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Abstract

The sample of 27 quasars with polarized radio emissions located in a region near the North Galactic Pole is shown to have highly 

aligned polarization directions. Furthermore, by extending their polarization directions around the Celestial Sphere, the convergence 

of their polarization directions is shown to be close to the sources. Thus, parallax forces the position angles to vary with locations of 

individual sources. One suspects that, whatever physical explanation fits, the explanation for converging close to the sample is 

different from the explanation for alignments with near-equal position angles that converge far from the sample on the sky.  The 

alignment is analyzed in this Mathematica notebook. Access to a .nb notebook is provided in the references.
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In[ ]:= Print["The date and time that this statement was evaluated: ", Now]

The date and time that this statement was evaluated: Mon 10 May 2021 06:03:02 GMT-4.

0. Preface

The pdf version of this notebook is available online from the viXra archive. 

To find the ready-to-run notebook follow the link in Ref. 1. 

Notes:

(1) The pdf version quotes some numerical values that are associated with the particular settings and uncertainty runs that were 

current when the pdf version was created. Other sets of uncertainty runs, for a sufficiently large number of runs, should alter those 

numerical values only slightly. 

      (2) The notebooks in this series were created using Wolfram Mathematica, Version Number: 12.1, Ref. 2.

      (3) The formulas for creating Aitoff plots were found on Wikipedia, Ref. 3.

The Hub Test

This notebook presents an application of the Hub Test, which is discussed more fully in Ref. 4. The basic idea is that polarization 

directions are well-aligned with each other when they are well-aligned with some point on the Celestial Sphere. 

Consider the well-known prescription for finding Polaris, the North Star, based on the alignment of the direction from the Merak 

to Dubhe with Polaris. Guided by Fig. 1, let the source S be the star Merak, take the interval from Merak to Dubhe in place of the 

direction of polarization vψ, and let Polaris be the point H. Then the alignment of the Merak to Dubhe direction vψ with Polaris, the 



point H, illustrates the concept of alignment in the Hub Test. With Merak as S, Merak-Dubhe as  vψ , and Polaris as H, the angle η 

would be about η = 3.47°. In that case, the blue great circle and the purple great circle in Fig. 1 would almost coincide.

Out[ ]=

Figure 1: The Celestial sphere is pictured on the left and on the right is the plane tangent to the sphere at the source S. The linear 

polarization direction  vψ lies in the tangent plane and determines the purple great circle on the sphere. A point H on the sphere and 

the point S determine a second great circle, the blue circle drawn on the sphere at the left. Clearly, H and S must be distinct in order to 

determine a great circle. 

In Fig. 1, the “alignment angle” η  is the acute angle η between the great circles at S,  0° ≤  η  ≤  90° . The alignment angle η 

measures how well the polarization direction  vψ matches the direction toward the point H.  Perfect alignment occurs when η  =  0° 

and the two great circles overlap. Perpendicular great circles, η   =  90°, indicates maximum “avoidance” of the polarization direction 

v

ψ with the point H on the sphere. The halfway value, η   =  45°,  favors neither alignment nor avoidance.

With N sources Si, i  =  1, ..., N, there are N alignment angles ηiH for the point H  and an average alignment angle η at H,

η(H)  =  1
N
∑i=1

N ηiH . (1) 

The alignment angle η(H) is a function of position H on the sphere. It is symmetric across diameters,  η(H)  =  η(-H), because great 

circles are symmetric across diameters. 

The function  η(H)  measures convergence and divergence of the great circles determined by the polarization directions. For 

random polarization directions, the average  η(H) should be near 45°, since each alignment angle ηiH is acute, 0° ≤ ηiH ≤ 90°, and 

random polarization directions should not favor any one value. Points H where the alignment angle  η(H)  is smaller than 45°, the 

great circles tend to converge, where  η(H)  is larger than 45°, the great circles can be said to diverge. 

Thus the basic concept includes “avoidance”, as well as alignment. Avoidance is high when the two directions  vψ and  vH differ 

by a large angle,  η   →  90° . Perpendicular great circles at S , η   =  90°, would indicate the maximum avoidance of the polarization 

direction and the point on the sphere. The N sources’ polarization directions most avoid the points Hmax and -Hmax where the 

function η(H) takes its maximum value ηmax. The locations of the most extreme divergence are called “avoidance hubs”. 

The N sources’ polarization directions are best aligned with the points Hmin and -Hmin where the alignment angle is a minimum 

ηmin. The locations Hmin and -Hmin  of their most extreme convergence are called “alignment hubs”. Alignment and avoidance are 

equally viable, complementary concepts with the Hub Test.

The Hub test provides many calculated results to describe the collective behavior of the polarization directions in a sample. The 

alignment angle function η(H), Eq. (1), can be mapped on the Celestial Sphere to give a visual display. The smallest alignment angle 

ηmin  and the largest avoidance angle ηmax quantify the agreement of the directions. Known formulas, see Sec. 4 below, are available 

to calculate the significance of the alignment, i.e. the likelihood that random polarization directions would yield better results. The 

locations of the convergence hubs Hmin and the divergence hubs Hmax may provide clues to magnetic field direction and such 

quantities. 
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In[ ]:=

1. Introduction

Electromagnetic radiation from QSOs has traveled a long way and, no doubt, has been passed along by various intergalactic 

media. Alternatively, it may be that the radio waves are polarized when emitted at the source. Either way, to have regions of the sky 

containing QSOs with aligned polarization, or some other way correlated, is certainly remarkable. It has been suggested, Ref. 5, that 

the polarization levels are too strong, a percent to several percent, for the cause to be local to the Milky Way. With the Coma 

Supercluster in the same general direction as these QSOs, some mechanism may be able to explain the alignment as occurring 
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enroute, or, as mentioned before, the polarizations could exist when the radio waves are emitted and then some other mechanism 

would be needed. In any case, the alignment is remarkable. 

In this notebook, we analyze the alignment tendencies of the sample of 27 radio QSOs. The sample occupies a roughly 11° 

radius patch of sky centered on (RA,dec)  =  (178°,10°)  and is chosen based on a whole-sky survey of the radio QSOs in the Pelgrims 

2014 catalog, Ref. 6. The survey populated 5°-radius regions centered on the grid points of a 2° mesh and calculated the significance 

of each region’s polarization direction alignment. See Fig. 3. The group that contains the 27 QSOs that are analyzed in this notebook 

consists of 14 very significantly aligned 5°-radius regions near the North Galactic Pole, one of which happens to be the most signifi-

cantly aligned of all of the 5° regions.

 The 27 QSOs in the sample make 27 great circles along the polarization directions. The smallest alignment angle η(H)  occurs 

for at a hub Hmin less than 15° southeast from the center of the sample. When the hub is this close, the polarization directions from 

different places in the sample must have different position angles due to parallax. The hub test has the advantage that it can detect 

such correlations.

  

 

2. Coordinates, grid, and sundry basic formulas

2a. Coordinates

Consider the “Celestial Sphere”, a sphere  in 3 dimensional Euclidean space. See Fig. 1 in the Preface.  The sphere is also called  

the “sphere” or sometimes “the sky”. The center of the sphere is the origin of a 3D Cartesian coordinate system with coordinates (x, y, 

z). The direction of the positive z -axis is due “North”.  Equatorial longitude is the Right Ascension α and latitude is the declination δ.

From a point-of-view located outside the sphere, as in the sketch in Fig. 1, one pictures a source S  plotted on the sphere and, in 

the 2D tangent plane at S, local North is upward and local East is to the right.  A “position angle” at the point S on the sphere, such as 

the angle ψ in Fig. 1,  is measured in the 2D plane tangent to the sphere at S.  In the tangent plane as drawn in Fig.1, the position angle 

ψ is measured clockwise from local North with East to the right.  

Definitions:

er, eN, eE are unit vectors in a 3D Cartesian coordinate system  
(α,δ)  =  equatorial coordinates longitude and latitude
er(α,δ)  =  radial unit vectors from Origin
eN(α,δ)  =  local North at a point on the Celestial Sphere
eE(α,δ)  =  local East at a point on the Celestial Sphere
αFROMr(er)  =  α determined by radial unit vector er
δFROMr(er)  =  δ determined by radial unit vector er

Aitoff Plot Functions
αH(α,δ) ,  xH(α,δ) ,  yH(α,δ),   where xH is centered on α  =  0 and α increases from left-to-right, with α = -180° on the left and 
+180° on the right
xH180(α,δ) ,  yH180(α,δ),   where xH is centered on α  =  180° and α increases from left-to-right, with α = 0° on the left and 360° on 
the right
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In[ ]:= (* For a Source at (α,δ) = (α,δ): er, eN,

eE are unit vectors from Origin to Source, local North, local East, resp. *)

er[α_, δ_] := er[α, δ] = Cos[α] Cos[δ], Sin[α] Cos[δ], Sin[δ]

eN[α_, δ_] := eN[α, δ] = -Cos[α] Sin[δ], -Sin[α] Sin[δ], Cos[δ]

eE[α_, δ_] := eE[α, δ] = -Sin[α], Cos[α], 0

"Check er.er = 1, er.eN = 0, er.eE = 0, eN.eN

= 1, eN.eE = 0,eE.eE = 1, erXeE = eN, eEXeN = er, eNXer = eE: ",

{0}⩵ UnionFlattenSimplify[{er[α, δ].er[α, δ] - 1, er[α, δ].eN[α, δ], er[α, δ].eE[α, δ],

eN[α, δ].eN[α, δ] - 1, eN[α, δ].eE[α, δ], eE[α, δ].eE[α, δ] - 1, Cross[er[α, δ], eE[α, δ]] -

eN[α, δ], Cross[eE[α, δ], eN[α, δ]] - er[α, δ], Cross[eN[α, δ], er[α, δ]] - eE[α, δ]}]

Out[ ]= {Check er.er = 1, er.eN = 0, er.eE = 0, eN.eN = 1,

eN.eE = 0,eE.eE = 1, erXeE = eN, eEXeN = er, eNXer = eE: , True}

Get (α,δ) in radians from a radial vector r:

In[ ]:= αFROMr[r_] := N[ArcTan[Abs[r[[2]]/r[[1]]]]] /; (r[[2]] ≥ 0 && r[[1]] > 0)

αFROMr[r_] := N[π - ArcTan[Abs[r[[2]]/r[[1]]]]] /; (r[[2]] ≥ 0 && r[[1]] < 0)

αFROMr[r_] := N[π + ArcTan[Abs[r[[2]]/r[[1]]]]] /; (r[[2]] < 0 && r[[1]] < 0)

αFROMr[r_] := N[2. π - ArcTan[Abs[r[[2]]/r[[1]]]]] /; (r[[2]] < 0 && r[[1]] > 0)

αFROMr[r_] := π/2. /; (r[[2]] ≥ 0 && r[[1]]⩵ 0)

αFROMr[r_] := 3 π/2. /; (r[[2]] < 0 && r[[1]]⩵ 0)

In[ ]:= δFROMr[r_] := NArcTanr[[3]]
√

(r[[1]]^2 + r[[2]]^2) /; 
√

(r[[1]]^2 + r[[2]]^2) > 0

δFROMr[r_] := Sign[r[[3]]] (π/2.) /; 
√

(r[[1]]^2 + r[[2]]^2) == 0

The following Aitoff Plot formulas can be found in Wikipedia, Ref. 3.
For these formulas the angles α and δ should be in degrees.
They give an Aitoff Plot that is centered on (0°,0°)

In[ ]:= αH[α_, δ_] := αH[α, δ] = ArcCos[Cos[((2. π)/360.) δ] Cos[((2. π)/360.) α/2.]]

xH[α_, δ_] := xH[α, δ] = 2. Cos[((2. π)/360.) δ] Sin[((2. π)/360.) α/2.]Sinc[αH[α, δ]]

yH[α_, δ_] := yH[α, δ] = Sin[((2. π)/360.) δ]Sinc[αH[α, δ]]

Using the following functions produces an Aitoff Plot that is centered on (180°,0°)

In[ ]:=

xH180[α_, δ_] :=

xH180[α, δ] = 2. Cos[((2. π)/360.) δ] Sin[((2. π)/360.) (α - 180.)/2.]Sinc[αH[(α - 180.), δ]]

yH180[α_, δ_] := yH180[α, δ] = Sin[((2. π)/360.) δ]Sinc[αH[(α - 180.), δ]]

2b. Grid, sometimes called a mesh

We avoid bunching at the poles by taking into account the diminishing radii of constant latitude circles as the latitude 
approaches the poles. Successive grid points along any latitude or along any longitude make an arc that subtends the same 
central angle dθ .

We grid one hemisphere at a time,  then the grids are combined. 

