Evaluating the Alignment of the Polarized Radio Waves from 27 QSOs in a Region near the NGP

Richard Shurtleff *

Abstract

The sample of 27 quasars with polarized radio emissions located in a region near the North Galactic Pole is shown to have highly aligned polarization directions. Furthermore, by extending their polarization directions around the Celestial Sphere, the convergence of their polarization directions is shown to be close to the sources. Thus, parallax forces the position angles to vary with locations of individual sources. One suspects that, whatever physical explanation fits, the explanation for converging close to the sample is different from the explanation for alignments with near-equal position angles that converge far from the sample on the sky. The alignment is analyzed in this Mathematica notebook. Access to a .nb notebook is provided in the references.

Keywords: Polarized Radio Sources; Alignment; Quasi-stellar objects
*Department of Sciences, Wentworth Institute of Technology, 550 Huntington Avenue, Boston, MA, USA, 02115, orcid.org/0000-0001-5920-759X, e-mail addresses: shurtlefff@wit.edu, momentummatrix@yahoo.com
$\ln [\cdot]=$ Print["The date and time that this statement was evaluated: ", Now]
The date and time that this statement was evaluated: Mon 10 May 2021 06:03:02 GMT-4.
0 . Preface

The pdf version of this notebook is available online from the viXra archive.
To find the ready-to-run notebook follow the link in Ref. 1.

Notes:
(1) The pdf version quotes some numerical values that are associated with the particular settings and uncertainty runs that were current when the pdf version was created. Other sets of uncertainty runs, for a sufficiently large number of runs, should alter those numerical values only slightly.
(2) The notebooks in this series were created using Wolfram Mathematica, Version Number: 12.1, Ref. 2.
(3) The formulas for creating Aitoff plots were found on Wikipedia, Ref. 3.

The Hub Test

This notebook presents an application of the Hub Test, which is discussed more fully in Ref. 4. The basic idea is that polarization directions are well-aligned with each other when they are well-aligned with some point on the Celestial Sphere.

Consider the well-known prescription for finding Polaris, the North Star, based on the alignment of the direction from the Merak to Dubhe with Polaris. Guided by Fig. 1, let the source S be the star Merak, take the interval from Merak to Dubhe in place of the direction of polarization \hat{v}_{ψ}, and let Polaris be the point H. Then the alignment of the Merak to Dubhe direction \hat{v}_{ψ} with Polaris, the
point H, illustrates the concept of alignment in the Hub Test. With Merak as S, Merak-Dubhe as \hat{v}_{ψ}, and Polaris as H, the angle η would be about $\eta=3.47^{\circ}$. In that case, the blue great circle and the purple great circle in Fig. 1 would almost coincide.

Figure 1: The Celestial sphere is pictured on the left and on the right is the plane tangent to the sphere at the source S. The linear polarization direction \hat{v}_{ψ} lies in the tangent plane and determines the purple great circle on the sphere. A point H on the sphere and the point S determine a second great circle, the blue circle drawn on the sphere at the left. Clearly, H and S must be distinct in order to determine a great circle.

In Fig. 1, the "alignment angle" η is the acute angle η between the great circles at $S, 0^{\circ} \leq \eta \leq 90^{\circ}$. The alignment angle η measures how well the polarization direction \hat{v}_{ψ} matches the direction toward the point H. Perfect alignment occurs when $\eta=0^{\circ}$ and the two great circles overlap. Perpendicular great circles, $\eta=90^{\circ}$, indicates maximum "avoidance" of the polarization direction \hat{v}_{ψ} with the point H on the sphere. The halfway value, $\eta=45^{\circ}$, favors neither alignment nor avoidance.

With N sources $S_{i}, i=1, \ldots, N$, there are N alignment angles $\eta_{\text {iH }}$ for the point H and an average alignment angle $\bar{\eta}$ at H,

$$
\begin{equation*}
\bar{\eta}(\mathrm{H})=\frac{1}{N} \sum_{i=1}^{N} \eta_{\mathrm{iH}} . \tag{1}
\end{equation*}
$$

The alignment angle $\bar{\eta}(\mathrm{H})$ is a function of position H on the sphere. It is symmetric across diameters, $\bar{\eta}(\mathrm{H})=\bar{\eta}(-\mathrm{H})$, because great circles are symmetric across diameters.

The function $\bar{\eta}(\mathrm{H})$ measures convergence and divergence of the great circles determined by the polarization directions. For random polarization directions, the average $\bar{\eta}(\mathrm{H})$ should be near 45°, since each alignment angle $\eta_{\text {iH }}$ is acute, $0^{\circ} \leq \eta_{\text {iH }} \leq 90^{\circ}$, and random polarization directions should not favor any one value. Points H where the alignment angle $\bar{\eta}(\mathrm{H})$ is smaller than 45°, the great circles tend to converge, where $\bar{\eta}(\mathrm{H})$ is larger than 45°, the great circles can be said to diverge.

Thus the basic concept includes "avoidance", as well as alignment. Avoidance is high when the two directions \hat{v}_{ψ} and \hat{v}_{H} differ by a large angle, $\eta \rightarrow 90^{\circ}$. Perpendicular great circles at $S, \eta=90^{\circ}$, would indicate the maximum avoidance of the polarization direction and the point on the sphere. The N sources' polarization directions most avoid the points $H_{\max }$ and $-H_{\max }$ where the function $\bar{\eta}(\mathrm{H})$ takes its maximum value $\bar{\eta}_{\max }$. The locations of the most extreme divergence are called "avoidance hubs".

The N sources' polarization directions are best aligned with the points $H_{\min }$ and $-H_{\min }$ where the alignment angle is a minimum $\bar{\eta}_{\text {min }}$. The locations $H_{\text {min }}$ and $-H_{\text {min }}$ of their most extreme convergence are called "alignment hubs". Alignment and avoidance are equally viable, complementary concepts with the Hub Test.

The Hub test provides many calculated results to describe the collective behavior of the polarization directions in a sample. The alignment angle function $\bar{\eta}(\mathrm{H})$, Eq. (1), can be mapped on the Celestial Sphere to give a visual display. The smallest alignment angle $\bar{\eta}_{\min }$ and the largest avoidance angle $\bar{\eta}_{\text {max }}$ quantify the agreement of the directions. Known formulas, see Sec. 4 below, are available to calculate the significance of the alignment, i.e. the likelihood that random polarization directions would yield better results. The locations of the convergence hubs $H_{\min }$ and the divergence hubs $H_{\max }$ may provide clues to magnetic field direction and such quantities.

CONTENTS

0. Preface
1. Introduction
2. Coordinates, grid, and sundry basic formulas

2a. Coordinates
2b. Grid, sometimes called a mesh
2c. The mean and standard deviation are convenient functions. Set directories for getting and putting data.
2d. Section Summary
3. Polarization and Position Data

3a. Data
3b. Section Summary
4. Probability Distributions and Significance Formulas

4a. Formulas
4b. Section Summary
5. Results using the Best Values $\psi \mathrm{n}$ of the Polarization Directions

5a. The alignment function $\bar{\eta}(\mathrm{H})$
5b. Plot of the Alignment Angle Function $\bar{\eta}(\mathrm{H})$
5c. Section Summary
6. Uncertainty Runs

6a. Creating and Storing Uncertainty Runs
6 b . The Effects of Uncertainty on the Smallest Alignment Angle $\bar{\eta}_{\text {min }}$
6 c . The Effects of Uncertainty on the Largest Avoidance Angle $\bar{\eta}_{\max }$
6d. The Effects of Uncertainty on the Locations (α, δ) of the Alignment Hubs $H_{\text {min }}$
6e. The Effects of Uncertainty on the Locations (α, δ) of the Avoidance Hubs $H_{\text {max }}$.
6f. The Effects of Uncertainty on the angle between the planes of the Sample center to $H_{\text {min }}$ Great Circle and the Sample to $H_{\max }$ Great Circle.

6 g. Map of the Hubs for the Uncertainty Runs
6h. Section Summary
7. Concluding Remarks

References
$\ln [0]=$

1. Introduction

Electromagnetic radiation from QSOs has traveled a long way and, no doubt, has been passed along by various intergalactic media. Alternatively, it may be that the radio waves are polarized when emitted at the source. Either way, to have regions of the sky containing QSOs with aligned polarization, or some other way correlated, is certainly remarkable. It has been suggested, Ref. 5, that the polarization levels are too strong, a percent to several percent, for the cause to be local to the Milky Way. With the Coma Supercluster in the same general direction as these QSOs, some mechanism may be able to explain the alignment as occurring
enroute, or, as mentioned before, the polarizations could exist when the radio waves are emitted and then some other mechanism would be needed. In any case, the alignment is remarkable.

In this notebook, we analyze the alignment tendencies of the sample of 27 radio QSOs. The sample occupies a roughly 11° radius patch of sky centered on $(\mathrm{RA}, \mathrm{dec})=\left(178^{\circ}, 10^{\circ}\right)$ and is chosen based on a whole-sky survey of the radio QSOs in the Pelgrims 2014 catalog, Ref. 6 . The survey populated 5°-radius regions centered on the grid points of a 2° mesh and calculated the significance of each region's polarization direction alignment. See Fig. 3. The group that contains the 27 QSOs that are analyzed in this notebook consists of 14 very significantly aligned 5°-radius regions near the North Galactic Pole, one of which happens to be the most significantly aligned of all of the 5° regions.

The 27 QSOs in the sample make 27 great circles along the polarization directions. The smallest alignment angle $\bar{\eta}(H)$ occurs for at a hub $H_{\min }$ less than 15° southeast from the center of the sample. When the hub is this close, the polarization directions from different places in the sample must have different position angles due to parallax. The hub test has the advantage that it can detect such correlations.
2. Coordinates, grid, and sundry basic formulas

2a. Coordinates

Consider the "Celestial Sphere", a sphere in 3 dimensional Euclidean space. See Fig. 1 in the Preface. The sphere is also called the "sphere" or sometimes "the sky". The center of the sphere is the origin of a 3D Cartesian coordinate system with coordinates (x, y, z). The direction of the positive z-axis is due "North". Equatorial longitude is the Right Ascension α and latitude is the declination δ.

From a point-of-view located outside the sphere, as in the sketch in Fig. 1, one pictures a source S plotted on the sphere and, in the 2 D tangent plane at S, local North is upward and local East is to the right. A "position angle" at the point S on the sphere, such as the angle ψ in Fig. 1, is measured in the 2D plane tangent to the sphere at S. In the tangent plane as drawn in Fig. 1, the position angle ψ is measured clockwise from local North with East to the right.

Definitions:
er, eN, eE are unit vectors in a 3D Cartesian coordinate system
$(\alpha, \delta)=$ equatorial coordinates longitude and latitude
$\operatorname{er}(\alpha, \delta)=$ radial unit vectors from Origin
$\mathrm{eN}(\alpha, \delta)=$ local North at a point on the Celestial Sphere
$\mathrm{eE}(\alpha, \delta)=$ local East at a point on the Celestial Sphere
α FROMr(er) $=\alpha$ determined by radial unit vector er
δ FROMr(er) $=\delta$ determined by radial unit vector er

Aitoff Plot Functions
$\alpha \mathrm{H}(\alpha, \delta), \mathrm{xH}(\alpha, \delta), \mathrm{yH}(\alpha, \delta)$, where xH is centered on $\alpha=0$ and α increases from left-to-right, with $\alpha=-180^{\circ}$ on the left and $+180^{\circ}$ on the right
$\mathrm{xH} 180(\alpha, \delta), \mathrm{yH} 180(\alpha, \delta)$, where xH is centered on $\alpha=180^{\circ}$ and α increases from left-to-right, with $\alpha=0^{\circ}$ on the left and 360° on the right
$\operatorname{In}[\rho]:=$ (* For a Source at $(\alpha, \delta)=(\alpha, \delta)$: er, eN,
eE are unit vectors from Origin to Source, local North, local East, resp. *)
$\operatorname{er}\left[\alpha_{-}, \delta_{-}\right]:=\operatorname{er}[\alpha, \delta]=\{\operatorname{Cos}[\alpha] \operatorname{Cos}[\delta], \operatorname{Sin}[\alpha] \operatorname{Cos}[\delta], \operatorname{Sin}[\delta]\}$
$\mathrm{eN}\left[\alpha_{-}, \delta_{-}\right]:=\mathrm{eN}[\alpha, \delta]=\{-\operatorname{Cos}[\alpha] \operatorname{Sin}[\delta],-\operatorname{Sin}[\alpha] \operatorname{Sin}[\delta], \operatorname{Cos}[\delta]\}$
$\mathrm{eE}\left[\alpha_{-}, \delta_{-}\right]:=\mathrm{eE}[\alpha, \delta]=\{-\operatorname{Sin}[\alpha], \operatorname{Cos}[\alpha], 0\}$
\{"Check er.er $=1$, er.eN $=0$, er.eE $=0$, eN.eN
= 1, eN.eE = 0,eE.eE = 1, erXeE = eN, eEXeN = er, eNXer = eE: ",
$\{0\}=$ Union [Flatten [Simplify [\{er $[\alpha, \delta] . \operatorname{er}[\alpha, \delta]-1, \operatorname{er}[\alpha, \delta] . \operatorname{eN}[\alpha, \delta], \operatorname{er}[\alpha, \delta] . \operatorname{eE}[\alpha, \delta]$, $\mathrm{eN}[\alpha, \delta] \cdot \mathrm{eN}[\alpha, \delta]-1, \mathrm{eN}[\alpha, \delta] \cdot \mathrm{eE}[\alpha, \delta], \mathrm{eE}[\alpha, \delta] . \mathrm{eE}[\alpha, \delta]-1, \operatorname{Cross}[\operatorname{er}[\alpha, \delta], \mathrm{eE}[\alpha, \delta]]-$ $\mathrm{eN}[\alpha, \delta], \operatorname{Cross}[\operatorname{eE}[\alpha, \delta], \mathrm{eN}[\alpha, \delta]]-\operatorname{er}[\alpha, \delta], \operatorname{Cross}[\mathrm{eN}[\alpha, \delta], \operatorname{er}[\alpha, \delta]]-\mathrm{eE}[\alpha, \delta]\}]]]\}$
Out[0]= \{Check er.er $=1$, er.eN $=0$, er.eE $=0$, eN.eN = 1 , $e N . e E=0, e E . e E=1$, erXeE = eN, eEXeN = er, eNXer = eE: , True $\}$

