Integral forms for the quantum He Hamiltonian approximation of chemical bonds in RNA and protein scaling comparisons. A numerical proof of concept

Han Geurdes ${ }^{1}$
GDS Applied Mathematics BV
CvdLinstraat 164 2593NN Den Haag Netherlands
han.geurdes@gmail.com

Abstract

In the paper a mathematical method, originated from studies of nonlinear partial differential equations, is applied to the He approximation of outer electron chemical bonds. The results can be used in the study of large molecules like RNA and proteins. We follow a pairwise atom by atom coordinates approximation. Coordinates can be obtained from crystallography or electron microscopy. The present paper solely presents the proof of concept of the existence of an algorithm. It is expected that such algorithm can be employed in studies of larger molecules.

Keywords: He Hamiltonian approximation outer electrons;proof of concept numerics; method preparation for in silico RNA-RNA and protein-RNA studies

Introduction

In a bi-atomic chemical bond as part of a larger molecule, one can try to use the He Schrödinger equation to incorporate the quantum mechanical behaviour of the two electrons. It can make sense to consider the two atoms as a kind of "super" Helium nucleus when looking at the two outer electrons. The author is aware that other quantum chemical methods do exist [1]. The presented method attempts to look at large molecules. Moreover we believe that the mathematics can add to our understanding of the atomic physics of the light elements. Accepting that the He approach can be allowed, then still there is this problem that the He Schrödinger equation has no exact solution.

In the present paper we will try to come with an "in principle" exact solution form where the energy eigen value must be approximated in iterative steps of an algorithm. The "in principle solution" form is based on spectral integration theory. Previously, the present author applied a certain aspect of the theory with

[^0]May 10, 2021
integrals with quadratic dispersion, to a nonlinear partial differential equation [2]. The algorithm that we present here derives from concepts of linear integral equations. It is a proof of concept and changes to it must be made in order to study large molecules effectively.

Method

1. Math of He Hamiltonian integral patching

Let us start with the following two partial wave functions with dependence on the two electron coordinates $\mathbf{x}_{1}=\left(x_{1,1}, x_{2,1}, x_{3,1}\right)$ and $\mathbf{x}_{2}=\left(x_{1,2}, x_{2,2}, x_{3,2}\right)$. The He Schrödinger equation in $\hbar=c=1$ and $m_{e}=1$ equals $H \varphi=E \varphi$ with

$$
\begin{equation*}
H=-\frac{1}{2}\left(\Delta_{1}+\Delta_{2}\right)+\frac{1}{r_{1,2}}-\left(\frac{1}{r_{1}}+\frac{1}{r_{2}}\right) \tag{1}
\end{equation*}
$$

and E the energy eigenvalue [1]. Here, $r_{1,2}=\sqrt{\left(\mathbf{x}_{1}-\mathbf{x}_{2}\right)^{T} \cdot\left(\mathbf{x}_{1}-\mathbf{x}_{2}\right)}$ and upper index T denotes the transposed The $r_{1,2}$ represents the Euclidean distance between electron 1 and electron 2 . Furthermore, $r_{1}=\sqrt{\mathbf{x}_{1}^{T} \cdot \mathbf{x}_{1}}$ and $r_{2}=$ $\sqrt{\mathbf{x}_{2}^{T} \cdot \mathbf{x}_{2}}$ together with $\Delta_{1}=\frac{\partial^{2}}{\partial x_{1,1}^{2}}+\frac{\partial^{2}}{\partial x_{2,1}^{2}}+\frac{\partial^{2}}{\partial x_{3,1}^{2}}$. Similar $\Delta_{2}=\frac{\partial^{2}}{\partial x_{1,2}^{2}}+\frac{\partial^{2}}{\partial x_{2,2}^{2}}+$ $\frac{\partial^{2}}{\partial x_{3,2}^{2}}$.

