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Evaluating the Alignment of the Polarized Radio Waves from 27 QSOs in a Region near the NGP

Richard Shurtleff *

Abstract

The sample of 27 quasars with polarized radio emissions located in a region near the North Galactic Pole is shown to have highly
aligned polarization directions. Furthermore, by extending their polarization directions around the Celestial Sphere, the convergence
of their polarization directions is shown to be close to the sources. Thus, parallax forces the position angles to vary with locations of
individual sources. One suspects that, whatever physical explanation fits, the explanation for converging close to the sample is
different from the explanation for alignments with near-equal position angles that converge far from the sample on the sky. The

alignment is analyzed in this Mathematica notebook. Access to a .nb notebook is provided in the references.
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0. Preface

The pdf version of this notebook is available online from the viXra archive.

To find the ready-to-run notebook follow the link in Ref. 1.

Notes:

(1) The pdf version quotes some numerical values that are associated with the particular settings and uncertainty runs that were
current when the pdf version was created. Other sets of uncertainty runs, for a sufficiently large number of runs, should alter those
numerical values only slightly.

(2) The notebooks in this series were created using Wolfram Mathematica, Version Number: 12.1, Ref. 2.

(3) The formulas for creating Aitoff plots were found on Wikipedia, Ref. 3.

The Hub Test

This notebook presents an application of the Hub Test, which is discussed more fully in Ref. 4. The basic idea is that polarization
directions are well-aligned with each other when they are well-aligned with some point on the Celestial Sphere.

Consider the well-known prescription for finding Polaris, the North Star, based on the alignment of the direction from the Merak
to Dubhe with Polaris. Guided by Fig. 1, let the source S be the star Merak, take the interval from Merak to Dubhe in place of the

direction of polarization ¥y, and let Polaris be the point /1. Then the alignment of the Merak to Dubhe direction ¥, with Polaris, the
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point H, illustrates the concept of alignment in the Hub Test. With Merak as S, Merak-Dubhe as ¥, , and Polaris as H, the angle n7

would be about 7 = 3.47°. In that case, the blue great circle and the purple great circle in Fig. 1 would almost coincide.

N ~
Vy
W
n n
S '
E
Source S
7

Figure 1: The Celestial sphere is pictured on the left and on the right is the plane tangent to the sphere at the source S. The linear
polarization direction 7, lies in the tangent plane and determines the purple great circle on the sphere. A point / on the sphere and
the point S determine a second great circle, the blue circle drawn on the sphere at the left. Clearly, 4 and S must be distinct in order to

determine a great circle.

In Fig. 1, the “alignment angle” 7 is the acute angle n between the great circles at S, 0°< n < 90°. The alignment angle n
measures how well the polarization direction Dy matches the direction toward the point H. Perfect alignment occurs whenn = 0°
and the two great circles overlap. Perpendicular great circles, 7 = 90°, indicates maximum “avoidance” of the polarization direction
¥y with the point / on the sphere. The halfway value, n = 45°, favors neither alignment nor avoidance.

With N sources S, i = 1, ..., N, there are N alignment angles n;y for the point / and an average alignment angle 77 at H,

A(H) =+ 57 - 0)
The alignment angle 77(H) is a function of position H on the sphere. It is symmetric across diameters, 7(H) = 7(-H), because great
circles are symmetric across diameters.

The function 77(H) measures convergence and divergence of the great circles determined by the polarization directions. For
random polarization directions, the average 77(H) should be near 45°, since each alignment angle n;y is acute, 0° < n;y < 90°, and
random polarization directions should not favor any one value. Points H where the alignment angle 77(H) is smaller than 45°, the
great circles tend to converge, where 77(H) is larger than 45°, the great circles can be said to diverge.

Thus the basic concept includes “avoidance”, as well as alignment. Avoidance is high when the two directions ¥, and ¥y differ
by a large angle, . — 90° . Perpendicular great circles at S, 7 = 90°, would indicate the maximum avoidance of the polarization
direction and the point on the sphere. The N sources’ polarization directions most avoid the points Hmax and —Hmax where the
function 7j(H) takes its maximum value . The locations of the most extreme divergence are called “avoidance hubs”.

The N sources’ polarization directions are best aligned with the points H,,;, and —H,;, where the alignment angle is a minimum
Tmin- The locations H,,;, and —H,,;, of their most extreme convergence are called “alignment hubs”. Alignment and avoidance are
equally viable, complementary concepts with the Hub Test.

The Hub test provides many calculated results to describe the collective behavior of the polarization directions in a sample. The
alignment angle function 77(H), Eq. (1), can be mapped on the Celestial Sphere to give a visual display. The smallest alignment angle
TTmin and the largest avoidance angle . quantify the agreement of the directions. Known formulas, see Sec. 4 below, are available
to calculate the significance of the alignment, i.e. the likelihood that random polarization directions would yield better results. The
locations of the convergence hubs H,;, and the divergence hubs Hmax may provide clues to magnetic field direction and such

quantities.
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1. Introduction

Electromagnetic radiation from QSOs has traveled a long way and, no doubt, has been passed along by various intergalactic
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media. Alternatively, it may be that the radio waves are polarized when emitted at the source. Either way, to have regions of the sky

containing QSOs with aligned polarization, or some other way correlated, is certainly remarkable. It has been suggested, Ref. 5, that

the polarization levels are too strong, a percent to several percent, for the cause to be local to the Milky Way. With the Coma

Supercluster in the same general direction as these QSOs, some mechanism may be able to explain the alignment as occurring
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enroute, or, as mentioned before, the polarizations could exist when the radio waves are emitted and then some other mechanism
would be needed. In any case, the alignment is remarkable.

In this notebook, we analyze the alignment tendencies of the sample of 27 radio QSOs. The sample occupies a roughly 11°
radius patch of sky centered on (RA,dec) = (178°,10°) and is chosen based on a whole-sky survey of the radio QSOs in the Pelgrims
2014 catalog, Ref. 6. The survey populated 5°-radius regions centered on the grid points of a 2° mesh and calculated the significance
of each region’s polarization direction alignment. See Fig. 3. The group that contains the 27 QSOs that are analyzed in this notebook
consists of 14 very significantly aligned 5°-radius regions near the North Galactic Pole, one of which happens to be the most signifi-
cantly aligned of all of the 5° regions.

The 27 QSOs in the sample make 27 great circles along the polarization directions. The smallest alignment angle 7(H) occurs
for at a hub H,;, less than 15° southeast from the center of the sample. When the hub is this close, the polarization directions from
different places in the sample must have different position angles due to parallax. The hub test has the advantage that it can detect

such correlations.

2. Coordinates, grid, and sundry basic formulas

2a. Coordinates

Consider the “Celestial Sphere”, a sphere in 3 dimensional Euclidean space. See Fig. 1 in the Preface. The sphere is also called
the “sphere” or sometimes “the sky”. The center of the sphere is the origin of a 3D Cartesian coordinate system with coordinates (x, y,
z). The direction of the positive z -axis is due “North”. Equatorial longitude is the Right Ascension « and latitude is the declination ¢.

From a point-of-view located outside the sphere, as in the sketch in Fig. 1, one pictures a source S plotted on the sphere and, in
the 2D tangent plane at S, local North is upward and local East is to the right. A “position angle” at the point S on the sphere, such as
the angle ¢ in Fig. 1, is measured in the 2D plane tangent to the sphere at S. In the tangent plane as drawn in Fig.1, the position angle

i is measured clockwise from local North with East to the right.

Definitions:

er, eN, eE are unit vectors in a 3D Cartesian coordinate system
(a,0) = equatorial coordinates longitude and latitude
er(a,0) = radial unit vectors from Origin

eN(a,0) = local North at a point on the Celestial Sphere
eE(a,0) = local East at a point on the Celestial Sphere
aFROMr(er) = a determined by radial unit vector er
OFROMr(er) = 6 determined by radial unit vector er

Aitoff Plot Functions

aH(a,0) , xH(a,0), yH(a,6), where xH is centered on a@ = 0 and aincreases from left-to-right, with a=-180° on the left and
+180° on the right

xH180(a,0), yH180(a,6), where xH is centered on @ = 180° and a increases from left-to-right, with @ = 0° on the left and 360° on
theright
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(+ For a Source at (a,8) = (a,8): er, eN,
eE are unit vectors from Origin to Source, local North, local East, resp. *)
er[a_, 6_] :=er[a, 6] = {Cos[a] Cos[&], Sin[a] Cos[5], Sin[&]}
eN[a_, 6_] :=eN[a, 6] = {-Cos[a] Sin[6], -Sin[a] Sin[&], Cos[6]}
eE[a_, 6_] :=eE[a, 6] = {-Sin[a], Cos[a], O}
{"Check er.er = 1, er.eN = 0, er.eE = 0, eN.eN
= 1, eN.eE = 9,eE.eE = 1, erXeE = eN, eEXeN = er, eNXer = eE: ",
{0}==Union[Flatten[simplify[{er[a, é].er[a, 6] -1, er[a, 6].eN[a, 6], er[a, 6].eE[a, 6],
eN[a, 6] .eN[a, 6] -1, eN[a, 6] .eE[a, 6], eE[a, 6] .eE[a, &] -1, Cross[er[a, 6], eE[a, 6]] -
eN[a, 6], Cross[eE[a, &], eN[a, 8]] - er[a, 6], Cross[eN[a, &], er[a, 5]] - eE[a, 61}1]]}
{Check er.er = 1, er.eN = 0, er.eE = 0, eN.eN =1,
eN.eE = @,eE.eE = 1, erXeE = eN, eEXeN = er, eNXer = eE: , True}

Get (@,0) in radians from a radial vector r:

aFROMr[r_] :=N[ArcTan[Abs[r[[2]]/r[[1]1]111] /5 (r[[2]] 2@&&r[[1]] >0O)
aFROMr[r_] :=N[x - ArcTan[Abs[r[[2]1]/r[[1]11]1]/; (r[[2]] 20&&r[[1]] <O)
aFROMr[r_] :=N[m+ArcTan[Abs[r[[2]]/r[[1]11]]1/; (Pr[[2]] <O&&r[[1]] <O)
aFROMr[r_] :=N[2. 7 - ArcTan[Abs[r[[2]]/r[[21]11]1]1 /; (r[[2]]1 <@&&r[[1]] >O)
aFROMr[r_] :=m/2./; (r[[2]] 20&&r[[1]] =0)

aFROMr([r_] :=3m/2./; (r[[2]] <O&&r[[1]] =0)

SFROMr[r_] :=N[ArcTan[r[[3]1]/(+/ (r[[21172+r[[2]1172))]] /5 (+/ (PL[1]1172+r[[2]]172) >0)
SFROMr[r_] :=Sign[r[[3]]] (/2.) /; («/(r[[l]]"2+r[[2]]"2) ==e)

The following Aitoff Plot formulas can be found in Wikipedia, Ref. 3.
For these formulas the angles a and 6 should be in degrees.
They give an Aitoff Plot that is centered on (0°,0°)

aH[a_, 6_] :=aH[a, 6] =ArcCos[Cos[((2. ) /360.) 6] Cos[((2.7) /360.) a/2.]]
xH[a_, 6_] :=xH[a, 8] = (2. Cos[((2. ) /360.) 6] Sin[((2.x)/360.) a/2.]) /Sinc[aH[a, 6]]
yH[a_, 6_] :=yH[a, 6] = Sin[ ((2. ) /360.) 6]/Sinc[aH[a, 611

Using the following functions produces an Aitoff Plot that is centered on (180°,0°)

xH180[a_, &6_] :=
xH180 [a, 8] = (2. Cos[((2. ) /36@.) 6] Sin[((2. ) /360.) (a-180.) /2.])/Sinc[aH[ (a-180.), &]]
yH180@[a_, 5_] := yH18@[a, &] = Sin[((2. ) /360.) &] /Sinc[aH[ (a - 180.), &6]]

2b. Grid, sometimes called a mesh

We avoid bunching at the poles by taking into account the diminishing radii of constant latitude circles as the latitude
approaches the poles. Successive grid points along any latitude or along any longitude make an arc that subtends the same
central angle df.

We grid one hemisphere at a time, then the grids are combined.