Definitions:

gridSpacing separation in degrees between grid points on and between constant latitude circles
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dθ1 grid spacing in radians

idN, ai, ji dummy indices, ID #s for grid points, longitude, latitude

αpointH,δpointH α and δ of the grid points H j

grid, gridN, gridS tables data associated with grid points,  listings are below

nGrid number of grid points 

αGrid longitudes at the grid points ( -π  ≤  α  ≤ +π )

δGrid latitudes at the grid points ( -π/2  ≤  α  ≤ π/2 )

rGrid radial unit vectors from origin to grid points, in 3D Cartesian coordinates 

Tables: grid, gridN and  gridS

1. sequential point #  2. α index  3. δ index  4. α (rad) 5. δ (rad) 6. Cartesian coordinates of the grid point

In[ ]:= gridSpacing = 2.(*, in degrees.*);

In[ ]:= (*KEEP this cell - DO NOT DELETE*)

(*The Northern Grid "gridN". *)

dθ1 = ((2. π)/360.) gridSpacing;

(*Convert gridSpacing to radians*)gridN = {};

idN = 1;

Forδj = 0., δj < π/(2. dθ1), δj++, δpointH = δj dθ1;

For ai = 0., ai < Ceiling((2. π)/dθ1) CosδpointH + 0.01,

ai++, αpointH = ai dθ1CosδpointH + 0.01;

AppendTogridN, idN, ai, δj, αpointH, δpointH, erαpointH, δpointH;

idN = idN + 1



In[ ]:= (*KEEP this cell - DO NOT DELETE*)

(*The Southern Grid "gridS". *)

dθ1 = ((2. π)/360.) gridSpacing;(*Convert gridSpacing to radians*)

gridS = {}; idN = 1;

Forδj = 1., δj < π/(2. dθ1), δj++, δpointH = -δj dθ1;

For ai = 0., ai < Ceiling((2. π)/dθ1) CosδpointH + 0.01,

ai++, αpointH = ai dθ1CosδpointH + 0.01;

AppendTogridS, idN, ai, δj, αpointH, δpointH, erαpointH, δpointH;

idN = idN + 1



In[ ]:= (*KEEP this cell - DO NOT DELETE*)

grid = {}; j = 1;

ForjN = 1, jN ≤ LengthgridN, jN++, AppendTogrid, j, gridNjN, 2,

gridNjN, 3, αFROMrgridNjN, 6 , δFROMrgridNjN, 6 , gridNjN, 6;

j = j + 1

ForjS = 1, jS ≤ LengthgridS, jS++, AppendTogrid, j, gridSjS, 2,

gridSjS, 3, αFROMrgridSjS, 6 , δFROMrgridSjS, 6 , gridSjS, 6;

j = j + 1

In[ ]:= nGrid = Lengthgrid;
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In[ ]:= αGrid = Table[grid[[j, 4]] , {j, nGrid}];

δGrid = Table[grid[[j, 5]] , {j, nGrid}];

rGrid = Table[grid[[j, 6]] , {j, nGrid}];

2c. The mean and standard deviation are convenient functions. And we identify  directories for getting and putting data.

Definitions

mean the arithmetic average of a set of numbers, 1
N
∑i=1
N ni

stanDev the standard deviation. Given a set of N numbers ni with mean value m, the standard deviation is  

 1

N
∑i=1
N (ni - m)2

1/2,  the square root of the average of the squares of the differences of the numbers with the mean. Note that we 

divide by N to get the average of the deviations squared.

catalogDirectory directory containing the catalog files

homeDirectory directory containing the notebook and data files

In[ ]:= mean[data_] := 1  Length[data] Sum[data[[i4]], {i4, Length[data]}];

(* arithmetic average *)

stanDev[data_] :=

1  Length[data] Sumdata[[i5]] - mean[data]2, {i5, Length[data]}
1/2

(*standard deviation*)

In[ ]:= catalogDirectory =

"C:\\Users\\shurt\\Dropbox\\HOME_DESKTOP-0MRE5OJ\\SendXXX_CJP_CEJPetc\\SendViXra\\

20200715AlignmentMethod\\20200715AlignmentMMAnotebooks";

(* location of the catalog data file on my computer*)

homeDirectory =

"C:\\Users\\shurt\\Dropbox\\HOME_DESKTOP-0MRE5OJ\\SendXXX_CJP_CEJPetc\\SendViXra\\

20200715AlignmentMethod\\20210505AlignmentMethodv4\\20210515Clump1QSOsNearNGP";

(*The notebook file and data files for this notebook are put in this directory. *)

2d. Section Summary

In[ ]:= Print"The grid points are separated by gridSpacing = ",

gridSpacing, "° arcs along latitude and longitude."

Print"The number of grid points is ", nGrid, " ."

The grid points are separated by gridSpacing = 2.° arcs along latitude and longitude.

The number of grid points is 10 518 .

3. Polarization and Position Data

3a. Data

The Pelgrims 2014 catalog incorporates data from the large JVAS/CLASS 8.4 Ghz catalog Jackson 2007, Refs. 6 and 7. The 

Pelgrims 2014 catalog sources were filtered from Jackson 2007 sources by identification as QSOs,  for percent polarization, p > 0.6%, 
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for the largest fractional uncertainty in percent polarization, σp/p < 0.6%, and for uncertainty in the polarization position angle 

σψ < 16°. The data is converted to convenient units, angles in radians, and reordered in a notebook  The result is the basic data file 

“data00”. 

 ( The files on my computer: 20200713JVAS1450Todata00a.nb, 20200718data08JVAS1450.dat,  JVAS_1450A.dat.txt, 

20210418Survey1450QSOs.nb .)

Definitions:

data00 the catalog data, Pelgrims 2014

firstClumpQsosIDinData001450 record numbers in the catalog of the QSOs in the sample

nSrc number of sources

αSrc   right ascension, longitude (radians )

δSrc   declination, latitude (radians)

ψn      PPA, polarization position angle: clockwise from North with East to the right. 

σψn uncertainty in PPA 

percentPol percentage of linear polarization

rSrc unit vector from Origin to Sources on Celestial Sphere

eNSrc Local North at the ith Source

eESrc Local East at the ith Source

sourceCenter unit radial vector to the arithmetic center of the sources

angleSourceToCenter angle from Source to Center

Input Sources: data00  is the data table saved in the file “20200718data08JVAS1450.dat”, created in the notebook “20200713-
JVAS1450Todata00a.nb”.    

20200718data08JVAS1450.dat  =  data table called “data00” below. 
Notes: Input must be in the correct units, especially angles in radians. The polarization position angle is measured clockwise from 
local North with East to the Right.

data00:  

1.Object #   2. Ra (rad)   3. Dec (rad)      4. ψ (rad)    5.  σψ (rad)   6. z    7. p (%)   8. σp (%)   

Catalog data 

In[ ]:= SetDirectory

"C:\\Users\\shurt\\Dropbox\\HOME_DESKTOP-0MRE5OJ\\SendXXX_CJP_CEJPetc\\SendViXra\\20200715

AlignmentMethod\\20200715AlignmentMMAnotebooks"

data00 = Get["20200718data08JVAS1450.dat"];

Length[%]

Out[ ]= C:\Users\shurt\Dropbox\HOME_DESKTOP-0MRE5OJ\SendXXX_CJP_CEJPetc\

SendViXra\20200715AlignmentMethod\20200715AlignmentMMAnotebooks

Out[ ]= 1450
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In[ ]:= raii_ := raii = data00i, 2 (*RA of ith source*)

decii_ := decii = data00i, 3 (*dec*)

ψii_ := ψii = data00i, 4 (*PPA,

polarization position angle: clockwise from North with East to the right. *)

σψii_ := σψii = data00i, 5

zii_ := data00i, 6 (*redshift found by Pelgrim's using NED*)

rii_ := rii = erraii, decii

(*unit vector from Origin to ith Source on Celestial Sphere*)

vNii_ := vNii = eNraii, decii (*North*)

vEii_ := vEii = eEraii, decii (*East*)

vψii_ := vψii = Cosψii vNii + Sinψii vEii (*unit vector in direction of PPA*)

nSxψii_ := nSxψii = Sinψii vNii - Cosψii vEii (* r Cross vψ *)

Clump 1 QSO data   (from 20210418Survey1450QSOs.nb, a survey with 5°-radius regions )

In[ ]:= firstClumpQsosIDinData001450 = {659, 660, 663, 667, 674, 680, 682, 690, 695, 696, 698,

707, 712, 714, 718, 720, 721, 727, 728, 731, 734, 744, 746, 751, 752, 762, 764};

In[ ]:= (*right ascension in radians*)

αSrc = 10-6.

{2 940 786, 2 950 332, 2 962 501, 2 977 947, 3 000 259, 3006 888, 3 013383, 3 037 854, 3 060 196,

3 063 615, 3 077 693, 3 108 571, 3 111 962, 3 114 578, 3 131037, 3 137987, 3 138 954, 3 154 756,

3 156 278, 3 164 771, 3 173 054, 3 207 036, 3 209 928, 3 222030, 3 222168, 3 239 225, 3 245 921};

In[ ]:= nSrc = Length[αSrc]

Out[ ]= 27

In[ ]:= (*declination in radians*)

δSrc = 10-6. {256 694, 148 170, 219 533, 315742, 103 421, 291 870, 190 246, 258405,

176 105, 275 734, 85 942, 132 052, 161 164, 173 344, 290 596, 52995, 32 695, 114 811,

73 978, 95 356, 212862, 148 171, 158 862, 193 466, 109 659, 73 672, 119 278};

In[ ]:= (* position angle in radians*)

ψn = 10-6. {1 788 962, 1 120 501, 2 185 152, 2 724 459, 2 022 837,

2 553 417, 2 045 526, 2 857 104, 1 733 112, 2 485 349, 1 877974, 2 331760,

2 406 809, 2 277 655, 1 937 315, 1 106 539, 1 799 434, 2 961824, 2 586578, 2 912 955,

1 925 098, 2 600 541, 2 188 643, 2 352 704, 2 827 433, 1 527163, 2 905973};

20210419Clump1RA175Dec10ForViXra.nb     9



In[ ]:= Histogramψn
360.

2. π
, {12}, PlotLabel → "PPA ψ, number ΔR per bin",

AxesLabel → {"ψ", "ΔR"}, PlotRange → {{0, 200}, Automatic}

Print["Figure 2. Distribution of position angles for the

27 polarization directions in the sample. Note the fairly even

distribution over sixty degrees or so, ψ = 100° to ψ = 160°."]

Out[ ]=

0 50 100 150 200
ψ

1

2

3

4

5

ΔR
PPA ψ, number ΔR per bin

Figure 2. Distribution of position angles for the 27 polarization directions in the sample.

Note the fairly even distribution over sixty degrees or so, ψ = 100° to ψ = 160°.

In[ ]:= (*uncertainty in ψ in radians*)

σψn = 10-6. {4242, 252, 2254, 99, 106992, 51 458, 112 351, 26 729,

137 622, 18 357, 10 877, 271 821, 37 352, 134 004, 48 856, 98 592, 277 921,

7249, 5633, 5724, 66 923, 35 001, 138200, 114 372, 105 062, 7815, 7653};

In[ ]:= (* % polarization*)

percentPol = 10-6.

{2 386 846, 4 130 478, 2 023 713, 1 658 885, 1 784 232, 1979 194, 2 210679, 6 381 769, 5 954 787,

2 903 853, 3 866 300, 3 070 517, 1 080 690, 1 854 161, 492130, 2 652 914, 10 217 777, 3 754 306,

1 874 058, 3 174 907, 604 797, 653 203, 5 457402, 615 497, 16 210 481, 901 464, 3 306 869};

In[ ]:= (* uncertainty in % polarization*)

σpercentPol = 10-6. {20 249, 2078, 9121, 328, 381 771, 203679, 496 710, 341 137,

1 638 906, 106 607, 84 105, 1 669146, 80 727, 496 898, 48 084, 523 076, 5 679057,

54 428, 21 111, 36344, 80 945, 45 723, 1 508 313, 140 783, 3 405959, 14 090, 50 611};

In[ ]:= (*Redshift*)

redshift =

10-6. {867 400, 486 000, 2 125 700, 1040 000, 2 217000, 1 996 700, 1 323 900, 603 700, 1 051 400,

299 000, 1 343 600, 876 100, 695900, 895 000, 1 061 200, 1 009 800, 2 440 000, 2 180 900,

1 226 000, 1 300 000, 890 500, 2 359 000, 2721 600, 1 404000, 2 078 200, 966 000, 1 189 000};

In[ ]:= rSrc = Table[er[ αSrc[[i]], δSrc[[i]] ], {i, nSrc}];(*calculated from Input.*)

eNSrc = Table[eN[ αSrc[[i]], δSrc[[i]] ], {i, nSrc}];(*calculated from Input.*)

eESrc = Table[eE[ αSrc[[i]], δSrc[[i]] ], {i, nSrc}];(*calculated from Input.*)
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In[ ]:= sourceCenter0 =
1

nSrc
Sum[rSrc[[i]], {i, nSrc}];

sourceCenter =
sourceCenter0

sourceCenter0.sourceCenter01/2
;

(*unit radial vector to the arithmetic center of the sources.*)

angleSourceToCenter = Table[ArcCos[rSrc[[i]].sourceCenter], {i, nSrc}];

3a. Section Summary 

We consider Quasi-Stellar Objects, QSOs. The data is found in Pelgrims 2014,  Ref.  6,  a catalog of 1450 QSOs that have been 

identified as QSOs in the earlier JVAS/CLASS 8.4Ghz catalog Jackson 2007 that has 12700 records. Ref. 7  Then 5° radius regions 

are constructed, one on each of the 10518 grid points as in Sec. 2b. The 1450 QSOs were assigned to the regions based on location 

and we calculated the significance  of the alignment of the polarization directions for the sources in each region. 