Get (α, δ) in radians from a radial vector r :
$\ln [\cdot]:=\alpha \operatorname{FROMr}\left[r_{-}\right]:=\mathrm{N}[\operatorname{ArcTan}[\operatorname{Abs}[r[[2]] / r[[1]]]]] / ;(r[[2]] \geq 0 \& \& r[[1]]>0)$
$\left.\left.\left.\alpha \operatorname{FROMr}\left[r_{-}\right]:=\mathrm{N}[\pi-\operatorname{ArcTan}[\operatorname{Abs}[r[2]] / r[[1]]]]\right] / ;(r[2]] \geq 0 \& \& r[1]\right]<0\right)$
$\alpha \operatorname{FROMr}\left[r_{-}\right]:=N[\pi+\operatorname{ArcTan}[\operatorname{Abs}[r[[2]] / r[[1]]]]] / ;(r[[2]]<0 \& \& r[[1]]<0)$
$\left.\alpha \operatorname{FROMr}\left[r_{\text {_ }}\right]:=\mathrm{N}[2 . \pi-\operatorname{ArcTan}[\operatorname{Abs}[r[[2]] / r[[1]]]]] / ;(r[[2]]<0 \& \& r[1]]>0\right)$
$\alpha \operatorname{FROMr}\left[r_{-}\right]:=\pi / 2 . / ;(r[[2]] \geq 0 \& \& r[[1]]=0)$
$\left.\alpha \operatorname{FROMr}\left[r_{-}\right]:=3 \pi / 2 . / ;(r[[2]]<0 \& \& r[1]]=0\right)$
$\operatorname{In}[-]:=\delta \operatorname{FROMr}\left[r_{-}\right]:=\mathrm{N}\left[\operatorname{ArcTan}\left[r[[3]] /\left(\sqrt{ }\left(r[[1]]^{\wedge} 2+r[[2]]^{\wedge} 2\right)\right)\right]\right] / ;\left(\sqrt{ }\left(r[[1]]^{\wedge} 2+r[[2]]^{\wedge} 2\right)>0\right)$
$\delta \operatorname{FROMr}\left[r_{-}\right]:=\operatorname{Sign}[r[[3]]](\pi / 2) / ;.\left(\sqrt{ }\left(r[[1]]^{\wedge} 2+r[[2]]^{\wedge} 2\right)==0\right)$

The following Aitoff Plot formulas can be found in Wikipedia, Ref. 3.
For these formulas the angles α and δ should be in degrees.
They give an Aitoff Plot that is centered on $\left(0^{\circ}, 0^{\circ}\right)$
$\ln [\cdot]:=\alpha \mathrm{H}\left[\alpha_{-}, \delta_{-}\right]:=\alpha \mathrm{H}[\alpha, \delta]=\operatorname{ArcCos}[\operatorname{Cos}[((2 . \pi) / 360.) \delta] \operatorname{Cos}[((2 . \pi) / 360.) \alpha / 2]$.
$\mathrm{xH}\left[\alpha_{-}, \delta_{-}\right]:=\mathrm{xH}[\alpha, \delta]=(2 \cdot \operatorname{Cos}[((2 . \pi) / 360.) \delta] \operatorname{Sin}[((2 . \pi) / 360.) \alpha / 2].) / \operatorname{Sinc}[\alpha H[\alpha, \delta]]$
$\mathrm{yH}\left[\alpha_{-}, \delta_{-}\right]:=\mathrm{yH}[\alpha, \delta]=\operatorname{Sin}[((2 . \pi) / 360.) \delta] / \operatorname{Sinc}[\alpha \mathrm{H}[\alpha, \delta]]$
Using the following functions produces an Aitoff Plot that is centered on $\left(180^{\circ}, 0^{\circ}\right)$
$\ln [\cdot]:=$
xH180[$\left.\alpha_{-}, \delta_{-}\right]:=$
$\mathrm{xH} 180[\alpha, \delta]=(2 \cdot \operatorname{Cos}[(2 . \pi) / 360.) \delta] \operatorname{Sin}[(2 . \pi) / 360).(\alpha-180) / 2.].) / \operatorname{Sinc}[\alpha H[(\alpha-180),. \delta]]$ $y H 180\left[\alpha_{-}, \delta_{-}\right]:=y H 180[\alpha, \delta]=\operatorname{Sin}[((2 . \pi) / 360.) \delta] / \operatorname{Sinc}[\alpha H[(\alpha-180),. \delta]]$

2b. Grid, sometimes called a mesh

We avoid bunching at the poles by taking into account the diminishing radii of constant latitude circles as the latitude approaches the poles. Successive grid points along any latitude or along any longitude make an arc that subtends the same central angle d θ.

We grid one hemisphere at a time, then the grids are combined.
Definitions:
gridSpacing separation in degrees between grid points on and between constant latitude circles
grid spacing in radians
idN, ai, ji dummy indices, ID \#s for grid points, longitude, latitude
α pointH, δ pointH $\quad \alpha$ and δ of the grid points H_{j}
grid, gridN, gridS tables data associated with grid points, listings are below
nGrid number of grid points
α Grid longitudes at the grid points ($-\pi \leq \alpha \leq+\pi$)
δ Grid latitudes at the grid points ($-\pi / 2 \leq \alpha \leq \pi / 2$)
rGrid radial unit vectors from origin to grid points, in 3D Cartesian coordinates

Tables: grid, gridN and gridS

1. sequential point \# 2. α index \quad 3. δ index \quad 4. $\alpha(\mathrm{rad}) \quad$ 5. $\delta(\mathrm{rad}) 6$. Cartesian coordinates of the grid point
```
ln[0]:=
    gridSpacing = 2.(*, in degrees.*);
In[\rho]:= (*KEEP this cell - DO NOT DELETE*)
    (*The Northern Grid "gridN". *)
    de1 = ((2. \pi) / 360.) gridSpacing;
    (*Convert gridSpacing to radians*)gridN = {};
    idN = 1;
    For[\deltaj=0., \deltaj < / / (2. de1), \deltaj ++, \deltapointH= \deltaj dө1;
    For[ ai = 0., ai < Ceiling[((2.\pi) / de1) (Cos[\deltapointH] + 0.01)],
        ai++, \alphapointH = ai dө1/(Cos[\deltapointH] + 0.01);
        AppendTo[gridN, {idN, ai, \deltaj, \alphapointH, \deltapointH, er[\alphapointH, \deltapointH]}];
        idN = idN + 1
    ]]
    (*KEEP this cell - DO NOT DELETE*)
    (*The Southern Grid "gridS". *)
    dө1 = ((2.\pi) / 360.) gridSpacing;(*Convert gridSpacing to radians*)
    gridS = {};idN = 1;
    For[ }\delta\mathbf{j}=1., \deltaj <\pi/ (2. dө1), \deltaj ++, \deltapointH=-\deltaj dө1; 
    For[ ai = 0., ai < Ceiling[((2. \pi) / dө1) (Cos[\deltapointH] + 0.01)],
        ai++, \alphapointH = ai d01/(Cos[\deltapointH] + 0.01);
        AppendTo[gridS, {idN, ai, \deltaj, \alphapointH, \deltapointH, er[\alphapointH, \deltapointH]}];
        idN = idN + 1
    ]]
    (*KEEP this cell - DO NOT DELETE*)
    grid = {}; j = 1;
    For [jN=1, jN < Length[gridN], jN++, AppendTo[grid, {j, gridN[[jN, 2]],
        gridN[[jN, 3]], \alphaFROMr[gridN[[jN, 6]] ], \deltaFROMr[gridN[[jN, 6]] ], gridN[[jN, 6]]}];
    j= j+1]
    For[jS = 1, jS < Length[gridS], jS ++, AppendTo[grid, {j, gridS[[jS, 2]],
        gridS[[jS, 3]], \alphaFROMr[gridS[[jS, 6]] ], \deltaFROMr[gridS[[jS, 6]] ], gridS[[jS, 6]]}];
    j=j+1]
mn[\rho]:= nGrid = Length[grid];
```

In[$]$]= α Grid = Table[grid[[j, 4]], \{j, nGrid\}];
סGrid = Table[grid[[j, 5]], \{j, nGrid\}];
rGrid = Table[grid[[j, 6]] , \{j, nGrid\}];

2c. The mean and standard deviation are convenient functions. And we identify directories for getting and putting data.

Definitions
mean the arithmetic average of a set of numbers, $\frac{1}{N} \sum_{i=1}^{N} n_{i}$
stanDev the standard deviation. Given a set of N numbers n_{i} with mean value m, the standard deviation is $\left(\frac{1}{N} \sum_{i=1}^{N}\left(n_{i}-m\right)^{2}\right)^{1 / 2}$, the square root of the average of the squares of the differences of the numbers with the mean. Note that we divide by N to get the average of the deviations squared.
catalogDirectory directory containing the catalog files
homeDirectory directory containing the notebook and data files
$\ln [\circ]:=$ mean[data_] $:=(1 /$ Length[data] $)$ Sum[data[[i4]], \{i4, Length[data] \}];
(* arithmetic average *)
stanDev[data_] :=
$\left((1 / \operatorname{Length}[d a t a]) \operatorname{Sum}\left[\left(\right.\right.\right.$ data [[i5]] $-\operatorname{mean}[\text { data] })^{2},\{i 5, \text { Length [data] \}] })^{1 / 2}$
(*standard deviation*)
$\ln [\cdot]:=$ catalogDirectory =
"C:
Users
shurt
Dropbox
HOME_DESKTOP-0MRE50J
SendXXX_CJP_CEJPetc
SendViXra
 20200715AlignmentMethod
20200715AlignmentMMAnotebooks";
(* location of the catalog data file on my computer*)

```
homeDirectory =
```

 "C: \\Users\\shurt\\Dropbox\\HOME_DESKTOP-0MRE50J\\SendXXX_CJP_CEJPetc\\SendViXra\\
 20200715AlignmentMethod\\20210505AlignmentMethodv4\\20210515Clump1QSOsNearNGP";
 (*The notebook file and data files for this notebook are put in this directory. *)
 2d. Section Summary
$\operatorname{In}[\cdot]:=$ Print["The grid points are separated by gridSpacing = ", gridSpacing, "० arcs along latitude and longitude."]
Print["The number of grid points is ", nGrid, " ."]
The grid points are separated by gridSpacing $=2 .^{\circ}$ arcs along latitude and longitude.
The number of grid points is 10518 .
3. Polarization and Position Data

3a. Data

The Pelgrims 2014 catalog incorporates data from the large JVAS/CLASS 8.4 Ghz catalog Jackson 2007, Refs. 6 and 7. The Pelgrims 2014 catalog sources were filtered from Jackson 2007 sources by identification as QSOs, for percent polarization, $\mathrm{p}>0.6 \%$,
for the largest fractional uncertainty in percent polarization, $\sigma \mathrm{p} / \mathrm{p}<0.6 \%$, and for uncertainty in the polarization position angle $\sigma_{\psi}<16^{\circ}$. The data is converted to convenient units, angles in radians, and reordered in a notebook The result is the basic data file "data00".
(The files on my computer: 20200713JVAS1450Todata00a.nb, 20200718data08JVAS1450.dat, JVAS_1450A.dat.txt, 20210418Survey1450QSOs.nb .)

Definitions:

data00 the catalog data, Pelgrims 2014
firstClumpQsosIDinData001450 record numbers in the catalog of the QSOs in the sample
nSrc number of sources
$\alpha \mathrm{Src} \quad$ right ascension, longitude (radians)
$\delta \mathrm{Src} \quad$ declination, latitude (radians)
$\psi \mathrm{n} \quad$ PPA, polarization position angle: clockwise from North with East to the right.
$\sigma \psi \mathrm{n} \quad$ uncertainty in PPA
percentPol percentage of linear polarization
rSrc unit vector from Origin to Sources on Celestial Sphere
eNSrc Local North at the ith Source
eESrc Local East at the ith Source
sourceCenter unit radial vector to the arithmetic center of the sources
angleSourceToCenter angle from Source to Center

Input Sources: data00 is the data table saved in the file "20200718data08JVAS1450.dat", created in the notebook "20200713JVAS1450Todata00a.nb".

20200718data08JVAS1450.dat = data table called "data00" below.
Notes: Input must be in the correct units, especially angles in radians. The polarization position angle is measured clockwise from local North with East to the Right.
data00:
1.Object \# 2. Ra (rad) 3. Dec (rad) 4. $\psi(\mathrm{rad}) \quad$ 5. $\sigma \psi(\mathrm{rad}) \quad 6 . \mathrm{z} \quad$ 7. p (\%) 8. $\sigma \mathrm{p}(\%)$

Catalog data
$\ln [\cdot]:=$ SetDirectory[
"C:
Users
shurt
Dropbox
HOME_DESKTOP-0MRE5OJ
SendXXX_CJP_CEJPetc
SendViXra
20200715 AlignmentMethod
20200715AlignmentMMAnotebooks"]
data00 = Get["20200718data08JVAS1450.dat"];
Length [\%]
Out[$[$]= C:\Users \shurt \Dropbox \backslash HOME_DESKTOP-0MRE50J \backslash SendXXX_CJP_CEJPetc
SendViXra \20200715AlignmentMethod $\backslash 20200715 A l i g n m e n t M M A n o t e b o o k s$

```
\(\ln [-]:=\operatorname{rai}\left[i_{-}\right]:=\operatorname{rai}[i]=\operatorname{data00}[[i, 2]]\) (*RA of \(i\) th source*)
    \(\operatorname{deci}\left[\mathbf{i}_{-}\right]:=\operatorname{deci}[i]=\operatorname{data00}[[i, 3]] \quad(* \operatorname{dec} *)\)
    \(\psi i\left[i_{-}\right]:=\psi i[i]=\operatorname{data} 00[[i, 4]]\) (*PPA,
    polarization position angle: clockwise from North with East to the right. *)
    \(\sigma \psi i\left[i_{-}\right]:=\sigma \psi i[i]=\operatorname{data00}[[i, 5]]\)
    zi[i_] := data00[[i, 6]] (*redshift found by Pelgrim's using NED*)
    \(\operatorname{ri}\left[i_{-}\right]:=r i[i]=\operatorname{er}[r a i[i], \operatorname{deci}[i]]\)
    (*unit vector from Origin to ith Source on Celestial Sphere*)
    \(\mathrm{vNi}\left[\mathrm{i}_{-}\right]:=\mathrm{vNi}[\mathrm{i}]=\mathrm{eN}[\mathrm{rai}[\mathrm{i}]\), deci[i]](*North*)
    \(\mathrm{vEi}\left[\mathrm{i}_{-}\right]:=\mathrm{vEi}[\mathrm{i}]=\mathrm{eE}[\mathrm{rai}[\mathrm{i}]\), deci[i]] (*East*)
    \(\mathrm{v} \psi \mathrm{i}\left[\mathrm{i}_{-}\right]:=\mathrm{v} \psi \mathrm{i}[\mathrm{i}]=\operatorname{Cos}[\psi \mathrm{i}[\mathrm{i}]] \mathrm{vNi}[\mathrm{i}]+\operatorname{Sin}[\psi \mathrm{i}[\mathrm{i}]] \mathrm{vEi}[\mathrm{i}]\) (*unit vector in direction of PPA*)
    \(\mathrm{nS} \times \psi \mathrm{i}\left[\mathrm{i}_{-}\right]:=\mathrm{nSx} \psi \mathrm{i}[\mathrm{i}]=\operatorname{Sin}[\psi \mathrm{i}[\mathrm{i}]] \mathrm{vNi}[\mathrm{i}]-\operatorname{Cos}[\psi \mathrm{i}[\mathrm{i}]] \mathrm{vEi}[\mathrm{i}](* \mathrm{r} \operatorname{Cross} \mathrm{v} \psi *)\)
```

