetic Field's Effect in Star-forming Regions, ApJ 72899 (2011), Fig. 4.
8. Planck Collaboration, Planck 2018 results, XII. Galactic astrophysics using polarized dust emission, Astronomy \& Astrophysics 641, A12 (2020).
9. A. Lazarian and Thiem Hoang, Alignment and Rotational Disruption of Dust, ApJ 90812 (2021).
10. Heiles, C., An agglomeration of stellar polarization catalogs, Astron. J. 119, 923 (2000).
11. Heiles, C., The catalog, ReadMe, and other files related to Ref. 10 are also available online at VizieR; https://cdsarc.unis-tra.fr/viz-bin/cat/II/226 (2000).
12. Berdyugin A., Piirola V., Teerikorpi P., Astron. Astrophys. 561, A24 DOI: 10.1051/0004-6361/201322604 (2014).
13. Berdyugin A., et al., The catalog, ReadMe, and other files related to Ref. 12 are available online at VizieR; http://cdsarc.u-strasbg.fr/viz-bin/ReadMe/J/A+A/561/A24?format=html\&tex=true