The QSOs selected for this notebook satisfied many requirements: (i) have 7 or more sources in order to use the significance 

formulas in Sec. 4 accurately, (ii) have  longitude RA 165°  ≤  α  ≤ 200°, (iii) have latitude dec 0°  ≤  δ   ≤  30°, (iv) whose QSOs are 

very significantly aligned, S  ≤ 10-2. There are 14 regions satisfying (i) - (iv) containing a total of 27 sources. 

Out[ ]=

N

Selected
-Log10S

2.0

2.5

3.0

3.5

Figure 3. Survey of polarized radio QSOs. (Equatorial Coordinates, centered at (α,δ)  =  (180°,0°),  α  =  360° on the right.) The 1450 

QSOs were grouped into 5° radius regions centered on grid points. Those regions having at least 7 QSOs are plotted as gray dots at 

the central grid point. Just 35 regions showed very significant alignment, i.e. S  ≤  0.01  =  10-2, or, equivalently, -Log10 S  ≥  2.0 , 

and these are plotted as color dots. The indicated clump of 14 regions was selected for the analysis. There are 27 QSOs in the 

combined area of the 14 regions.
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In[ ]:= Print["There are ", nSrc, " sources in the sample."]

Print["Check that the Sample obeys the data cuts:"]

Print[

"Check that the smallest % polarization p in the sample is 0.5% or more. Smallest: ",

Sort[percentPol][[1]], "% ."]

Print"Check that the largest fractional uncertainty in % polarization, σp/p,

is less than 0.6 . Largest: ", SortσpercentPol  percentPol[[-1]], " ."

Print"Check that the largest PPA ψ uncertainty σψ is less than 16°. Largest: ",

Sort[σψn][[-1]]
360.

2. π
, "° ."

There are 27 sources in the sample.

Check that the Sample obeys the data cuts:

Check that the smallest % polarization p in the sample is 0.5% or more. Smallest: 0.49213% .

Check that the largest fractional uncertainty

in % polarization, σp/p, is less than 0.6 . Largest: 0.555802 .

Check that the largest PPA ψ uncertainty σψ is less than 16°. Largest: 15.9237° .

In[ ]:= ListPlotTable{αSrc[[j]], δSrc[[j]]}
360.

2. π
, {j, nSrc},

PlotRange → {{0, 360}, {-90, 90}},

Ticks → {Table[{i, i}, {i, 0, 360, 60}], Table[{j, j}, {j, -90, 90, 30}]},

PlotLabel → "Sources", AxesLabel → {"α, degrees", "δ, degrees"}, PlotStyle → Green

Print["Figure 4. The locations of the ", nSrc, " QSOs in the sample. "]

Print

"Sample Size: The angular separation of the furthest QSO from the sample center is ",

Sort[angleSourceToCenter][[-1]]
360.

2. π
, "°."

Out[ ]=

60 120 180 240 300 360
α, degrees

-90

-60

-30

0

30

60

90
δ, degrees

Sources

Figure 4. The locations of the 27 QSOs in the sample.

Sample Size: The angular separation of the furthest QSO from the sample center is 11.1277°.

4. Probability Distributions and Significance Formulas
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4a. Formulas

The problem of “significance” is to determine the likelihood that random polarizations directions would have better alignment or 

avoidance than the observed polarization directions. To determine the probability distributions and related formulas, in a previous 

notebook, we made many runs with random data and fit the results.

For samples with randomly directed polarization vectors, the basic formula, Eq. 1, looks like the sum of random numbers each 

restricted to the range 0 to π. Such random sums can be related to well-known Random Walk scenarios. That connection helps 

explain the dependence on N  in the formulas below. 

Definitions:

norm a constant used to normalize the distribution so the integral of probability is 1. 

probMIN0, probMAX0 probability distributions for alignment (MIN) and avoidance (MAX), functions of  η, η0, σ

ρciaiMIN,MAX constants used in the formulas to mean η0 and uncertainty σ

σρciaiMIN,MAX uncertainty σ in the constants used in the formulas to mean η0 and uncertainty σ

regionRadiusChoices radii used in random runs performed elsewhere, not in this notebook

regionChoice determines the best choice for the current sample

rgnRadius assumed radius of the region for the purpose of selecting the statistics constants ci and ai

iρ dummy variable used to select region radius

ciMIN,MAX and aiMIN,MAX parameters for statistics formulas for η0 and σ

η0MIN, MAX function to estimate mean η0

σMIN, MAX function to estimate uncertainty σ

probMIN, probMAX probability distributions using estimated values of η0, σ 

signiMIN0, signiMAX0significance as a function of (η, η0, σ)

signiMIN, signiMAX significance of η using estimated values of η0, σ 

In[ ]:= (* y = η - η0σ; dy = dησ *)

(* The normalization factor "norm" is needed for the probability density *)

norm =
1

2 π1/2
NIntegrate1 + ⅇ4 (y-1)

-1
ⅇ
-
y2

2 , {y, -∞, ∞}

-1

;

norm ;(*Constant needed to make the integral

of the probability distribution equal to unity.*)

In[ ]:= probMIN0[η_, η0_, σ_] :=
norm

σ 2 π1/2
1 + ⅇ

4
η-η0-σ

σ

-1

ⅇ
-
1

2


η - η0

σ

2

signiMIN0[η_, η0_, σ_] := NIntegrate[probMIN0[η1, η0, σ], {η1, -∞, η}]

In[ ]:= probMAX0[η_, η0_, σ_] :=
norm

σ (2 π)1/2
1 + ⅇ-4

(η-η0+σ)

σ 
-1

ⅇ-
1

2


η - η0

σ

2

signiMAX0[η_, η0_, σ_] := NIntegrate[probMAX0[η1, η0, σ], {η1, η, ∞}]

The significance signiMIN0[η, η0, σ] is the Integral of probMIN0, i.e. signiMIN0 = ∫-∞
η PMIN (η) ⅆη.

The significance signiMAX0[η, η0, σ] is the Integral of probMAX0, i.e. signiMAX0 = ∫η
∞PMAX (η) ⅆη.
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The formulas for mean η0 = π
4

± c1

Na1
  and half-width σ  =  c2

4 Na2
  estimate η0  and σ by functions of the number N of sources. 

These formulas depend on the size of the region (radius ρ) by the choice of  parameters ci and ai, i = 1,2. The following values for the 

parameters ci and ai are based on random runs.  For each combination of N = {8,16,32,64,128,181,256,512} and ρ = 

{0°,5°,12°,24°,48°,90°}, there were 2000 random runs completed. 

A notation conflict between this notebook and the article, Ref. 4, should be noted. We doubled the exponent “a” so Na/2 appears in the 

article, whereas in the formulas here we see Na. Thus a  ≈  1/2 here, but the paper has aArticle  ≈  1. That explains the “/2” in the 

following arrays.

In[ ]:= ρciaiMIN =

"ρ" "c1" "a1" "c2" "a2"

90 0.9423 1.0046  2 1.061 0.954  2

48 0.9505 1.0156  2 1.166 0.9956  2

24 0.9235 1.0069  2 1.127 0.964  2

12 0.8912 1.0054  2 1.238 1.021  2

5 0.8363 1.0088  2 1.076 0.940  2

0 0.5031 1.0153  2 1.522 1.053  2

;

In[ ]:= ρciaiMAX =

"ρ" "c1" "a1" "c2" "a2"

90 0.9441 1.0055  2 1.000 0.931  2

48 0.9572 1.0165  2 1.090 0.958  2

24 0.927 1.0068  2 1.101 0.964  2

12 0.9049 1.0090  2 1.228 1.018  2

5 0.8424 1.0062  2 1.168 0.992  2

0 0.4982 1.0093  2 1.543 1.060  2

;

In[ ]:= ρΔciaiMIN =

"ρ" "c1" "a1" "c2" "a2"

90 0.0050 0.0036  2 0.026 0.016  2

48 0.0079 0.0057  2 0.016 0.0095  2

24 0.0024 0.0018  2 0.022 0.013  2

12 0.0034 0.0026  2 0.039 0.021  2

5 0.0035 0.0028  2 0.030 0.019  2

0 0.0059 0.0080  2 0.052 0.024  2

;

In[ ]:= ρΔciaiMAX =

"ρ" "c1" "a1" "c2" "a2"

90 0.0061 0.0044  2 0.038 0.025  2

48 0.0063 0.0045  2 0.026 0.016  2

24 0.011 0.0079  2 0.019 0.011  2

12 0.0069 0.0052  2 0.039 0.022  2

5 0.0038 0.0031  2 0.022 0.013  2

0 0.0058 0.0080  2 0.057 0.025  2

;

In[ ]:= (*The region radius controls the constants ci and ai for statistics in Sec. 4.*)

regionRadiusChoices = {90, 48, 24, 12, 5, 0};(*Do not change this statement*)

regionChoice = 4; (*This is a setting. The choice 24° is 3rd in the list. *)

rgnRadius = regionRadiusChoices[[regionChoice]];

Print["The region radius ρ is set at ", rgnRadius, "°."]

The region radius ρ is set at 12°.
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In[ ]:= iρ = regionChoice + 1; (* Parameters ci, ai, i = 1,2. *)

Print["These constants are for sources confined to regions with radii ρ = ",

ρciaiMIN[[iρ, 1]], "°."]

{c1MIN, a1MIN, c2MIN, a2MIN} = Table[ρciaiMIN[[iρ, j]], {j, 2, 5}]

{c1MAX, a1MAX, c2MAX, a2MAX} = Table[ρciaiMAX[[iρ, j]], {j, 2, 5}]

These constants are for sources confined to regions with radii ρ = 12°.

Out[ ]= {0.8912, 0.5027, 1.238, 0.5105}

Out[ ]= {0.9049, 0.5045, 1.228, 0.509}

In[ ]:= iρ = regionChoice + 1; (* ± uncertainty for the Parameters ci and ai, i = 1,2. *)

Print["These uncertainties are for sources confined to regions with radii ρ = ",

ρciaiMAX[[iρ, 1]], "°."]

{c1MINplusMinus, a1MINplusMinus, c2MINplusMinus, a2MINplusMinus} =

Table[ρΔciaiMIN[[iρ, j]], {j, 2, 5}]

{c1MAXplusMinus, a1MAXplusMinus, c2MAXplusMinus, a2MAXplusMinus} =

Table[ρΔciaiMAX[[iρ, j]], {j, 2, 5}]

These uncertainties are for sources confined to regions with radii ρ = 12°.

Out[ ]= {0.0034, 0.0013, 0.039, 0.0105}

Out[ ]= {0.0069, 0.0026, 0.039, 0.011}

In[ ]:= η0MIN[nSrc_, c1_, a1_] :=
π

4
-

c1

nSrca1

σMIN[nSrc_, c2_, a2_] :=
c2

4 nSrca2

In[ ]:= η0MAX[nSrc_, c1_, a1_] :=
π

4
+

c1

nSrca1

σMAX[nSrc_, c2_, a2_] :=
c2

4 nSrca2

The following probability distributions and significances make use of the above formulas for mean η0 and half-width σ. They are 

functions of the alignment angle η and the number of sources N.

In[ ]:= probMIN[η_, nSrc_] := probMIN0[ η, η0MIN[nSrc, c1MIN, a1MIN], σMIN[nSrc, c2MIN, a2MIN] ]

In[ ]:= signiMIN[η_, nSrc_] := signiMIN0[η, η0MIN[nSrc, c1MIN, a1MIN], σMIN[nSrc, c2MIN, a2MIN]]

In[ ]:= probMAX[η_, nSrc_] := probMAX0[ η, η0MAX[nSrc, c1MAX, a1MAX], σMAX[nSrc, c2MAX, a2MAX] ]

signiMAX[η_, nSrc_] := signiMAX0[η, η0MAX[nSrc, c1MAX, a1MAX], σMAX[nSrc, c2MAX, a2MAX]]

4b. Section Summary
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In[ ]:= Print"The angular separation of the furthest source from the region center is ",

Sort[angleSourceToCenter][[-1]]
360.