Clump 1 QSO data (from 20210418Survey1450QSOs.nb, a survey with 5°-radius regions)
$\ln [\cdot]=$ firstClumpQsosIDinData001450 = \{659, 660, 663, 667, 674, 680, 682, 690, 695, 696, 698, 707, 712, 714, 718, 720, 721, 727, 728, 731, 734, 744, 746, 751, 752, 762, 764\};
$\ln [\cdot]=$ (*right ascension in radians*)
$\alpha \mathrm{Src}=10^{-6}$.
$\{2940$ 786, 2950332,2962 501, 2977 947, 3000 259, 3006888,3013 383, 3037 854, 3060 196, 3063 615, 3077 693, $3108571,3111962,3114578$, $3131037,3137987,3138954,3154756$, 3156 278, $3164771,3173054,3207036,3209$ 928, 3222030,3222 168, 3239 225, 3245921$\}$;
$\ln [v]=\mathrm{nSrc}=$ Length [$\alpha \mathrm{Src}$]
Out $[0]=27$
$\ln [\sigma]=$ (*declination in radians*)
$\delta S r c=10^{-6}$. $\{256694,148170,219533,315742,103421,291870,190246,258405$, 176105, 275 734, $85942,132052,161$ 164, 173 344, $290596,52995,32695,114811$, 73 978, 95 356, 212 862, 148 171, 158862, 193466, 109659, 73 672, 119 278\};
$\ln [\cdot]=$ (* position angle in radians*)
$\psi \mathrm{n}=10^{-6} .\{1788962,1120501,2185152,2724459,2022837$, 2553 417, 2045 526, 2857 104, 1733 112, 2485 349, 1877 974, 2331 760, 2406 809, 2277 655, 1937 315, 1106 539, 1 799 434, 2961 824, 2586 578, 2912 955, 1925 098, 2600 541, 2188 643, 2352 704, 2827 433, 1527 163, 2905 973\};
$\ln [\sigma]=$ Histogram $\left[\psi n\left(\frac{360 .}{2 . \pi}\right),\{12\}\right.$, PlotLabel \rightarrow "PPA ψ, number ΔR per bin", AxesLabel $\rightarrow\{" \psi ", " \Delta R "\}$, PlotRange $\rightarrow\{\{0,200\}$, Automatic $\}]$
Print["Figure 2. Distribution of position angles for the
27 polarization directions in the sample. Note the fairly even distribution over sixty degrees or so, $\psi=100^{\circ}$ to $\psi=160^{\circ}$."]

PPA ψ, number $\triangle R$ per bin

Figure 2. Distribution of position angles for the 27 polarization directions in the sample. Note the fairly even distribution over sixty degrees or so, $\psi=100^{\circ}$ to $\psi=160^{\circ}$.
$\ln [\rho]:=$ (*uncertainty in ψ in radians*)
$\sigma \psi \mathrm{n}=10^{-6 .}\{4242,252,2254,99,106992,51458,112351,26729$,
$137622,18357,10877,271821,37352,134004,48856,98592,277921$,
$7249,5633,5724,66923,35001,138200,114372,105062,7815,7653\}$;
In[॰]:= (* \% polarization*)
percentPol $=10^{-6}$.
$\{2386846,4130478,2023713,1658885,1784232,1979194,2210679,6381769,5954787$, 2903853,3866 300, 3070517,1080690 , 1854 161, $492130,2652914,10217777,3754$ 306, $1874058,3174907,604797,653203,5457402,615497,16210481,901464,3306869\}$;
$\ln [$ • $]:=$ (* uncertainty in \% polarization*)
opercentPol $=10^{-6 .}\{20249,2078,9121,328,381771,203679,496710,341137$, $1638906,106607,84105,1669146,80727,496898,48084,523076,5679057$, $54428,21111,36344,80945,45723,1508313,140783,3405959,14090,50611\}$;
$\ln [\cdot]:=$ (*Redshift*)
redshift =
10 ${ }^{-6 .}\{867400,486000,2125700,1040000,2217000,1996700,1323900,603700,1051400$, $299000,1343600,876100,695900,895000,1061200,1009800,2440000,2180900$, $1226000,1300000,890500,2359000,2721600,1404000,2078200,966000,1189000\}$;
$\ln [\rho]:=\mathrm{rSrc}=\operatorname{Table}[\mathrm{er}[\alpha \operatorname{Src}[[\mathrm{i}]], \delta \operatorname{Src}[[\mathrm{i}]]$], \{i, nSrc\}];(*calculated from Input.*) eNSrc = Table[eN[$\alpha \operatorname{Src}[$ [i]], $\delta S r c[[i]]$], \{i, nSrc\}]; (*calculated from Input.*)
eESrc = Table[eE[α Src[[i]], $\delta S r c[[i]]$], \{i, nSrc\}]; (*calculated from Input.*)

```
In[v]:= sourceCenter0 = \frac{1}{nSrc}}\operatorname{Sum[rSrc[[i]], {i, nSrc}];
sourceCenter = \frac{sourceCenter0}{(\mathrm{ sourceCenter0.sourceCenter0)1/2}};
(*unit radial vector to the arithmetic center of the sources.*)
angleSourceToCenter = Table[ArcCos[rSrc[[i]].sourceCenter], {i, nSrc}];
```

3a. Section Summary

We consider Quasi-Stellar Objects, QSOs. The data is found in Pelgrims 2014, Ref. 6, a catalog of 1450 QSOs that have been identified as QSOs in the earlier JVAS/CLASS 8.4Ghz catalog Jackson 2007 that has 12700 records. Ref. 7 Then 5° radius regions are constructed, one on each of the 10518 grid points as in Sec. 2b. The 1450 QSOs were assigned to the regions based on location and we calculated the significance of the alignment of the polarization directions for the sources in each region.

The QSOs selected for this notebook satisfied many requirements: (i) have 7 or more sources in order to use the significance formulas in Sec. 4 accurately, (ii) have longitude RA $165^{\circ} \leq \alpha \leq 200^{\circ}$, (iii) have latitude dec $0^{\circ} \leq \delta \leq 30^{\circ}$, (iv) whose QSOs are very significantly aligned, $S \leq 10^{-2}$. There are 14 regions satisfying (i) - (iv) containing a total of 27 sources.

Out[-]=

Figure 3. Survey of polarized radio QSOs. (Equatorial Coordinates, centered at $(\alpha, \delta)=\left(180^{\circ}, 0^{\circ}\right), \alpha=360^{\circ}$ on the right.) The 1450 QSOs were grouped into 5° radius regions centered on grid points. Those regions having at least 7 QSOs are plotted as gray dots at the central grid point. Just 35 regions showed very significant alignment, i.e. $S \leq 0.01=10^{-2}$, or, equivalently, $-\log _{10} S \geq 2.0$, and these are plotted as color dots. The indicated clump of 14 regions was selected for the analysis. There are 27 QSOs in the combined area of the 14 regions.
$\ln [$ [$]=$ Print["There are ", nSrc, " sources in the sample."]
Print["Check that the Sample obeys the data cuts:"]
Print [
"Check that the smallest \% polarization p in the sample is 0.5% or more. Smallest: ", Sort[percentPol][[1]], "\% ."]
Print["Check that the largest fractional uncertainty in \% polarization, $\sigma p / p$,
is less than 0.6 . Largest: ", Sort[opercentPol/percentPol][[-1]], "."]
Print["Check that the largest PPA ψ uncertainty $\sigma \psi$ is less than 16°. Largest: ",
Sort $[\sigma \psi n][[-1]]\left(\frac{360 .}{2 . \pi}\right)$, "。."]

There are 27 sources in the sample.
Check that the Sample obeys the data cuts:
Check that the smallest \% polarization p in the sample is 0.5% or more. Smallest: 0.49213\% .
Check that the largest fractional uncertainty
in \% polarization, $\sigma p / p$, is less than 0.6 . Largest: 0.555802 .
Check that the largest PPA ψ uncertainty $\sigma \psi$ is less than 16°. Largest: 15.9237°.
$\ln [\cdot]:=\operatorname{ListPlot}\left[\operatorname{Table}\left[\{\alpha \operatorname{Src}[[j]], \delta \operatorname{Src}[[j]]\}\left(\frac{360 .}{2 . \pi}\right),\{j, \operatorname{nSrc}\}\right]\right.$,
PlotRange $\rightarrow\{\{0,360\},\{-90,90\}\}$,
Ticks \rightarrow \{Table[\{i, i\}, \{i, 0, 360, 60\}], Table[\{j, j\}, \{j, -90, 90, 30\}]\},
PlotLabel \rightarrow "Sources", AxesLabel \rightarrow \{" α, degrees", " δ, degrees"\}, PlotStyle \rightarrow Green]
Print["Figure 4. The locations of the ", nSrc, " QSOs in the sample. "]
Print
"Sample Size: The angular separation of the furthest QSO from the sample center is ",
Sort [angleSourceToCenter] [[-1]] $\left(\frac{360 .}{2 . \pi}\right)$, "。."]
Sources

Figure 4. The locations of the 27 QSOs in the sample.
Sample Size: The angular separation of the furthest QSO from the sample center is 11.1277°.
4. Probability Distributions and Significance Formulas

4a. Formulas

The problem of "significance" is to determine the likelihood that random polarizations directions would have better alignment or avoidance than the observed polarization directions. To determine the probability distributions and related formulas, in a previous notebook, we made many runs with random data and fit the results.

For samples with randomly directed polarization vectors, the basic formula, Eq. 1, looks like the sum of random numbers each restricted to the range 0 to π. Such random sums can be related to well-known Random Walk scenarios. That connection helps explain the dependence on \sqrt{N} in the formulas below.

Definitions:

norm	a constant used to normalize the distribution so the integral of probability is 1.
probMIN0, probMAX0	probability distributions for alignment (MIN) and avoidance (MAX), functions of η, η_{0}, σ
ρ ciaiMIN,MAX	constants used in the formulas to mean η_{0} and uncertainty σ
$\sigma \rho$ ciaiMIN,MAX	uncertainty σ in the constants used in the formulas to mean η_{0} and uncertainty σ
regionRadiusChoices	radii used in random runs performed elsewhere, not in this notebook
regionChoice	determines the best choice for the current sample
rgnRadius	assumed radius of the region for the purpose of selecting the statistics constants c_{i} and a_{i}
i ρ	dummy variable used to select region radius
ciMIN,MAX and aiMIN,MAX parameters for statistics formulas for η_{0} and σ	
$\eta 0 \mathrm{MIN}$, MAX	function to estimate mean η_{0}
σ MIN, MAX	function to estimate uncertainty σ
probMIN, probMAX	probability distributions using estimated values of η_{0}, σ
signiMIN0, signiMAX0significance as a function of $\left(\eta, \eta_{0}, \sigma\right)$	
signiMIN, signiMAX	significance of η using estimated values of η_{0}, σ

$\ln [\sigma]:=(* \mathbf{y}=((\eta-\eta 0) / \sigma) ; \mathbf{d y}=\mathbf{d} \eta / \sigma *)$
(* The normalization factor "norm" is needed for the probability density *)
norm $=\left(\frac{1}{(2 \pi)^{1 / 2}} \text { NIntegrate }\left[\left(1+e^{4(y-1)}\right)^{-1} e^{-\frac{y^{2}}{2}},\{y,-\infty, \infty\}\right]\right)^{-1} ;$
norm; (*Constant needed to make the integral
of the probability distribution equal to unity.*)
$\ln [\cdot]:=\operatorname{probMIN} 0\left[\eta_{-}, \eta \theta_{-}, \sigma_{-}\right]:=\left(\frac{\text { norm }}{\sigma(2 \pi)^{1 / 2}}\right)\left(1+e^{4 \frac{(\eta-\eta \theta-\sigma)}{\sigma}}\right)^{-1} e^{-\frac{1}{2}\left(\frac{\eta-\eta \theta}{\sigma}\right)^{2}}$
signiMIN0[$\left.\eta_{-}, \eta 0_{-}, \sigma_{-}\right]:=$NIntegrate[probMIN0[$\left.\left.\eta 1, \eta 0, \sigma\right],\{\eta 1,-\infty, \eta\}\right]$
$\ln [\cdot]:=\operatorname{probMAX} 0\left[\eta_{-}, \eta 0_{-}, \sigma_{-}\right]:=\left(\frac{\text { norm }}{\sigma(2 \pi)^{1 / 2}}\right)\left(1+e^{-4 \frac{(\eta-n \theta+\sigma)}{\sigma}}\right)^{-1} e^{-\frac{1}{2}\left(\frac{\eta-n \theta}{\sigma}\right)^{2}}$
signiMAX0[$\left.\left.\left.\eta_{-}, \eta 0_{-}, \sigma_{-}\right]:=\operatorname{NIntegrate[probMAX0[\eta 1,~} \eta 0, \sigma\right],\{\eta 1, \eta, \infty\}\right]$

The significance signiMIN0 $[\eta, \eta 0, \sigma]$ is the Integral of probMIN0, i.e. signiMIN0 $=\int_{-\infty}^{\eta} \mathrm{P}_{\text {MIN }}(\eta) \mathrm{d} \eta$.

The significance signiMAX0 $[\eta, \eta 0, \sigma]$ is the Integral of probMAX0, i.e. signiMAX0 $=\int_{\eta}^{\infty} \mathrm{P}_{\text {MAX }}(\eta) \mathrm{dl} \eta$.

The formulas for mean $\eta_{0}=\frac{\pi}{4} \pm \frac{c 1}{N^{a 1}}$ and half-width $\sigma=\frac{c 2}{4 N^{a 2}}$ estimate η_{0} and σ by functions of the number N of sources.
These formulas depend on the size of the region (radius ρ) by the choice of parameters c_{i} and $a_{i}, i=1,2$. The following values for the parameters c_{i} and a_{i} are based on random runs. For each combination of $N=\{8,16,32,64,128,181,256,512\}$ and $\rho=$ $\left\{0^{\circ}, 5^{\circ}, 12^{\circ}, 24^{\circ}, 48^{\circ}, 90^{\circ}\right\}$, there were 2000 random runs completed.