1.1. Partial wavefunctions

In this section we will try to find ways to approximately solve the He equation starting from two primitive functions

$$
\begin{array}{r}
\psi_{0, k}=f_{k} \exp \left[\alpha_{k} r_{1,2}\right] \tag{2}\\
\psi_{1, k}=g_{k} \exp \left[-\beta_{k}\left(r_{1}+r_{2}\right)\right]
\end{array}
$$

The k index is an auxiliary variable that can enter into auxiliary integration. For completeness of the argument let us look at

$$
\begin{equation*}
\frac{\partial}{\partial x_{1,1}} \psi_{0, k}=\alpha_{k}\left(\frac{x_{1,1}-x_{1,2}}{r_{1,2}}\right) \psi_{0, k} \tag{3}
\end{equation*}
$$

And therefore,

$$
\begin{align*}
\frac{\partial^{2}}{\partial x_{1,1}^{2}} \psi_{0, k}=\frac{\alpha_{k}}{r_{1,2}^{2}}\left(r_{1,2}-\left(x_{1,1}-x_{1,2}\right)\right. & \left.\left(\frac{x_{1,1}-x_{1,2}}{r_{1,1}}\right)\right) \psi_{0, k}+ \tag{4}\\
& \alpha_{k}^{2}\left(\frac{x_{1,1}-x_{1,2}}{r_{1,2}}\right)^{2} \psi_{0, k}
\end{align*}
$$

Similarly,

$$
\begin{align*}
\frac{\partial^{2}}{\partial x_{1,2}^{2}} \psi_{0, k}=\frac{\alpha_{k}}{r_{1,2}^{2}}\left(r_{1,2}-\left(x_{1,2}-x_{1,1}\right)\right. & \left.\left(\frac{x_{1,2}-x_{1,1}}{r_{1,1}}\right)\right) \psi_{0, k}+ \tag{5}\\
& \alpha_{k}^{2}\left(\frac{x_{1,2}-x_{1,1}}{r_{1,2}}\right)^{2} \psi_{0, k}
\end{align*}
$$

From which the following can be derived.

1.2. Preliminaries

Let us define $H_{0}=-\frac{1}{2}\left(\Delta_{1}+\Delta_{2}\right)$, then we may write

$$
\begin{equation*}
H_{0} \psi_{0, k}=-\frac{2 \alpha_{k}}{r_{1,2}} \psi_{0, k}-\alpha_{k}^{2} \psi_{0, k} \tag{6}
\end{equation*}
$$

and

$$
\begin{equation*}
H_{0} \psi_{1, k}=2 \beta_{k}\left(\frac{1}{r_{1}}+\frac{1}{r_{2}}\right) \psi_{1, k}-\beta_{k}^{2} \psi_{1, k} \tag{7}
\end{equation*}
$$

Let us define the wave function φ

$$
\begin{equation*}
\varphi=\int_{C} d \lambda_{k} \psi_{0, k}+\int_{D} d \mu_{k} \psi_{1, k} \tag{8}
\end{equation*}
$$

with very generally defined integrations over k. Looking at (6) and (7) we find

$$
\begin{equation*}
H_{0} \varphi=-\int_{C} d \lambda_{k}\left\{\frac{2 \alpha_{k}}{r_{1,2}}+\alpha_{k}^{2}\right\} \psi_{0, k}+\int_{D} d \mu_{k}\left\{2 \beta_{k}\left(\frac{1}{r_{1}}+\frac{1}{r_{2}}\right)-\beta_{k}^{2}\right\} \psi_{1, k} \tag{9}
\end{equation*}
$$

Furthermore, in order to obtain the He Schrödinger equation

$$
\begin{equation*}
\varphi=2 \int_{C} d \lambda_{k} \alpha_{k} \psi_{0, k}=2 \int_{D} d \mu_{k} \beta_{k} \psi_{1, k} \tag{10}
\end{equation*}
$$

and

$$
\begin{equation*}
E \varphi=-\int_{C} d \lambda_{k} \alpha_{k}^{2} \psi_{0, k}-\int_{D} d \mu_{k} \beta_{k}^{2} \psi_{1, k} \tag{11}
\end{equation*}
$$

Hence,

$$
\begin{equation*}
H \varphi \equiv H_{0} \varphi+\frac{1}{r_{1,2}} \varphi-\left(\frac{1}{r_{1}}+\frac{1}{r_{2}}\right) \varphi=E \varphi \tag{12}
\end{equation*}
$$

2. Essential equations

In the first place let us combine (8) with (10). This gives

$$
\begin{align*}
\int_{C} d \lambda_{k}\left(1-2 \alpha_{k}\right) \psi_{0, k} & =-\int_{D} d \mu_{k} \psi_{1, k} \tag{13}\\
\int_{D} d \mu_{k}\left(1-2 \beta_{k}\right) \psi_{1, k} & =-\int_{C} d \lambda_{k} \psi_{0, k}
\end{align*}
$$