2. π
, "°.",

" We choose the statistics constants ai and ci, i = 1,2, for

sources confined to regions with radii ρ = ", ρciaiMIN[[iρ, 1]], "°."

Print["The formulas also depend on the number of sources, nSrc = ", nSrc, "."]

Print"For this sample, but with random polarization directions,

the random runs give the smallest alignment angle ηmin, ηmin
Random ψ = ",

η0MIN[nSrc, c1MIN, a1MIN]
360.

2. π
, "° ± ", σMIN[nSrc, c2MIN, a2MIN]

360.

2. π
,

"°. (Random ψ)"

Print"For this sample, but with random polarization directions,

the random runs give the largest avoidance angle ηmax, ηmax
Random ψ = ",

η0MAX[nSrc, c1MAX, a1MAX]
360.

2. π
, "° ± ", σMAX[nSrc, c2MAX, a2MAX]

360.

2. π
,

"°. (Random ψ)"

The angular separation of the furthest source from the region center is

11.1277°. We choose the statistics constants ai and

ci, i = 1,2, for sources confined to regions with radii ρ = 12°.

The formulas also depend on the number of sources, nSrc = 27.

For this sample, but with random polarization directions, the random runs give

the smallest alignment angle ηmin, ηmin
Random ψ = 35.2602° ± 3.29664°. (Random ψ)

For this sample, but with random polarization directions, the random runs give

the largest avoidance angle ηmax, ηmax
Random ψ = 54.8311° ± 3.28622°. (Random ψ)

5. Results using the Best Values ψn of the Polarization Directions

“Best” means we use the ψn that were listed in the catalog. We calculate the alignment function  η(H) at the grid points H . 

Given the alignment function   η(H) , one can find the smallest alignment angle ηmin and the largest avoidance angle ηmax and 

determine the significances for the alignment and avoidance of the polarization directions.

In Sec. 6 below, we consider other values of the polarization directions that are near the best values, consistent with uncertainty 

σψ in the measured values. 

5a. The alignment function  η(H) . 

Definitions:

vψSrc unit vectors along the polarization directions in the tangent planes of  the sources 

eN local unit vectors along local North 

eE local unit vectors along local East

jηBarHj {j,η(H)}, where j is the index for grid point H j and  η(H) is the average alignment angle at H j. See Eq. (1) in the 

Introduction.

sortjηBarHj {j,η(H)}, sorted, with smallest angles η(H) first.

jηBarMin {j,η(H)}, the j and η for the smallest value of η(H) , best alignment

ηBarMin the smallest value of η(H) , measures alignment of the polarization directions
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jηBarMax {j,η(H)}, the j and η for the largest value of η(H) , most avoided

ηBarMax the largest value of η(H) , measures avoidance 

nSxψn unit vector, Si×ψi, cross product of the radial vector to the source with the vector in the direction of the polariza-

tion

nSxHnj unit vector, Si×H j, cross product of the radial vector to the source with the radial vector to the grid point H j

ηnHj alignment angle between source and grid point H j, see Fig. 1

ηBarHj alignment angle η(H j) between source and grid point H j, aveαged over all sources

jηBarHj {j, η(H j) }, the j and η for grid point H j 

sigηBarMin significance of the smallest alignment angle

sigrangeηBarMin get the range of sigs using the plus/minus values on the parameters ci, ai 

sigSmallηBarMin the smallest of the values in sigrangeηBarMin

sigBigηBarMin the largest of the values in sigrangeηBarMin

sigηBarMax significance of the largest alignment angle (i.e. avoidance)

sigrangeηBarMax get the range if sigs using the plus/minus values on the parameters ci, ai  

sigSmallηBarMax the smallest of the values in sigrangeηBarMax

sigBigηBarMax the largest of the values in sigrangeηBarMax

αHminDegrees α of the point Hminwhere η(H) is the smallest

δHminDegrees δ of the point Hminwhere η(H) is the smallest

αHmaxDegrees α of the point Hmaxwhere η(H) is the largest

δHmaxDegrees δ of the point Hmaxwhere η(H) is the largest

In[ ]:=

(* vψ, eN, eE unit vectors in the tangent plane of each source Si,

pointing along the polarization direction, local North,

and local East, respectively. See Fig. 1.*)

vψSrc = Table[Cos[ ψn[[i]] ] eN[ αSrc[[i]], δSrc[[i]] ] +

Sin[ ψn[[i]] ] eE[ αSrc[[i]], δSrc[[i]] ], {i, nSrc}];

(* Analysis using Eq (5) in Ref. 4 to get η(Hj). First ηiH,

cos(ηiH) = v

H.v

ψi , and then η(Hj), by Eq. 1. *)

jηBarHj =

Tablej, 1  nSrc SumArcCos Abs rGrid[[j]].vψSrc[[i]]  rGrid[[j]] - rGrid[[j]].

rSrc[[i]] rSrc[[i]].rGrid[[j]] - rGrid[[j]].rSrc[[i]]

rSrc[[i]]1/2  - 0.000001  , {i, nSrc}, {j, nGrid};

sortjηBarHj = Sort[jηBarHj, #1[[2]] < #2[[2]] &];

jηBarMin = sortjηBarHj[[1]]; (* j,η(Hj) for smallest η(Hj) *)

ηBarMin = jηBarMin[[2]];

jηBarMax = sortjηBarHj[[-1]]; (* j,η(Hj) for largest η(Hj) *)

ηBarMax = jηBarMax[[2]] ;
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In[ ]:= (*Significance of the smallest alignment angle ηmin .*)

sigηBarMin = signiMIN[ηBarMin, nSrc];

sigrangeηBarMin = Sort[Partition[Flatten[Table[

{signiMIN0[ηBarMin, η0MIN[nSrc, c1MIN + γ1 c1MINplusMinus, a1MIN + α1 a1MINplusMinus],

σMIN[nSrc, c2MIN + γ2 c2MINplusMinus, a2MIN + α2 a2MINplusMinus]], γ1, α1, γ2, α2},

{γ1, -1, 1}, {α1, -1, 1}, {γ2, -1, 1}, {α2, -1, 1}] ], 5 ] ];

{sigrangeηBarMin[[1]], sigrangeηBarMin[[-1]]};

sigSmallηBarMin = sigrangeηBarMin[[1, 1]];

sigBigηBarMin = sigrangeηBarMin[[-1, 1]];

In[ ]:= (*Significance of the largest avoidance angle ηmax .*)

sigηBarMax = signiMAX[ηBarMax, nSrc];

sigrangeηBarMax = Sort[Partition[Flatten[Table[

{signiMAX0[ηBarMax, η0MAX[nSrc, c1MAX + γ1 c1MAXplusMinus, a1MAX + α1 a1MAXplusMinus],

σMAX[nSrc, c2MAX + γ2 c2MAXplusMinus, a2MAX + α2 a2MAXplusMinus]], γ1, α1, γ2, α2},

{γ1, -1, 1}, {α1, -1, 1}, {γ2, -1, 1}, {α2, -1, 1}] ], 5 ] ];

{sigrangeηBarMax[[1]], sigrangeηBarMax[[-1]]};

sigSmallηBarMax = sigrangeηBarMax[[1, 1]];

sigBigηBarMax = sigrangeηBarMax[[-1, 1]];

(* Equatorial coordinates (α,δ) for the hubs Hmin and Hmax .*)

αHminDegrees = αGrid jηBarMin[[1]]  (360/(2 π));(*Hmin*)

δHminDegrees = δGrid jηBarMin[[1]]  (360/(2 π));

αHmaxDegrees = αGrid jηBarMax[[1]]  (360/(2 π)); (*Hmax*)

δHmaxDegrees = δGrid jηBarMax[[1]]  (360/(2 π));

In[ ]:= (*The names "jηBarMin", "jηBarMax" are similar to quantities below,

so save the current values labeled by "Best".*)

(* jηBar entries: 1. grid point # , 2. alignment angle .*)

{jηBarMinBest, jηBarMaxBest} = {jηBarMin, jηBarMax} ;

In[ ]:= Print"The min alignment angle is ηmin = ", jηBarMinBest[[2]] * 360.  2. π,

"° , which has a significance of sig. = ", sigηBarMin, ", plus/minus = + ",

sigBigηBarMin - sigηBarMin, " and - ", sigηBarMin - sigSmallηBarMin,

" , giving a range from sig. = ", sigSmallηBarMin, " to ", sigBigηBarMin, " ."

Print"The max avoidance angle is ηmax = ", jηBarMaxBest[[2]] * 360.  2. π,

"° , which has a significance of sig. = ", sigηBarMax, ", plus/minus = + ",

sigBigηBarMax - sigηBarMax, " and - ", sigηBarMax - sigSmallηBarMax,

" , giving a range from sig. = ", sigSmallηBarMax, " to ", sigBigηBarMax, " ."

Print["These uncertainties are due to the uncertainties in the constants ci, ai."]
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The min alignment angle is ηmin = 21.1667° , which has a significance of sig. =

0.0000116577, plus/minus = + 0.000030202 and - 9.01817×10-6

, giving a range from sig. = 2.6395×10-6 to 0.0000418597 .

The max avoidance angle is ηmax = 66.6554

° , which has a significance of sig. = 0.000195551, plus/minus = + 0.000358332

and - 0.00013804 , giving a range from sig. = 0.0000575103 to 0.000553883 .

These uncertainties are due to the uncertainties in the constants ci, ai.

5b. Plot of the Alignment Angle Function η(H)

Definitions

αjδjηBarHjTable {α j, δ j, η(H)} at each grid point H  =  H j, in degrees

ηBarHjSmooth interpolation of αjδjηBarHjTable yields  η(H) as a smooth function of the (α,δ) of H

xyηBarAitoffTable {x, y, η(x,y)} , where x,y are Aitoff coordinates and η(x,y) is the alignment angle

xyAitoffSources {x,y} Aitoff coordinates for the sources’ locations on the sphere

dηContourPlot separation of successive contour lines, in degrees

listCP list contour plot of  η(H) from xyηBarAitoffTable

mapOfηBar contour plot of the alignment angle η(H) , adorned with source locations and labels 

rCenterSrc arithmetic average of the radial unit vectors to the sources, previously called sourceCenter

rHmin, rHmax radial unit vectors to the alignment and avoidance hubs Hmin and Hmax

rPerpHmin (max) a unit vector in the plane of the great circle combining rCenterSrc and rHmin (max)

rGreatMinCircle(θ)  (Max) radial unit vector to a point on the great circle

αGreatMin (Max)  longitude at the point for θ

δGreatMin (Max) latitude at the point for θ

xyAitoffGreatMin (Max) Aitoff plot coordinates for the great circles

crossMin (Max) unit vector perpendicular, normal to the plane of the great circle

θminMAXgreatcircles angle between the vectors normal to the planes of the two great circles

In[ ]:= rCenterSrc0 =
1

nSrc
Sum[rSrc[[i]], {i, Length[rSrc]}];

rCenterSrc =
rCenterSrc0

rCenterSrc0.rCenterSrc01/2.
;

In[ ]:= rHmin = er αHminDegrees
2. π

360.
+ π, -δHminDegrees

2. π

360.
;

rPerpHmin0 = rHmin - rHmin.rCenterSrc rCenterSrc;

rPerpHmin =
rPerpHmin0

rPerpHmin0.rPerpHmin01/2.
;

rGreatMinCircle[θ_] := Cos[θ] rCenterSrc + Sin[θ] rPerpHmin

αGreatMin[θ_] := αFROMr[rGreatMinCircle[θ]]

δGreatMin[θ_] := δFROMr[rGreatMinCircle[θ]]

xyAitoffGreatMin = TablexH180 αGreatMin[θ] 360  2 π, δGreatMin[θ] 360  2 π ,

yH180 αGreatMin[θ] 360  2 π, δGreatMin[θ] 360  2 π , {θ, 1, 360};
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In[ ]:= rHmin.rCenterSrc;

Print"The angle between the sample's center and the alignment hub Hmin is ",

ArcCos-rHmin.rCenterSrc
360.

2. π
, "°."

The angle between the sample's center and the alignment hub Hmin is 13.904°.