A notation conflict between this notebook and the article, Ref. 4, should be noted. We doubled the exponent "a" so $N^{a / 2}$ appears in the article, whereas in the formulas here we see N^{a}. Thus $a \approx 1 / 2$ here, but the paper has $a_{\text {Article }} \approx 1$. That explains the "/2" in the following arrays.

	"م"	"c1"	"a1"	"c2"	"a2"
	90	0.9423	1.0046 / 2	1.061	0.954 / 2
	48	0.9505	1.0156 / 2	1.166	$0.9956 / 2$
$\ln [\rho]:=\rho$ ciaiMIN $=$	24	0.9235	1.0069 / 2	1.127	0.964/2;
	12	0.8912	1.0054 / 2	1.238	$1.021 / 2$
	5	0.8363	$1.0088 / 2$	1.076	0.940 / 2
	0	0.5031	1.0153 / 2	1.522	$1.053 / 2$
	" 0	"c1"	"a1"	"c2"	"a2"
	90	0.9441	1.0055 / 2	1.000	0.931 / 2
	48	0.9572	1.0165 / 2	1.090	$0.958 / 2$
$\ln [\cdot]=$ ociaiMAX $=24$	24	0.927	1.0068 / 2	1.101	0.964 / 2 ;
	12	0.9049	$1.0090 / 2$	1.228	1.018 / 2
	5	0.8424	1.0062 / 2	1.168	$0.992 / 2$
	0	0.4982	$1.0093 / 2$	1.543	$1.060 / 2$
	" 0	"c1"	"a1"	"c2"	"a2"
	90	0.0050	0.0036 / 2	0.026	0.016 / 2
	48	0.0079	$0.0057 / 2$	0.016	0.0095 / 2
$\mid n[-]:=\rho \Delta c i a i M I N=$	24	0.0024	0.0018/2	0.022	0.013/2;
	12	0.0034	0.0026 / 2	0.039	$0.021 / 2$
	5	0.0035	0.0028 / 2	0.030	0.019 / 2
	0	0.0059	0.0080 / 2	0.052	0.024 / 2
	" 0	"c1"	"a1"	"c2"	"a2"
	90	0.0061	0.0044 / 2	0.038	0.025 / 2
	48	0.0063	$0.0045 / 2$	0.026	$0.016 / 2$
	24	0.011	0.0079 / 2	0.019	0.011/2;
	12	0.0069	$0.0052 / 2$	0.039	0.022 / 2
	5	0.0038	0.0031/2	0.022	0.013 / 2
	0	0.0058	0.0080 / 2	0.057	0.025 / 2

$\ln [\sigma]=$ (*The region radius controls the constants c_{i} and a_{i} for statistics in Sec. 4.*) regionRadiusChoices $=\{90,48,24,12,5,0\} ;(* D o$ not change this statement*) regionChoice = 4; (*This is a setting. The choice 24° is 3 rd in the list. *) rgnRadius = regionRadiusChoices[[regionChoice]];
Print ["The region radius ρ is set at ", rgnRadius, "。."]
The region radius ρ is set at 12°.
$\ln [\theta]:=\mathbf{i} \rho=$ regionChoice + 1; (* Parameters $c_{i}, \mathbf{a}_{i}, \mathbf{i}=1,2 . *$)
Print["These constants are for sources confined to regions with radii $\rho="$, ociaiMIN[[i, 1$]]$, "。"]
\{c1MIN, a1MIN, c2MIN, a2MIN\} = Table[ociaiMIN[[io, j]], \{j, 2, 5\}]
\{c1MAX, a1MAX, c2MAX, a2MAX\} = Table[ociaiMAX[[ip, j]], \{j, 2, 5\}]
These constants are for sources confined to regions with radii $\rho=12^{\circ}$.
Out $[-]=\{0.8912,0.5027,1.238,0.5105\}$
Out $[0=\{0.9049,0.5045,1.228,0.509\}$
$\mathbf{i} \rho=$ regionChoice +1 ; ($* \pm$ uncertainty for the Parameters c_{i} and $a_{i}, \mathbf{i}=1,2 . *$) Print["These uncertainties are for sources confined to regions with radii $\rho=$ ", ociaiMAX[[io, 1]], "。."]
\{c1MINplusMinus, a1MINplusMinus, c2MINplusMinus, a2MINplusMinus\} = Table[osciaiMIN[[i $\rho, j]],\{j, 2,5\}]$
\{c1MAXplusMinus, a1MAXplusMinus, c2MAXplusMinus, a2MAXplusMinus\} = Table[$\rho \Delta$ ciaiMAX[[i $\rho, j]],\{j, 2,5\}]$

These uncertainties are for sources confined to regions with radii $\rho=12^{\circ}$.
Out $[$] $=\{0.0034,0.0013,0.039,0.0105\}$
Out $[=\{=\{0.0069,0.0026,0.039,0.011\}$
$\ln [\cdot]=\eta$ OMIN[nSrc_, c1_, a1_] $:=\frac{\pi}{4}-\frac{\mathrm{c1}}{\mathrm{nSrc}^{\mathrm{a} 1}}$
$\sigma \operatorname{MIN}\left[\mathrm{nSrc}_{-}, c 2_{-}, \mathrm{a} 2_{-}\right]:=\frac{\mathrm{c} 2}{4 \mathrm{nSrc}^{\mathrm{a} 2}}$
$\operatorname{In}[\theta]:=\eta$ बMAX[nSrc_, c1_, a1_] $:=\frac{\pi}{4}+\frac{\mathrm{c} 1}{\mathrm{nSrc}{ }^{\mathrm{a} 1}}$
$\sigma \operatorname{MAX}\left[n S r c_{-}, c 2_{-}, a 2_{-}\right]:=\frac{c 2}{4 \mathrm{nSrc}^{\mathrm{a} 2}}$
The following probability distributions and significances make use of the above formulas for mean η_{0} and half-width σ. They are functions of the alignment angle η and the number of sources N.
$\operatorname{probMIN}\left[\eta_{-}, \operatorname{nSrc}\right]:=\operatorname{probMIN0}[\eta, \eta$ OMIN[nSrc, c1MIN, a1MIN], oMIN[nSrc, c2MIN, a2MIN]]
signiMIN[$\left.\eta_{-}, n S c_{-}\right]:=\operatorname{signiMIN} 0[\eta, \eta$ OMIN[nSrc, c1MIN, a1MIN], oMIN[nSrc, c2MIN, a2MIN]]
$\operatorname{probMAX}\left[\eta_{-}, \operatorname{nSrc}\right]$:= $\operatorname{probMAX0[~} \eta$, η 0MAX [nSrc, c1MAX, a1MAX], oMAX [nSrc, c2MAX, a2MAX]] signiMAX[$\left.\eta_{-}, \operatorname{nSrc}\right]$] $=$ signiMAX0[η, η OMAX[nSrc, c1MAX, a1MAX], $\left.\sigma M A X[n S r c, ~ c 2 M A X, ~ a 2 M A X]\right]$

4b. Section Summary
$\ln [\theta]=$ Print["The angular separation of the furthest source from the region center is ", Sort [angleSourceToCenter] [[-1]] $\left(\frac{360 .}{2 . \pi}\right), " \circ . "$,
" We choose the statistics constants a_{i} and $c_{i}, i=1,2$, for sources confined to regions with radii $\rho=", \rho \operatorname{ciaiMIN}[[i \rho, 1]], " 0 . "]$
Print ["The formulas also depend on the number of sources, nSrc = ", nSrc, "."]
Print ["For this sample, but with random polarization directions,
the random runs give the smallest alignment angle $\bar{\eta}_{\text {min }}, \quad \bar{\eta}_{\text {min }}^{\text {Random } \psi}=$ ", η OMIN [nSrc, c1MIN, a1MIN] $\left(\frac{360 .}{2 . \pi}\right), " \circ \pm ", \sigma M I N[n S r c, c 2 M I N, \operatorname{a2MIN}]\left(\frac{360 .}{2 . \pi}\right)$,
"。. (Random ψ) "]
Print ["For this sample, but with random polarization directions, the random runs give the largest avoidance angle $\bar{\eta}_{\max }, \bar{\eta}_{\text {max }}^{\text {Random } \psi}="$,
 "。. (Random ψ) "]
The angular separation of the furthest source from the region center is
11.1277°. We choose the statistics constants a_{i} and
$\mathrm{c}_{\mathrm{i}}, i=1,2$, for sources confined to regions with radii $\rho=12^{\circ}$.
The formulas also depend on the number of sources, $n S r c=27$.
For this sample, but with random polarization directions, the random runs give the smallest alignment angle $\bar{\eta}_{\text {min }}, \bar{\eta}_{\text {min }}{ }^{\text {Random } \psi}=35.2602^{\circ} \pm 3.29664^{\circ}$. (Random ψ)

For this sample, but with random polarization directions, the random runs give the largest avoidance angle $\bar{\eta}_{\max }, \bar{\eta}_{\max }{ }^{\text {Random } \psi}=54.8311^{\circ} \pm 3.28622^{\circ}$. (Random ψ)
5. Results using the Best Values $\psi \mathrm{n}$ of the Polarization Directions
"Best" means we use the $\psi \mathrm{n}$ that were listed in the catalog. We calculate the alignment function $\bar{\eta}(\mathrm{H})$ at the grid points H. Given the alignment function $\bar{\eta}(\mathrm{H})$, one can find the smallest alignment angle $\bar{\eta}_{\min }$ and the largest avoidance angle $\bar{\eta}_{\max }$ and determine the significances for the alignment and avoidance of the polarization directions.

In Sec. 6 below, we consider other values of the polarization directions that are near the best values, consistent with uncertainty $\sigma \psi$ in the measured values.

5a. The alignment function $\bar{\eta}(\mathrm{H})$.

Definitions:

$v \psi \operatorname{Src}$	unit vectors along the polarization directions in the tangent planes of the sources
eN	local unit vectors along local North
eE	local unit vectors along local East
$\mathrm{j} \eta \mathrm{BarHj}$	$\{j, \bar{\eta}(\mathrm{H})\}$, where j is the index for grid point H_{j} and $\bar{\eta}(\mathrm{H})$ is the average alignment angle at H_{j}. See Eq. (1) in the
Introduction.	
sortj η BarHj	$\{j, \bar{\eta}(\mathrm{H})\}$, sorted, with smallest angles $\bar{\eta}(\mathrm{H})$ first.
$j \eta$ BarMin	$\{j, \bar{\eta}(\mathrm{H})\}$, the j and $\bar{\eta}$ for the smallest value of $\bar{\eta}(\mathrm{H})$, best alignment
η BarMin	the smallest value of $\bar{\eta}(\mathrm{H})$, measures alignment of the polarization directions

j η BarMax	$\{j, \bar{\eta}(\mathrm{H})\}$, the j and $\bar{\eta}$ for the largest value of $\bar{\eta}(\mathrm{H})$, most avoided
η BarMax	the largest value of $\bar{\eta}(\mathrm{H})$, measures avoidance
$\mathrm{nSx} \psi \mathrm{n}$ tion	unit vector, $S_{i} \times \psi_{i}$, cross product of the radial vector to the source with the vector in the direction of the polariza-
nSxHnj $\eta \mathrm{nHj}$	unit vector, $S_{i} \times H_{j}$, cross product of the radial vector to the source with the radial vector to the grid point H_{j} alignment angle between source and grid point H_{j}, see Fig. 1
$\eta \mathrm{BarHj}$	alignment angle $\bar{\eta}\left(H_{j}\right)$ between source and grid point H_{j}, ave α ged over all sources
j η BarHj	$\left\{j, \bar{\eta}\left(H_{j}\right)\right\}$, the j and $\bar{\eta}$ for grid point H_{j}
sig η BarMin	significance of the smallest alignment angle
sigrange η BarMin	get the range of sigs using the plus/minus values on the parameters c_{i}, a_{i}
sigSmall η BarMin	the smallest of the values in sigrange η BarMin
sigBig η BarMin	the largest of the values in sigrange η BarMin
sig η BarMax	significance of the largest alignment angle (i.e. avoidance)
sigrange η BarMax	get the range if sigs using the plus/minus values on the parameters c_{i}, a_{i}
sigSmall η BarMax	the smallest of the values in sigrange η BarMax
sigBig η BarMax	the largest of the values in sigrange η BarMax
α HminDegrees	α of the point $H_{\min }$ where $\bar{\eta}(\mathrm{H})$ is the smallest
δ HminDegrees	δ of the point $H_{\text {min }}$ where $\bar{\eta}(\mathrm{H})$ is the smallest
α HmaxDegrees	α of the point $H_{\max }$ where $\bar{\eta}(\mathrm{H})$ is the largest
δ HmaxDegrees	δ of the point $H_{\text {max }}$ where $\bar{\eta}(\mathrm{H})$ is the largest

$\ln [\cdot]:=$

```
(* }\mp@subsup{\textrm{v}}{\psi}{},\mp@subsup{\textrm{e}}{\textrm{N}}{},\mp@subsup{e}{\textrm{E}}{\prime}\mathrm{ unit vectors in the tangent plane of each source }\mp@subsup{\textrm{S}}{\textrm{i}}{\prime
pointing along the polarization direction, local North,
and local East, respectively. See Fig. 1.*)
v\psiSrc = Table[Cos[\psin[[i]] ] eN[ \alphaSrc[[i]], \deltaSrc[[i]] ] +
    Sin[\psin[[i]] ] eE[ \alphaSrc[[i]], \deltaSrc[[i]] ], {i, nSrc}];
```

```
(* Analysis using Eq (5) in Ref. 4 to get \(\bar{\eta}\left(H_{j}\right)\). First \(\eta_{i H}\),
\(\cos \left(\eta_{\mathrm{iH}}\right)=\left|\hat{\mathbf{v}}_{\mathrm{H}} \cdot \hat{\mathbf{v}}_{\psi_{\mathrm{i}}}\right|\), and then \(\bar{\eta}\left(H_{j}\right)\), by Eq. (1). *)
\(\mathrm{j} \eta \mathrm{BarHj}=\)
    Table[\{j, (1/nSrc) Sum[ArcCos[Abs[rGrid[[j]].v \(\mathbf{H}\) Src[[i]] / ((rGrid[[j]] - (rGrid[[j]].
                        rSrc[[i]]) rSrc[[i]]) \(\cdot(\) rGrid[[j]] - (rGrid[[j]]. \(\mathrm{rSrc}[\) [i] \(])\)
                            \(\left.\left.\left.\left.\left.r S r c[[i]]))^{1 / 2}\right]-0.000001\right],\{i, n S r c\}\right]\right\},\{j, n G r i d\}\right] ;\)
sortj \(\eta\) BarHj = Sort[j \(\eta\) BarHj, \#1[[2]] <\#2[[2]] \&];
\(j \eta\) BarMin \(=\operatorname{sortj} \eta \operatorname{BarHj}[[1]]\); (* \(\left\{\mathbf{j}, \bar{\eta}\left(\mathrm{H}_{\mathrm{j}}\right)\right\}\) for smallest \(\bar{\eta}\left(\mathrm{H}_{\mathrm{j}}\right) \quad\) *)
\(\eta\) BarMin = j \(\eta\) BarMin [[2]];
\(j \eta\) BarMax \(=\operatorname{sortj} \eta \operatorname{BarHj}[[-1]]\); (* \(\left\{\mathrm{j}, \bar{\eta}\left(\mathrm{H}_{\mathrm{j}}\right)\right\}\) for largest \(\bar{\eta}\left(\mathrm{H}_{\mathrm{j}}\right)\) *)
\(\eta\) BarMax = j \(\eta\) BarMax[[2]];
```