Secondly we combine (8) and (11) this gives

$$
\begin{equation*}
\int_{C} d \lambda_{k} E \psi_{0, k}+\int_{D} d \mu_{k} E \psi_{1, k}=-\int_{C} d \lambda_{k} \alpha_{k}^{2} \psi_{0, k}-\int_{D} d \mu_{k} \beta_{k}^{2} \psi_{1, k} \tag{14}
\end{equation*}
$$

Thirdly, (10) and (11)

$$
\begin{array}{r}
\int_{C} d \lambda_{k}(2 E) \alpha_{k} \psi_{0, k}=\int_{D} d \mu_{k}(2 E) \beta_{k} \psi_{1, k}= \tag{15}\\
-\int_{C} d \lambda_{k} \alpha_{k}^{2} \psi_{0, k}-\int_{D} d \mu_{k} \beta_{k}^{2} \psi_{1, k}
\end{array}
$$

this latter equation can be rewritten in two equations

$$
\begin{align*}
\int_{C} d \lambda_{k}\left(2 E \alpha_{k}+\alpha_{k}^{2}\right) \psi_{0, k} & =-\int_{D} d \mu_{k} \beta_{k}^{2} \psi_{1, k} \tag{16}\\
\int_{D} d \mu_{k}\left(2 E \beta_{k}+\beta_{k}^{2}\right) \psi_{1, k} & =-\int_{C} d \lambda_{k} \alpha_{k}^{2} \psi_{0, k}
\end{align*}
$$

3. Lagrangian

Suppose $f_{k}=\exp \left[-\alpha_{k} \rho_{1,2}\right]$ and $g_{k}=\exp \left[\beta_{k}\left(\rho_{1}+\rho_{2}\right)\right]$. The $\rho_{1,2}, \rho_{1}$ and ρ_{2} must be consistent with \mathbf{x}_{1} and \mathbf{x}_{2} because $r_{1,2}, r_{1}$ and r_{2} are in a "close neighbourhood" of $\rho_{1,2}, \rho_{1}$ and ρ_{2}. The Lagrangian, with explicit (2), together with conditions derived from (10), weighted by κ and (13) weighted by κ^{\prime}

$$
\begin{align*}
& \mathcal{L}=\int_{C} d \lambda_{k}\left(\alpha_{k}^{2}+2 E \alpha_{k}-E\right) e^{\alpha_{k}\left(r_{1,2}-\rho_{1,2}\right)}+ \tag{17}\\
& \int_{D} d \mu_{k}\left(\beta_{k}^{2}+2 E \beta_{k}-E\right) e^{-\beta_{k}\left(\left(r_{1}-\rho_{1}\right)+\left(r_{2}-\rho_{2}\right)\right)}+ \\
& \kappa\left(\int_{C} d \lambda_{k} \alpha_{k} e^{\alpha_{k}\left(r_{1,2}-\rho_{1,2}\right)}-\int_{D} d \mu_{k} \beta_{k} e^{-\beta_{k}\left(\left(r_{1}-\rho_{1}\right)+\left(r_{2}-\rho_{2}\right)\right)}\right)+ \\
& \kappa^{\prime}\left(\int_{C} d \lambda_{k}\left(1-\alpha_{k}\right) e^{\alpha_{k}\left(r_{1,2}-\rho_{1,2}\right)}+\int_{D} d \mu_{k}\left(1-\beta_{k}\right) e^{-\beta_{k}\left(\left(r_{1}-\rho_{1}\right)+\left(r_{2}-\rho_{2}\right)\right)}\right)
\end{align*}
$$

With $\mathcal{L}=\mathcal{L}\left(\rho_{1,2}, \rho_{1}, \rho_{2}\right)$. Because of the two separate α_{k} and β_{k}, may write $\mathcal{L}=\mathcal{L}_{a}+\mathcal{L}_{b}$. To study the zero-pont of the Lagrangian we will look at the derivatives to α_{k} and β_{k} because they can indicate the minimum.