In[ ]:= rHmax = er αHmaxDegrees
2. π

360.
+ π , -δHmaxDegrees

2. π

360.
;

rPerpHmax0 = rHmax - rHmax.rCenterSrc rCenterSrc;

rPerpHmax =
rPerpHmax0

rPerpHmax0.rPerpHmax01/2.
;

rGreatMaxCircle[θ_] := Cos[θ] rCenterSrc + Sin[θ] rPerpHmax

αGreatMax[θ_] := αFROMr[rGreatMaxCircle[θ]]

δGreatMax[θ_] := δFROMr[rGreatMaxCircle[θ]]

xyAitoffGreatMax = TablexH180 αGreatMax[θ] 360  2 π, δGreatMax[θ] 360  2 π ,

yH180 αGreatMax[θ] 360  2 π, δGreatMax[θ] 360  2 π , {θ, 1, 360};

In[ ]:= rHmax.rCenterSrc;

Print"The angle between the sample's center and the avoidance hub Hmax is ",

ArcCosrHmax.rCenterSrc
360.

2. π
, "°."

The angle between the sample's center and the avoidance hub Hmax is 57.0234°.

In[ ]:= crossMin0 = Cross[rHmin, rCenterSrc];

crossMin =
crossMin0

crossMin0.crossMin01/2.
;

crossMax0 = Cross[rHmax, rCenterSrc];

crossMax =
crossMax0

crossMax0.crossMax01/2.
;

θminMAXgreatcircles = ArcCos[crossMax.crossMin]
360.

2. π
;

In[ ]:= (*The following table αjδjηBarHjTable is created to be interpolated below,

yielding a smooth function ηBarHjSmooth of the alignment angle η(H) over the sphere.*)

(* Table αjδjηBarHjTable

entries: 1. α 2. δ 3. alignment angle ηBarRgnkj at grid point all in degrees*)

αjδjηBarHjTable =  αjδjηBarHjTable0 = {};

Forj = 1, j ≤ LengthjηBarHj, j++,

AppendTo αjδjηBarHjTable0, αGridj*(360./(2. π)), δGridj*(360./(2. π)),

jηBarHjj, 2*(360./(2. π)) ; If 360. ≥ αGridj*(360./(2. π)) > 354.,

AppendTo αjδjηBarHjTable0, αGridj*(360./(2. π)) - 360.,

δGridj*(360./(2. π)), jηBarHjj, 2*(360./(2. π))  ;

If +6. > αGridj*(360./(2. π)) ≥ 0., AppendTo αjδjηBarHjTable0, αGridj*(360./(2.

π)) + 360, δGridj*(360./(2. π)), jηBarHjj, 2*(360./(2. π))  ;

αjδjηBarHjTable0;
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In[ ]:= ηBarHjSmooth = InterpolationαjδjηBarHjTable (*The smooth alignment angle function η(H).*)

Interpolation: Interpolation on unstructured grids is currently only supported for InterpolationOrder->1 or

InterpolationOrder->All. Order will be reduced to 1.

Out[ ]= InterpolatingFunction
Domain: {{-5.92, 366.}, {-88., 88.}}
Output: scalar 

In[ ]:= (*Transcribe the alignment function η(H), the location of the sources,

and the Celestial Equator onto an Aitoff plot.*)

xyηBarAitoffTable = PartitionFlattenTable

xH180[α, δ], yH180[α, δ], ηBarHjSmooth[α, δ], {α, 2., 358., 2.}, {δ, -88., 88., 2.}, 3;

(* The smooth alignment angle function η(H) = ηBarHjSmooth mapped

onto a 2D Aitoff projection of the sphere. *)

xyAitoffSources = Table[{xH180[ αSrc[[n]] (360/(2 π)), δSrc[[n]] (360/(2 π)) ],

yH180[ αSrc[[n]] (360/(2 π)), δSrc[[n]] (360/(2 π)) ]}, {n, nSrc}];

(*The Aitoff coordinates for the sources' locations.*)

In[ ]:= xH180[0, 0]

Out[ ]= -3.14159

In[ ]:= (* Contour plot of the alignment function ηBarHjSmooth. *)

dηContourPlot = 5 ;

(*, in degrees. *)listCP = ListContourPlotUnionxyηBarAitoffTable(*,xH180αHminDegrees,

δHminDegrees,yH180αHminDegrees,δHminDegrees,ηBarMin*(360./(2.π))-1.0,

{{xH180[αHmaxDegrees,δHmaxDegrees],yH180[αHmaxDegrees,δHmaxDegrees],ηBarMax*(360./(2.π))+

1.0}}*), AspectRatio → 1/2, Contours → Tableη, η, FloorjηBarMin[[2]]*(360./(2. π)) +

1, CeilingjηBarMax[[2]]*(360./(2. π)) - 1, dηContourPlot,

ColorFunction → "TemperatureMap", PlotRange → {{-5.5, 5.5}, {-3, 3}}, Axes -> False,

Frame → False, (*PlotLabel→"The alignment function η(H)",*)PlotLegends → Automatic ;
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In[ ]:= (*Construct the map of η(H).*)

mapOfηBar =

ShowlistCP, TableParametricPlot{xH180[α, δ], yH180[α, δ]},

{δ, -90, 90}, PlotStyle → Black, Thickness[0.002], (*Mesh→{11,5,0}

(*{23,11,0}*),MeshStyle→Thick,*)PlotPoints → 60, {α, 0, 360, 30}, Table

ParametricPlot{xH180[α, δ], yH180[α, δ]}, {α, 0, 360}, PlotStyle → Black, Thickness[0.002],

(*Mesh→{11,5,0}(*{23,11,0}*),MeshStyle→Thick,*)PlotPoints → 60, {δ, -60, 60, 30},

GraphicsPointSize[0.004], TextStyleForm"N", FontSize -> 14, FontWeight -> "Plain",

{0, 1.85}, (*Sources S:*)Green, Point xyAitoffSources , Gray,

PointSize[0.002], Point xyAitoffGreatMin , Point xyAitoffGreatMax , Black,

TextStyleForm"Hmax", FontSize → 12, FontWeight -> "Bold", {-3.3, -1.0},

ArrowBezierCurve[{{-3.3, -1.2}, {-1.3, -3.0}, {xH180[αHmaxDegrees - 180, -δHmaxDegrees],

yH180[αHmaxDegrees - 180, -δHmaxDegrees]}}],

TextStyleForm"Hmin", FontSize → 12, FontWeight -> "Bold", {3.3, -1.0},

ArrowBezierCurve{3.3, -1.2}, {0.3, -3.0},

xH180αHminDegrees, δHminDegrees, yH180αHminDegrees, δHminDegrees,

TextStyleForm"Hmin", FontSize → 12, FontWeight -> "Bold", {-3.3, 1.0},

ArrowBezierCurve{-3.3, 1.2}, {-2.3, 2.0}, xH180αHminDegrees - 180, -δHminDegrees,

yH180αHminDegrees - 180, -δHminDegrees, (**)

TextStyleForm"Hmax", FontSize → 12, FontWeight -> "Bold", {3.3, 1.0} ,

ArrowBezierCurve[{{3.3, 1.2}, {2.3, 2.0},

{xH180[αHmaxDegrees, δHmaxDegrees], yH180[αHmaxDegrees, δHmaxDegrees]}}]

, ImageSize → 1.5×432;

5c. Section Summary

This sample is an extreme case, the alignment hub Hmin is very close to the sources. 

We include the Great Circle from the center of the sources to the alignment hub Hmin on the map. We also draw the Great Circle from 

source center to the avoidance hub Hmax. The two Great Circles divide the sphere quite evenly, the two Great Circles are perpendicu-

lar at the two points where they cross, within experimental error.
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In[ ]:= mapOfηBar

Print

"Figure 5: The alignment function η(H), Eq. (1). The map is centered on (α,δ)=(180°,0°),"

Print"with α = 0° on the left and α = 360° on the right, Equatorial Coordinates."

Print["The sources are located at the dots, shaded ", Green, " ."]

Print"The smallest alignment angle is ηmin = ",

RoundjηBarMinBest[[2]] (360./(2. π)), "°, located at the"

Print"alignment hubs Hmin and -Hmin in the areas shaded ", Blue, " . "

Print"The hubs Hmin and -Hmin are located at (α,δ) = ", RoundαHminDegrees, δHminDegrees ,

" and ", RoundαHminDegrees - 180, -δHminDegrees , " , in degrees."

Print"The largest avoidance angle is ηmax = ",

RoundjηBarMaxBest[[2]] (360./(2. π)), "°, located at the"

Print"avoidance hubs Hmax and -Hmax in the areas shaded ", Red, " . "

Print"The hubs Hmax and -Hmax are located at (α,δ) = ",

Round[{αHmaxDegrees - 180, -δHmaxDegrees }], " and at ",

Round[{αHmaxDegrees, δHmaxDegrees }], " , in degrees."

Print"To guide the eye, two Great Circles are plotted, one through the sources' center and the

avoidance hubs Hmax and -Hmax. The other connects the center of the sources' locations

with the alignment hubs Hmin and -Hmin. The Great Circles are shaded Gray, ", Gray, " ."

Print"Notes: Although somewhat obscured by the distortion needed to plot a

sphere on a flat surface, the function η(H) is symmetric across diameters.

Diametrically opposite points -H and H have the same alignment angle η(H)."

Out[ ]=

N

Hmax Hmin

Hmin Hmax

22 27 32 37 42 47 52 57 62
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Figure 5: The alignment function η(H), Eq. (1). The map is centered on (α,δ)=(180°,0°),

with α = 0° on the left and α = 360° on the right, Equatorial Coordinates.

The sources are located at the dots, shaded .

The smallest alignment angle is ηmin = 21°, located at the

alignment hubs Hmin and -Hmin in the areas shaded .

The hubs Hmin and -Hmin are located at (α,δ) = {188, 0} and {8, 0} , in degrees.

The largest avoidance angle is ηmax = 67°, located at the

avoidance hubs Hmax and -Hmax in the areas shaded .

The hubs Hmax and -Hmax are located at (α,δ) = {137, -32} and at {317, 32} , in degrees.

To guide the eye, two Great Circles are plotted, one through the sources' center and the

avoidance hubs Hmax and -Hmax. The other connects the center of the sources' locations

with the alignment hubs Hmin and -Hmin. The Great Circles are shaded Gray, .

Notes: Although somewhat obscured by the distortion needed to plot a

sphere on a flat surface, the function η(H) is symmetric across diameters.

Diametrically opposite points -H and H have the same alignment angle η(H).

(*

SetDirectory[

"C:\\Users\\shurt\\Dropbox\\HOME_DESKTOP-0MRE5OJ\\SendXXX_CJP_CEJPetc\\SendViXra\\

20200715AlignmentMethod\\20210505AlignmentMethodv4\\20210515Clump1QSOsNearNGP"]

Export["20210424QSOnearbyHmin.pdf",mapOfηBar]

*)
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In[ ]:= (*Statistics*)

Print"Statistics of the Alignment Function η(H) :"

Print[" "]

Print["The number of sources: N = ", nSrc]

Print"The min alignment angle, ηmin = ", jηBarMinBest[[2]] * 360.  2. π,

"°, is ", η0MIN[nSrc, c1MIN, a1MIN] - jηBarMinBest[[2]] * 360.  2. π,

"° below the most likely value, ",

η0MIN[nSrc, c1MIN, a1MIN] * 360.  2. π, "°, for random runs."

Print"Since the uncertainty σ is ", σMIN[nSrc, c2MIN, a2MIN] * 360.  2. π,

"°, the difference ", η0MIN[nSrc, c1MIN, a1MIN] - jηBarMinBest[[2]] * 360.  2. π,

"° is ", η0MIN[nSrc, c1MIN, a1MIN] - jηBarMinBest[[2]]  σMIN[nSrc, c2MIN, a2MIN],

"σs from the most likely random run value."

Print"Thus, the smallest alignment angle ηmin is " ,

η0MIN[nSrc, c1MIN, a1MIN] - jηBarMinBest[[2]]  σMIN[nSrc, c2MIN, a2MIN],

"σs below the most likely random run value."

Print[""]

Print"The largest avoidance angle, ηmax = ", jηBarMaxBest[[2]] * 360.  2. π,

"°, is ", -η0MAX[nSrc, c1MAX, a1MAX] - jηBarMaxBest[[2]] * 360.  2. π,

"° above the most likely value, ",

η0MAX[nSrc, c1MAX, a1MAX] * 360.  2. π, "°, for random runs."

Print"Since the uncertainty σ is ", σMAX[nSrc, c2MAX, a2MAX] * 360.  2. π,

"°, the difference ", -η0MAX[nSrc, c1MAX, a1MAX] - jηBarMaxBest[[2]] * 360.  2. π,

"° is ", -η0MAX[nSrc, c1MAX, a1MAX] - jηBarMaxBest[[2]]  σMAX[nSrc, c2MAX, a2MAX],

"σs from the most likely random run value." 

Print"Thus, the largest avoidance angle ηmax is " ,

jηBarMaxBest[[2]] - η0MAX[nSrc, c1MAX, a1MAX]  σMAX[nSrc, c2MAX, a2MAX],

"σs above the most likely random run value."