$\left.\ln _{n} \cdot\right]:=$ (*Significance of the smallest alignment angle $\bar{\eta}_{\text {min }} . *$) sig η BarMin = signiMIN[η BarMin, nSrc]; sigrange η BarMin $=$ Sort [Partition [Flatten [Table [
\{signiMIN0[η BarMin, η 0MIN[nSrc, c1MIN + $\gamma 1$ c1MINplusMinus, a1MIN $+\alpha 1$ a1MINplusMinus], oMIN[nSrc, c2MIN + $\gamma 2$ c2MINplusMinus, a2MIN + $\alpha 2$ a2MINplusMinus]], $\gamma 1, \alpha 1, \gamma 2, \alpha 2\}$,
$\{\gamma 1,-1,1\},\{\alpha 1,-1,1\},\{\gamma 2,-1,1\},\{\alpha 2,-1,1\}]], 5]$];
$\{$ sigrange η BarMin [[1]], sigrange η BarMin [[-1]]\};
sigSmall η BarMin = sigrange η BarMin [$[1,1]]$;
sigBig η BarMin = sigrange η BarMin [[-1, 1]];
(*Significance of the largest avoidance angle $\bar{\eta}_{\max } . *$)
sig η BarMax = signiMAX[η BarMax, nSrc];
sigrange η BarMax $=$ Sort [Partition [Flatten [Table [
\{signiMAX0[η BarMax, η 0MAX[nSrc, c1MAX $+\gamma 1$ c1MAXplusMinus, a1MAX $+\alpha 1$ a1MAXplusMinus], σ MAX [nSrc, c2MAX + $\gamma 2$ c2MAXplusMinus, a2MAX $+\alpha 2$ a2MAXplusMinus]], $\gamma 1, \alpha 1, \gamma 2, \alpha 2\}$,
$\{\gamma 1,-1,1\},\{\alpha 1,-1,1\},\{\gamma 2,-1,1\},\{\alpha 2,-1,1\}]], 5]$];
\{sigrange η BarMax[[1]], sigrange η BarMax[[-1]]\};
sigSmall η BarMax = sigrange η BarMax [[1, 1]];
sigBig η BarMax = sigrange η BarMax [[-1, 1]];
(* Equatorial coordinates (α, δ) for the hubs $H_{\text {min }}$ and $H_{\max }$.*)
α HminDegrees $=\alpha \operatorname{Grid}\left[[\right.$ j η BarMin [[1]]] $](360 /(2 \pi)) ;\left(* H_{\text {min }} *\right)$
δ HininDegrees $=\delta \operatorname{Grid}[[$ j η BarMin[[1]]]] (360/(2 $\pi)$);
α HmaxDegrees $=\alpha \operatorname{Grid}[[j \eta B a r M a x[1]] \quad]](360 /(2 \pi)) ;\left(* H_{\max } *\right)$
δ HmaxDegrees $=\delta \operatorname{Grid}[[\mathrm{j} \eta$ BarMax[[1]]]] $(360 /(2 \pi))$;
$\ln [\cdot]=$ (*The names "j η BarMin", "j η BarMax" are similar to quantities below, so save the current values labeled by "Best".*)
(* j η Bar entries: 1. grid point \# , 2. alignment angle .*)
$\{j \eta$ BarMinBest, $j \eta$ BarMaxBest $\}=\{j \eta$ BarMin, $j \eta$ BarMax $\} ;$

"。 , which has a significance of sig. = ", sig η BarMin, ", plus/minus = + ", sigBig η BarMin - sig η BarMin, " and - ", sig η BarMin-sigSmall η BarMin, " , giving a range from sig. = ", sigSmall η BarMin, " to ", sigBig $\eta B a r M i n, "$."]
Print["The max avoidance angle is η max $=$ ", j η BarMaxBest[[2]] * (360. / $(2 . \pi)$), "。 , which has a significance of sig. = ", sig η BarMax, ", plus/minus = + ", sigBig η BarMax - sig η BarMax, " and - ", sig η BarMax - sigSmall η BarMax, " , giving a range from sig. = ", sigSmall η BarMax, " to ", sigBig η BarMax, " ."]
Print["These uncertainties are due to the uncertainties in the constants c_{i}, a_{i}. "]

The min alignment angle is η min $=21.1667^{\circ}$, which has a significance of sig. =
0.0000116577 , plus/minus $=+0.000030202$ and -9.01817×10^{-6}
, giving a range from sig. $=2.6395 \times 10^{-6}$ to 0.0000418597 .
The max avoidance angle is η max $=66.6554$
。 , which has a significance of sig. $=0.000195551$, plus/minus $=+0.000358332$ and -0.00013804 , giving a range from sig. $=0.0000575103$ to 0.000553883 .

These uncertainties are due to the uncertainties in the constants c_{i}, a_{i}.

5b. Plot of the Alignment Angle Function $\bar{\eta}(\mathrm{H})$

Definitions

$\alpha \mathrm{j} \delta \mathrm{j} \eta$ BarHjTable $\quad\{\alpha$	$\left\{\alpha_{j}, \delta_{j}, \bar{\eta}(\mathrm{H})\right\}$ at each grid point $H=H_{j}$, in degrees
η BarHjSmooth int	interpolation of $\alpha \mathrm{j} \delta \mathrm{j} \eta$ BarHjTable yields $\bar{\eta}(\mathrm{H})$ as a smooth function of the (α, δ) of H
$\mathrm{xy} \eta$ BarAitoffTable $\quad\{\mathrm{x}$	$\{\mathrm{x}, \mathrm{y}, \bar{\eta}(\mathrm{x}, \mathrm{y})\}$, where x, y are Aitoff coordinates and $\bar{\eta}(\mathrm{x}, \mathrm{y})$ is the alignment angle
$x y A i t o f f S o u r c e s ~\{x, y$	$\{\mathrm{x}, \mathrm{y}\}$ Aitoff coordinates for the sources' locations on the sphere
$\mathrm{d} \eta$ ContourPlot sep	separation of successive contour lines, in degrees
listCP lis	list contour plot of $\bar{\eta}(\mathrm{H})$ from $\mathrm{xy} \eta$ BarAitoffTable
mapOf η Bar co	contour plot of the alignment angle $\bar{\eta}(\mathrm{H})$, adorned with source locations and labels
rCenterSrc ari	arithmetic average of the radial unit vectors to the sources, previously called sourceCenter
rHmin, rHmax rad	radial unit vectors to the alignment and avoidance hubs $H_{\min }$ and $H_{\max }$
rPerpHmin (max)	a unit vector in the plane of the great circle combining rCenterSrc and rHmin (max)
rGreatMinCircle(θ) (Max)	ax) radial unit vector to a point on the great circle
α GreatMin (Max)	longitude at the point for θ
δ GreatMin (Max)	latitude at the point for θ
xyAitoffGreatMin (Max)	x) Aitoff plot coordinates for the great circles
crossMin (Max)	unit vector perpendicular, normal to the plane of the great circle
θ minMAXgreatcircles	angle between the vectors normal to the planes of the two great circles

$\ln [-]:=\operatorname{rCenterSrc} 0=\frac{1}{\mathrm{nSrc}} \operatorname{Sum}[r S r c[[i]],\{i$, Length[rSrc $]\}$];
rCenterSrc $=\frac{\text { rCenterSrc0 }}{(\text { rCenterSrc0.rCenterSrc0 })^{1 / 2}} ;$
$\operatorname{In}[\varepsilon]:=\operatorname{rHmin}=\operatorname{er}\left[\alpha H m i n D e g r e e s ~\left(\frac{2 \cdot \pi}{360 .}\right)+\pi,-\delta \operatorname{HminDegrees}\left(\frac{2 \cdot \pi}{360 .}\right)\right]$;
rPerpHmin0 $=$ rHmin $-($ rHmin.rCenterSrc $)$ rCenterSrc;
rPerpHmin $=\frac{\text { rPerpHmin0 }}{(r \text { PerpHmin0.rPerpHmin0 })^{1 / 2}}$;
rGreatMinCircle[θ_{-}] $:=\operatorname{Cos}[\theta]$ rCenterSrc $+\operatorname{Sin}[\theta]$ rPerpHmin
α GreatMin [θ_{-}] $:=\alpha$ FROMr [rGreatMinCircle [θ]]
$\delta G r e a t M i n\left[\theta_{-}\right]:=\delta F R O M r[r G r e a t M i n C i r c l e[\theta]]$
xyAitoffGreatMin $=\operatorname{Table}[\{x H 180[\alpha \operatorname{GreatMin}[\theta](360 /(2 \pi)), \delta \operatorname{GreatMin}[\theta](360 /(2 \pi))]$, yH180[α GreatMin [θ] $(360 /(2 \pi)), \delta \operatorname{GreatMin}[\theta](360 /(2 \pi))]\},\{\theta, 1,360\}]$;
$\ln [\cdot]=$ (rHmin.rCenterSrc);
Print["The angle between the sample's center and the alignment hub $H_{\text {min }}$ is ", $\operatorname{ArcCos}\left[-(\right.$ rHmin.rCenterSrc) $\left.]\left(\frac{360 .}{2 . \pi}\right), " \circ . "\right]$
The angle between the sample's center and the alignment hub $\mathrm{H}_{\text {min }}$ is 13.904°.
$\operatorname{In}[\rho]:=\operatorname{rHmax}=\operatorname{er}\left[\alpha H\right.$ maxDegrees $\left.\left(\frac{2 \cdot \pi}{360 .}\right)+\pi,-\delta H \operatorname{maxDegrees}\left(\frac{2 \cdot \pi}{360 .}\right)\right]$;
rPerpHmax0 $=$ rHmax - (rHmax.rCenterSrc) rCenterSrc;
rPerpHmax $\left.=\frac{\mathrm{rPerpHmax} 0}{(\mathrm{rPerpHmax} 0 . r P e r p H m a x}\right)^{1 / 2} . ;$
rGreatMaxCircle[θ_{-}] := Cos[θ] rCenterSrc + Sin [θ] rPerpHmax
α GreatMax[$\left.\theta_{-}\right]:=\alpha$ FROMr [rGreatMaxCircle[$\left.\theta\right]$]
δ GreatMax[$\left.\theta_{-}\right]:=\delta$ FROMr [rGreatMaxCircle $\left.[\theta]\right]$
xyAitoffGreatMax $=\operatorname{Table}[\{x H 180[\alpha \operatorname{GreatMax}[\theta](360 /(2 \pi)), \delta \operatorname{GreatMax}[\theta](360 /(2 \pi))]$,
$\operatorname{yH180}[\alpha \operatorname{GreatMax}[\theta](360 /(2 \pi)), \delta \operatorname{GreatMax}[\theta](360 /(2 \pi))]\},\{\theta, 1,360\}] ;$
$\ln [\rho]=$ (rHmax.rCenterSrc) ;
Print["The angle between the sample's center and the avoidance hub $H_{\max }$ is ", $\operatorname{ArcCos}\left[\left(\right.\right.$ rHmax.rCenterSrc)] $\left(\frac{360 .}{2 . \pi}\right)$, "。."]
The angle between the sample's center and the avoidance hub $\mathrm{H}_{\max }$ is 57.0234°.
$\ln [\theta]=$ crossMin0 $=$ Cross [rHmin, rCenterSrc];
crossMin $=\frac{\text { crossMin0 }}{(\text { crossMin0.crossMine })^{1 / 2 .}} ;$
crossMax0 = Cross [rHmax, rCenterSrc];
crossMax $=\frac{\text { crossMax0 }}{(\operatorname{crossMax} 0 . \operatorname{crossMax} 0)^{1 / 2 .}} ;$
ӨminMAXgreatcircles $=\operatorname{ArcCos}[\operatorname{crossMax.crossMin}]\left(\frac{360 .}{2 . \pi}\right)$;
$\ln [\rho]=$ ($*$ The following table $\alpha \mathrm{j} \delta \mathrm{j} \eta$ BarHjTable is created to be interpolated below, yielding a smooth function η BarHjSmooth of the alignment angle $\bar{\eta}(H)$ over the sphere.*)
(* Table $\alpha j \delta j \eta$ BarHjTable entries: 1. α 2. δ 3. alignment angle η BarRgnkj at grid point (all in degrees)*) $\alpha j \delta j \eta$ BarHjTable $=(\alpha j \delta j \eta$ BarHjTable0 $=\{ \} ;$

```
For[j = 1, j < Length[j %BarHj], j++,
    AppendTo[ \alphaj\deltaj\etaBarHjTable0, {\alphaGrid[[j]]*(360./(2.\pi)), \deltaGrid[[j]] *(360./(2.\pi)),
        j \etaBarHj[[j, 2]]*(360./(2.\pi))}] ; If[ 360.\geq \alphaGrid[[j]]* (360./(2.\pi)) > 354.,
        AppendTo[\alphaj\deltaj\etaBarHjTable0, {\alphaGrid[[j]]*(360./(2.\pi)) - 360.,
            \deltaGrid[[j]]*(360./(2.\pi)), j j BarHj[[j, 2]]*(360./(2.\pi))}] ] ;
        If[ +6.> \alphaGrid[[j]] * (360./ (2. \pi) ) \geq0., AppendTo[ \alphaj\deltaj\etaBarHjTable0, {\alphaGrid[[j]] * (360./(2.
            \pi)) + 360, \deltaGrid[[j]]*(360./ (2. \pi)), j \eta BarHj[[j, 2]]*(360./(2.\pi))}] ] ];
        \alphaj\deltaj\etaBarHjTable0);
```