Definitions:

gridSpacing separation in degrees between grid points on and between constant latitude circles

| 5
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dol grid spacing in radians

idN, ai, ji dummy indices, ID #s for grid points, longitude, latitude
apointH,épointH  « and 6 of the grid points H;

grid, gridN, gridS tables data associated with grid points, listings are below

nGrid number of grid points

aGrid longitudes at the grid points (-7 < @ <+n)

0Grid latitudes at the grid points (-71/2 <= @ =n/2)

rGrid radial unit vectors from origin to grid points, in 3D Cartesian coordinates

Tables: grid, gridN and gridS
1. sequential point # 2. aindex 3. 6index 4. a (rad) 5.0 (rad) 6. Cartesian coordinates of the grid point

gridSpacing = 2. (*, in degrees.x);

(*KEEP this cell - DO NOT DELETEx)

(*The Northern Grid "gridN". x)

del= ((2. ) /360.) gridSpacing;

(xConvert gridSpacing to radiansx)gridN= {};

idN=1;

For[6j=0., 6j<n/ (2.d61), 6j++, SpointH = 5j de1;

For[ai=0., ai<Ceiling[((2. ) /del) (Cos[&pointH] +@.01)],

ai++, apointH = ai de1/ (Cos [6pointH] + @.01) ;
AppendTo [gridN, {idN, ai, &j, apointH, SpointH, er[apointH, SpointH]}];
idN=idN +1

1]

(*KEEP this cell - DO NOT DELETEx)

(xThe Southern Grid "gridS". x)

del = ((2. ) /360.) gridSpacing; (xConvert gridSpacing to radiansx)

gridS={}; idN=1;

For[6j=1., 6j<n/ (2.del), 6j++, SpointH = -53 de1;

For[ai=@., ai<Ceiling[((2.n) /del) (Cos[spointH] +@.01)],

ai++, apointH = ai de1/ (Cos[spointH] +@.01) ;
AppendTo [grids, {idN, ai, &j, apointH, SpointH, er[apointH, SpointH]}];
idN=idN+1

1]

(*KEEP this cell - DO NOT DELETEx)
grid={};j=1;
For[jN=1, jN<Length[gridN], jN++, AppendTo[grid, {j, gridN[[iN, 2]],
gridN[[jN, 3]], aFROMr[gridN[[jN, 6]] ], SFROMr[gridN[[3jN, 6]] |, gridN[[iN, 6]]}];
j=3+1]
For[jS=1, jS < Length[gridS], jS++, AppendTo[grid, {j, grids|[[js, 2]],
grids[[Jjs, 3]], aFROMr [gridS[[jS, 6]] ], 6FROMr|[grids[[js, 6]] |, grids[[jS, 6]]}];
j=3+1]

nGrid = Length [grid] ;
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aGrid = Table[grid[[j, 411, {j, nGrid}];
6Grid = Table[grid[[j, 5]]1 , {Jj, nGrid}];
rGrid = Table[grid[[j, 6]1] , {j, nGrid}];

2c. The mean and standard deviation are convenient functions. And we identify directories for getting and putting data.

Definitions
mean the arithmetic average of a set of numbers, i SHong
stanDev the standard deviation. Given a set of N numbers n; with mean value m, the standard deviation is

( ﬁ S (ng—m) 2) 1/2, the square root of the average of the squares of the differences of the numbers with the mean. Note that we

divide by N to get the average of the deviations squared.

catalogDirectory directory containing the catalog files

homeDirectory  directory containing the notebook and data files
mean[data_] := (1//Length[data]) sum[data[[i4]], {i4, Length[data]}];

(* arithmetic average =*)

stanDev[data_] :=
((1//Length[data]) Sum[ (data[[i5]] - mean[data])z, {is, Length[data]}])l/2

(xstandard deviationx)

catalogDirectory =
"C:\\Users\\shurt\\Dropbox\\HOME_DESKTOP-OMRE50J\\SendXXX_CJP_CEJPetc\\SendViXra\\
20200715A1ignmentMethod\\20200715A1ignmentMMAnotebooks"” ;
(*» location of the catalog data file on my computersx)

homeDirectory =
"C:\\Users\\shurt\\Dropbox\\HOME_DESKTOP-OMRE50J\\SendXXX_CJP_CEJPetc\\SendViXra\\
20200715A1ignmentMethod\\20210505A1ignmentMethodv4\\20210515C1ump1QSOsNearNGP" ;
(*xThe notebook file and data files for this notebook are put in this directory. =x)

2d. Section Summary

Print["The grid points are separated by gridSpacing = ",
gridSpacing, "° arcs along latitude and longitude."]
Print["The number of grid points is ", nGrid, " ."]

The grid points are separated by gridSpacing = 2.° arcs along latitude and longitude.

The number of grid points is 10518 .

3. Polarization and Position Data
3a. Data

The Pelgrims 2014 catalog incorporates data from the large JVAS/CLASS 8.4 Ghz catalog Jackson 2007, Refs. 6 and 7. The

Pelgrims 2014 catalog sources were filtered from Jackson 2007 sources by identification as QSOs, for percent polarization, p > 0.6%,
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for the largest fractional uncertainty in percent polarization, op/p < 0.6%, and for uncertainty in the polarization position angle
oy < 16°. The data is converted to convenient units, angles in radians, and reordered in a notebook The result is the basic data file
“data00”.

( The files on my computer: 20200713JVAS1450Todata00a.nb, 20200718data08]VAS1450.dat, JVAS_1450A.dat.txt,
20210418Survey1450QSOs.nb .)

Definitions:
data00 the catalog data, Pelgrims 2014
firstClumpQsosIDinData001450 record numbers in the catalog of the QSOs in the sample
nSrc number of sources
aSrc right ascension, longitude (radians )
oSrc declination, latitude (radians)
Yn PPA, polarization position angle: clockwise from North with East to the right.
oyn uncertainty in PPA
percentPol percentage of linear polarization
rSrc unit vector from Origin to Sources on Celestial Sphere
eNSrc Local North at the ith Source
eESrc Local East at the ith Source
sourceCenter unit radial vector to the arithmetic center of the sources

angleSourceToCenter angle from Source to Center

Input Sources: data00 is the data table saved in the file “20200718data08JVAS1450.dat”, created in the notebook “20200713-
JVAS1450Todata00a.nb”.

20200718data08JVAS1450.dat = data table called “data00” below.
Notes: Input must be in the correct units, especially angles in radians. The polarization position angle is measured clockwise from
local North with East to the Right.

data00:
1.0Object# 2.Ra(rad) 3.Dec (rad) 4.y (rad) 5. oy (rad) 6.z 7.p (%) 8.0p (%)

Catalog data

SetDirectory|
"C:\\Users\\shurt\\Dropbox\\HOME_DESKTOP-OMRE50J\\SendXXX_CJP_CEJPetc\\SendViXra\\20200715
A1ignmentMethod\\20200715A1ignmentMMAnotebooks"]
dataoo = Get["20200718data0@8IVAS1450.dat"] ;
Length[%]
C:\Users\shurt\Dropbox\HOME_DESKTOP-@MRE50J\SendXXX_CJIP_CEJPetc\
SendViXra\20200715AlignmentMethod\20200715A1ignmentMMAnotebooks

1450
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np= rai[i_] :=rai[i] = data@e[[i, 2]] («RA of ith sourcex)
deci[i_] :=deci[i] =data@e[[i, 3]] («decs)
Yi[i_] :=yi[i] =dataee[[i, 4]] («PPA,
polarization position angle: clockwise from North with East to the right. x)
oyi[i_] :=oyi[i] = dataee[[i, 5]]
zi[i_] :=dataee[[i, 6]] (sredshift found by Pelgrim's using NED«)
ri[i_] :=ri[i] =er[rai[i], deci[i]]
(»unit vector from Origin to ith Source on Celestial Spherex)
WNi[i_] :=wNi[i] =eN[rai[i], deci[i]] (Northx)
VEi[i_]| :=vEi[i] =eE[rai[i], deci[i]] (xEastx)
v:[ri[i_] :=vzlfi[i] =Cos[z[fi[i]] vNi[i] +Sin[z[fi[i]] in[i] (*unit vector in direction of PPAx)
nwai[i_] = nsz[/i[i] =Sin[zlfi[i]] vNi[i] —Cos[zlfi[i]] in[i] (* r Cross v *)

Clump 1 QSO data (from 20210418Survey1450QS0Os.nb, a survey with 5°-radius regions )

i1~ firstClumpQsosIDinData@@1450 = {659, 660, 663, 667, 674, 680, 682, 690, 695, 696, 698,
707, 712, 714, 718, 720, 721, 727, 728, 731, 734, 744, 746, 751, 752, 762, 764} ;

n-;= (*right ascension in radiansx)
asrc = 1075
{2940786, 2950332, 2962501, 2977947, 3000259, 3006888, 3013383, 3037854, 3060196,
3063615, 3077693, 3108571, 3111962, 3114578, 3131037, 3137987, 3138954, 3154756,
3156278, 3164771, 3173054, 3207036, 3209928, 3222030, 3222168, 3239225, 3245921};

n[-1= nSrc = Length[aSrc]

outf-]= 27

1= (*declination in radiansx)
6Src = 1075 (256694, 148170, 219533, 315742, 103421, 291870, 190246, 258405,
176 105, 275734, 85942, 132052, 161164, 173344, 290596, 52995, 32695, 114811,
73978, 95356, 212862, 148171, 158862, 193466, 109659, 73672, 119278} ;

nf-}= (% position angle in radiansx)
yn = 1076 (1788962, 1120501, 2185152, 2724459, 2022837,
2553417, 2045526, 2857104, 1733112, 2485349, 1877974, 2331760,
2406809, 2277655, 1937315, 1106539, 1799434, 2961824, 2586578, 2912955,
1925098, 2600541, 2188643, 2352704, 2827433, 1527163, 2905973} ;
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360
Histogram[&n (————], {12}, PlotLabel -» "PPA y, number AR per bin",
2.7

AxesLabel » {"y", "AR"}, PlotRange -» { {0, 200}, Automatic}]
Print["Figure 2. Distribution of position angles for the
27 polarization directions in the sample. Note the fairly even
distribution over sixty degrees or so, ¥ = 100° to ¥ = 160°."]

PPA , number AR per bin

i

Figure 2. Distribution of position angles for the 27 polarization directions in the sample.

]
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Note the fairly even distribution over sixty degrees or so, ¢y = 100° to ¥y = 160°.

(»uncertainty in ¢ in radiansx)

oyn = 107% {4242, 252, 2254, 99, 106992, 51458, 112351, 26729,
137622, 18357, 10877, 271821, 37 352, 134004, 48856, 98592, 277921,
7249, 5633, 5724, 66923, 35001, 138200, 114372, 105062, 7815, 7653};

(* % polarizationx)

percentPol = 105
{2386846, 4130478, 2023713, 1658885, 1784232, 1979194, 2210679, 6381769, 5954787,
2903853, 3866300, 3070517, 1080690, 1854161, 492130, 2652914, 10217777, 3754306,
1874058, 3174907, 604797, 653203, 5457402, 615497, 16210481, 991464, 3306869} ;

(* uncertainty in % polarizationx)

opercentPol = 107%- {20249, 2078, 9121, 328, 381771, 203679, 496710, 341137,
1638906, 106 607, 84105, 1669146, 80727, 496 898, 48084, 523076, 5679057,
54428, 21111, 36344, 80945, 45723, 1508313, 140783, 3405959, 14090, 50611} ;

(*Redshiftx)
redshift =
107%- {867 400, 486000, 2125700, 1040000, 2217000, 1996700, 1323900, 603700, 1051400,
299000, 1343600, 876100, 695900, 895000, 1061200, 1009 800, 2440000, 2180900,
1226000, 1300000, 890500, 2359000, 2721600, 1404000, 2078200, 966000, 1189000} ;

rSrc = Table[er[ aSrc[[1i]], &6Src[[1i]] 1, {i, nSrc}]; (*calculated from Input.=x)
eNSrc Table[eN[ aSrc[[i]], &Src[[i]] ], {i, nSrc}]; (*calculated from Input.x*)
eESrc Table[eE[ aSrc[[i]], &Src[[i]] ], {i, nSrc}]; (xcalculated from Input.=x)
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1
sourceCentero = sum[rSrc[[i]], {i, nSrc}];
nsrc

sourceCentero

sourceCenter = ;
(sour‘ceCenter‘O. sourceCenterO) 172

(*unit radial vector to the arithmetic center of the sources.x)
angleSourceToCenter = Table[ArcCos[rSrc[[1i]].sourceCenter], {i, nSrc}];

3a. Section Summary

We consider Quasi-Stellar Objects, QSOs. The data is found in Pelgrims 2014, Ref. 6, a catalog of 1450 QSOs that have been
identified as QSOs in the earlier JVAS/CLASS 8.4Ghz catalog Jackson 2007 that has 12700 records. Ref. 7 Then 5° radius regions
are constructed, one on each of the 10518 grid points as in Sec. 2b. The 1450 QSOs were assigned to the regions based on location
and we calculated the significance of the alignment of the polarization directions for the sources in each region.