Statistics of the Alignment Function η(H) :

The number of sources: N = 27

The min alignment angle, ηmin = 21.1667°, is

14.0934° below the most likely value, 35.2602°, for random runs.

Since the uncertainty σ is 3.29664°, the difference

14.0934° is 4.27509σs from the most likely random run value.

Thus, the smallest alignment angle ηmin is 4.27509σs below the most likely random run value.

The largest avoidance angle, ηmax = 66.6554°, is

11.8243° above the most likely value, 54.8311°, for random runs.

Since the uncertainty σ is 3.28622°, the difference

11.8243° is 3.59814σs from the most likely random run value.

Thus, the largest avoidance angle ηmax is 3.59814σs above the most likely random run value.
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In[ ]:= Print["The center of the sources is a point that makes a great circle, shaded ",

Gray, " in Fig. 5, with the alignment hub Hmin."]

Print["The center of the sources makes a second great circle, shaded ",

Gray, " in Fig. 5, with the avoidance hub Hmax."]

Print["The angle between the planes of the two great circles is ",

θminMAXgreatcircles, "°."]

The center of the sources is a point that makes a great circle, shaded

in Fig. 5, with the alignment hub Hmin.

The center of the sources makes a second great circle, shaded

in Fig. 5, with the avoidance hub Hmax.

The angle between the planes of the two great circles is 91.1259°.

6. Uncertainty Runs

6a. Creating and Storing Uncertainty Runs

For each “uncertainty run”, the polarization direction ψ for each source is allowed to differ from the best value ψn by an amount 

δψ chosen according to a Gaussian distribution with mean (best) value ψn and half-width σψ,   ψ  =  ψn + δψ. Both values ψn and σψ 

are taken from the catalogs.

Definitions:

 rSrcxrGrid unit vector Si×H j in the direction of the cross product of the radial vector Si to a source with the radial vector H j to a 

grid point

μ  the mean value μ of the measurement Gaussian for ψ

σ the uncertainty of the measured polarization position angle ψ

ψData polarization directions ψ  =  ψn  +  δψ 

runData collection of data to save from the uncertainty runs, see below for content list

nRunPrint dummy index controlling when current TimeUsed and MemoryInUse are printed

ψSrc the polarization direction ψ for the run. 

rSrcxψSrc unit vector, Si×ψi, cross product of the radial vector Si to the source with the vector vψ in the direction of the polariza-

tion

jηBarToGrid {j, η(H j)}, where j is the index for the grid point H j and  η(H j) is the alignment angle function, (1), at H j 

sortjηBarToGrid sort {j, η(H j)}, with the smaller angle η(H) first.

jηBarMin1 {j,η(H)} for the smallest value of η(H) , best alignment

jηBarMax1 {j,η(H)}, for the largest value of η(H) , most avoided

ηBarMinData values of ηmin from uncertainty runs, alignment

ηBarMaxData values of ηmax from uncertainty runs, avoidance

HminαData values of  α = α for hub Hmin from uncertainty runs, alignment

HminδData values of  δ = δ for hub Hmin from uncertainty runs, alignment

HmaxαData values of  α = α for hub Hmax from uncertainty runs, avoidance

HmaxδData values of  δ = δ for hub Hmax from uncertainty runs, avoidance
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Tables:

ψData entries: 1. Run # 2. ψSrc, list of polarization position angles ψ

runData entries: 1. Run # 2. {ηmin, {α,δ} at Hmin} 3. {ηmax, {α,δ} at Hmax}

To create Uncertainty Runs, first calculate “rSrcxrGrid” and then evaluate the “For” statement in the following two cells. One can 

save the results with the “Put[]” statements. 

Once saved, there is no need to repeat the runs. Comment out the “rSrcxrGrid” and “For” statements by enclosing each in (*comment 

brackets*). The data can be retrieved with the “Get” statements.

rSrcxrGrid1 = Table[ Cross[ rSrc[[i]], rGrid[[j]] ] , {i, nSrc}, {j, nGrid}];

(*first step: αw cross product, not unit vectors*)

rSrcxrGrid = Table rSrcxrGrid1[[i, j]] 

rSrcxrGrid1[[i, j]].rSrcxrGrid1[[i, j]] + 0.0000011/2. , {i, nSrc}, {j, nGrid};

Clear[rSrcxrGrid1];

(*rSrcxrGrid: table of the unit vectors perpendicular to the plane

of the great circle containing the source Si and the grid point Hj*)

nR = 5000;(*number of runs with the PPA ψ allowed by measurement uncertainty. *)

μ = ψn; σ = σψn; runData = {}; ψData = {}; nRunPrint = 0;

FornRun = 1, nRun ≤ nR, nRun++,

If[nRun > nRunPrint, Print["At the start of run ", nRun, ", the time is ",

TimeUsed[], " seconds and the memory in use is ", MemoryInUse[], " bytes."];

nRunPrint = nRunPrint + 500];

ψSrc = Table[RandomVariate[NormalDistribution[μ[[i]], σ[[i]]]], {i, nSrc}];

(*table of PPA angles ψ for the sources in region j0, in radians*)

rSrcxψSrc = Table[ Sin[ψSrc[[i]]] eNSrc[[i]] - Cos[ψSrc[[i]]] eESrc[[i]], {i, nSrc}];

(*table of the cross product of rSrc and vector in direction of ψSrc,

a unit vector*)jηBarToGrid = Tablej, 1  nSrc Sum[ArcCos[

Abs[ rSrcxψSrc[[i]].rSrcxrGrid[[i, j]] ] - 0.000001 ], {i, nSrc}], {j, nGrid};

(*

{grid point #, value of the alignment angle ηnHj[j] averaged over all sources,

in radians}*) sortjηBarToGrid = Sort[jηBarToGrid, #1[[2]] < #2[[2]] &];

(*jηBarToGrid, {j,ηj}, but sorted with the smallest alignment angles first

*)

jηBarMin1 = sortjηBarToGrid[[1]]; (* {j,ηj}, at the grid point Hj with minimum η*)

jηBarMax1 = sortjηBarToGrid[[-1]]; (* {j,ηj},

at the grid point Hj with maximum η*)AppendTo[ψData, {nRun, ψSrc}];

AppendTo[runData, {nRun, { jηBarMin1[[2]],

{αGrid [ [ jηBarMin1[[1]] ]], δGrid [[ jηBarMin1[[1]] ]]}}, { jηBarMax1[[2]],

{αGrid [[ jηBarMax1[[1]] ]], δGrid [[ jηBarMax1[[1]] ]]}}} ](*collect data*) 
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At the start of run 1, the time is 13.39 seconds and the memory in use is 214 284616 bytes.

At the start of run 501, the time is 377.109 seconds and the memory in use is 231208 232 bytes.

At the start of run 1001, the time is 743.218 seconds and the memory in use is 231748 936 bytes.

At the start of run 1501, the time is 1096.95 seconds and the memory in use is 232297 288 bytes.

At the start of run 2001, the time is 1453.58 seconds and the memory in use is 232846 056 bytes.

At the start of run 2501, the time is 1810.16 seconds and the memory in use is 233394 888 bytes.

At the start of run 3001, the time is 2160.5 seconds and the memory in use is 233943 656 bytes.

At the start of run 3501, the time is 2513.25 seconds and the memory in use is 234492 296 bytes.

At the start of run 4001, the time is 2865.47 seconds and the memory in use is 235041 128 bytes.

At the start of run 4501, the time is 3217.08 seconds and the memory in use is 235589 896 bytes.

Hint: You can save memory if you do not get the “ψData”. The table ψData is needed to reconstruct the exact values of the runData 

table, but it is not needed in any following calculation.

SetDirectory[homeDirectory];(*Save memory space; ψData is not used below.*)

(*

Put[ψData,"20210509PsiDataClump1RA175Dec10.dat" ] (*Save a new "ψData"*)

*)

(*ψData=Get["20210509PsiDataClump1RA175Dec10.dat"]; *) (*Get an old "ψData"*)

Hint: Saving “runData” to a file avoids the time it takes to complete the “For” statement. Make the above “For” statement into a 

remark so that it doesn’t evaluate.

SetDirectory[homeDirectory];

(*

Put[runData,"20210509runDataClump1RA175Dec10.dat" ] (*Save a new "runData".*)

*)

(*

runData=Get["20210509runDataClump1RA175Dec10.dat"];

*) (*Get an old "runData".*)

In[ ]:= Print["The number of uncertainty runs is ", Length[runData], "."]

The number of uncertainty runs is 5000.

In[ ]:= ηBarMinData = Table[runData[[i1, 2, 1]] , {i1, Length[runData]}];

ηBarMaxData = Table[runData[[i1, 3, 1]] , {i1, Length[runData]}];

HminαData = Table[ runData[[i1, 2, 2, 1]] , {i1, Length[runData]}];

HminδData = Table[runData[[i1, 2, 2, 2]], {i1, Length[runData]}];

HmaxαData = Table[ runData[[i1, 3, 2, 1]] , {i1, Length[runData]}];

HmaxδData = Table[runData[[i1, 3, 2, 2]], {i1, Length[runData]}];

6b. The Effects of Uncertainty on the Smallest Alignment Angle  ηmin

This section fits a Gaussian distribution to the  ηmin from the uncertainty runs. 

Definitions

sortηBarMin sort the list of ηmin from the uncertainty runs
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η0B estimated mean of the Gaussian fit

σB estimated half-width of the Gaussian fit

histogramrange {min η, max η, Δη} for the histogram

hl0, hl histogram {η, bin height} tables needed to set up the NonlinearModelFit

nlmB non-linear model fit of a Gaussian to the ηmin histogram

showNLMB plot of Gaussian and histogram

ParametersNLMB amplitude, half-width, and mean of the Gaussian fit

pTableNLMB table of parameter attributes, including standard error

In[ ]:= sortηBarMin = Sort[ηBarMinData];

η0B = mean[ηBarMinData ]; (*Guess the mean for the Gaussian. *)

σB = stanDev[ηBarMinData ];(*Guess the half-width.*)

histogramrange = {η0B - 5 σB, η0B + 5 σB, 0.4 σB};

hl0 = HistogramList[sortηBarMin, histogramrange];

hl =

Table1  2 hl0[[1, i1]] + hl0[[1, i1 + 1]], hl0[[2, i1]], {i1, Length[ hl0[[2]] ]};

nlmB = NonlinearModelFithl, a Exp-1  2. x - x0  b
2
,

a, LengthsortηBarMin  6, {b, σB}, {x0, η0B}, x;(*x is ηBarMin*)

In[ ]:= showNLMB = ShowHistogramsortηBarMin, histogramrange,

PlotLabel → "ηmin ", AxesLabel → "ηmin, radians", "ΔR",

PlotNormal[nlmB], {x, η0B - 5 σB, η0B + 5 σB}, PlotLabel → "ηmin",

ListPlothl, PlotLabel → "ηmin" 

Print"Figure 6: The Gaussian fit to the alignment angle

ηmin histogram, where the height is the number "

Print"of runs ΔR in each bin of width Δηmin = ", 0.4 σB, " radians. "

Print["The total number of runs is R = Σ(ΔR) = ", Length[runData], "."]

Out[ ]=
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Figure 6: The Gaussian fit to the alignment angle ηmin histogram, where the height is the number

of runs ΔR in each bin of width Δηmin = 0.00596687 radians.

The total number of runs is R = Σ(ΔR) = 5000.
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In[ ]:= ParametersNLMB = {a, b, x0} /. nlmB["BestFitParameters"];

pTableNLMB = nlmB["ParameterTable"]

{σηBarMinFit, ηBarMinFit} = {ParametersNLMB[[2]] , ParametersNLMB[[3]] };(*radians*)

Out[ ]=

Estimate Standard Error t-Statistic P-Value

a 799.527 10.5054 76.1063 3.83557×10-28

b 0.0148443 0.00022522 65.91 8.9616×10-27

x0 0.37913 0.00022522 1683.38 1.03855×10-57

6c. The Effects of Uncertainty on the Largest Avoidance Angle  ηmax

This section fits a Gaussian distribution to the  ηmax returned by the uncertainty runs. 

Definitions: Check the list of Definitions in Sec. 6b. Trade avoidance (Max) here for alignment (Min) there.