... Interpolation: Interpolation on unstructured grids is currently only supported for InterpolationOrder->1 or
InterpolationOrder->All. Order will be reduced to 1 .
Out $[0]=$ InterpolatingFunction $\left[\mp \$ \begin{array}{l}\text { Domain: }\{\{-5.92,366 .\},\{-88 ., 88 .\}\} \\ \text { Output: } \text { scalar }\end{array}\right]$
$\ln [\rho]:=$ (*Transcribe the alignment function $\bar{\eta}(H)$, the location of the sources, and the Celestial Equator onto an Aitoff plot.*)
xy η BarAitoffTable $=$ Partition[Flatten[Table[
$\{\mathrm{xH} 180[\alpha, \delta], y H 180[\alpha, \delta], \eta B a r H j S m o o t h[\alpha, \delta]\},\{\alpha, 2 ., 358 ., 2\},.\{\delta,-88 ., 88 ., 2\}]], 3$. (* The smooth alignment angle function $\bar{\eta}(H)=\eta$ BarHjSmooth mapped onto a 2D Aitoff projection of the sphere. *)
xyAitoffSources $=$ Table $[\{x H 180[\alpha \operatorname{Src}[[n]](360 /(2 \pi)), \delta S r c[[n]](360 /(2 \pi))]$,
$\mathrm{yH} 180[\alpha \operatorname{Src}[[\mathrm{n}]](360 /(2 \pi)), \delta \operatorname{Src}[[n]](360 /(2 \pi))]\},\{n, n S r c\}] ;$ (*The Aitoff coordinates for the sources' locations.*)
$\ln [\sigma]=\mathbf{x H} \mathbf{1 8 0}[\mathbf{0}, 0]$
Out $[0=-3.14159$
$\ln [\rho]=$ (* Contour plot of the alignment function η BarHjSmooth. *) $\mathrm{d} \eta$ ContourPlot $=5$;
(*, in degrees. *) listCP = ListContourPlot [Union [xy η BarAitoffTable (*, $\{\{\mathrm{xH} 180$ [α HminDegrees, δ HininDegrees], yH180[α HminDegrees, δ HminDegrees], η BarMin* (360./(2. π)) -1.0\}\},
$\{\{\mathrm{xH} 180[\alpha$ HmaxDegrees, $\delta \mathrm{HmaxDegrees],yH180[} \mathrm{\alpha HmaxDegrees}, \delta$ HmaxDegrees $], \eta \mathrm{BarMax} *(360 . /(2 . \pi))+$ 1.0\} \} *)], AspectRatio \rightarrow 1/2, Contours \rightarrow Table[$\eta,\{\eta$, Floor[j η BarMin [[2]] * (360./(2. $\pi)$)] + 1, Ceiling[j η BarMax [[2]] * (360./(2. π))] - 1, d η ContourPlot $\}$],
ColorFunction \rightarrow "TemperatureMap", PlotRange $\rightarrow\{\{-5.5,5.5\},\{-3,3\}\}$, Axes -> False, Frame \rightarrow False, (*PlotLabel \rightarrow "The alignment function $\bar{\eta}(H) ", *)$ PlotLegends \rightarrow Automatic];

```
In[*]:= (*Construct the map of \overline{\eta}(H).*)
mapOf }\eta\mathrm{ Bar =
    Show[{listCP, Table[ParametricPlot[{xH180 [\alpha, \delta], yH180 [\alpha, \delta]},
        {\delta, -90, 90}, PlotStyle }->{\mathrm{ Black, Thickness[0.002]}, (*Mesh }->{11,5,0
        (*{23,11,0}*),MeshStyle->Thick,*) PlotPoints }->60],{\alpha,0,360,30}], Table
        ParametricPlot [{xH180[\alpha, \delta], yH180[\alpha, \delta]}, {\alpha, 0, 360}, PlotStyle }->{\mathrm{ Black, Thickness[0.002]},
        (*Mesh->{11,5,0} (*{23,11,0}*) ,MeshStyle->Thick,*)PlotPoints -> 60], {\delta, -60, 60, 30}],
        Graphics[{PointSize[0.004], Text[StyleForm["N", FontSize -> 14, FontWeight -> "Plain"],
            {0, 1.85}], (*Sources S:*)Green, Point[ xyAitoffSources ], Gray,
        PointSize[0.002], Point[ xyAitoffGreatMin ], Point[ xyAitoffGreatMax ], Black,
        Text[StyleForm["Hmax", FontSize }->\mathrm{ 12, FontWeight -> "Bold"], {-3.3, -1.0}],
        {Arrow[BezierCurve[{{-3.3, -1.2}, {-1.3, -3.0}, {xH180[\alphaHmaxDegrees - 180, - \deltaHmaxDegrees] ,
            yH180[\alphaHmaxDegrees - 180, -\deltaHmaxDegrees] } }] ]},
        Text[StyleForm["Hmin", FontSize }->\mathrm{ 12, FontWeight -> "Bold"], {3.3, -1.0}],
        {Arrow[BezierCurve[{{3.3, -1.2}, {0.3, -3.0},
            {xH180[\alphaHminDegrees, \deltaHminDegrees], yH180[\alphaHminDegrees, \deltaHminDegrees]}}]]},
        Text[StyleForm["Hmin", FontSize }->\mathrm{ 12, FontWeight -> "Bold"], {-3.3, 1.0}],
        {Arrow[BezierCurve[{{-3.3, 1.2}, {-2.3, 2.0}, {xH180[\alphaHminDegrees - 180, - \deltaHminDegrees],
            yH180[\alphaHminDegrees - 180, - \deltaHminDegrees]}}]]}, (**)
        Text[StyleForm["Hmax ", FontSize }->\mathrm{ 12, FontWeight -> "Bold"], {3.3, 1.0}] ,
        {Arrow[BezierCurve[{{3.3, 1.2}, {2.3, 2.0},
            {xH180 [\alphaHmaxDegrees, \deltaHmaxDegrees], yH180 [\alphaHmaxDegrees, \deltaHmaxDegrees] } }]}
            }]}, ImageSize }\boldsymbol{->}\mathbf{1.5\times432];
```

5c. Section Summary

This sample is an extreme case, the alignment hub $H_{\min }$ is very close to the sources.

We include the Great Circle from the center of the sources to the alignment hub $H_{\min }$ on the map. We also draw the Great Circle from source center to the avoidance hub $H_{\max }$. The two Great Circles divide the sphere quite evenly, the two Great Circles are perpendicular at the two points where they cross, within experimental error.

```
In[o]:= mapOf }\eta\mathrm{ Bar
Print[
    "Figure 5: The alignment function }\overline{\eta}(H), Eq.(1). The map is centered on (\alpha,\delta)=(180', 0' ),"
Print["with \alpha= 0
Print["The sources are located at the dots, shaded ", Green, " ."]
Print["The smallest alignment angle is }\mp@subsup{\overline{\eta}}{\mathrm{ min }}{= ",
    Round[j\etaBarMinBest[[2]] (360./ (2.\pi))], "0, located at the"]
Print["alignment hubs }\mp@subsup{H}{min}{}\mathrm{ and - Hmin in the areas shaded ", Blue, " . "]
Print["The hubs }\mp@subsup{H}{min}{}\mathrm{ and - Hmin are located at ( }\alpha,\delta)=",Round[{\alphaHminDegrees, \deltaHminDegrees }],
    " and ", Round[{\alphaHminDegrees - 180, - \deltaHminDegrees }], " , in degrees."]
Print["The largest avoidance angle is }\mp@subsup{\overline{\eta}}{\operatorname{max}}{}="\mathrm{ ,
    Round[j\etaBarMaxBest[[2]] (360./ (2.\pi))], "०, located at the"]
Print["avoidance hubs }\mp@subsup{H}{\operatorname{max}}{}\mathrm{ and - }\mp@subsup{\textrm{H}}{\operatorname{max}}{}\mathrm{ in the areas shaded ", Red, " . "]
Print["The hubs }\mp@subsup{H}{\operatorname{max}}{}\mathrm{ and - Hmax are located at ( }\alpha,\delta)="
Round [{\alphaHmaxDegrees - 180, -\deltaHmaxDegrees }]," and at ",
Round [ {\alphaHmaxDegrees, \deltaHmaxDegrees }], " , in degrees."]
Print["To guide the eye, two Great Circles are plotted, one through the sources' center and the
avoidance hubs }\mp@subsup{H}{\operatorname{max}}{}\mathrm{ and - Hmax . The other connects the center of the sources' locations
with the alignment hubs }\mp@subsup{H}{min}{}\mathrm{ and - Hmin
Print["Notes: Although somewhat obscured by the distortion needed to plot a
    sphere on a flat surface, the function }\overline{\eta}(H)\mathrm{ is symmetric across diameters
    Diametrically opposite points -H and H have the same alignment angle }\overline{\eta}(H)."
```


Figure 5: The alignment function $\bar{\eta}(H)$, Eq. (1). The map is centered on $(\alpha, \delta)=\left(180^{\circ}, 0^{\circ}\right)$, with $\alpha=0^{\circ}$ on the left and $\alpha=360^{\circ}$ on the right, Equatorial Coordinates.

The sources are located at the dots, shaded
The smallest alignment angle is $\bar{\eta}_{\text {min }}=21^{\circ}$, located at the
alignment hubs $\mathrm{H}_{\text {min }}$ and $-\mathrm{H}_{\text {min }}$ in the areas shaded
The hubs $H_{m i n}$ and $-H_{\text {min }}$ are located at $(\alpha, \delta)=\{188,0\}$ and $\{8,0\}$, in degrees.
The largest avoidance angle is $\bar{\eta}_{\max }=67^{\circ}$, located at the
avoidance hubs $\mathrm{H}_{\max }$ and $-\mathrm{H}_{\max }$ in the areas shaded
The hubs $H_{\max }$ and $-\mathrm{H}_{\max }$ are located at $(\alpha, \delta)=\{137,-32\}$ and at $\{317,32\}$, in degrees.
To guide the eye, two Great Circles are plotted, one through the sources' center and the avoidance hubs $H_{\max }$ and $-\mathrm{H}_{\max }$. The other connects the center of the sources' locations with the alignment hubs $\mathrm{H}_{\mathrm{min}}$ and $-\mathrm{H}_{\text {min }}$. The Great Circles are shaded Gray, \square.

Notes: Although somewhat obscured by the distortion needed to plot a sphere on a flat surface, the function $\bar{\eta}(H)$ is symmetric across diameters. Diametrically opposite points $-H$ and H have the same alignment angle $\bar{\eta}(H)$.
(*
SetDirectory [
"C:
Users
shurt
\Dropbox
HOME_DESKTOP-0MRE50J
SendXXX_CJP_CEJPetc
SendViXra
 20200715AlignmentMethod
20210505AlignmentMethodv4
20210515Clump1QSOsNearNGP"]
Export ["20210424QSOnearbyHmin.pdf", mapOf η Bar]
*)

```
In[v]:= (*Statistics*)
Print["Statistics of the Alignment Function }\overline{\eta}(H):"
Print[" "]
Print["The number of sources: N = ", nSrc]
Print["The min alignment angle, \etamin = ", j \etaBarMinBest[[2]] * (360. / (2. \pi)),
    "。, is ", (\etaOMIN[nSrc, c1MIN, a1MIN] - j \etaBarMinBest[[2]]) * (360. / (2. \pi) ),
    "\circ below the most likely value, ",
    \etaOMIN[nSrc, c1MIN, a1MIN] * (360. / (2. \pi)), "0, for random runs."]
Print["Since the uncertainty \sigma is ", \sigmaMIN[nSrc, c2MIN, a2MIN] * (360. / (2. \pi) ),
    "\circ, the difference ", (\eta0MIN[nSrc, c1MIN, a1MIN] - j \etaBarMinBest[[2]]) * (360. / (2.\pi)),
    "\circ is ", (\eta0MIN[nSrc, c1MIN, a1MIN] - j \etaBarMinBest[[2]]) / \sigmaMIN[nSrc, c2MIN, a2MIN],
    "\sigmas from the most likely random run value."]
Print["Thus, the smallest alignment angle }\mp@subsup{\overline{\eta}}{\mathrm{ min }}{}\mathrm{ is ",
    (\eta0MIN[nSrc, c1MIN, a1MIN] - j\etaBarMinBest[[2]]) / \sigmaMIN[nSrc, c2MIN, a2MIN],
    "\sigmas below the most likely random run value."]
Print[""]
Print["The largest avoidance angle, \etamax = ", j \etaBarMaxBest[[2]]* (360. / (2. \pi)),
    "o, is ", - (\eta0MAX[nSrc, c1MAX, a1MAX] - j \etaBarMaxBest[[2]]) * (360./(2.\pi)),
    "O above the most likely value, ",
    \eta@MAX[nSrc, c1MAX, a1MAX] * (360./ (2. \pi)), "0, for random runs."]
Print["Since the uncertainty \sigma is ", \sigmaMAX[nSrc, c2MAX, a2MAX] * (360. / (2. \pi) ),
    "०, the difference ", - (\eta0MAX[nSrc, c1MAX, a1MAX] - j \etaBarMaxBest[[2]]) * (360. / (2. \pi)),
    "。 is ", - ((\eta0MAX[nSrc, c1MAX, a1MAX] - j \etaBarMaxBest[[2]]) / \sigmaMAX[nSrc, c2MAX, a2MAX]),
    "\sigmas from the most likely random run value."]
Print["Thus, the largest avoidance angle }\mp@subsup{\overline{\eta}}{\mathrm{ max }}{}\mathrm{ is " ,
    (j\etaBarMaxBest[[2]] - \eta@MAX[nSrc, c1MAX, a1MAX]) / \sigmaMAX[nSrc, c2MAX, a2MAX],
"\sigmas above the most likely random run value."]
```

Statistics of the Alignment Function $\bar{\eta}(\boldsymbol{H})$:

The number of sources: $\mathrm{N}=27$
The min alignment angle, η min $=21.1667^{\circ}$, is
14.0934° below the most likely value, 35.2602°, for random runs.
Since the uncertainty σ is 3.29664°, the difference 14.0934° is $4.27509 \sigma s$ from the most likely random run value.

Thus, the smallest alignment angle $\bar{\eta}_{\text {min }}$ is 4.27509σ s below the most likely random run value.

The largest avoidance angle, η max $=66.6554^{\circ}$, is
11.8243° above the most likely value, 54.8311°, for random runs.
Since the uncertainty σ is 3.28622°, the difference 11.8243° is 3.59814σ s from the most likely random run value.