The QSOs selected for this notebook satisfied many requirements: (i) have 7 or more sources in order to use the significance
formulas in Sec. 4 accurately, (ii) have longitude RA 165° < « = 200°, (iii) have latitude dec 0° = 6 = 30°, (iv) whose QSOs are

very significantly aligned, S < 10-2. There are 14 regions satisfying (i) - (iv) containing a total of 27 sources.

N

-Log1oS
Selected
I 35
( ]

R ) 3.0
25
2.0

Figure 3. Survey of polarized radio QSOs. (Equatorial Coordinates, centered at (a,0) = (180°,0°), @ = 360° on the right.) The 1450
QSOs were grouped into 5° radius regions centered on grid points. Those regions having at least 7 QSOs are plotted as gray dots at
the central grid point. Just 35 regions showed very significant alignment, i.e. S < 0.01 = 102, or, equivalently, —Log;y S = 2.0,
and these are plotted as color dots. The indicated clump of 14 regions was selected for the analysis. There are 27 QSOs in the

combined area of the 14 regions.
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In[«]:=

In[«]:=

Out[=]=

Print["There are ", nSrc, " sources in the sample."]
Print["Check that the Sample obeys the data cuts:"]
Print[
"Check that the smallest % polarization p in the sample is ©.5% or more. Smallest:
Sort[percentPol] [[1]], "% ."]
Print["check that the largest fractional uncertainty in % polarization, op/p,
is less than @.6 . Largest: ", Sort[opercentPol /percentPol] [[-1]], " ."]
Print["check that the largest PPA y uncertainty oy is less than 16°. Largest: ",

360.
Sortoyn] [1-11] (), " "]

2.7

There are 27 sources in the sample.

Check that the Sample obeys the data cuts:

"
3

Check that the smallest % polarization p in the sample is ©0.5% or more. Smallest: ©.49213% .

Check that the largest fractional uncertainty
in % polarization, op/p, is less than 0.6 . Largest: 0.555802 .

Check that the largest PPA y uncertainty oy is less than 16°. Largest: 15.9237° .

360.
ListPlot[Table[{aSrc[[j]], &Src[[j]]} (—), {j, nsrc}],

« T

PlotRange -» { {0, 360}, {-90, 90}},

Ticks » {Table[{i, i}, {i, @, 360, 60}], Table[{]j, j}, {j, -99, 90, 30}1},

PlotLabel - "Sources", AxesLabel -» {"a, degrees", "5, degrees"}, PlotStyle » Green]
Print["Figure 4. The locations of the ", nSrc, " QSOs in the sample. "]
Print|

"Sample Size: The angular separation of the furthest QSO from the sample center is

Sort[angleSourceToCenter] [[-1]] (%?9;], "e.m]

« T

Sources
o, degrees
90

60 -

30+

. L L . ), degrees
60 120 180 240 300 360

-60

90t
Figure 4. The locations of the 27 QSOs in the sample.

Sample Size: The angular separation of the furthest QSO from the sample center is 11.1277°.

4. Probability Distributions and Significance Formulas

Bl
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The problem of “significance” is to determine the likelihood that random polarizations directions would have better alignment or

avoidance than the observed polarization directions. To determine the probability distributions and related formulas, in a previous

notebook, we made many runs with random data and fit the results.

For samples with randomly directed polarization vectors, the basic formula, Eq. 1, looks like the sum of random numbers each

restricted to the range 0 to 7. Such random sums can be related to well-known Random Walk scenarios. That connection helps

explain the dependence on +/N in the formulas below.

Definitions:

norm a constant used to normalize the distribution so the integral of probability is 1.

probMINO, probMAX0 probability distributions for alignment (MIN) and avoidance (MAX), functions of 1, 179, o

pciaiMIN,MAX constants used in the formulas to mean 7 and uncertainty o

opciaiMIN,MAX uncertainty o in the constants used in the formulas to mean 7 and uncertainty o
regionRadiusChoices radii used in random runs performed elsewhere, not in this notebook

regionChoice determines the best choice for the current sample

rgnRadius assumed radius of the region for the purpose of selecting the statistics constants ¢; and a;
ip dummy variable used to select region radius

ciMIN,MAX and aiMIN,MAX parameters for statistics formulas for ny and o

nOMIN, MAX function to estimate mean 7,
oMIN, MAX function to estimate uncertainty o
probMIN, probMAX probability distributions using estimated values of 1y, o

signiMINO, signiMA XOsignificance as a function of (1, 19, o)

signiMIN, signiMAX significance of 17 using estimated values of 19, o

(*y = ((n - ne)/o); dy = dn/o *)
(* The normalization factor "norm" is needed for the probability density =)

) -1
norm = ﬁ NIntegrate[(1+ e*0-1)~* e T, {y, -, oo}]] 5
Tt

norm ; (¥xConstant needed to make the integral
of the probability distribution equal to unity.=x)

norm g (n-me-0) \ -1 _1(m)2
probMINO[n_, n@_, o_] 1= | ——— (1+ e o ) e
o (2 7() 1/2
signiMIN@[n_, n@_, o_] := NIntegrate[probMINO[nl, n@, o], {nl, -, n}]

norm _g (nmn@+o) \ -1 _1(ﬂ)z
robMAXO[n_, 70 , 0 ]:= |—————| [1+ e* 5 ) ezl
p n_,no_, o_

0(271')1/2

signiMAX@[n_, n@_, o_] := NIntegrate[probMAX0[nl1, n@, o], {nl, n, x}]

The significance signiMIN@[n, n@, o] is the Integral of probMIN®, i.e. signiMIN@ = meMIN (n) dn.

The significance signiMAX@[n, n@, o] is the Integral of probMAX@, i.e. signiMAXe@ = ﬁ]"PMAX (n) dn.
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The formulas for mean 7 = f + ’% and half-width o = 4ch32 estimate 17y and o by functions of the number N of sources.
These formulas depend on the size of the region (radius p) by the choice of parameters ¢; and a;, i = 1,2. The following values for the

parameters ¢; and a; are based on random runs. For each combination of N = {8,16,32,64,128,181,256,512} and p =
{0°,5°,12°,24°,48°,90°}, there were 2000 random runs completed.

A notation conflict between this notebook and the article, Ref. 4, should be noted. We doubled the exponent “a” so N%/2 appears in the
article, whereas in the formulas here we see N%. Thus a ~ 1/2 here, but the paper has ayice & 1. That explains the “/2” in the

following arrays.

llpll "Cl" "al" llczll llazll
90 ©0.9423 1.0046 /2 1.061 0.954/2

48 ©.9505 1.0156 /2 1.166 0.9956 /2
n- pciaiMIN = 24 ©.9235 1.0069 /2 1.127 0.964/2 ;
12 0.8912 1.0054 /2 1.238 1.021/2
5 0.8363 1.0083 /2 1.076 0.940 /2
@ 0.5031 1.0153 /2 1.522 1.053/2

llpll "Cl“ "al" llczll llazll
90 ©0.9441 1.0055/2 1.000 0.931/2

48 ©.9572 1.0165/2 1.090 0.958 /2
n1- pciaiMAX = 24 ©.927 1.0068 /2 1.101 0.964/2;
12 0.9049 1.0090 /2 1.228 1.018 /2
5 ©.8424 1.0062/2 1.168 0.992/2
@ 0.4982 1.0093 /2 1.543 1.060 /2

non men na1"  meam mgon
90 ©0.0050 0.0036/2 0.026 0.016/2

48 ©.0079 0.0057 /2 ©.016 0.0095 /2
n - pAciaiMIN = 24 0.0024 0.0018 /2 0.022 0.013 /2 ;
12 0.0034 0.0026 /2 0.039 0.021/2
5 ©.0035 0.0028 /2 0.030 0.019/2
@ 0.0059 0.0080 /2 0.052 0.024 /2

non meqn na1"  meam mgon
90 0.0061 0.0044 /2 0.038 0.025/2

48 ©.0063 0.0045/2 0.026 0.016 /2
n- pAciaiMAX = 24 ©.011 0.0079 /2 0.019 0.011/2;
12 0.0069 0.0052/2 ©.039 ©.022/2
5 ©.0038 0.0031/2 0.022 0.013 /2
@ 0.0058 0.0080 /2 0.057 0.025/2

n-;= (*The region radius controls the constants c; and a; for statistics in Sec. 4.%)
regionRadiusChoices = {90, 48, 24, 12, 5, 0}; (Do not change this statementx)
regionChoice = 4; (xThis is a setting. The choice 24° is 3rd in the list. )
rgnRadius = regionRadiusChoices[ [regionChoice]];

Print["The region radius p is set at ", rgnRadius, "°."]

The region radius p is set at 12°.
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m-1= ip = regionChoice + 1; (x Parameters cj, a;, i = 1,2. *)
Print["These constants are for sources confined to regions with radii p = ",
pciaiMIN[ [ip, 111, "°."]
{c1MIN, alMIN, c2MIN, a2MIN} = Table[pciaiMIN[[io, 11, {j, 2, 5}]
{c1MAX, alMAX, c2MAX, a2MAX} = Table[pciaiMAX[[io, 11, {j, 2, 5}]

These constants are for sources confined to regions with radii p = 12°.

our-= {0.8912, 0.5027, 1.238, 0.5105}

ouf-= {0.9049, 0.5045, 1.228, 0.509}

n-}= ip = regionChoice +1; (% * uncertainty for the Parameters c; and a;, i = 1,2. %)
Print["These uncertainties are for sources confined to regions with radii p = ",
pciaiMAX[ [ip, 111, "°."]
{c1MINplusMinus, alMINplusMinus, c2MINplusMinus, a2MINplusMinus} =
Table[pAciaiMIN[ [ip, j11, {J, 2, 5}]
{c1MAXplusMinus, alMAXplusMinus, c2MAXplusMinus, a2MAXplusMinus} =

Table[pAciaiMAX[ [ip, j11, {J, 2, 5}]
These uncertainties are for sources confined to regions with radii p = 12°.

ouf-]- {0.0034, 0.0013, 0.039, 0.0105}

ouf-]- {0.0069, 0.0026, 0.039, 0.011}

7 cl
nf-1= NOMIN[nSrc_, c1_, al_] := — -
4 nSrc*?
c2
oMIN[nSrc_, c2_, a2_] := —————
4 nSrc??
7T cl
n[-= nOMAX[nSrc_, cl1_, al_] := — +
4  nSrc®
c2
oMAX[nSrc_, c2_, a2_] := ——
4 nSrc??

The following probability distributions and significances make use of the above formulas for mean 7, and half-width o. They are

functions of the alignment angle 1 and the number of sources N.

1= probMIN[n_, nSrc_] := probMINO[ n, n@MIN[nSrc, c1MIN, alMIN], oMIN[nSrc, c2MIN, a2MIN] ]
= signiMIN[n_, nSrc_] := signiMIN@[n, nOMIN [nSrc, c1IMIN, alMIN], oMIN[nSrc, c2MIN, a2MIN]]

- probMAX[n_, nSrc_] := probMAXO[ n, n@MAX[nSrc, c1MAX, alMAX], oMAX[nSrc, c2MAX, a2MAX] ]
signiMAX[n_, nSrc_] := signiMAX@[n, nOMAX[nSrc, c1MAX, alMAX], oMAX[nSrc, c2MAX, a2MAX]]

4b. Section Summary
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Inf+]:= Print["The angular separation of the furthest source from the region center is ",

360.
Sort[angleSourceToCenter] [[-1]] (—] , "o,
2.7

" We choose the statistics constants a; and c;, 1 = 1,2, for
sources confined to regions with radii p = ", pciaiMIN[ [ip, 1]], °]
Print["The formulas also depend on the number of sources, nSrc = ", nSrc, "."]

Print["For this sample, but with random polarization directions,

the random runs give the smallest alignment angle 7min, fminroo™¥ = ",

360. " " 360.
—), ° &+ ", oMIN[nSrc, c2MIN, a2MIN] (—],

nOMIN[nSrc, c1MIN, alMIN] [
2.7 2.7

"°. (Random y)"]
Print["For this sample, but with random polarization directions,

the random runs give the largest avoidance angle fmax, Tmaxcmoo"¥ = ",
360. 360. ] ,

nOMAX[nSrc, c1MAX, alMAX] ( ), "o &+ ", oMAX[nSrc, c2MAX, a2MAX] (

2.7 2.7

"°. (Random y)"]

The angular separation of the furthest source from the region center is
11.1277°. We choose the statistics constants a; and
ci, 1 = 1,2, for sources confined to regions with radii p = 12°.

The formulas also depend on the number of sources, nSrc = 27.