3.1. Derivative to α_{k}

Let us define \mathcal{L}_{a} as

$$
\begin{equation*}
\mathcal{L}_{a}=\int_{C} d \lambda_{k} e^{\alpha_{k}\left(r_{1,2}-\rho_{1,2}\right)}\left\{\alpha_{k}^{2}+\left(2 E+\kappa-\kappa^{\prime}\right) \alpha_{k}+\left(\kappa^{\prime}-E\right)\right\} \tag{18}
\end{equation*}
$$

This is the α_{k} dependent part of (17). Hence, $\frac{\partial \mathcal{L}_{a}}{\partial \alpha_{k}}=\frac{\partial \mathcal{L}}{\partial \alpha_{k}}$. Therefore we may write

$$
\begin{array}{r}
\frac{\partial \mathcal{L}}{\partial \alpha_{k}}=\left(r_{1,2}-\rho_{1,2}\right) \int_{C} d \lambda_{k} e^{\alpha_{k}\left(r_{1,2}-\rho_{1,2}\right)}\left(\alpha_{k}^{2}+\left(2 E+\kappa-\kappa^{\prime}\right) \alpha_{k}+\left(\kappa^{\prime}-E\right)\right) \tag{19}\\
\\
+\int_{C} d \lambda_{k} e^{\alpha_{k}\left(r_{1,2}-\rho_{1,2}\right)}\left(2 \alpha_{k}+2 E+\kappa-\kappa^{\prime}\right)
\end{array}
$$

The k integrands premultiplied by $r_{1,2}-\rho_{1,2}$ can be assembled to give the following quadratic equation

$$
\begin{equation*}
u\left(\alpha_{k}\right)=\alpha_{k}^{2}+\left(2 E+\kappa-\kappa^{\prime}\right) \alpha_{k}+\left(\kappa^{\prime}-E\right) \tag{20}
\end{equation*}
$$

Hence, if we are looking for $\frac{\partial \mathcal{L}}{\partial \alpha_{k}}=0$ then because $u\left(\alpha_{ \pm}\right)=0$

$$
\begin{equation*}
\alpha_{ \pm}=-\frac{1}{2}\left(2 E+\kappa-\kappa^{\prime}\right) \pm \frac{1}{2} \sqrt{D} \tag{21}
\end{equation*}
$$

and $D \equiv\left(2 E+\kappa-\kappa^{\prime}\right)^{2}-4\left(\kappa^{\prime}-E\right)>0$. Suppose now that $\alpha_{k_{1}}=\alpha_{-}$and $\alpha_{k_{2}}=\alpha_{+}$and that the operation $\int_{C} d \lambda_{k}$ is

$$
\begin{equation*}
\int_{C} d \lambda_{k} \equiv \int_{-\infty}^{+\infty} d k\left(\delta\left(k-k_{1}\right)+\delta\left(k-k_{2}\right)\right) \tag{22}
\end{equation*}
$$

where $\delta(x)$ represents the Dirac delta function. This implies that in (18) $\mathcal{L}_{a}=0$ and that the first term weighed by $\left(r_{1,2}-\rho_{1,2}\right)$ in (19) can vanish. The second term in (19 now reads

$$
\begin{gather*}
\left(2 \alpha_{-}+2 E+\kappa-\kappa^{\prime}\right) \exp \left[\alpha_{-}\left(r_{1,2}-\rho_{1,2}\right)\right]+ \tag{23}\\
\left(2 \alpha_{+}+2 E+\kappa-\kappa^{\prime}\right) \exp \left[\alpha_{+}\left(r_{1,2}-\rho_{1,2}\right)\right] \approx 0
\end{gather*}
$$

because, $\exp \left[\alpha_{-}\left(r_{1,2}-\rho_{1,2}\right)\right] \approx \exp \left[\alpha_{+}\left(r_{1,2}-\rho_{1,2}\right)\right] \approx 1$ with $r_{1,2}$ in a close neighbourhood of $\rho_{1,2} . \alpha_{ \pm}$not extremely large. Note from $(21),\left(2 \alpha_{-}+2 E+\right.$ $\left.\kappa-\kappa^{\prime}\right)=-\sqrt{D}$ combined with $\left(2 \alpha_{+}+2 E+\kappa-\kappa^{\prime}\right)=\sqrt{D}$. Hence, it follows that with (22) we have $\mathcal{L}_{a}=0$ together with $\frac{\partial \mathcal{L}}{\partial \alpha_{k}} \approx 0$.

