The complex curvature is the inverse of the complex radius
 Abel Cavasi
 Abstract
 I don't know if anyone else has noticed, but if we consider that the radius and pitch of the helix is a complex number, then the curvature and torsion can be JUST THE INVERSE of this complex number.

It is known that for a helix of radius a and step b its curvature is given by the formula

$$
\kappa=\frac{a}{a^{2}+b^{2}}
$$

and the torsion is

$$
\tau=-\frac{b}{a^{2}+b^{2}}
$$

I don't know if anyone else has noticed, but if we consider that the radius and pitch of the helix is a complex number, then the curvature and torsion can be JUST THE INVERSE of this complex number.

In other words, if we admit that there is a complex number

$$
r=a+b i
$$

where a and b are the radius and pitch of the helix (a number we might call a "complex radius"), then the complex number

$$
\lambda=\kappa+\tau i
$$

formed by the curvature and torsion of the helix (a number we might call "complex curvature") is just the inverse of z, ie

$$
\lambda=\frac{1}{r} .
$$

Bibliography

1. Daniel Breaz, ..., Transformări integrale si functii complexe aplicate în tehnică
2. Helix on Wikipedia.