For this sample, but with random polarization directions, the random runs give
the smallest alignment angle 7nin, Tint9Om¥ = 35.2602° + 3.29664°. (Random )

For this sample, but with random polarization directions, the random runs give
the largest avoidance angle Tnax, Tmax o'oY = 54.8311° + 3.28622°. (Random i)

5. Results using the Best Values ¢/n of the Polarization Directions

“Best” means we use the yn that were listed in the catalog. We calculate the alignment function 77(H) at the grid points H .
Given the alignment function 77(H) , one can find the smallest alignment angle 7,,,;, and the largest avoidance angle yax and
determine the significances for the alignment and avoidance of the polarization directions.

In Sec. 6 below, we consider other values of the polarization directions that are near the best values, consistent with uncertainty

oy in the measured values.

Sa. The alignment function 77(H) .

Definitions:

virSrc unit vectors along the polarization directions in the tangent planes of the sources

eN local unit vectors along local North

eE local unit vectors along local East

jnBarHj {,n(H)}, where j is the index for grid point /; and 7(H) is the average alignment angle at /;. See Eq. (1) in the
Introduction.

sortjnBarHj {.(H)}, sorted, with smallest angles 7(H) first.

jnBarMin {.M(H)}, the j and 77 for the smallest value of 7(H) , best alignment

nBarMin the smallest value of 7(H) , measures alignment of the polarization directions
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jnBarMax {j,(H)}, the j and 77 for the largest value of 7j(H) , most avoided

nBarMax the largest value of 77(H) , measures avoidance

nSxyn unit vector, S; X i, cross product of the radial vector to the source with the vector in the direction of the polariza-
tion

nSxHnj unit vector, S; X H , cross product of the radial vector to the source with the radial vector to the grid point H;
nnHj alignment angle between source and grid point /;, see Fig. 1

nBarHj alignment angle 77(/{;) between source and grid point H;, aveaged over all sources

jnBarHj {j, 7(H;) }, the j and 77 for grid point H;

signBarMin significance of the smallest alignment angle

sigrangenBarMin get the range of sigs using the plus/minus values on the parameters c;, a;
sigSmallyBarMin the smallest of the values in sigrangenBarMin

sigBignBarMin  the largest of the values in sigrangenBarMin

signBarMax significance of the largest alignment angle (i.e. avoidance)
sigrangenBarMax get the range if sigs using the plus/minus values on the parameters c;, a;
sigSmallyBarMax the smallest of the values in sigrangenBarMax

sigBignBarMax  the largest of the values in sigrangenBarMax

aHminDegrees  « of the point H,,;,where 7(H) is the smallest

0HminDegrees 0 of the point H,j,where 7(H) is the smallest

aHmaxDegrees  « of the point Hmaxwhere 77(H) is the largest

0HmaxDegrees ¢ of the point Hmaxwhere 7(H) is the largest

(* vy, ey, e unit vectors in the tangent plane of each source S;,

pointing along the polarization direction, local North,

and local East, respectively. See Fig. 1.x)

vySrc = Table[Cos[ yn[[i]] ] eN[ aSrc[[i]], &Src[[i]] ] +
sin[yn[[i]] ] eE[ aSrc[[i]l], &Src[[i]] 1, {i, nSrc}];

(* Analysis using Eq (5) in Ref. 4 to get 7 (H;). First nsu,
cos (ni) = |Wn.Vy, |, and then 7(H;), by Eq. (1). *)
jnBarHj =
Table[{j, (1/nSrc) Sum[ArcCos[ Abs[ rGrid[[j]1].vySrc[[i]] / ((rGrid[[j1] - (rGrid[[j1].
rSrc[[i]1]) rSrc[[i]]).(rGrid[[j]1] - (rGrid[[j]].rSrc[[i]])
rsrc[[i]]))"?] - @.00ee01 | , {i, nsrc}]}, {J, nGrid}];
sortjnBarHj = Sort[jnBarHj, #1[[2]] < #2[[2]] &];
jnBarMin = sortjnBarHj[[111; (» {3,7(H;)} for smallest 77 (H;) =)
nBarMin = jnBarMin[[2]];
jnBarMax = sortjnBarHj[[-1]1]; (+ {3,7(H;)} for largest 7(Hj) *)
nBarMax = jnBarMax[[2]] ;
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n-1= (*Significance of the smallest alignment angle npin .*)

signBarMin = signiMIN[nBarMin, nSrc];

sigrangenBarMin = Sort[Partition[Flatten[Table][
{signiMIN@ [nBarMin, n@OMIN[nSrc, c1MIN + y1l c1IMINplusMinus, alMIN + al alMINplusMinus],

oMIN[nSrc, c2MIN + y2 c2MINplusMinus, a2MIN + a2 a2MINplusMinus]], ¥1, al, ¥2, a2},

{v1, -1, 1}, {01, -1, 1}, {¥2, -1, 1}, {a2, -1, 1}] 1,51 1;

{sigrangenBarMin[[1]], sigrangenBarMin[[-1]1]};

sigSmallnBarMin = sigrangenBarMin[[1, 1]];

sigBignBarMin = sigrangenBarMin[[-1, 1]];

n-1= (*Significance of the largest avoidance angle fpax . *)

signBarMax = signiMAX[nBarMax, nSrc];

sigrangenBarMax = Sort[Partition[Flatten[Table][
{signiMAXe@ [nBarMax, n@MAX[nSrc, c1MAX + y1l c1IMAXplusMinus, alMAX + al alMAXplusMinus],

oMAX[nSrc, c2MAX + y2 c2MAXplusMinus, a2MAX + a2 a2MAXplusMinus]], ¥1, al, ¥2, a2},

{¥1, -1, 1}, {al1, -1, 1}, {¥2, -1, 1}, {a2, -1, 1}] 1,51 1;

{sigrangenBarMax[[1]], sigrangenBarMax[[-1]]};

sigSmallnBarMax = sigrangenBarMax[[1, 1]];

sigBignBarMax = sigrangenBarMax[[-1, 1]];

(» Equatorial coordinates (a,&) for the hubs Hgi, and Hy.x .*)
oHminDegrees = aGrid[[ jnBarMin[[1]] ]] (36@/ (2 7)) ; (*Hpin*)
SHminDegrees = &8Grid[[ jnBarMin[[1]] |] (360/ (27));

aHmaxDegrees = aGrid[ [ jnBarMax[[1]] |] (36@/ (27)); (*Hpax*)
SHmaxDegrees = 6Grid[[ jnBarMax[[1]] |] (360/ (27));

n-;= (*The names "jnBarMin", "jnBarMax" are similar to quantities below,
so save the current values labeled by "Best".=x)
(* jnBar entries: 1. grid point # , 2. alignment angle .=x)
{jnBarMinBest, jnBarMaxBest} = {jnBarMin, jnBarMax} ;

1= Print["The min alignment angle is nmin = ", jnBarMinBest[[2]] » (360. / (2. 7)),
"° , which has a significance of sig. = ", signBarMin, ", plus/minus = + ",
sigBignBarMin - signBarMin, " and - ", signBarMin - sigSmallnBarMin,

" , giving a range from sig. = ", sigSmallnBarMin, " to ", sigBignBarMin, " ."]

Print["The max avoidance angle is nmax = ", jnBarMaxBest[[2]] * (360. / (2. 7)),

"° , which has a significance of sig. = ", signBarMax, ", plus/minus = + ",
sigBignBarMax - signBarMax, " and - ", signBarMax - sigSmallnBarMax,

" , giving a range from sig. = ", sigSmallnBarMax, " to ", sigBignBarMax, " ."]

Print["These uncertainties are due to the uncertainties in the constants c;, a;."]
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The min alignment angle is nmin = 21.1667° , which has a significance of sig. =
0.0000116577, plus/minus = + ©0.000030202 and - 9.01817x10°°
, giving a range from sig. = 2.6395x107° to 0.0000418597 .

The max avoidance angle is nmax = 66.6554
° , which has a significance of sig. = ©0.000195551, plus/minus = + 0.000358332
and - ©0.00013804 , giving a range from sig. = 0.0000575103 to 0.000553883 .

These uncertainties are due to the uncertainties in the constants c;, aj.

5b. Plot of the Alignment Angle Function 7(H)

Definitions

ajojnBarHjTable {aj, 6;,7(H)} at each grid point H = H;, in degrees

nBarHjSmooth interpolation of @jdjnBarHjTable yields 7(H) as a smooth function of the («,0) of H
xynBarAitoffTable {X, ¥, (x,y)} , where x,y are Aitoff coordinates and 77(x,y) is the alignment angle
xyAitoffSources {x,y} Aitoff coordinates for the sources’ locations on the sphere

dnContourPlot separation of successive contour lines, in degrees

listCP list contour plot of 77(H) from xynBarAitoffTable

mapOfnBar contour plot of the alignment angle 7(H) , adorned with source locations and labels
rCenterSrc arithmetic average of the radial unit vectors to the sources, previously called sourceCenter
rHmin, rHmax radial unit vectors to the alignment and avoidance hubs H,,;, and Hmax

rPerpHmin (max) a unit vector in the plane of the great circle combining rCenterSrc and rHmin (max)
rGreatMinCircle(d) (Max) radial unit vector to a point on the great circle

aGreatMin (Max) longitude at the point for 6

0GreatMin (Max) latitude at the point for 6

xyAitoffGreatMin (Max)  Aitoff plot coordinates for the great circles

crossMin (Max) unit vector perpendicular, normal to the plane of the great circle

fminMA X greatcircles angle between the vectors normal to the planes of the two great circles
rCenterSrco = Sum[rSrc[[i]], {i, Length[rSrc]}];

nSrc
rCenterSrco

rCenterSrc = H
(rCenterSrcO. r‘Center‘Sr‘cO) /2.

. A 2.7 . 2.7
rHmin = er‘[ aHminDegrees (—) + 7w, - 5HminDegrees ( ) ];
360. 360.

rPerpHmin® = rHmin - (erin.rCenterSrc) rCenterSrc;
rPerpHmin®@

rPerpHmin = 3
(rPerpHmine.rPerpHmine)*/*

rGreatMinCircle[6_] := Cos[6] rCenterSrc + Sin[6] rPerpHmin

aGreatMin[6_] := aFROMr[rGreatMinCircle[O]]

6GreatMin[6_] := SFROMr[rGreatMinCircle[6]]

xyAitoffGreatMin = Table[{xH180[ aGreatMin[e] (366 / (2x)), sGreatMin[e] (360 / (2x)) |,
yH1808[ aGreatMin[e] (360 / (2r)), sGreatMin[e] (360 / (2x)) ]}, {e, 1, 360}];
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In[«]:=

Inf+]:=

In[«]:=

In[«]:=

Inf+]:=

(rHmin.rCentersSrc);
Print["The angle between the sample's center and the alignment hub Hpi, is ",
360.)
mo mn
s "]
2.7
The angle between the sample's center and the alignment hub H,;, is 13.904°.

2.7
) 1
360.

ArcCos |- (rHmin.rcCenterSrc) | (

2.7
rHmax = er'[ aHmaxDegrees ( ) + 7, - SHmaxDegrees (
360.

rPerpHmax® = rHmax - (erax.rCenterSrc) rCenterSrc;
rPerpHmaxo

rPerpHmax = 5
(rPerpHmax@. rPerpHmaxe) /2.

rGreatMaxCircle[6_] := Cos[©] rCenterSrc + Sin[6] rPerpHmax

aGreatMax[6_] := aFROMr[rGreatMaxCircle[©]]

&GreatMax[6_] := 6FROMr[rGreatMaxCircle[6]]

xyAitoffGreatMax = Table [ {xH180 [ aGreatMax[e] (360 / (2r)), 6GreatMax[e] (360 / (2x)) |,
yH188[ aGreatMax[e] (360 / (2r)), sGreatMax[e] (360 / (2x)) ]}, {e, 1, 360}];

(rHmax.rCentersrc) ;
Print["The angle between the sample's center and the avoidance hub Hp.,x is ",

360.
ArcCos [ (rHmax.rCentersrc) | (2 ), "e.m]
o« JT

The angle between the sample's center and the avoidance hub Hy.x is 57.0234°.

crossMin® = Cross [rHmin, rCenterSrc];

A crossMine
crossMin = H
(crossMin@.crossMin@) /%
crossMax@ = Cross [rHmax, rCenterSrc];
crossMax@
crossMax = H
(cr‘ossMaxO. crossMaxe) /2.
A A A 360.
eminMAXgreatcircles = ArcCos [crossMax.crossMin] (—),
2.7

(xThe following table ajéjnBarHjTable is created to be interpolated below,
yielding a smooth function nBarHjSmooth of the alignment angle 7 (H) over the sphere.x)
(» Table ajéjnBarHjTable
entries: 1. a 2. 6 3. alignment angle nBarRgnkj at grid point (all in degrees)*)
ajéjnBarHjTable = ( ajéjnBarHjTable® = {};
For[j =1, j < Length[jnBarHj], j++,
AppendTo[ ajéjnBarHjTabled, {aGrid[[j]] (360./ (2.x)), 6Grid[[j]]* (360./ (2. 7)),
jnBarHj[[3, 2]] » (360./ (2. 7)) }] ; If[360.= aGrid[[j]] =« (36@./ (2. 7)) >354.,
AppendTo[ ajéjnBarHjTabled, {aGrid[[j]] (360./ (2. n)) - 360.,
8Grid[[j]] = (36@./ (2. 7)), jnBarHj[[j, 2]] » (360./ (2. 7)) }] ] s

If[ +6. > aGrid[[j]] » (360./ (2. x)) 2@., AppendTo[ ajsjnBarHjTabled, {aGrid[[]j]] = (360./ (2.