Thus, the largest avoidance angle $\bar{\eta}_{\max }$ is 3.59814σ s above the most likely random run value.

```
In[*]:= Print["The center of the sources is a point that makes a great circle, shaded ",
    Gray, " in Fig. 5, with the alignment hub Hmin."]
    Print["The center of the sources makes a second great circle, shaded ",
    Gray, " in Fig. 5, with the avoidance hub H Hax."]
Print["The angle between the planes of the two great circles is ",
        \ThetaminMAXgreatcircles, "o."]
    The center of the sources is a point that makes a great circle, shaded
        in Fig. 5, with the alignment hub Hmin}\mathrm{ .
    The center of the sources makes a second great circle, shaded
        in Fig. 5, with the avoidance hub Hmax
    The angle between the planes of the two great circles is 91.1259*.
```

6. Uncertainty Runs

6a. Creating and Storing Uncertainty Runs

For each "uncertainty run", the polarization direction ψ for each source is allowed to differ from the best value ψ n by an amount $\delta \psi$ chosen according to a Gaussian distribution with mean (best) value $\psi \mathrm{n}$ and half-width $\sigma \psi, \psi=\psi \mathrm{n}+\delta \psi$. Both values $\psi \mathrm{n}$ and $\sigma \psi$ are taken from the catalogs.

Definitions:
rSrcxrGrid unit vector $S_{i} \times H_{j}$ in the direction of the cross product of the radial vector S_{i} to a source with the radial vector H_{j} to a grid point
$\mu \quad$ the mean value μ of the measurement Gaussian for ψ
$\sigma \quad$ the uncertainty of the measured polarization position angle ψ
ψ Data polarization directions $\psi=\psi \mathrm{n}+\delta \psi$
runData collection of data to save from the uncertainty runs, see below for content list
nRunPrint dummy index controlling when current TimeUsed and MemoryInUse are printed
$\psi \operatorname{Src} \quad$ the polarization direction ψ for the run.
$\operatorname{rSrcx} \psi \operatorname{Src} \quad$ unit vector, $S_{i} \times \psi_{i}$, cross product of the radial vector S_{i} to the source with the vector \hat{v}_{ψ} in the direction of the polariza-
tion
$\mathrm{j} \eta$ BarToGrid $\left\{\mathrm{j}, \bar{\eta}\left(H_{j}\right)\right\}$, where j is the index for the grid point H_{j} and $\bar{\eta}\left(H_{j}\right)$ is the alignment angle function, (1), at H_{j}
sortj η BarToGrid sort $\left\{\mathrm{j}, \bar{\eta}\left(H_{j}\right)\right\}$, with the smaller angle $\bar{\eta}(\mathrm{H})$ first.
$\mathrm{j} \eta$ BarMin $1 \quad\{j, \bar{\eta}(\mathrm{H})\}$ for the smallest value of $\bar{\eta}(\mathrm{H})$, best alignment
$\mathrm{j} \eta$ BarMax $1 \quad\{j, \bar{\eta}(\mathrm{H})\}$, for the largest value of $\bar{\eta}(\mathrm{H})$, most avoided
η BarMinData \quad values of $\bar{\eta}_{\text {min }}$ from uncertainty runs, alignment
η BarMaxData values of $\bar{\eta}_{\max }$ from uncertainty runs, avoidance
$\operatorname{Hmin} \alpha$ Data \quad values of $\alpha=\alpha$ for hub $H_{\min }$ from uncertainty runs, alignment
Hmin δ Data \quad values of $\delta=\delta$ for hub $H_{\text {min }}$ from uncertainty runs, alignment
$\operatorname{Hmax} \alpha$ Data values of $\alpha=\alpha$ for hub $H_{\max }$ from uncertainty runs, avoidance
Hmax δ Data \quad values of $\delta=\delta$ for hub $H_{\max }$ from uncertainty runs, avoidance

Tables:
ψ Data entries: 1. Run \# 2. $\psi \mathrm{Src}$, list of polarization position angles ψ
runData entries: 1. Run \# 2. $\left\{\bar{\eta}_{\min },\{\alpha, \delta\}\right.$ at $\left.H_{\min }\right\}$ 3. $\left\{\bar{\eta}_{\max },\{\alpha, \delta\}\right.$ at $\left.H_{\max }\right\}$

To create Uncertainty Runs, first calculate "rSrcxrGrid" and then evaluate the "For" statement in the following two cells. One can save the results with the "Put[]" statements.
Once saved, there is no need to repeat the runs. Comment out the "rSrcxrGrid" and "For" statements by enclosing each in (*comment brackets*). The data can be retrieved with the "Get" statements.

```
rSrcxrGrid1 = Table[ Cross[ rSrc[[i]], rGrid[[j]] ], {i, nSrc}, {j, nGrid}];
(*first step: \alphaw cross product, not unit vectors*)
rSrcxrGrid = Table[rSrcxrGrid1[[i, j]] /
    (rSrcxrGrid1[[i, j]].rSrcxrGrid1[[i, j]] + 0.000001) 1/2., {i, nSrc}, {j, nGrid}];
Clear[rSrcxrGrid1];
```

(*rSrcxrGrid: table of the unit vectors perpendicular to the plane of the great circle containing the source S_{i} and the grid point Hj *)

```
nR = 5000; (*number of runs with the PPA \psi allowed by measurement uncertainty. *)
\mu=\psin;\sigma=\sigma\psin; runData = {}; \psiData = {}; nRunPrint = 0;
For[nRun = 1, nRun \leq nR, nRun++,
    If[nRun > nRunPrint, Print["At the start of run ", nRun, ", the time is ",
        TimeUsed[], " seconds and the memory in use is ", MemoryInUse[], " bytes."];
    nRunPrint = nRunPrint + 500];
    \psiSrc = Table[RandomVariate[NormalDistribution[\mu[[i]], \sigma[[i]]]], {i, nSrc}];
    (*table of PPA angles }\psi\mathrm{ for the sources in region j0, in radians*)
    rSrcx\psiSrc = Table[Sin[\psiSrc[[i]]] eNSrc[[i]] - Cos[\psiSrc[[i]]] eESrc[[i]], {i, nSrc}];
    (*table of the cross product of rSrc and vector in direction of \psiSrc,
    a unit vector*) j \etaBarToGrid = Table[{j, (1/nSrc) Sum[ArcCos[
        Abs[ rSrcx\psiSrc[[i]].rSrcxrGrid[[i, j]] ] - 0.000001 ], {i, nSrc}]}, {j, nGrid}];
    (*
    {grid point #, value of the alignment angle \etanHj[j] averaged over all sources,
    in radians}*) sortj\etaBarToGrid = Sort[j\etaBarToGrid, #1[[2]] < #2[[2]] &];
    (*j\etaBarToGrid, {j, \mp@subsup{\eta}{j}{}}, but sorted with the smallest alignment angles first
    *)
    j\etaBarMin1 = sortj\etaBarToGrid[[1]]; (* {j, 访}, at the grid point Hj with minimum }\overline{\eta}*
    j\etaBarMax1 = sortj \etaBarToGrid[[-1]]; (* {j, \mp@subsup{\eta}{j}{\prime}},
    at the grid point Hj with maximum }\overline{\eta}*)
AppendTo[runData, {nRun, { j\etaBarMin1[[2]],
    {\alphaGrid [ [ j\etaBarMin1[[1]] ]], \deltaGrid [[ j\etaBarMin1[[1]] ]]}}, { j\etaBarMax1[[2]],
    {\alphaGrid [[ j \etaBarMax1[[1]] ]], \deltaGrid [[ j\etaBarMax1[[1]] ]]}}}](*collect data*) ]
```

At the start of run 1, the time is 13.39 seconds and the memory in use is 214284616 bytes. At the start of run 501, the time is 377.109 seconds and the memory in use is 231208232 bytes. At the start of run 1001, the time is 743.218 seconds and the memory in use is 231748936 bytes. At the start of run 1501, the time is 1096.95 seconds and the memory in use is 232297288 bytes. At the start of run 2001, the time is 1453.58 seconds and the memory in use is 232846056 bytes. At the start of run 2501, the time is 1810.16 seconds and the memory in use is 233394888 bytes. At the start of run 3001 , the time is 2160.5 seconds and the memory in use is 233943656 bytes. At the start of run 3501, the time is 2513.25 seconds and the memory in use is 234492296 bytes. At the start of run 4001, the time is 2865.47 seconds and the memory in use is 235041128 bytes. At the start of run 4501, the time is 3217.08 seconds and the memory in use is 235589896 bytes. Hint: You can save memory if you do not get the " ψ Data". The table ψ Data is needed to reconstruct the exact values of the runData table, but it is not needed in any following calculation.

```
SetDirectory[homeDirectory];(*Save memory space; \psiData is not used below.*)
(*
Put[\psiData,"20210509PsiDataClump1RA175Dec10.dat" ] (*Save a new "\psiData"*)
*)
(*\psiData=Get["20210509PsiDataClump1RA175Dec10.dat"]; *) (*Get an old "\psiData"*)
```

Hint: Saving "runData" to a file avoids the time it takes to complete the "For" statement. Make the above "For" statement into a remark so that it doesn't evaluate.

SetDirectory [homeDirectory];

(*
Put [runData,"20210509runDataClump1RA175Dec10.dat"] (*Save a new "runData".*)
*)
(*
runData=Get["20210509runDataClump1RA175Dec10.dat"];
*) (*Get an old "runData".*)
$\operatorname{In}[\cdot]:=$ Print ["The number of uncertainty runs is ", Length[runData], "."]
The number of uncertainty runs is 5000 .

```
\etaBarMinData = Table[runData[[i1, 2, 1]], {i1, Length[runData]}];
\etaBarMaxData = Table[runData[[i1, 3, 1]] , {i1, Length[runData] }];
Hmin\alphaData = Table[ runData[[i1, 2, 2, 1]] , {i1, Length[runData] }];
Hmin\deltaData = Table[runData[[i1, 2, 2, 2]], {i1, Length[runData]}];
Hmax\alphaData = Table[ runData[[i1, 3, 2, 1]] , {i1, Length[runData] }];
Hmax\deltaData = Table[runData[[i1, 3, 2, 2]], {i1, Length[runData]}];
```

6b. The Effects of Uncertainty on the Smallest Alignment Angle $\bar{\eta}_{\text {min }}$
This section fits a Gaussian distribution to the $\bar{\eta}_{\min }$ from the uncertainty runs.
Definitions
sort η BarMin sort the list of $\bar{\eta}_{\text {min }}$ from the uncertainty runs

$\eta 0 \mathrm{~B}$	estimated mean of the Gaussian fit
$\sigma \mathrm{B}$	estimated half-width of the Gaussian fit
histogramrange	\{min $\eta, \max \eta, \Delta \eta\}$ for the histogram
hl0, hl	histogram $\{\eta$, bin height $\}$ tables needed to set up the NonlinearModelFit
nlmB	non-linear model fit of a Gaussian to the $\bar{\eta}_{\text {min }}$ histogram
showNLMB	plot of Gaussian and histogram
ParametersNLMB	amplitude, half-width, and mean of the Gaussian fit
pTableNLMB	table of parameter attributes, including standard error

 sort \(\eta\) BarMin = Sort[\(\eta\) BarMinData];
 \(\eta 0 B=\operatorname{mean}[\eta B a r M i n D a t a] ;(* G u e s s\) the mean for the Gaussian. *)
 \(\sigma B=\) stanDev[\(\eta\) BarMinData]; (*Guess the half-width.*)
 histogramrange \(=\{\eta 0 \mathrm{~B}-5 \sigma \mathrm{~B}, \eta 0 \mathrm{~B}+5 \sigma \mathrm{~B}, 0.4 \sigma \mathrm{~B}\}\);
 hl0 = HistogramList [sort \(\eta\) BarMin, histogramrange];
 hl =
 Table [\{(1/2) (hl0[[1, i1]] +hl0[[1, i1 + 1]]), hl0[[2, i1]]\}, \{i1, Length[hl0[[2]]]\}];
 nlmB \(=\) NonlinearModelFit[h1, \(a \operatorname{Exp}\left[-(1 / 2.)((x-x 0) / b)^{2}\right]\),
 \(\{\{a\), Length \([\operatorname{sort} \eta B a r M i n / 6]\},\{b, \sigma B\},\{x 0, \eta 0 B\}\}, x] ;(* x\) is \(\eta B a r M i n *)\)
 $\ln [\varnothing]:=$ showNLMB $=$ Show [\{Histogram[sort η BarMin, histogramrange,
PlotLabel \rightarrow " $\left.\bar{\eta}_{\text {min }} ", ~ A x e s L a b e l \rightarrow\left\{" \bar{\eta}_{\text {min }}, ~ r a d i a n s ", ~ " \Delta R "\right\}\right]$,
Plot[Normal[nlmB] , $\left.\{x, \eta 0 B-5 \sigma B, \eta 0 B+5 \sigma B\}, P l o t L a b e l \rightarrow " \bar{\eta}_{\text {min }} "\right]$,
ListPlot [hl, PlotLabel \rightarrow " $\left.\left.\left.\bar{\eta}_{\text {min }} "\right]\right\}\right]$
Print["Figure 6: The Gaussian fit to the alignment angle
$\bar{\eta}_{\text {min }}$ histogram, where the height is the number "]
Print ["of runs ΔR in each bin of width $\Delta \bar{\eta}_{\text {min }}=", 0.4 \sigma B$, " radians. "]
Print ["The total number of runs is $R=\Sigma(\Delta R)=$ ", Length[runData], "."]

Figure 6: The Gaussian fit to the alignment angle $\bar{\eta}_{\text {min }}$ histogram, where the height is the number of runs $\Delta \mathrm{R}$ in each bin of width $\Delta \bar{\eta}_{\text {min }}=0.00596687$ radians .

The total number of runs is $R=\Sigma(\Delta R)=5000$.
$\ln [\rho]:=\operatorname{ParametersNLMB}=\{a, b, x 0\} / . n l m B[" B e s t F i t P a r a m e t e r s "] ;$
pTableNLMB = nlmB["ParameterTable"]
$\{\sigma \eta$ BarMinFit, η BarMinFit $\}=\{$ ParametersNLMB[[2]] , ParametersNLMB[[3]] \}; (*radians*)

		Estimate	Standard Error	t -Statistic	P -Value
	a	799.527	10.5054	76.1063	3.83557×10^{-28}
b	0.0148443	0.00022522	65.91	8.9616×10^{-27}	
	$\mathrm{x0}$	0.37913	0.00022522	1683.38	1.03855×10^{-57}

6c. The Effects of Uncertainty on the Largest Avoidance Angle $\bar{\eta}_{\max }$
This section fits a Gaussian distribution to the $\bar{\eta}_{\max }$ returned by the uncertainty runs.