3.2. Derivative to β_{k}

Subsequently, let us define \mathcal{L}_{b} as

$$
\begin{equation*}
\mathcal{L}_{b}=\int_{D} d \mu_{k} e^{-\beta_{k}\left(\left(r_{1}-\rho_{1}\right)+\left(r_{2}-\rho_{2}\right)\right)}\left\{\beta_{k}^{2}+\left(2 E-\kappa-\kappa^{\prime}\right) \beta_{k}+\left(\kappa^{\prime}-E\right)\right\} \tag{24}
\end{equation*}
$$

This is the β_{k} dependent part of (17). It follows that, $\frac{\partial \mathcal{L}_{b}}{\partial \beta_{k}}=\frac{\partial \mathcal{L}}{\partial \beta_{k}}$. Therefore we may write

$$
\begin{align*}
\frac{\partial \mathcal{L}}{\partial \beta_{k}}=-\left(r_{1}-\rho_{1}+\right. & \left.r_{2}-\rho_{2}\right) \int_{D} d \mu_{k} e^{-\beta_{k}\left(\left(r_{1}-\rho_{1}\right)+\left(r_{2}-\rho_{2}\right)\right)} \tag{25}\\
& \times\left(\beta_{k}^{2}+\left(2 E-\kappa-\kappa^{\prime}\right) \beta_{k}+\left(\kappa^{\prime}-E\right)\right) \\
& +\int_{D} d \mu_{k} e^{\alpha_{k}\left(r_{1,2}-\rho_{1,2}\right)}\left(2 \beta_{k}+2 E-\kappa-\kappa^{\prime}\right)
\end{align*}
$$

The k integrands premultiplied by $\left(r_{1}-\rho_{1}+r_{2}-\rho_{2}\right)$ give the following quadratic equation

$$
\begin{equation*}
v\left(\beta_{k}\right)=\beta_{k}^{2}+\left(2 E-\kappa-\kappa^{\prime}\right) \beta_{k}+\left(\kappa^{\prime}-E\right) \tag{26}
\end{equation*}
$$

Hence, if we are looking for $\frac{\partial \mathcal{L}}{\partial \beta_{k}}=0$ then with $v\left(\beta_{ \pm}\right)=0$

$$
\begin{equation*}
\beta_{ \pm}=-\frac{1}{2}\left(2 E-\kappa-\kappa^{\prime}\right) \pm \frac{1}{2} \sqrt{D^{\prime}} \tag{27}
\end{equation*}
$$

and $D^{\prime} \equiv\left(2 E-\kappa-\kappa^{\prime}\right)^{2}-4\left(\kappa^{\prime}-E\right)>0$. Suppose now that $\beta_{k_{3}}=\beta_{-}$and $\beta_{k_{4}}=\beta_{+}$and that the operation $\int_{D} d \mu_{k}$ can be written like

$$
\begin{equation*}
\int_{D} d \mu_{k} \equiv \int_{-\infty}^{+\infty} d k\left(\delta\left(k-k_{3}\right)+\delta\left(k-k_{4}\right)\right) \tag{28}
\end{equation*}
$$

where, such as was stated previously, $\delta(x)$ is the Dirac delta function. This implies that in (24) $\mathcal{L}_{b}=0$. The second term in (25) now reads

$$
\begin{gather*}
\left(2 \beta_{-}+2 E-\kappa-\kappa^{\prime}\right) \exp \left[\beta_{-}\left(r_{1}-\rho_{1}+r_{2}-\rho_{2}\right)\right]+ \tag{29}\\
\left(2 \beta_{+}+2 E-\kappa-\kappa^{\prime}\right) \exp \left[\beta_{+}\left(r_{1}-\rho_{1}+r_{2}-\rho_{2}\right)\right] \approx 0
\end{gather*}
$$

because, $\exp \left[\beta_{-}\left(r_{1}-\rho_{1}+r_{2}-\rho_{2}\right)\right] \approx \exp \left[\beta_{+}\left(r_{1}-\rho_{1}+r_{2}-\rho_{2}\right)\right] \approx 1$ with r_{1} in a close neighbourhood of ρ_{1} and r_{2} in a close neighbourhood of $\rho_{2} . \beta_{ \pm}$not extremely large. Note from $(27),\left(2 \beta_{-}+2 E-\kappa-\kappa^{\prime}\right)=-\sqrt{D^{\prime}}$ combined with $\left(2 \beta_{+}+2 E-\kappa-\kappa^{\prime}\right)=\sqrt{D^{\prime}}$. Hence, it follows that with (28) we have $\mathcal{L}_{b}=0$ together with $\frac{\partial \mathcal{L}}{\partial \beta_{k}} \approx 0$.