7)) + 360, 6Grid[[j]] * (36@./ (2. 7)), jnBarHj[[], 2]] * (360./ (2. 7))}] ]
ajéjnBarHjTableo) ;
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nBarHjSmooth =Interpolation[ajéjnBarHjTable] (*The smooth alignment angle function 7 (H) .=*)
Interpolation: Interpolation on unstructured grids is currently only supported for InterpolationOrder->1 or
InterpolationOrder->All. Order will be reduced to 1.

Inter‘polatingFunction [ /\/ Domain: {{-5.92, 366.}, {-88., 88.}} ]

Output: scalar

(*Transcribe the alignment function #(H), the location of the sources,
and the Celestial Equator onto an Aitoff plot.=x)
xynBarAitoffTable = Partition[Flatten[Table|
{xH180@[a, 5], yH180[a, 6], nBarHjSmooth[a, 5]}, {a, 2., 358., 2.}, {5, -88., 88., 2.}]], 3];
(» The smooth alignment angle function 7 (H) = nBarHjSmooth mapped
onto a 2D Aitoff projection of the sphere. x)

xyAitoffSources = Table[ {xH180[ aSrc[[n]] (360/ (2x)), &Src[[n]] (360/ (27)) 1,
yH180[ aSrc[[n]] (360/ (27x)), 6Src[[n]] (360/ (2xm)) 1}, {n, nSrc}];
(*The Aitoff coordinates for the sources' locations.x)

xH180[0, 0]
~3.14159

(*» Contour plot of the alignment function nBarHjSmooth. =x)
dnContourPlot = 5;
(*, in degrees. %)1istCP = ListContourPlot[Union[xynBarAitoffTable (,{{xH180[aHminDegrees,
sHminDegrees | ,yH180[aHminDegrees, SHminDegrees|,nBarMinx (360./ (2.x))-1.0}},
{{xH180 [aHmaxDegrees, SHmaxDegrees],yH180 [aHmaxDegrees, SHmaxDegrees] ,nBarMaxx (360./ (2.7) ) +
1.0}}«) |, AspectRatio - 1/2, Contours - Table[n, {n, Floor[jnBarMin[[2]] * (360./ (2. 7)) ] +
1, Ceiling[jnBarMax[[2]] = (360./ (2. x)) ] - 1, dnContourPlot}],
ColorFunction - "TemperatureMap", PlotRange » {{-5.5, 5.5}, {-3, 3}}, Axes -> False,
Frame - False, (xPlotLabel-"The alignment function ﬁKH)",*)PlotLegends-aAutomatic];

| 21
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nf-}= (*Construct the map of 7 (H).x*)
mapOfnBar =
Show [ {1istCP, Table[ParametricPlot[{xH18@[a, 5], yH18@[a, 5]},
{6, -90, 90}, PlotStyle » {Black, Thickness[0.002]}, (xMesh-{11,5,0}
(%{23,11,0} %) ,MeshStyle-Thick, ) PlotPoints » 6], {a, @, 360, 30} ], Table|
ParametricPlot[{xH18@[a, 6], yH180[a, 61}, {a, @, 360}, PlotStyle » {Black, Thickness[0.002]},
(*Mesh-{11,5,0} (x{23,11,0} %) ,MeshStyle-Thick, ) PlotPoints » 6], {5, -60, 60, 30} ],
Graphics [ {PointSize[0.004], Text [StyleForm["N", FontSize -> 14, FontWeight -> "Plain"],
{0, 1.85}], (*Sources S:«)Green, Point[ xyAitoffSources |, Gray,
PointSize[0.002], Point[ xyAitoffGreatMin |, Point[ xyAitoffGreatMax |, Black,
Text [StyleForm|"Hy.x", FontSize » 12, FontWeight -> "Bold"], {-3.3, -1.8}],
{Arrow[BezierCurve[{{-3.3, -1.2}, {-1.3, -3.0}, {xH180[aHmaxDegrees - 180, -S5HmaxDegrees],
yH180 [aHmaxDegrees - 180, -SHmaxDegrees]}}]]},
Text [StyleForm|"Hyi,", FontSize » 12, FontWeight -> "Bold"], {3.3, -1.0}],
{Arrow[Beziercurve[{{3.3, -1.2}, {0.3, -3.0},
{xH18@ [aHminDegrees, SHminDegrees|, yH180[aHminDegrees, SHminDegrees|}}]]},
Text [StyleForm|"Hys,", FontSize » 12, FontWeight -> "Bold"], {-3.3, 1.0}],
{Arrow[BeziercCurve[{{-3.3, 1.2}, {-2.3, 2.0}, {xH188[aHminDegrees - 180, -SHminDegrees|,
yH180[aHminDegrees - 180, -sHminDegrees]}}]|]}, (++)
Text [StyleForm|"Hy.x", FontSize » 12, FontWeight -> "Bold"], {3.3, 1.0}] ,
{Arrow[BezierCurve[{{3.3, 1.2}, {2.3, 2.0},
{xH180 [aHmaxDegrees, SHmaxDegrees], yH180 [aHmaxDegrees, SHmaxDegrees] }}]]}
}1}, Imagesize »1.5-432];

Sc. Section Summary

This sample is an extreme case, the alignment hub H;, is very close to the sources.

We include the Great Circle from the center of the sources to the alignment hub H;, on the map. We also draw the Great Circle from
source center to the avoidance hub Hmax. The two Great Circles divide the sphere quite evenly, the two Great Circles are perpendicu-

lar at the two points where they cross, within experimental error.
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in[-]}= mapOfnBar
Print |
"Figure 5: The alignment function 7 (H), Eq. (1). The map is centered on (a,6)=(180°,0°),“]
Print["with a = @° on the left and a = 368° on the right, Equatorial Coordinates."]
Print["The sources are located at the dots, shaded ", Green, " ."]
Pr‘int["The smallest alignment angle is fpin = ",
Round [jnBarMinBest[[2]] (36@./ (2. 7)) ], "°, located at the"]
Print["alignment hubs Hyi, and -Hpi, in the areas shaded ", Blue, " . "]
Print["The hubs Hp;, and -Hp;, are located at (a,8) = ", Round[{aHminDegrees, sHminDegrees }]|,
" and ", Round[{aHminDegrees - 180, -SHminDegrees }|, " , in degrees."]
Print["The largest avoidance angle is T = ",

Round [jnBarMaxBest[[2]] (36@./ (2. 7)) ], "°, located at the"]
Print["avoidance hubs Hy. and -Hp, in the areas shaded ", Red, " . "]
Print["The hubs Hy,, and -Hp, are located at (a,8) = ",

Round [ {aHmaxDegrees - 180, -6HmaxDegrees }], " and at ",

Round [ {aHmaxDegrees, SHmaxDegrees }], " , in degrees."]

Pr‘int[“To guide the eye, two Great Circles are plotted, one through the sources' center and the
avoidance hubs H,,x and -H,.x. The other connects the center of the sources' locations
with the alignment hubs H,;, and -H,i,. The Great Circles are shaded Gray, ", Gray, " ]
Print["Notes: Although somewhat obscured by the distortion needed to plot a
sphere on a flat surface, the function 77(H) is symmetric across diameters.
Diametrically opposite points -H and H have the same alignment angle 77 (H) ."]

Outf+]=

/1A
IRy

T
22 27 32 37 42 47 52 57 62
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Figure 5: The alignment function 7 (H), Eq. (1). The map is centered on (o,5)=(180°,0°),
with o = 0° on the left and o = 360° on the right, Equatorial Coordinates.

The sources are located at the dots, shaded g .

The smallest alignment angle is 7pin = 21°, located at the

alignment hubs Hpin and -Hpin in the areas shaded g -

The hubs Hpi, and -Hpi, are located at (o,5) = {188, @} and {8, @} , in degrees.

The largest avoidance angle is 7jnax = 67°, located at the

avoidance hubs Hpax and -Hpax in the areas shaded g -

The hubs Hpax and -Hp.x are located at (a,8) = {137, -32} and at {317, 32} , in degrees.

To guide the eye, two Great Circles are plotted, one through the sources' center and the
avoidance hubs Hyax and -Hyax. The other connects the center of the sources' locations
with the alignment hubs Hpjn and -Hpin. The Great Circles are shaded Gray, [ -

Notes: Although somewhat obscured by the distortion needed to plot a
sphere on a flat surface, the function 77(H) is symmetric across diameters.

Diametrically opposite points -H and H have the same alignment angle 77 (H).

(*
SetDirectory[
"C:\\Users\\shurt\\Dropbox\\HOME_DESKTOP-OMRE50J\\SendXXX_CJP_CEJPetc\\SendViXra\\
20200715A1ignmentMethod\\20210505A1ignmentMethodv4\\20210515C1ump1QSOsNearNGP" ]
Export["20210424QSOnearbyHmin.pdf" ,mapOfnBar]

*)
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1= (#*Statisticsx)

Print["Statistics of the Alignment Function 7 (H) :"]

Print[" "]

Print["The number of sources: N = ", nSrc]

Print["The min alignment angle, nmin = ", jnBarMinBest[[2]] « (360./ (2. x)),
"e, is ", (n@MIN[nSrc, cIMIN, alMIN] - jnBarMinBest[[2]]) * (360. / (2. 7)),
"° below the most likely value, ",
neMIN[nSrc, cIMIN, alMIN] » (36@. / (2. x)), "°, for random runs."]

Print["Since the uncertainty o is ", oMIN[nSrc, c2MIN, a2MIN] « (36@. / (2. 7)),

"°, the difference ", (n@MIN[nSrc, c1MIN, alMIN] - jnBarMinBest[[2]]) « (360. / (2. 7)),
"e is ", (nQMIN[nSrc, c1MIN, a1MIN]-jnBarMinBest[[Z]]) /’oMIN[nSrc, c2MIN, a2MIN],
"os from the most likely random run value.“]

Print["Thus, the smallest alignment angle 7pin is ",
(nQMIN[nSrc, c1MIN, alMIN]-jnBarMinBest[[Z]]) /<ﬂWIN[nSrc, Cc2MIN, a2MIN],

"os below the most likely random run value.“]

Print[""]

Print["The largest avoidance angle, nmax = ", jnBarMaxBest[[2]] » (360./ (2. x)),
", is ", - (n@MAX[nSrc, c1MAX, alMAX] - jnBarMaxBest[[2]]) * (360. / (2.7)),

"° above the most likely value, ",
neMAX [nSrc, c1MAX, alMAX]  (36@. / (2. x)), "°, for random runs."]

Print["Since the uncertainty o is ", oMAX[nSrc, c2MAX, a2MAX] * (36e. / (2. 7)),

"°, the difference ", - (n@MAX[nSrc, c1MAX, alMAX] - jnBarMaxBest[[2]]) » (360. / (2. 7)),
"e is ", - ((n@MAX[nSrc, c1MAX, alMAX] - jnBarMaxBest[[2]]) / oMAX[nSrc, c2MAX, a2MAX] ),
"os from the most likely random run value."]

Print["Thus, the largest avoidance angle 7pax is ",

(jnBarMaxBest[[2]] - n@MAX [nSrc, c1MAX, alMAX]) /oMAX[nSrc, c2MAX, a2MAX],

"os above the most likely random run value."]

Statistics of the Alignment Function 7 (H) :

The number of sources: N = 27

The min alignment angle, nmin = 21.1667°, is
14.0934° below the most likely value, 35.2602°, for random runs.

Since the uncertainty o is 3.29664°, the difference
14.0934° is 4.275090s from the most likely random run value.

Thus, the smallest alignment angle 7, is 4.27509c0s below the most likely random run value.

The largest avoidance angle, nmax = 66.6554°, is
11.8243° above the most likely value, 54.8311°, for random runs.