In[ ]:= sortηBarMax = Sort[ηBarMaxData];

η0MaxB = mean[ηBarMaxData ]; (*Guess the mean for the Gaussian. *)

σMaxB = stanDev[ηBarMaxData ];(*Guess the half-width.*)

histogramrangeMAX = {η0MaxB - 5 σMaxB, η0MaxB + 5 σMaxB, 0.4 σMaxB};

hl0Max = HistogramList[sortηBarMax, histogramrangeMAX];

hlMax = Table1  2 hl0Max[[1, i1]] + hl0Max[[1, i1 + 1]], hl0Max[[2, i1]],

{i1, Length[ hl0Max[[2]] ]};

nlmMaxB = NonlinearModelFithlMax, a Exp-1  2. x - x0  b
2
,

{{a, 300.}, {b, σMaxB}, {x0, η0MaxB}}, x;(*x is ηBarMax *)

In[ ]:= showNLMMaxB = ShowHistogramsortηBarMax,

histogramrangeMAX, PlotLabel → "ηmax", AxesLabel → "ηmax, radians", "ΔR",

PlotNormal[nlmMaxB], {x, η0MaxB - 5 σMaxB, η0MaxB + 5 σMaxB}, PlotLabel → "ηmax" ,

ListPlothlMax, PlotLabel → "ηmax"

Print"Figure 7: The Gaussian fit to the avoidance angle ηmax

histogram. The bins have a width Δηmax = ", 0.4 σMaxB,

" radians and have a height equal to the number of runs ΔR in the bin."

Print["The total number of runs is R = Σ(ΔR) = ", Length[runData], "."]

Out[ ]=
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Figure 7: The Gaussian fit to the avoidance angle ηmax histogram. The bins have a width Δηmax =

0.00645648 radians and have a height equal to the number of runs ΔR in the bin.

The total number of runs is R = Σ(ΔR) = 5000.
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In[ ]:= ParametersNLMMaxB = {a, b, x0} /. nlmMaxB["BestFitParameters"];

pTableNLMMaxB = nlmMaxB["ParameterTable"]

{σηBarMaxFit, ηBarMaxFit} = {ParametersNLMMaxB[[2]] , ParametersNLMMaxB[[3]] };

(*radians*)

Out[ ]=

Estimate Standard Error t-Statistic P-Value

a 799.002 8.28405 96.4506 2.12287×10-30

b 0.0160853 0.000192572 83.5287 4.98483×10-29

x0 1.15318 0.000192572 5988.32 7.79346×10-70

6d. The Effects of Uncertainty on the Locations  (α,δ)  of the Alignment Hubs  Hmin

Each uncertainty run returns an alignment hub Hmin. In this section, we calculate the mean and standard deviation to approximate 

the distribution of the locations the Alignment Hubs  Hmin. 

In any one run, the analysis produces an alignment angle η at each grid point. There can be just one minimum alignment angle 

ηmin, but there are two hubs, Hmin and -Hmin, by the symmetry across a diameter. So we collect all the hubs together by moving the 

-Hmin hubs across a diameter to join the Hmin hubs.

Definitions

Hminα α in radians for Hmin

Hminδ δ  in radians for Hmin

σαMinFit1 half-width for α uncertainty runs

αMinFit1mean for α uncertainty runs

σδMinFit1 half-width for δ uncertainty runs

δMinFit1 mean for δ uncertainty runs

HminαAVE average over all uncertainty runs of α for Hmin

Hminαδ (α,δ) table for ListPlot

lpHmin plot Hmin hubs from uncertainty runs

α1,2Min1 values needed for framing the most likely hubs

δ1,2Min1  ditto for latitude

In[ ]:= (* Gather the hubs. Move the hubs across diameters,

Δα = π, or around a complete circle, Δα = 360°,

if necessary, so that all hubs satisfy 0° ≤ α < 180° .*)

Hminα0 = HminαData;

Hminδ0 = HminδData;

HminαBy180n = RoundHminα0  π;

Hminα1 = Table[Hminα0[[i1]] - HminαBy180n[[i1]] π , {i1, Length[Hminα0]}];

Hminδ1 = Table-1HminαBy180n[[i1]] Hminδ0[[i1]] , {i1, Length[Hminδ0]};

Hminα = Table[

If[Hminα1[[i1]] < 0, Hminα1[[i1]] + π, Hminα1[[i1]], "huh?"] , {i1, Length[Hminα1]}];

Hminδ = Table[If[Hminα1[[i1]] < 0, -Hminδ1[[i1]], Hminδ1[[i1]], "huh?"] ,

{i1, Length[Hminδ1]}];
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In[ ]:= (*Check that 0° ≤ α < 180° and -90° ≤ δ < 90° *)

(*ListPlot[{Sort[Hminα],Sort[Hminδ]},

PlotLabel→"α and δ for Hmin, radians",AxesLabel→{"Run #","α,δ"}]

{Sort[Hminα][[1]],Sort[Hminα][[-1]]} 360.

2.π
(*degrees*)

{Sort[Hminδ][[1]],Sort[Hminδ][[-1]]} 360.

2.π
 (*degrees*)

*)

In[ ]:= {σαMinFit1, αMinFit1} = {stanDev[Hminα], mean[Hminα]};(*radians*)

{σδMinFit1, δMinFit1} = {stanDev[Hminδ], mean[Hminδ]};(*radians*)

In[ ]:= (*Define quantities for the plot of the Hmin from the uncertainty runs. *)

Hminαδ = Sort[Table[{Hminα[[i5]], Hminδ[[i5]]}, {i5, Length[Hminα]}]];

{Hminαδ[[1]], Hminαδ[[-1]]} ;(*radians*)

{Hminαδ[[1]], Hminαδ[[-1]]} 360.  2. π ;(*degrees*)

lpHmin = ListPlotHminαδ 360.  2. π,

PlotRange → {{0, 360}, {-90, 90}}, PlotMarkers → Automatic,

AxesLabel → {"α, degrees", "δ, degrees"}, PlotLabel → "(α,δ) for the Hmin hubs",

Ticks → {Table[{t, t}, {t, 0, 360, 45}], Automatic};

α1Min1 = αMinFit1 - σαMinFit1 360.  2. π;

α2Min1 = αMinFit1 + σαMinFit1 360.  2. π;

δ1Min1 = δMinFit1 - σδMinFit1 360.  2. π;

δ2Min1 = δMinFit1 + σδMinFit1 360.  2. π;

6e. The Effects of Uncertainty on the Locations  (α,δ)  of the Avoidance Hubs  Hmax.

Each uncertainty run returns an alignment hub Hmax. In this section, we calculate the mean and standard deviation all such hubs 

to approximate the distribution of the locations of the Avoidance Hubs  Hmax.

Definitions: Explore the definitions for Hmin at the start of Sec. 6d. Find the similarly named quantity by interchanging Max for Min. 

Adjust the definition to the present context.

In[ ]:= (* Move hubs, if necessary, so that 0° ≤ α < 360° *)

Hmaxα0 = HmaxαData;

Hmaxδ0 = HmaxδData;

HmaxαBy180n = RoundHmaxα0  π;

Hmaxα1 = Table[Hmaxα0[[i1]] - HmaxαBy180n[[i1]] π , {i1, Length[Hmaxα0]}];

Hmaxδ1 = Table-1HmaxαBy180n[[i1]] Hmaxδ0[[i1]] , {i1, Length[Hmaxδ0]};

Hmaxα = Table[

If[0 > Hmaxα1[[i1]], Hmaxα1[[i1]] + π, Hmaxα1[[i1]], "huh?"] , {i1, Length[Hmaxα1]}];

Hmaxδ = Table[If[0 > Hmaxα1[[i1]], -Hmaxδ1[[i1]], Hmaxδ1[[i1]], "ah"] ,

{i1, Length[Hmaxδ1]}];

In[ ]:= (*Check that 0° ≤ α < 180° and -90° ≤ δ < 90° *)

(*ListPlot[{Sort[Hmaxα],Sort[Hmaxδ]},PlotRange→{-2π,2π},

AxesLabel→{"Run #","α,δ radians"},PlotLabel→"αs, δs for Hmax"]

{Sort[Hmaxα][[1]],Sort[Hmaxα][[-1]]} 360.

2.π
(*degrees*)

{Sort[Hmaxδ][[1]],Sort[Hmaxδ][[-1]]} 360.

2.π
 *) (*degrees*)
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In[ ]:= {σαMaxFit, αMaxFit} = {stanDev[Hmaxα], mean[Hmaxα]};(*radians*)

{σδMaxFit, δMaxFit} = {stanDev[Hmaxδ], mean[Hmaxδ]};(*radians*)

In[ ]:= (* Define quantities for the plot of the

locations of the Hmax from the uncertainty runs. *)

Hmaxαδ = Table[{Hmaxα[[i8]], Hmaxδ[[i8]]}, {i8, Length[Hmaxδ ]}];

{Hmaxαδ[[1]], Hmaxαδ[[-1]]} ;(*radians*)

{Hmaxαδ[[1]], Hmaxαδ[[-1]]} 360.  2. π ;(*degrees*)

lpHmax1 = ListPlotHmaxαδ 360.  2. π, PlotRange → {{0, 360}, {-90, 90}},

PlotMarkers → Automatic, AxesLabel → {"α, degrees", "δ, degrees"},

PlotLabel → "Hmax hubs ", Ticks → {Table[{t, t}, {t, 0, 360, 45}], Automatic};

α1Max = αMaxFit - σαMaxFit 360.  2. π;

α2Max = αMaxFit + σαMaxFit 360.  2. π;

δ1Max = δMaxFit - σδMaxFit 360.  2. π;

δ2Max = δMaxFit + σδMaxFit 360.  2. π;

6f.  The Effects of Uncertainty on the angle θ between the planes of the Sample to Hmin Great Circle and the Sample to Hmax Great 

Circle. 

These are the Gray lines in Fig. 5.  

Definitions:

“uRuns” prefix results from the uncertainty runs 

uRunsCrossMin unit vector normal to the Great Circle connecting the center of the source region with the alignment hub Hmin

uRunsCrossMax unit vector normal to the Great Circle connecting the center of the source region with the alignment hub Hmax

uRunsθminMAXgreatcircles angle between the two normals in degrees

sortθminMAX sort “uRunsθminMAXgreatcircles”, smallest θ first

See Definitions above in Secs. 6a,6b for other quantities below. There you should find similarly named quantities.

In[ ]:= uRunsCrossMin0 =

Table[Cross[er[Hminα[[i]], Hminδ[[i]]], sourceCenter ], {i, Length[Hminα]}];

uRunsCrossMin = Table
uRunsCrossMin0[[i]]

uRunsCrossMin0[[i]].uRunsCrossMin0[[i]]1/2.
,

{i, Length[Hminα]};

uRunsCrossMax0 = Table[Cross[er[Hmaxα[[i]], Hmaxδ[[i]]], sourceCenter ],

{i, Length[Hmaxα]}];

uRunsCrossMax = Table
uRunsCrossMax0[[i]]

uRunsCrossMax0[[i]].uRunsCrossMax0[[i]]1/2.
,

{i, Length[Hmaxα]};

uRunsθminMAXgreatcircles = TableArcCos[uRunsCrossMax[[i]].uRunsCrossMin[[i]]]
360.

2. π
,

{i, Length[Hmaxα]};
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In[ ]:= sortθminMAX = Sort[uRunsθminMAXgreatcircles];

η0θ = mean[uRunsθminMAXgreatcircles]; (*Guess the mean for the Gaussian. *)

σθ = stanDev[uRunsθminMAXgreatcircles ];(*Guess the half-width.*)

histogramrange = {η0θ - 5 σθ, η0θ + 5 σθ, 0.4 σθ};

hl0 = HistogramList[sortθminMAX, histogramrange];

hl =

Table1  2 hl0[[1, i1]] + hl0[[1, i1 + 1]], hl0[[2, i1]], {i1, Length[ hl0[[2]] ]};

nlmθ = NonlinearModelFithl, a Exp-1  2. x - x0  b
2
,

a, LengthsortθminMAX  6, {b, σθ}, {x0, η0θ}, x;(*x is θminMAX*)

In[ ]:= showNLMθ = Show[{Histogram[sortθminMAX, histogramrange,

PlotLabel → "Angle θ between the Two Gray Great Circles in Fig. 5",

AxesLabel → {"θ, degrees", "ΔR"}],

Plot[Normal[nlmθ], {x, η0θ - 5 σθ, η0θ + 5 σθ}], ListPlot[hl] }]

Print["Figure 8: The Gaussian fit to the angle θ histogram,

where the height is the number of runs ΔR in"]

Print[" each bin of width Δθ = ", 0.4 σθ, " degrees."]

Print[" The total number of runs is R = Σ(ΔR) = ", Length[runData], "."]

Out[ ]=
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Figure 8: The Gaussian fit to the angle θ histogram, where the height is the number of runs ΔR in

each bin of width Δθ = 1.47323 degrees.

The total number of runs is R = Σ(ΔR) = 5000.