4. Meaning of $\mathcal{L}=0$

After the detour concerning the Lagrangian, we may rightfully ask what it means that for the integrals selected in (22) and (28) we may conclude $\mathcal{L}=$ $\mathcal{L}\left(\rho_{1,2}, \rho_{1}, \rho_{2}\right)=0$ close to the extremum $\frac{\partial \mathcal{L}}{\partial \alpha_{k}} \approx 0$ and $\frac{\partial \mathcal{L}}{\partial \beta_{k}} \approx 0$. It means that under this particular selection of the λ_{k} integral and the μ_{k} integral the $\varphi=\int_{C} d \lambda_{k} \psi_{0, k}+\int_{D} d \mu_{k} \psi_{1, k}$ in (8) equals the one in (10) and the one

$$
\begin{equation*}
\varphi=\frac{-1}{E}\left(\int_{C} d \lambda_{k} \alpha_{k}^{2} \psi_{0, k}+\int_{D} d \mu_{k} \beta_{k}^{2} \psi_{1, k}\right) \tag{30}
\end{equation*}
$$

in (11). The ψ 's are given in (2).
Therefore, with still unknown energy eigenvalue $E \neq 0$, we have construed a "solution form" for the Helium problem based on primitive initial functions (2) and a proper selection of patching them together with integral procedures over a parameter independent of coordinates \mathbf{x}_{1} and \mathbf{x}_{2}. The restriction is in the extremum requirement where only in a "close neighbourhood" of preselected constants $\rho_{1,2}, \rho_{1}$ and ρ_{2} we have the $\mathcal{L}=0$ of the He form is close to the extrema. Note that $\rho_{1,2}, \rho_{1}$ and ρ_{2} can be freely selected but must be possible/plausible with \mathbf{x}_{1} and \mathbf{x}_{2}.

4.1. Proof of minimum

Here it is demonstrated that with the selection of integral forms, (22) and (28), we approximate a minimum value with $\mathcal{L}=0$. Looking at (19) the second
derivative of \mathcal{L} to α_{k} is, for $a \equiv r_{1,2}-\rho_{1,2}$

$$
\begin{align*}
& \frac{\partial^{2} \mathcal{L}}{\partial \alpha_{k}^{2}}=a^{2} \int_{C} d \lambda_{k} e^{a \alpha_{k}}\left(\alpha_{k}^{2}+\left(2 E+\kappa-\kappa^{\prime}\right) \alpha_{k}+\left(\kappa^{\prime}-E\right)\right) \tag{31}\\
& \quad+2 a \int_{C} d \lambda_{k} e^{a \alpha_{k}}\left(2 \alpha_{k}+2 E+\kappa-\kappa^{\prime}\right)+2 \int_{C} d \lambda_{k} e^{a \alpha_{k}}
\end{align*}
$$

Therefore, with (21) and (22) and $\int_{C} d \lambda_{k} e^{\alpha_{k}\left(r_{1,2}-\rho_{1,2}\right)}>0$. This warrants the conclusion that $\frac{\partial^{2} \mathcal{L}}{\partial \alpha_{k}^{2}}>0$. Similarly, we can conclude that $\frac{\partial^{2} \mathcal{L}}{\partial \beta_{k}^{2}}>0$. For, let us write, $c \equiv r_{1}-\rho_{1}+r_{2}-\rho_{2}$. Then from (25)

$$
\begin{align*}
& \frac{\partial^{2} \mathcal{L}}{\partial \beta_{k}^{2}}=c^{2} \int_{D} d \mu_{k} e^{-c \beta_{k}}\left(\beta_{k}^{2}+\left(2 E-\kappa-\kappa^{\prime}\right) \beta_{k}+\left(\kappa^{\prime}-E\right)\right) \tag{32}\\
& \quad-2 c \int_{D} d \mu_{k} e^{-c \beta_{k}}\left(2 \beta_{k}+2 E-\kappa-\kappa^{\prime}\right)+2 \int_{D} d \mu_{k} e^{-c \beta_{k}}
\end{align*}
$$