Since the uncertainty o is 3.28622°, the difference
11.8243° is 3.598140s from the most likely random run value.

Thus, the largest avoidance angle 7uax is 3.59814c0s above the most likely random run value.
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m-1= Print["The center of the sources is a point that makes a great circle, shaded ",
Gray, " in Fig. 5, with the alignment hub Hpi,."]
Print["The center of the sources makes a second great circle, shaded ",
Gray, " in Fig. 5, with the avoidance hub Hax."]
Print["The angle between the planes of the two great circles is ",
eminMAXgreatcircles, "°."]

The center of the sources is a point that makes a great circle, shaded
[ in Fig. 5, with the alignment hub Hpi,.

The center of the sources makes a second great circle, shaded
[ in Fig. 5, with the avoidance hub Hpax.

The angle between the planes of the two great circles is 91.1259°.

6. Uncertainty Runs

6a. Creating and Storing Uncertainty Runs

For each “uncertainty run”, the polarization direction  for each source is allowed to differ from the best value ¥n by an amount
oY chosen according to a Gaussian distribution with mean (best) value ¢n and half-width oy, ¢ = yn + 6. Both values ¥n and oy

are taken from the catalogs.

Definitions:

rSrexrGrid  unit vector S; X H; in the direction of the cross product of the radial vector S; to a source with the radial vector H; to a
grid point
J7i the mean value u of the measurement Gaussian for ¢
o the uncertainty of the measured polarization position angle ¢
yData polarization directions = ymn + oY
runData collection of data to save from the uncertainty runs, see below for content list
nRunPrint  dummy index controlling when current TimeUsed and MemoryInUse are printed
Y Sre the polarization direction ¢ for the run.
rSrexySrc unit vector, S; X ;, cross product of the radial vector S; to the source with the vector ¥, in the direction of the polariza-
tion
jnBarToGrid {j, (H;)}, where j is the index for the grid point H; and 7(H;) is the alignment angle function, (1), at H;
sortjnBarToGrid ~ sort {j, 7(/{;)}, with the smaller angle 7(H) first.

jnBarMinl {j,m(H)} for the smallest value of 77(H) , best alignment
jnBarMax1 {j,m(H)}, for the largest value of 7(H) , most avoided
nBarMinData values of 7, from uncertainty runs, alignment

nBarMaxData values of Tax from uncertainty runs, avoidance

HminaData values of @ = « for hub H,,;, from uncertainty runs, alignment
HmindData values of ¢ =9 for hub H,;, from uncertainty runs, alignment
HmaxaData values of @ = « for hub Hmax from uncertainty runs, avoidance

HmaxdData values of ¢ =9 for hub Hmax from uncertainty runs, avoidance
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Tables:
yData entries: 1. Run# 2. ¥ Src, list of polarization position angles
runData entries: 1. Run# 2. {min, {@,0} at Hpin} 3. {Tmax, {@,0} at Hmax}

To create Uncertainty Runs, first calculate “rSrcxrGrid” and then evaluate the “For” statement in the following two cells. One can

save the results with the “Put[]” statements.
Once saved, there is no need to repeat the runs. Comment out the “rSrcxrGrid” and “For” statements by enclosing each in (*comment

brackets*). The data can be retrieved with the “Get” statements.

rSrcxrGridl = Table[ Cross[ rSrc[[i]], rGrid[[j]] 1, {i, nSrc}, {j, nGrid}];
(»first step: aw cross product, not unit vectorsx)
rSrcxrGrid = Table[ rSrcxrGridif[[i, j11/
(rSrexrGridi[[i, j]1].rSrcxrGridi[[i, j]] + 0.000001) > , (i, nSrc}, {j, nGrid}];
Clear[rSrcxrGridl];

(*rSrcxrGrid: table of the unit vectors perpendicular to the plane
of the great circle containing the source S; and the grid point Hjx)

nR = 5000; (xnumber of runs with the PPA § allowed by measurement uncertainty. =)
U =y¥n; o = oyn; runData = {}; YyData = {}; nRunPrint = 0;
For[nRun = 1, nRun < nR, nRun++,
If[nRun > nRunPrint, Print["At the start of run ", nRun, ", the time is ",
TimeUsed[], " seconds and the memory in use is ", MemoryInUse[], " bytes."];
nRunPrint = nRunPrint + 500] ;
¥Src = Table [RandomVariate [NormalDistribution[u[[i]], o[[i]1]1], {i, nSrc}];
(»table of PPA angles ¥ for the sources in region jO, in radiansx)
rSrcxySrc = Table[ Sin[¢Src[[i]]] eNSrc[[i]] -Cos[¥Src[[i]]] eESrc[[i]], {i, nSrc}];
(xtable of the cross product of rSrc and vector in direction of ¥Src,
a unit vectors)jnBarToGrid = Table[{j, (1/nSrc) Sum[ArcCos|
Abs[ rSrcxySrc[[i]].rSrcxrGrid[[i, j1] ] - ©.000001 ], {i, nSrc}1}, {j, nGrid}];
(*
{grid point #, value of the alignment angle nnHj[j] averaged over all sources,
in radians}x) sortjnBarToGrid = Sort[jnBarToGrid, #1[[2]] < #2[[2]] &];
(*jnBarToGrid, {j,n;j}, but sorted with the smallest alignment angles first
*)
jnBarMinl = sortjnBarToGrid[[1]]1; (* {j,nj}, at the grid point Hj with minimum 77«)
jnBarMax1 = sortjnBarToGrid[[-1]]; (* {J,nj},
at the grid point Hj with maximum 77%)AppendTo[yData, {nRun, ¥Src}];
AppendTo[runData, {nRun, { jnBarMinl[[2]],
{aGrid [ [ jnBarMinl[[1]] ]1, 6Grid [[ jnBarMinl[[1]] 1]1}}, { jnBarMax1[[2]],
{aGrid [[ jnBarMax1[[1]] 11, 8Grid [[ jnBarMax1[[1]] 1]1}}} ] (xcollect datax) |
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Inf«]:=

Inf-]:=

At the start of run 1, the time is 13.39 seconds and the memory in use is 214284616 bytes.

At the start of run 501, the time is 377.109 seconds and the memory in use is 231208232 bytes.
At the start of run 1001, the time is 743.218 seconds and the memory in use is 231748936 bytes.
At the start of run 1501, the time is 1096.95 seconds and the memory in use is 232297288 bytes.
At the start of run 2001, the time is 1453.58 seconds and the memory in use is 232846056 bytes.
At the start of run 2501, the time is 1810.16 seconds and the memory in use is 233394888 bytes.
At the start of run 3001, the time is 2160.5 seconds and the memory in use is 233943656 bytes.
At the start of run 3501, the time is 2513.25 seconds and the memory in use is 234492296 bytes.
At the start of run 4001, the time is 2865.47 seconds and the memory in use is 235041128 bytes.

At the start of run 4501, the time is 3217.08 seconds and the memory in use is 235589896 bytes.

Hint: You can save memory if you do not get the “yData”. The table y/Data is needed to reconstruct the exact values of the runData

table, but it is not needed in any following calculation.

SetDirectory[homeDirectory]; (xSave memory space; yData is not used below.x)
(*

Put [yData, "20210509PsiDataClumplRA175Dec10.dat” ] (xSave a new "yData"=x)

*)

(»yData=Get ["20210509PsiDataClumplRA175Dec10.dat"]; *) (xGet an old "yData"x)

Hint: Saving “runData” to a file avoids the time it takes to complete the “For” statement. Make the above “For” statement into a

remark so that it doesn’t evaluate.

SetDirectory[homeDirectory] ;
(*
Put[runData, "20210509runDataClumplRA175Decl10.dat”" ] (*Save a new "runData".x)
*)
(*
runData=Get ["20210509runDataClumplRA175Dec10.dat"];
%) (*»Get an old "runData".x)

Print["The number of uncertainty runs is ", Length[runData], "."]

The number of uncertainty runs is 5000.

nBarMinData = Table[runData[[il, 2, 1]] , {il, Length[runData]}];
nBarMaxData = Table[runData[[il, 3, 1]] , {il, Length[runData]}];
HminaData = Table[ runData[[il, 2, 2, 1]] , {il, Length[runData]}];
HminéData = Table[runData[[il, 2, 2, 2]], {il, Length[runData]}];
HmaxaData = Table[ runData[[il, 3, 2, 1]] , {il, Length[runData]}];
HmaxéData = Table[runData[[il, 3, 2, 2]], {il, Length[runData]}];

6b. The Effects of Uncertainty on the Smallest Alignment Angle T,

This section fits a Gaussian distribution to the 7, from the uncertainty runs.

Definitions

sortyBarMin sort the list of 77, from the uncertainty runs
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noB estimated mean of the Gaussian fit

oB estimated half-width of the Gaussian fit

histogramrange {min n, max n, An} for the histogram

hl0, hl histogram {n, bin height} tables needed to set up the NonlinearModelFit
nlmB non-linear model fit of a Gaussian to the 77, histogram

showNLMB plot of Gaussian and histogram

ParametersNLMB amplitude, half-width, and mean of the Gaussian fit

pTableNLMB table of parameter attributes, including standard error

.= sortnBarMin = Sort[nBarMinData];
nOB = mean[nBarMinData ]; (*Guess the mean for the Gaussian. x)
oB = stanDev[nBarMinData ]; (¥Guess the half-width. x)
histogramrange = {n@B -5 0B, n@B + 5 0B, 0.4 oB};
hle = HistogramList [sortnBarMin, histogramrange] ;
hl =
Table[{(1/2) (hle[[1, i1]] +hl@[[1, i1+1]]), h1@[[2, i1]]1}, {il, Length[ hl@[[2]] 1}];
nlmB = NonlinearModelFit[hl, aExp[- (1/2.) ((x-x@) /b) 2] ,
{{a, Length[sortnBarMin /6]}, {b, oB}, {x@, n@B}}, x]; (+x is nBarMins)

1= ShowNLMB = Show [ {Histogram|sortnBarMin, histogramrange,
PlotLabel - "Fnin ", AxesLabel - {"Tnin, radians”, "aR"}],
Plot[Normal[nlmB], {X, n@B -5 oB, n@B + 5 oB}, PlotLabel » "fnin"],
ListPlot[hl, PlotLabel - "7nin"] }]
Pr‘int["Figur‘e 6: The Gaussian fit to the alignment angle

Mmin histogram, where the height is the number “]
Pr'int["of runs AR in each bin of width AfRy;, = ", ©.40B, " radians. "]
Print["The total number of runs is R = = (AR) ", Length[runData], "."]

ﬁmin
AR

E
-

Out[«]= L
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Figure 6: The Gaussian fit to the alignment angle 7,i, histogram, where the height is the number
of runs AR in each bin of width A7f,in = ©.00596687 radians.

The total number of runs is R = % (AR) = 5000.
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n/-1= ParametersNLMB = {a, b, x0} /. nlmB["BestFitParameters"];
pTableNLMB = nlmB["ParameterTable"]
{onBarMinFit, nBarMinFit} = {ParametersNLMB[[2]] , ParametersNLMB[[3]] }; (xradiansx)

Estimate  Standard Error t-Statistic P-Value

799.527  10.5054 76.1063  3.83557x 10728
0.0148443 0.00022522  65.91 8.9616x 1027
x0 1037913 0.00022522 168338 1.03855x 10757

a
Out[+]=
utf« ] b

6¢. The Effects of Uncertainty on the Largest Avoidance Angle Tmax

This section fits a Gaussian distribution to the 7pyax returned by the uncertainty runs.

Definitions: Check the list of Definitions in Sec. 6b. Trade avoidance (Max) here for alignment (Min) there.

n[-}= sortnBarMax = Sort [nBarMaxData];

n@MaxB = mean [nBarMaxData ]; (*Guess the mean for the Gaussian. x)

oMaxB = stanDev[nBarMaxData ]; (xGuess the half-width.x)

histogramrangeMAX = {r@MaxB - 5 oMaxB, n@MaxB + 5 oMaxB, 0.4 oMaxB} ;

hleMax = HistogramList [sortnBarMax, histogramrangeMAX] ;

hlMax = Table[{(1/2) (hleMax[[1, i1]] + hl@Max[[1, i1+1]]), hleMax[[2, i1]]},
{i1, Length[ hleMax[[2]] 1}];

nlmMaxB = NonlinearModelFit[hlMax, a Exp[- (1/2.) ((x-x@) /b) 2] ,
{{a, 300.}, {b, oMaxB}, {x@, n@MaxB}}, x]; (¥x is nBarMax x)

i1 showNLMMaxB = Show[ {Histogram|sortnBarMax,
histogramrangeMAX, PlotLabel —» "fnax", AxesLabel » {"Tnax, radians”, "aR"}],
Plot [Normal[nlmMaxB], {X, n@MaxB - 5 oMaxB, n@MaxB + 5 oMaxB}, PlotLabel - "Fnax"] »
ListPlot [hlMax, PlotLabel » "Fnax"] }]
Print["Figure 7: The Gaussian fit to the avoidance angle mfpax

histogram. The bins have a width Afu.x = ", 0.4 cMaxB,
" radians and have a height equal to the number of runs AR in the bin."]
Print["The total number of runs is R = = (AR) = ", Length[runData], "."]
AR MNmax
800 - .

