An elementary proof of $0.999 \cdots=1$

O. Kurwa

April 23, 2021

1 Abstract

One of the properties distinguishing irrational and rational numbers is the uniqueness (or the lack thereof) of their decimal representations. For example, the numbers π and 1 can be used as specimens of this phenomenon, as π has precisely one expression as decimals, but $1=1.0=1.00=\ldots$. In this paper, we provide an elementary proof for the fact that $0.999 \ldots$ is also a decimal representation of 1 , using the Lebesgue measure.

2 Preliminaries

We will refer to these well-known [1] facts throughout this paper.

Lemma 2.1. The following are true:
(1) Given any interval $A \subseteq \mathbb{R}$, its Lebesgue measure satisfies $m(A)=0$ iff A has only countably many points.
(2) The only intervals with countably many points are degenerate intervals (singletons) and the empty set. In particular, any non-vacuous open interval has positive measure.
(3) If A is not degenerate, then $m(A)=\max (A)-\min (A)$.

3 The main result

We are now ready to prove the
Theorem 3.1. $0.999 \cdots=1$.
Proof. We will argue by contradiction. Assume that $0.999 \cdots<1$. There is then an open interval $\varnothing \neq A \subseteq(0.999 \ldots, 1)$. By Lemma $2.1(1), m(A)>0$. Let $\left(a_{n}\right)_{n \in \mathbb{N}}$ be the sequence

$$
a_{0}=0, a_{n+1}=a_{n}+9 \cdot 10^{-(n+1)} .
$$

Clearly, $a_{n} \rightarrow 0.999 \ldots$ and $1-a_{n}=10^{-n} \rightarrow 0$ when $n \rightarrow \infty$. Defining $A_{n}=\left(a_{n}, 1\right)$, we obtain a sequence

$$
(0,1) \supset\left(a_{1}, 1\right) \supset\left(a_{2}, 1\right) \supset \cdots
$$

of open intervals, such that $A \subseteq \bigcap_{n \in \mathbb{N}}\left(a_{n}, 1\right)$. However,

$$
m\left(\bigcap_{n \in \mathbb{N}}\left(a_{n}, 1\right)\right)=\lim _{n \rightarrow \infty} m\left(\left(a_{n}, 1\right)\right)=\lim _{n \rightarrow \infty} 10^{-n}=0
$$

by 2.1(3). It follows from 2.1(2) that the intersection consists of at most one element, but then $0 \leq|A| \leq 1$, contradicting $m(A)>0$. Thus, we conclude that $0.999 \cdots=1$.

4 References

[1] Obviously true.