The conclusion is that $\mathcal{L}=0$ is, close to a minimum because: $\frac{\partial \mathcal{L}}{\partial \alpha_{k}} \approx 0$ and $\frac{\partial \mathcal{L}}{\partial \beta_{k}} \approx 0$ and $\frac{\partial^{2} \mathcal{L}}{\partial \alpha_{k}^{2}}>0$ together with $\frac{\partial^{2} \mathcal{L}}{\partial \beta_{k}^{2}}>0$ for $\alpha_{ \pm}$and $\beta_{ \pm}$.

4.2. Numerical proof of concept

Obviously, when abstract mathematics provides a "solution form", the question arises; will it be numerical practicable and can its principles be recovered in an algorithm. We are especially interested in RNA crystallographic or electron microscope coordinate data. Here in this test we use 6XRZ cryo-electronmicroscopic coordinate data rcsb.org/structure/6XRZ, doi:10.2210/pdb6XRZ/pdb of K. Zhang et al [3] 10.1101/2020.07.18.209270. In this section let us look at G coordinates C5' and C4'
h<-0. 02707993
xAtom1<-c(76.96, 77.639, 55.436)
xAtom2<-c (78.265, 78.358 , 55.199)
xMean<- (xAtom1+xAtom2)/2
$\mathrm{x} 1<-\mathrm{xMean+h} * \mathrm{c}(1,1,1)$
$\mathrm{x} 2<-\mathrm{xMean}-\mathrm{h} * \mathrm{c}(1,2,1)$
The $x 1$ and $x 2$ vectors indicate possible positions of two electrons. Here, $r_{1,2}=$ 0.09380763 with $r_{1}=123.2028$ and $r_{2}=123.1100$. Moreover, $\rho_{1,2}=r h=$ 0.06005371 and $\rho_{1}+\rho_{2}=r k=246.3337$ and fixed them in this computation. Subsequently, the α 's and β 's were computed like in (21) and (27) with the use of $\kappa=0.02342234$ and $\kappa^{\prime}=-1.990899$. The iteration started here in $E=-1.990899$ and with $d E=1 \times 10^{-5}$ approached $E \leftarrow E+d E$ zero in a number of steps. The discriminants were computed like
$\mathrm{D}<-\left((2 * \mathrm{E}+\mathrm{k}-\mathrm{k} 1)^{\wedge} 2\right)+(4 *(-\mathrm{k} 1+\mathrm{E}))$
D1<-($\left.(2 * E-k-k 1)^{\wedge} 2\right)+(4 *(-k 1+E))$
The requirement was $D>0$ and $D 1>0$. The α 's and β 's followed

```
aPlus<--0.5*(2*E+k-k1)+(0.5*sqrt(D))
bPlus<--0.5*(2*E-k-k1)+(0.5*sqrt(D1))
aMin<--0.5*(2*E+k-k1)-(0.5*sqrt(D))
bMin<--0.5*(2*E-k-k1)-(0.5*sqrt(D1))
```

The two primitive wave functions were computed in two functional expressions

```
funPsi0<-function(alph,r12,rh){
    y<-exp(alph*(r12-rh))
    return(y)
}
funPsi1<-function(bet,x1,x2,rk){
    r1<-sqrt(t(x1)%*%%x1)
    r2<-sqrt(t(x2)%*%x2)
    y<-exp(-bet*((r1+r2)-rk))
    return(y)
}
```

Then the three φ forms are computed referring to (8), (10) and the form in (30).
Hence
phi1<-funPsi0(aMin,r,rh)+funPsi1(bMin, $x 1, x 2, r k)$
phi1<-phi1+(funPsi0(aPlus, $r, r h$) + funPsi1 (bPlus, $x 1, x 2, r k)$)
phi2a<-(2*aMin*funPsiO(aMin, r, rh)) +(2*aPlus*funPsiO(aPlus, $r, r h))$
phi2b<-(2*bMin*funPsi1 (bMin, $x 1, x 2, r k))+(2 * b P l u s * f u n P s i 1(b P l u s, x 1, x 2, r k))$
phi2<-(phi2a+phi2b)/2
phi3a<-((aMin^2)*funPsi0(aMin,r,rh))+((aPlus^2)*funPsiO(aPlus,r,rh))
phi3b<-((bMin^2)*funPsi1 (bMin, $x 1, x 2, r k))+\left(\left(b P l u s^{\wedge} 2\right) * f u n P s i 1(b P l u s, x 1, x 2, r k)\right)$
phi3<-(phi3a+phi3b)/abs(E)