\

T

200 -

Out[]=

Tmax, radians

"
1.10 1.15 1.20

Figure 7: The Gaussian fit to the avoidance angle 7,.x histogram. The bins have a width Afyax =
0.00645648 radians and have a height equal to the number of runs AR in the bin.

The total number of runs is R = X (AR) = 5000.
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ParametersNLMMaxB = {a, b, x0} /. nlmMaxB["BestFitParameters"];

pTableNLMMaxB = nlmMaxB["ParameterTable"]

{onBarMaxFit, nBarMaxFit} = {ParametersNLMMaxB[[2]] , ParametersNLMMaxB[[3]] };
(*radiansx)

Estimate  Standard Error t-Statistic P-Value

799.002  8.28405 96.4506  2.12287 x 1073°
0.0160853 0.000192572  83.5287  4.98483x 1072
x0 |1.15318  0.000192572  5988.32  7.79346x 10770

6d. The Effects of Uncertainty on the Locations (@,0) of the Alignment Hubs H;,

Each uncertainty run returns an alignment hub H,;,. In this section, we calculate the mean and standard deviation to approximate
the distribution of the locations the Alignment Hubs H,;,.

In any one run, the analysis produces an alignment angle 77 at each grid point. There can be just one minimum alignment angle
Tmin, DUt there are two hubs, H,;, and —H,,;,, by the symmetry across a diameter. So we collect all the hubs together by moving the

—H in hubs across a diameter to join the H,y;, hubs.

Definitions
Hmina a in radians for Hy,;,
Hmind ¢ in radians for H;,

oaMinFitl  half-width for & uncertainty runs
aMinFitlmean for @ uncertainty runs

ooMinFitl  half-width for ¢ uncertainty runs

o0MinFitl mean for ¢ uncertainty runs

HminaAVE average over all uncertainty runs of @ for H,,
Hminad (a,0) table for ListPlot

IpHmin plot Hmin hubs from uncertainty runs

a1,2Minl values needed for framing the most likely hubs
01,2Minl ditto for latitude

(» Gather the hubs. Move the hubs across diameters,
Aa = 7, or around a complete circle, Aa = 360°,
if necessary, so that all hubs satisfy ©° < a < 180° .x)
Hmina® = HminaData;
Hmin&@ = HminséData;
HminoBy18@n = Round [Hmina® / ] ;
Hminal = Table [Hmina®[[il1]] - HminaBy18@n[[il]] », {il, Length[Hmina®]}];
Hmins1 = Table[ (-1)"mne®¥28en(lit] yminse[[i1]] , {il, Length[Hmin5@]}];
Hmina = Table[
If[Hminal[[i1]] < @, Hminal[[il1]] + 7t, Hminal[[i1]], "huh?"] , {il, Length[Hminal]}];
Hminé = Table[If[Hminal[[il]] <@, -Hmin&é1[[il1]], Hmins1[[i1]], "huh?"],
{i1, Length[Hmin&1]1}];
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mn-1= (*Check that 8° < a < 180° and -90° < & < 90° x)
(*ListPlot[{Sort[Hmina],Sort[Hminé&]},
PlotLabel-"a and & for H,i,, radians",AxesLabel-{"Run #","a,5"}]

(Sort [Hmina] [ [1]],Sort [Hmina] [[-1]1} (359 ) (xdegreesx)
{Sort[Hmin&] [[1]],Sort [Hmins] [[- 1]]}(360 ) (xdegreess)
*)

nf-1= {oaMinFitl, aMinFit1}
{oMinFitl, sMinFit1}

{stanDev[Hmina], mean[Hmina] }; (xradiansx)
{stanDev[Hmin&], mean[Hmin&] }; (xradiansx)

;= (*Define quantities for the plot of the H,j, from the uncertainty runs. =)

Hminaé = Sort[Table[ {Hmina[[i5]], Hmin&é[[i5]]}, {i5, Length[Hmina]l}]11];

{Hminaé[[1]], HminaS[[-1]]} ; (xradiansx)

{Hminas[[1]], Hminas[[-1]]1} (360. / (2. x)) ; (xdegreesx)

1pHmin = ListPlot [Hminas (360. / (2. 7)),
PlotRange -» { {0, 360}, {-90, 90}}, PlotMarkers -» Automatic,
AxesLabel » {"a, degrees", "5, degrees"}, PlotLabel » " (a,6) for the Hpi, hubs",
Ticks » {Table[{t, t}, {t, 0, 360, 45}], Automatic}];

alMinl = (aMinFitl - caMinFit1) (360. /(2. x));

>4

(
a2Minl = (aMinFitl + oaMinFit1) (360. / (2. x));
51Minl = (6MinFitl - o6MinFit1) (36e. /(2. 7));
52Minl = (8MinFitl + osMinFit1) (36@. / (2. 7));

6e. The Effects of Uncertainty on the Locations (a,0) of the Avoidance Hubs Hpmax.

Each uncertainty run returns an alignment hub Hpmax. In this section, we calculate the mean and standard deviation all such hubs

to approximate the distribution of the locations of the Avoidance Hubs Hpax.

Definitions: Explore the definitions for H,,;, at the start of Sec. 6d. Find the similarly named quantity by interchanging Max for Min.

Adjust the definition to the present context.

mn-;= (% Move hubs, if necessary, so that 8° =< a < 360° %)
Hmaxa® = HmaxaData;
Hmaxé0 = HmaxéData;
HmaxoBy18@n = Round [Hmaxa® / ] ;
Hmaxal = Table [Hmaxa®[[il]] - HmaxaBy18@n[[il]] », {il, Length[Hmaxa®]}];
Hmax51 = Table[ (-1)""®¥28en (1] ymaxse[[i1]] , {il, Length[Hmax50]}];
Hmaxa = Table[
If[0 > Hmaxal[[il1]], Hmaxal[[il1]] + x, Hmaxal[[i1]], "huh?"], {il, Length[Hmaxal]}];
Hmaxé = Table[If[© > Hmaxal[[il]], -Hmax&1[[il]], Hmaxs1[[il1]], "ah"],
{i1, Length[Hmax&1]1}];

n-1= (*Check that 8° < a < 180° and -90° < &6 < 90° x)
(xListPlot [ {Sort [Hmaxa],Sort[Hmaxs] },PlotRange- {-2, 21},
AxesLabel- {"Run #","a,é radians"},PlotLabel-"as, &s for Hp.x"]

{Sort [Hmaxa] [ [1]],Sort [Hmaxa] [[- 1]]}(360 ) (xdegreesx)
{Sort [Hmax5] [ [1]],Sort [Hmax&] [ [ - 1]]}(3“’ ) *) (+degreess)
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{oaMaxFit, aMaxFit} = {stanDev[Hmaxa], mean[Hmaxa]}; (xradiansx)
{oéMaxFit, 6MaxFit} = {stanDev[Hmax&], mean[Hmaxé]}; (xradiansx*)
(* Define quantities for the plot of the
locations of the H,,x from the uncertainty runs. x)
Hmaxaé = Table[{Hmaxoa[[i8]], Hmax&[[i8]]1}, {i8, Length[Hmax51}];
{HmaxaS6[[1]], Hmaxas[[-1]]1} ; (*radiansx*)
{Hmaxas[[1]], Hmaxas[[-1]]1} (360. / (2. x)) ; (xdegreesx)
1pHmax1 = ListPlot [Hmaxas (36@. / (2. rx)), PlotRange - {{0@, 360}, {-90, 90}},
PlotMarkers -» Automatic, AxesLabel -» {"a, degrees", "5, degrees"},
PlotLabel -» "Hy.x hubs ", Ticks -» {Table[{t, t}, {t, 0, 360, 45}], Automatic}];
alMax = (aMaxFit - caMaxFit) (36@./ (2. rx));
a2Max = (aMaxFit + caMaxFit) (36e. /(2. 7x));
51Max = (SMaxFit - o6MaxFit) (36e. / (2. 7));
52Max = (SMaxFit + o6MaxFit) (36e. / (2. 7));
6f. The Effects of Uncertainty on the angle 6 between the planes of the Sample to H,,;;, Great Circle and the Sample to Hmax Great
Circle.
These are the Gray lines in Fig. 5.
Definitions:
“uRuns” prefix results from the uncertainty runs
uRunsCrossMin unit vector normal to the Great Circle connecting the center of the source region with the alignment hub H,;,
uRunsCrossMax unit vector normal to the Great Circle connecting the center of the source region with the alignment hub Hmax
uRunséminMAXgreatcircles angle between the two normals in degrees
sortdminMAX sort “uRuns#minMA Xgreatcircles”, smallest 6 first

See Definitions above in Secs. 6a,6b for other quantities below. There you should find similarly named quantities.

uRunsCrossMin@ =
Table[Cross[er [Hmina[[i]], Hmin&[[i]]], sourceCenter ], {i, Length[Hmina]}];
uRunsCrossMin@[[i]]

URunsCrossMin = Table | ,
(uRunsCrossMin@[[i]].uRunsCrossMin@[[i]]) /2.

{i, Length[Hmina]}];
URunsCrossMax@ = Table[Cross[er [Hmaxa[[i]], Hmax&[[1i]]], sourceCenter ],
{i, Length[Hmaxa]}];
URunsCrossMax@[[1i]]

uRunsCrossMax = Table B
(uRunsCrossMax@ [ [i]].uRunsCrossMax@[[i]])Y/*

{i, Length[Hmaxa]}];

uRunseminMAXgreatcircles = Table [ArcCos [uRunsCrossMax[[i]].uRunsCrossMin[[i]]] (

{i, Length[Hmaxa]}];

360.

« 7T

)
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.= sorteminMAX = Sort[uRunseminMAXgreatcircles];
n06 = mean [uURunseminMAXgreatcircles]; (xGuess the mean for the Gaussian. =x)
06 = stanDev[uRunseminMAXgreatcircles ]; (xGuess the half-width.x)
histogramrange = {n@6 -5 06, n06 +5 06, 0.4 06} ;
hle = HistogramList [sorteminMAX, histogramrange] ;
hl =
Table[{(1/2) (hle[[1, i1]] +hl@[[1, i1+1]]), h1@[[2, i1]]1}, {il, Length[ hl@[[2]] 1}];
nlme = NonlinearModelFit[hl, aExp[- (1/2.) ((x-x@) /b) 2] ,
{{a, Length[sorteminMAX /6]}, {b, o6}, {x@, n@6}}, X]; (*x is eminMAX«)

inf-}= ShowNLM& = Show [ {Histogram[sorteminMAX, histogramrange,
PlotLabel -» "Angle © between the Two Gray Great Circles in Fig. 5",
AxesLabel -» {"o, degrees", "AR"}],
Plot [Normal[nlme], {x, n@6 -5 06, nO6 +5 c6}], ListPlot[hl] }]
Print["Figure 8: The Gaussian fit to the angle © histogram,
where the height is the number of runs AR in"]
Print[" each bin of width a6 = ", 0.406, " degrees."]
Print[" The total number of runs is R = =(AR) = ", Length[runData], "."]

Angle 6 between the Two Gray Great Circles in Fig. 5
!
600 | 7 B K

400

800 -
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Figure 8: The Gaussian fit to the angle © histogram, where the height is the number of runs AR in
each bin of width A6 = 1.47323 degrees.

The total number of runs is R = Z(AR) = 5000.