In[ ]:= ParametersNLMθ = {a, b, x0} /. nlmθ["BestFitParameters"];

pTableNLMθ = nlmθ["ParameterTable"]

{σθminMAXFit, θminMAXFit} = {ParametersNLMθ[[2]] , ParametersNLMθ[[3]] };(*degrees*)

Out[ ]=

Estimate Standard Error t-Statistic P-Value

a 783.396 26.644 29.4024 3.74098×10-19

b 3.78289 0.148563 25.4632 8.12067×10-18

x0 92.3208 0.148563 621.425 3.44853×10-48

6g.  Map of the Hubs for the Uncertainty Runs

In this subsection, we map the locations of the many alignment hubs Hmin and the locations of the avoidance hubs Hmax that are 

found in the uncertainty runs.
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Definitions:

xyAitoffHmin Aitoff coordinates for the alignment hubs Hmin from the uncertainty runs

xyAitoffHmax Aitoff coordinates for the avoidance hubs Hmax from the uncertainty runs

xyAitoffOppositeHmin Aitoff coordinates for the -Hmin 

xyAitoffOppositeHmax Aitoff coordinates for the -Hmax 

mapOfσψHminHmax plot of the alignment and avoidance hubs Hmin,  -Hmin, Hmax, and -Hmax

In[ ]:= (*The Aitoff coordinates for the hubs Hmin locations.*)

xyAitoffHmin = TablexH180 Hminα [[n]] 360  2 π, Hminδ[[n]] 360  2 π ,

yH180 Hminα [[n]] 360  2 π, Hminδ[[n]] 360  2 π , {n, Length[Hminδ ]};

(*The Aitoff coordinates for the hubs Hmax locations.*)

xyAitoffHmax = TablexH180 Hmaxα [[n]] 360  2 π, Hmaxδ[[n]] 360  2 π ,

yH180 Hmaxα [[n]] 360  2 π, Hmaxδ[[n]] 360  2 π , {n, Length[Hminδ ]};

(*The Aitoff coordinates for the hubs -Hmin locations.*)

xyAitoffOppositeHmin = TablexH180 If0 ≤ Hminα [[n]] 360  2 π < +180,

Hminα [[n]] 360  2 π + 180, If360 > Hminα [[n]] 360  2 π > 180,

Hminα [[n]] 360  2 π - 180, -Hminδ[[n]] 360  2 π ,

yH180 If0 ≤ Hminα [[n]] 360  2 π < +180, Hminα [[n]] 360  2 π + 180,

If360 > Hminα [[n]] 360  2 π > 180, Hminα [[n]] 360  2 π - 180,

-Hminδ[[n]] 360  2 π , {n, Length[Hminδ ]};

(*The Aitoff coordinates for the hubs -Hmax locations.*)

xyAitoffOppositeHmax =

TablexH180 If0 ≤ Hmaxα [[n]] 360  2 π < +180, Hmaxα [[n]] 360  2 π + 180,

If360 > Hmaxα [[n]] 360  2 π > 180, Hmaxα [[n]] 360  2 π - 180,

-Hmaxδ[[n]] 360  2 π , yH180 If0 ≤ Hmaxα [[n]] 360  2 π < +180,

Hmaxα [[n]] 360  2 π + 180, If360 > Hmaxα [[n]] 360  2 π > 180,

Hmaxα [[n]] 360  2 π - 180, -Hmaxδ[[n]] 360  2 π , {n, Length[Hmaxδ ]};
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In[ ]:= (*Construct the map of uncertainty run Hmin and Hmax hubs with ± regions indicated.*)

mapOfσψHminHmax =

ShowTableParametricPlot{xH180[α, δ], yH180[α, δ]},

{δ, -90, 90}, PlotStyle → Black, Thickness[0.002], PlotPoints → 60,

PlotRange → {{-7, 7}, {-3, 3}}, Axes → False, {α, 0, 360, 30},

TableParametricPlot{xH180[α, δ], yH180[α, δ]}, {α, 0, 360}, PlotStyle →

Black, Thickness[0.002], PlotPoints → 60, {δ, -60, 60, 30}, GraphicsPointSize[0.007],

TextStyleForm"N", FontSize -> 10, FontWeight -> "Plain", {0, 1.85}, LightBlue,

(*Hmin:*)Point xyAitoffHmin , (*-Hmin:*)Point xyAitoffOppositeHmin , LightRed,

(*Hmax:*)Point xyAitoffHmax , (*-Hmax:*)Point xyAitoffOppositeHmax  ,

TableParametricPlot{xH180[α, δ], yH180[α, δ]}, {δ, δ1Max, δ2Max},

PlotStyle → Purple, Thickness[0.002], PlotPoints → 60, {α, α1Max, α2Max, α2Max - α1Max},

TableParametricPlot{xH180[α, δ], yH180[α, δ]}, {α, α1Max, α2Max},

PlotStyle → Purple, Thickness[0.002], PlotPoints → 60, {δ, δ1Max, δ2Max, δ2Max - δ1Max},

TableParametricPlot{xH180[α, δ], yH180[α, δ]}, {δ, -δ2Max, -δ1Max}, PlotStyle →

Purple, Thickness[0.002], PlotPoints → 60, {α, α1Max + 180, α2Max + 180, α2Max - α1Max},

TableParametricPlot{xH180[α, δ], yH180[α, δ]}, {α, α1Max + 180, α2Max + 180},

PlotStyle → Purple, Thickness[0.002], PlotPoints → 60, {δ, -δ2Max, -δ1Max, δ2Max - δ1Max},

TableParametricPlot{xH180[α, δ], yH180[α, δ]}, δ, -δ2Min1, -δ1Min1,

PlotStyle → Purple, Thickness[0.002], PlotPoints → 60,

α, α1Min1 + 180, α2Min1 + 180, α2Min1 - α1Min1,

TableParametricPlot{xH180[α, δ], yH180[α, δ]}, α, α1Min1 + 180, α2Min1 + 180, PlotStyle →

Purple, Thickness[0.002], PlotPoints → 60, δ, -δ2Min1, -δ1Min1, δ2Min1 - δ1Min1,

TableParametricPlot{xH180[α, δ], yH180[α, δ]}, δ, δ1Min1, δ2Min1, PlotStyle →

Purple, Thickness[0.002], PlotPoints → 60, α, α1Min1, α2Min1, α2Min1 - α1Min1,

TableParametricPlot{xH180[α, δ], yH180[α, δ]}, α, α1Min1, α2Min1, PlotStyle →

Purple, Thickness[0.002], PlotPoints → 60, δ, δ1Min1, δ2Min1, δ2Min1 - δ1Min1(**),

ImageSize → 1.5×432, PlotLabel → "The Hubs Found from the Uncertainty Runs";

6h. Section Summary
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In[ ]:= Print["To estimate the effects of experimental uncertainty, there were ",

Length[runData], " uncertainty runs."]

Print["Uncertainty runs have polarization directions ψ = ψn + δψ, ",

"where δψ is chosen with a normal

distribution of half-width σψ about the best value ψn."]

Print"The uncertainty runs determine the smallest alignment angle to be ηmin = ",

ηBarMinFit 360.  2. π, "° ± ", σηBarMinFit 360.  2. π, "°." 

Print"The uncertainty runs determine the largest avoidance angle to be ηmax = ",

ηBarMaxFit 360.  2. π, "° ± ", σηBarMaxFit 360.  2. π, "°." 

Print"The uncertainty runs give the location

for one of the alignment hub Hmin as (α, δ) = ",

αMinFit1 360.  2. π + 180, -δMinFit1 360.  2. π, " ± ",

σαMinFit1 360.  2. π, σδMinFit1 360.  2. π, ", in degrees." 

Print["The other hub, -Hmin , is located diametrically opposite from Hmin ."]

Print"The uncertainty runs give the location of the avoidance hub Hmax as (α, δ) = ",

αMaxFit 360.  2. π, δMaxFit 360.  2. π, " ± ",

σαMaxFit 360.  2. π, σδMaxFit 360.  2. π, ", in degrees." 

Print["The other hub, -Hmax , is located diametrically opposite from Hmax ."]

Print["The uncertainty runs determine the angle θ between the two grey Great

Circles in Fig. 5. to be θ = ", θminMAXFit, "° ± ", σθminMAXFit, "°." ]

To estimate the effects of experimental uncertainty, there were 5000 uncertainty runs.

Uncertainty runs have polarization directions ψ = ψn + δψ,

where δψ is chosen with a normal distribution of half-width σψ about the best value ψn.

The uncertainty runs determine the smallest alignment angle to be ηmin = 21.7226° ± 0.850515°.

The uncertainty runs determine the largest avoidance angle to be ηmax = 66.0725° ± 0.921618°.

The uncertainty runs give the location for one of the alignment hub Hmin as (α, δ) =

{189.688, -1.392} ± {2.20497, 2.43013}, in degrees.

The other hub, -Hmin , is located diametrically opposite from Hmin .

The uncertainty runs give the location of the avoidance hub Hmax as (α, δ) =

{144.136, -24.9252} ± {19.6147, 13.6058}, in degrees.

The other hub, -Hmax , is located diametrically opposite from Hmax .

The uncertainty runs determine the angle θ between

the two grey Great Circles in Fig. 5. to be θ = 92.3208° ± 3.78289°.
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In[ ]:= mapOfσψHminHmax

Print"Figure 9: The ", Length[runData], " sets of hubs found for the uncertainty runs."

Print"The alignment hubs Hmin and -Hmin are plotted as light blue dots, ", LightBlue, ". "

Print"The avoidance hubs Hmax and -Hmax are plotted as pink dots, ", LightRed, "."

Print"The most likely locations of the hubs are outlined in purple, ", Purple, "."

Out[ ]=

N

The Hubs Found from the Uncertainty Runs

Figure 9: The 5000 sets of hubs found for the uncertainty runs.

The alignment hubs Hmin and -Hmin are plotted as light blue dots, .

The avoidance hubs Hmax and -Hmax are plotted as pink dots, .

The most likely locations of the hubs are outlined in purple, .

 As a final image, we superimpose the map of the uncertainty run hubs Hmin, -Hmin, Hmax, and -Hmax in Fig. 9 on the graph of the 

alignment angle function  η(H), Fig. 5.  
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In[ ]:=

Show[{mapOfηBar, mapOfσψHminHmax}]

Print

"Figure 10: Overlay Fig. 9, Uncertainty Run Hubs, onto Fig. 5, Alignment Function η(H)

using Best Values ψn. Note that the light blue alignment hubs from the uncertainty

runs closely follow the areas of convergence (blue) for the best values ψn. And

the pink avoidance hubs follow the areas of extreme divergence (red). One sees

that shifting the polarization directions slightly due to experimental uncertainty,

shifts the locations of the hubs slightly. The shifted hubs favor areas, in blue

and red, that are close to the extremes for the alignment function η(H) in Fig.5."

Out[ ]=
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Figure 10: Overlay Fig. 9, Uncertainty Run Hubs, onto Fig. 5, Alignment Function η(H)

using Best Values ψn. Note that the light blue alignment hubs from the uncertainty

runs closely follow the areas of convergence (blue) for the best values ψn. And

the pink avoidance hubs follow the areas of extreme divergence (red). One sees

that shifting the polarization directions slightly due to experimental uncertainty,

shifts the locations of the hubs slightly. The shifted hubs favor areas, in blue

and red, that are close to the extremes for the alignment function η(H) in Fig.5.

7. Concluding Remarks  

 The sample of QSOs studied in this notebook has percent polarizations above 0.6%. Polarized starlight in the region is planned 

to be studied in some future notebook. The data shows that polarized starlight in the region of these QSOs has much lower percent 

polarizations, about 0.1% or so. This suggests the Milky Way contribution is small. While comparing optical and radio polarization 

percentages could be innately faulty, it may be that the polarization for these radio QSOs originates with the QSO upon emission or 

has developed enroute or some mix of the two.

By the survey in Fig. 3, one sees that very significantly aligned regions are rare with QSOs. This is unlike polarized starlight 
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sources in the Milky Way which has a large proportion of 5° regions well aligned, with -Log10(S) often over 9, when surveyed as in 

Fig. 3. While the percent polarization has a higher degree for QSOs compared with starlight, the significances of the alignments is 

generally much lower for QSOs compared with stars. It may be worthwhile to search the sky near the very significant regions, the 

color dots in Fig. 3, for objects that may have a polarizing effect on the radio waves from the QSOs. 

If the alignment of the polarization directions of these 27 QSOs is due to some interaction with matter enroute, then the align-

ment hub Hmin being near the sources on the sky surely entails a different physical situation than  with other situations having hubs 

that are far from the sources. When the alignment is far from the sources, all sources are polarized in more or less the same direction. 

A hub close to the sample on the sky, as with the 27 QSOs here, could indicate a magnetic field in different directions for the different 

sources, yet organized in a way that produces very significant alignment. Whatever the successful explanations are, the explanation of 

polarization directions aligning with nearby hubs is expected to differ in some essential ways from explanations that fit alignment 

characterized by near equal position angles.
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In[ ]:= Print["The date and time that this statement was evaluated: ", Now]

The date and time that this statement was evaluated: Sun 9 May 2021 14:51:46 GMT-4.
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