The phi2/2 form is used also in the condition weighed by κ^{\prime} in (17). The (phi3a+phi3b)/2 refers to one entity, (30). The differences in a loop of max 10000 iterations is computed as
dPhi<-(abs(phi1-phi2)+abs (phi2-phi3)+abs(phi1-phi3))/3

The result of computations under these conditions and with those parametrization was dPhi $=4.172812 \times 10^{-6}$ after $N=2511$ iterations and
$\operatorname{print}(c($ phi1, phi2,phi3) $)=c(4.179276,4.179270,4.179270)$
We note that phi2a $=4.17928$ (lefthand integral (10)) while phi2b $=4.17926$ (righthand integral (10)). The obtained approximated energy eigenvalue in this equation is: $E=-1.965799$.

Results

The error margin is reasonably low but there are quite a number of iteration steps necessary to get there. The computations don't need much computer
power. The approximation of the left and right hand side equality of (10) can still be improved but the difference of 2.4963×10^{-5} look reasonable.

The, fig 1 , er $r_{n}=$ dPhi goes upwards again beyond $\mathrm{N}=2511$ with start value $\mathrm{E}=-1.990899$ and $\mathrm{dE}=1 \times 10^{-5}$ and κ and κ^{\prime}, together with $\rho_{1,2}, \rho_{1}$ and ρ_{2}, selected in the algorithm (viz. §4.2). However, it is also noted that an initial declining trend is demonstrated in figure 1. Therefore the principal solution is demonstrated here. Most likely the efficiency of the program can be improved and finally can be employed to better approximate the quantum electron density from the crystallographic coordinates of RNA.

Conclusion

In the present paper a mathematical scheme is employed to solve iteratively the He approximation for two binding electrons. Its importance is that the He approximation can be applied to pairs of atoms in larger molecules and can be a part of multidimensional scaling comparison of RNA-RNA. The affinity of protein for RNA in RNA-protein complexes can be studied as well with the quantum He approximation.

If φ is defined as in (8) and is found approximately equal to the forms in (10) and (30) then the He Schrödinger equation has been solved in approximation. Hence the formal mathematics allows approximative but quantum chemistry based computations of large molecules. A computation that can be extended to large molecues like RNA and protein whose coordinate data are obtained from crystallography and cryo-electron-microscopy. The method is considered an improvement. It supplements earlier studies [4] and enables multidimensional scaling (MDS) statistics with less qualitative data in the MDS-based comparison geometry.

References

[1] Piela, L., Ideas of quantum chemistry, Elsevier, Amsterdam, Boston, 2007.
[2] Geurdes, H., A nonlinear second-order partial differential equation derived from a linear type-II integral equation with quadratic dispersion, J Phys A:Math Gen, 1990, 23:2315.
[3] Zhang, K., Zheludev, I., Hagey, R. et al, Cryo-electron Microscopy and Exploratory Antisense Targeting of 20kDa Frameshift Stimulation Element from the SARS-CoV-2 RNA genome, 2020, biorXiv 10.1101 $\backslash 2020.07 .18 .209270$.
[4] Geurdes, H., Approximative He Hamiltonian in descriptive multidimensional scaling statistics of RNA contained information with application to SARS-CoV-2 Spike mRNA and 7SLRNA, RN7SL2 and RN7SL3, 2021, ssrn.com/abstract $=3772670$

Figure 1: Representation of dPhi error in n iterations. There appears a linear steady decline. However, at point $\mathrm{N}=2511$, $\left(\operatorname{err}_{n} \approx 4.172812 \times 10^{-6}\right)$ the $e r r_{n}=\mathrm{dPhi}$ does no longer substantially change and further downstream goes up.

[^0]: ${ }^{1}$ The author wishes to thank Ad Popper Director Xilion BV.
 Preprint CONFIDENTIAL ...