;.- ParametersNLMe = {a, b, x0} /. nlme["BestFitParameters"];
pTableNLMé = nlme["ParameterTable"]
{oeminMAXFit, eminMAXFit} = {ParametersNLMe[[2]] , ParametersNLMo[[3]] }; (xdegreesx*)

Estimate Standard Error t-Statistic P-Value

oup - @ 783396 26644 29.4024 374098 x 107"
b 378289 0.148563 254632  8.12067 x 10718
x0 | 923208 0.148563 621425 3.44853x 1074

6g. Map of the Hubs for the Uncertainty Runs

In this subsection, we map the locations of the many alignment hubs H.,,;, and the locations of the avoidance hubs Hmax that are

found in the uncertainty runs.
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Definitions:
xyAitoffHmin Aitoff coordinates for the alignment hubs H,;, from the uncertainty runs
xyAitoffHmax Aitoff coordinates for the avoidance hubs Hp,x from the uncertainty runs

xyAitoffOppositeHmin Aitoff coordinates for the —H;,
xyAitoffOppositeHmax Aitoff coordinates for the —Hmax
mapOfoyHminHmax plot of the alignment and avoidance hubs H;,, —Hin, Hmax, and —Hmax

n-1= (*The Aitoff coordinates for the hubs Hpi, locations.x)
xyAitoffHmin = Table[{xH18@[ Hmina [[n]] (360 / (27)), Hmins[[n]] (360 / (27)) ],
yH188[ Hmina [[n]] (360 / (2x)), Hmins[[n]] (36@/ (2x)) ]}, {n, Length[Hmin5 ]}];
(*The Aitoff coordinates for the hubs Hp.x locations.x)
xyAitoffHmax = Table[{xH180[ Hmaxa [[n]] (360 / (2x)), Hmaxs[[n]] (360 / (27)) ],
yH18@[ Hmaxa [[n]] (360 / (27x)), Hmaxs[[n]] (36@/ (2x)) ]}, {n, Length[Hminé ]}];
(*xThe Aitoff coordinates for the hubs -H,i, locations.x)
xyAitoffOppositeHmin = Table[{xH18@[ If[@ < Hmina [[n]] (360 / (27)) < +180,
Hmina [[n]] (360 / (27)) + 180, If[36@ > Hmina [[n]] (360 / (2x)) > 180,
Hmina [[n]] (360 / (2x)) - 188]], -Hmins[[n]] (360 / (27)) ],
yH180[ If[@ <Hmina [[n]] (360 / (27)) < +180, Hmina [[n]] (360 / (2x)) + 180,
If[360 > Hmina [[n]] (360 / (2x)) > 180, Hmina [[n]] (360 / (2 7)) - 180]],
-Hmins[[n]] (360 / (2x)) ]}, {n, Length[Hmins 1}];
(*xThe Aitoff coordinates for the hubs -H,.,x locations.x)
xyAitoffOppositeHmax =
Table[{xH180[ If[@ < Hmaxa [[n]] (360 / (27)) < +180, Hmaxa [[n]] (360 / (2x)) + 180,
If[360 > Hmaxa [[n]] (360 / (2x)) > 180, Hmaxa [[n]] (368 / (2x)) -180]],
-Hmaxs[[n]] (360 / (2x)) ], yH180[ If[@ < Hmaxa [[n]] (360/ (2x)) < +180,
Hmaxa [[n]] (360 / (2x)) + 180, If[36@ > Hmaxa [[n]] (360 / (2x)) > 180,
Hmaxa [[n]] (360 / (2x)) - 188]], -Hmax5[[n]] (360 / (2x)) ]}, {n, Length[Hmaxs51}];
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nf-}= (*Construct the map of uncertainty run H,;, and Hp,x hubs with + regions indicated.x)
mapOfoyHminHmax =
Show [ {Table[ParametricPlot [ {xH18@[a, 5], yH180[a, 6]},
{6, -90, 90}, PlotStyle » {Black, Thickness[6.002]}, PlotPoints - 60,
PlotRange - {{-7, 7}, {-3, 3}}, Axes »False]|, {a, @, 360, 30}],
Table[ParametricPlot[{xH180[a, 5], yH180[a, 6]}, {a, @, 360}, PlotStyle -»
{Black, Thickness[0.002]}, PlotPoints -» 60|, {5, -60, 60, 30} ]|, Graphics[{PointSize[0.007],
Text [StyleForm["N", FontSize -> 10, FontWeight -> "Plain"], {@, 1.85}], LightBlue,
(Hmin:«)Point[ xyAitoffHmin ], (#-Hmin:«)Point[ xyAitoffOppositeHmin |, LightRed,
(«Hmax: »)Point [ xyAitoffHmax |, (#-Hmax:s)Point[ xyAitoffOppositeHmax | >
Table[ParametricPlot|[{xH180@[a, 5], yH180[a, 61}, {5, 61Max, 62Max},
PlotStyle - {Purple, Thickness[0.002]}, PlotPoints » 60|, {a, alMax, a2Max, a2Max - alMax}],
Table[Par‘ametr‘icPlot[{xH180[a, 6], yH180[a, 61}, {a, alMax, a2Max},
PlotStyle - {Purple, Thickness[0.002]}, PlotPoints - 60|, {6, 61Max, 52Max, 62Max - 61Max}],
Table[ParametricPlot[{xH18@[a, 5], yH180[a, 61}, {5, -62Max, -51Max}, PlotStyle -
{Purple, Thickness[@.002]}, PlotPoints »60], {a, alMax + 180, a2Max + 180, a2Max - alMax} ],
Table[ParametricPlot|[{xH180[a, 5], yH180[a, 61}, {a, alMax + 180, a2Max + 180},
PlotStyle - {Purple, Thickness[0.002]}, PlotPoints - 6@], {5, -52Max, -51Max, &2Max - 51Max} ],
Table[ParametricPlot[{xH18@[a, 5], yH180[a, 6]}, {6, -62Minl, -51Min1},
PlotStyle - {Purple, Thickness[0.002]}, PlotPoints - 60],
{a; alMinl + 180, a2Minl + 180, a2Minl - alMini}],
Table[ParametricPlot[{xH18@[a, 5], yH180[a, 61}, {a, alMinl + 180, a2Minl + 180}, PlotStyle -
{Purple, Thickness[0.002]}, PlotPoints -»6@], {5, -62Min1, -61Minl, 52Minl - §1Min1}],
Table[ParametricPlot[{xH18@[a, &], yH180[a, 61}, {6, 61Minl, 62Min1}, PlotStyle -
{Purple, Thickness[0.002]}, PlotPoints » 60|, {a, alMinl, a2Minl, a2Minl - a1Min1}],
Table[ParametricPlot[{xH18@[a, 5], yH180[a, 61}, {a, alMinl, a2Minl}, PlotStyle -
{Purple, Thickness[0.002]}, PlotPoints »60], {5, 61Minl, 62Min1, 62Minl - 51Min1}] (=)},
ImageSize » 1.5+432, PlotLabel » "The Hubs Found from the Uncertainty Runs"];

6h. Section Summary
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n-1= Print["To estimate the effects of experimental uncertainty, there were ",
Length[runData], " uncertainty runs."]
Print["Uncertainty runs have polarization directions ¢ = yn + &y, ",
"where 6y is chosen with a normal
distribution of half-width oy about the best value yn."]

Pr-int["The uncertainty runs determine the smallest alignment angle to be nnuin = ",
nBarMinFit (36e. / (2. x)), "° + ", onBarMinFit (360. / (2. 7)), "°." ]
Print["The uncertainty runs determine the largest avoidance angle to be #nx = ",

nBarMaxFit (36@. / (2. x)), "° & ", onBarMaxFit (36@. /(2. 7)), "°." ]
Print["The uncertainty runs give the location
for one of the alignment hub H,;, as (a, 8§) =",
{aMinFit1 (360. / (2. 7)) + 180, - SMinFitl (360. / (2. 7))}, " + ",
{oaMinFit1 (36@. / (2. x)), osMinFitl (36@. /(2. 7))}, ", in degrees." ]
Print["The other hub, -Hpi,, is located diametrically opposite from Hpi,."]
Print["The uncertainty runs give the location of the avoidance hub Hy.x as (a, 8) =",
{oMaxFit (360. / (2. x)), sMaxFit (360./ (2.x))}, " = ",
{oaMaxFit (36@. / (2. 7)), oéMaxFit (360. / (2. x))}, ", in degrees." ]
Print["The other hub, -Hp.x, is located diametrically opposite from Hp.x ."]
Print["The uncertainty runs determine the angle © between the two grey Great
Circles in Fig. 5. to be 6 = ", eminMAXFit, "° + ", cominMAXFit, "°." ]

To estimate the effects of experimental uncertainty, there were 5000 uncertainty runs.

Uncertainty runs have polarization directions ¢ = yn + &y,
where &6y is chosen with a normal distribution of half-width oy about the best value yn.

The uncertainty runs determine the smallest alignment angle to be #ui, = 21.7226° + 0.850515°.
The uncertainty runs determine the largest avoidance angle to be #x = 66.0725° + 0.921618°.

The uncertainty runs give the location for one of the alignment hub H,i, as (a, &) =
{189.688, -1.392} + {2.20497, 2.43013}, in degrees.

The other hub, -Hpin, is located diametrically opposite from Hpi, .

The uncertainty runs give the location of the avoidance hub Hy.x as (a, &) =
{144.136, -24.9252} + {19.6147, 13.6058}, in degrees.

The other hub, -Hu.x, is located diametrically opposite from Hpax -

The uncertainty runs determine the angle © between
the two grey Great Circles in Fig. 5. to be © = 92.3208° + 3.78289°.
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in[- = mapOfoyHminHmax
Pr‘int[“Figur‘e 9: The ", Length[runData], " sets of hubs found for the uncertainty r‘uns."]

Print["The alignment hubs H,;, and -H,;, are plotted as light blue dots, ", LightBlue, ". ]
Pr‘int[“The avoidance hubs H,.x and -H,,x are plotted as pink dots, ", LightRed, ]
Pr‘int[“The most likely locations of the hubs are outlined in purple, ", Purple, “."]

The Hubs Found from the Uncertainty Runs

Out[~]=

Figure 9: The 5000 sets of hubs found for the uncertainty runs.
The alignment hubs Hpi, and -H,i, are plotted as light blue dots,
The avoidance hubs Hps,x and -Hy.x are plotted as pink dots,

The most likely locations of the hubs are outlined in purple, .

As a final image, we superimpose the map of the uncertainty run hubs H iy, —Hpin, Hmax, and —Hmax in Fig. 9 on the graph of the

alignment angle function 7(H), Fig. 5.
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In[e]:=
Show [ {mapOfnBar, mapOfoyHminHmax} ]
Print|
"Figure 10: Overlay Fig. 9, Uncertainty Run Hubs, onto Fig. 5, Alignment Function 7 (H)
using Best Values yn. Note that the light blue alignment hubs from the uncertainty
runs closely follow the areas of convergence (blue) for the best values yn. And
the pink avoidance hubs follow the areas of extreme divergence (red). One sees
that shifting the polarization directions slightly due to experimental uncertainty,
shifts the locations of the hubs slightly. The shifted hubs favor areas, in blue
and red, that are close to the extremes for the alignment function 7 (H) in Fig.5."]

out[+]=
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Figure 10: Overlay Fig. 9, Uncertainty Run Hubs, onto Fig. 5, Alignment Function 77 (H)
using Best Values yn. Note that the light blue alignment hubs from the uncertainty
runs closely follow the areas of convergence (blue) for the best values yn. And
the pink avoidance hubs follow the areas of extreme divergence (red). One sees
that shifting the polarization directions slightly due to experimental uncertainty,
shifts the locations of the hubs slightly. The shifted hubs favor areas, in blue
and red, that are close to the extremes for the alignment function 7 (H) in Fig.5.

7. Concluding Remarks

The sample of QSOs studied in this notebook has percent polarizations above 0.6%. Polarized starlight in the region is planned
to be studied in some future notebook. The data shows that polarized starlight in the region of these QSOs has much lower percent
polarizations, about 0.1% or so. This suggests the Milky Way contribution is small. While comparing optical and radio polarization
percentages could be innately faulty, it may be that the polarization for these radio QSOs originates with the QSO upon emission or
has developed enroute or some mix of the two.

By the survey in Fig. 3, one sees that very significantly aligned regions are rare with QSOs. This is unlike polarized starlight
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Inf[«]:=

sources in the Milky Way which has a large proportion of 5° regions well aligned, with —Log((S) often over 9, when surveyed as in
Fig. 3. While the percent polarization has a higher degree for QSOs compared with starlight, the significances of the alignments is
generally much lower for QSOs compared with stars. It may be worthwhile to search the sky near the very significant regions, the
color dots in Fig. 3, for objects that may have a polarizing effect on the radio waves from the QSOs.

If the alignment of the polarization directions of these 27 QSOs is due to some interaction with matter enroute, then the align-
ment hub H,;, being near the sources on the sky surely entails a different physical situation than with other situations having hubs
that are far from the sources. When the alignment is far from the sources, all sources are polarized in more or less the same direction.
A hub close to the sample on the sky, as with the 27 QSOs here, could indicate a magnetic field in different directions for the different
sources, yet organized in a way that produces very significant alignment. Whatever the successful explanations are, the explanation of
polarization directions aligning with nearby hubs is expected to differ in some essential ways from explanations that fit alignment

characterized by near equal position angles.
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