Definitions: Check the list of Definitions in Sec. 6b. Trade avoidance (Max) here for alignment (Min) there.
$\ln [\cdot]=\operatorname{sort} \eta$ BarMax $=\operatorname{Sort}[\eta$ BarMaxData];
$\eta 0$ MaxB $=$ mean [η BarMaxData]; (*Guess the mean for the Gaussian. *)
σ MaxB $=$ stanDev[η BarMaxData]; (*Guess the half-width.*)
histogramrangeMAX $=\{\eta$ ММахB - 5σ МахB, $\eta 0$ MaxB $+5 \sigma$ MaxB, 0.4σ MaxB $\}$;
hl0Max = HistogramList [sort η BarMax, histogramrangeMAX];
hlMax = Table[\{(1/2) (hl0Max[[1, i1]] + hl0Max[[1, i1 + 1]]), hl0Max[[2, i1]] ,
\{i1, Length[hl0Max[[2]]]\}];
nlmMaxB = NonlinearModelFit[hlMax, $a \operatorname{Exp}\left[-(1 / 2.)((x-x \theta) / b)^{2}\right]$,
$\left\{\{a, 300\},.\{b, \sigma \operatorname{MaxB}\},\left\{x 0, \eta \Theta\right.\right.$ MaxB $\left.\left.\left.^{\prime}\right\}\right\}, x\right] ;(* x$ is $\eta B \operatorname{BarMax} *)$
$\operatorname{In}[\theta]:=$ showNLMMaxB $=$ Show[4 Histogram[sort η BarMax,
histogramrangeMAX, PlotLabel \rightarrow " $\bar{m}_{\max } ", ~ A x e s L a b e l \rightarrow\left\{" \bar{\eta}_{\max }\right.$, radians", " $\left.\left.\Delta \mathrm{R} "\right\}\right]$,
 ListPlot[hlMax, PlotLabel \rightarrow " $\left.\left.\bar{\eta}_{\text {max }} "\right]\right\}$]
Print["Figure 7: The Gaussian fit to the avoidance angle $\bar{\eta}_{\max }$ histogram. The bins have a width $\Delta \bar{\eta}_{\max }=", 0.4 \sigma M a x B$,
" radians and have a height equal to the number of runs ΔR in the bin."] Print["The total number of runs is $R=\Sigma(\Delta R)=$ ", Length[runData], "."]

Figure 7: The Gaussian fit to the avoidance angle $\bar{\eta}_{\max }$ histogram. The bins have a width $\Delta \bar{\eta}_{\text {max }}=$ 0.00645648 radians and have a height equal to the number of runs ΔR in the bin.

The total number of runs is $R=\Sigma(\Delta R)=5000$.

```
In[v]:= ParametersNLMMaxB = {a, b, x0} /. nlmMaxB["BestFitParameters"];
    pTableNLMMaxB = nlmMaxB["ParameterTable"]
    {\sigma\etaBarMaxFit, \etaBarMaxFit} = {ParametersNLMMaxB[[2]] , ParametersNLMMaxB[[3]] };
    (*radians*)
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multirow[b]{3}{*}{Out [0] \(=\)} & & Estimate & Standard Er & t-Statistic & P-Value \\
\hline & a & 799.002 & 8.28405 & 96.4506 & \(2.12287 \times 10^{-30}\) \\
\hline & b & 0.0160853 & 0.000192572 & 83.5287 & \(4.98483 \times 10^{-29}\) \\
\hline & x0 & 1.15318 & 0.000192572 & 5988.32 & \(7.79346 \times 10^{-7}\) \\
\hline
\end{tabular}
```

6d. The Effects of Uncertainty on the Locations (α, δ) of the Alignment Hubs $H_{\text {min }}$

Each uncertainty run returns an alignment hub $H_{\min }$. In this section, we calculate the mean and standard deviation to approximate the distribution of the locations the Alignment Hubs $H_{\text {min }}$.

In any one run, the analysis produces an alignment angle $\bar{\eta}$ at each grid point. There can be just one minimum alignment angle $\bar{\eta}_{\min }$, but there are two hubs, $H_{\min }$ and $-H_{\min }$, by the symmetry across a diameter. So we collect all the hubs together by moving the $-H_{\min }$ hubs across a diameter to join the $H_{\min }$ hubs.

Definitions

$\operatorname{Hmin} \alpha$	α in radians for $H_{\min }$
$\operatorname{Hmin} \delta$	δ in radians for $H_{\min }$
$\sigma \alpha \operatorname{MinFit1}$	half-width for α uncertainty runs
$\alpha \operatorname{MinFit1} 1$ mean for α uncertainty runs	
$\sigma \delta \operatorname{MinFit1}$	half-width for δ uncertainty runs
$\delta \operatorname{MinFit1}$	mean for δ uncertainty runs
$\operatorname{Hmin} \alpha \mathrm{AVE}$	average over all uncertainty runs of α for $H_{\min }$
$\operatorname{Hmin} \alpha \delta$	(α, δ) table for ListPlot
lpHmin	plot Hmin hubs from uncertainty runs
$\alpha 1,2 \operatorname{Min} 1$	values needed for framing the most likely hubs
$\delta 1,2 \operatorname{Min} 1$	ditto for latitude

$\ln [\rho]=$ (* Gather the hubs. Move the hubs across diameters, $\Delta \alpha=\pi$, or around a complete circle, $\Delta \alpha=360^{\circ}$, if necessary, so that all hubs satisfy $0^{\circ} \leq \alpha<180^{\circ}$.*) Hmin $\alpha 0=H m i n \alpha D a t a ;$ Hmin $\delta 0=$ Hmin δ Data;
Hmin α By180n = Round [Hmin $\alpha 0 / \pi$];
Hmin $\alpha 1$ = Table [Hmin $\alpha 0$ [[i1]] - Hmin α By180n [[i1]] π, \{i1, Length[Hmin $\alpha 0$] \}];
Hmin $\delta 1=\operatorname{Table}\left[(-1)^{\mathrm{Hmin} \alpha B y 180 n[[i 1]]}\right.$ Hmin $\delta 0[$ [i1]] , \{i1, Length [Hmin $\left.\left.\delta 0]\right\}\right]$;
Hmin $\alpha=$ Table[
If [Hmin $\alpha 1[[i 1]]<0, H \min \alpha 1[[i 1]]+\pi, H \min \alpha 1[[i 1]]$, "huh?"] , \{i1, Length[Hmin $\alpha 1]\}]$;
Hmin $\delta=$ Table[If[Hmin $\alpha 1[[i 1]]$ < 0, -Hmin $\delta 1[[i 1]], H m i n \delta 1[[i 1]]$, "huh?"],
\{i1, Length[Hminס1]\}];

```
In[o]:= (*Check that }\mp@subsup{0}{}{\circ}\leq\alpha<18\mp@subsup{0}{}{\circ}\mathrm{ and -90
    (*ListPlot[{Sort[Hmin\alpha],Sort [Hmin\delta]},
    PlotLabel }->\mathrm{ " }\alpha\mathrm{ and }\delta\mathrm{ for Hmin, radians",AxesLabel }->{"Run #","\alpha,\delta"}
{Sort[Hmin \alpha] [ [1] ], Sort [Hmin\alpha] [ [-1] ] } (\frac{360. }{2.\pi}) (*degrees*)
    {Sort[Hmin\delta][[1]],Sort[Hmin\delta] [[-1]]}(\frac{360.}{2.\pi}) (*degrees*)
*)
In[॰]:= {\sigma\alphaMinFit1, \alphaMinFit1} = {stanDev[Hmin\alpha], mean[Hmin\alpha]};(*radians*)
{\sigma\deltaMinFit1, \deltaMinFit1} = {stanDev[Hmin\delta], mean[Hmin\delta]};(*radians*)
In[\sigma]:= (*Define quantities for the plot of the H }\mp@subsup{H}{\mathrm{ min }}{}\mathrm{ from the uncertainty runs. *)
Hmin\alpha\delta = Sort[Table[{Hmin\alpha[[i5]], Hmin\delta[[i5]]}, {i5, Length[Hmin\alpha]}]];
{Hmin\alpha\delta[[1]], Hmin }\alpha\delta[[-1]]};(*radians*
{Hmin }\alpha\delta[[1]], Hmin \alpha\delta[[-1]]} (360./ (2. \pi)) ; (*degrees*
lpHmin = ListPlot[Hmin\alpha\delta (360. / (2.\pi)),
    PlotRange }->\mathrm{ {{0, 360}, {-90, 90}}, PlotMarkers }->\mathrm{ Automatic,
    AxesLabel }->\mathrm{ {" }\alpha\mathrm{ , degrees", " }\delta\mathrm{ , degrees"}, PlotLabel }->\mathrm{ " ( }\alpha,\delta) for the Hmin hubs"
    Ticks }->\mathrm{ {Table[{t, t}, {t, 0, 360, 45}], Automatic}];
\alpha1Min1 = (\alphaMinFit1 - \sigma\alphaMinFit1) (360./ (2.\pi));
\alpha2Min1 = (\alphaMinFit1 + \sigma\alphaMinFit1) (360./ (2.\pi));
\delta1Min1 = (\deltaMinFit1 - \sigma\deltaMinFit1) (360./ (2.\pi));
\delta2Min1 = (\deltaMinFit1 + \sigma\deltaMinFit1) (360./(2.\pi));
```

6e. The Effects of Uncertainty on the Locations (α, δ) of the Avoidance Hubs $H_{\max }$.

Each uncertainty run returns an alignment hub $H_{\max }$. In this section, we calculate the mean and standard deviation all such hubs to approximate the distribution of the locations of the Avoidance Hubs $H_{\max }$.

Definitions: Explore the definitions for $H_{\min }$ at the start of Sec. 6d. Find the similarly named quantity by interchanging Max for Min.
Adjust the definition to the present context.
$\ln [\cdot]:=$ (* Move hubs, if necessary, so that $0^{\circ} \leq \alpha<360^{\circ}$ *)
$H \max \alpha 0=H \max \alpha D a t a ;$
Hmax $\delta 0=H \max \delta D a t a ;$
$\operatorname{Hmax} \alpha \mathrm{By} 180 \mathrm{n}=\operatorname{Round}[\mathrm{Hmax} \alpha 0 / \pi]$;
Hmax $\alpha 1$ = Table [Hmax $\alpha 0$ [[i1]] - Hmax $\alpha B y 180 n$ [[i1]] π, \{i1, Length [Hmax 00$]$ \} ;
Hmax $\delta 1$ = Table [(-1) ${ }^{\text {Hmax } \alpha B y 180 n[[i 1]]} \operatorname{Hmax} \delta 0[$ [i1]] , \{i1, Length [Hmax 00$\left.]\right\}$;
Hmax $\alpha=$ Table [

Hmax $=$ Table [If [0 > Hmax 1 [[i1]], - Hmax $\delta 1[$ [i1]], Hmax 1 [[i1]], "ah"] ,
\{i1, Length[Hmax 81$]\}$];
$\ln [\cdot]:=\left(*\right.$ Check that $0^{\circ} \leq \alpha<180^{\circ}$ and $\left.-90^{\circ} \leq \delta<90^{\circ} *\right)$
(*ListPlot [\{Sort [Hmax α], Sort [Hmax $\delta]\}$, PlotRange $\rightarrow\{-2 \pi, 2 \pi\}$,
AxesLabel \rightarrow \{"Run \#", " α, δ radians" $\}, P l o t L a b e l \rightarrow " \alpha s, \delta s$ for $H_{m a x}$]
$\left\{\right.$ Sort $[H \max \alpha][[1]]$, Sort [Hmax α] [[-1]] \} $\left(\frac{360 .}{2 . \pi}\right)$ (*degrees*)
$\{$ Sort [Hmax δ] [[1]], Sort [Hmax δ] [[-1$]$] \} $\left(\frac{360 .}{2 . \pi}\right)$ *) (*degrees *)

```
In[\sigma]:= {\sigma\alphaMaxFit, \alphaMaxFit} = {stanDev[Hmax }\alpha\mathrm{ ], mean[Hmax }\alpha]};(*radians*
{\sigma\deltaMaxFit, \deltaMaxFit} = {stanDev[Hmax \delta], mean[Hmax \delta]};(*radians*)
\(\ln [\) ] \(:=\) (* Define quantities for the plot of the
    locations of the }\mp@subsup{\textrm{H}}{\operatorname{max}}{}\mathrm{ from the uncertainty runs. *)
Hmax\alpha\delta = Table[{Hmax\alpha[[i8]], Hmax\delta[[i8]]}, {i8, Length[Hmax\delta ]}];
{Hmax\alpha\delta[[1]], Hmax }\alpha\delta[[-1]]};(*radians*
{Hmax }\alpha\delta[[1]], Hmax \alpha\delta[[-1]]} (360./ (2.\pi)) ; (*degrees*
lpHmax1 = ListPlot[Hmax\alpha\delta (360./ (2.\pi)), PlotRange }->{{0, 360}, {-90, 90}},
    PlotMarkers }->\mathrm{ Automatic, AxesLabel }->{"\alpha, degrees", " \delta, degrees"}
    PlotLabel }->\mathrm{ " "Hmax hubs ", Ticks }->\mathrm{ {Table[{t, t}, {t, 0, 360, 45}], Automatic}];
\alpha1Max = (\alphaMaxFit - \sigma\alphaMaxFit) (360./ (2. \pi) );
\alpha2Max = (\alphaMaxFit + \sigma\alphaMaxFit) (360./ (2. \pi) );
\delta1Max = (\deltaMaxFit - \sigma\deltaMaxFit) (360./ (2.\pi));
\delta2Max = (\deltaMaxFit + \sigma\deltaMaxFit) (360./ (2. \pi) );
```

6f. The Effects of Uncertainty on the angle θ between the planes of the Sample to $H_{\text {min }}$ Great Circle and the Sample to $H_{\text {max }}$ Great Circle.

These are the Gray lines in Fig. 5.

Definitions:
"uRuns" prefix results from the uncertainty runs
uRunsCrossMin unit vector normal to the Great Circle connecting the center of the source region with the alignment hub $H_{\text {min }}$ uRunsCrossMax unit vector normal to the Great Circle connecting the center of the source region with the alignment hub $H_{\text {max }}$ uRuns θ minMAXgreatcircles angle between the two normals in degrees sort日minMAX sort "uRuns日minMAXgreatcircles", smallest θ first
See Definitions above in Secs. $6 \mathrm{a}, 6 \mathrm{~b}$ for other quantities below. There you should find similarly named quantities.
$\ln [$ - $]=$ uRunsCrossMin0 $=$
Table[Cross [er[Hmin $\alpha[$ [i]], Hmin [[[i]]], sourceCenter], \{i, Length[Hmin α]\}];
uRunsCrossMin = Table $\left[\frac{\text { uRunsCrossMine[[i]] }}{(\text { uRunsCrossMine[[i]].uRunsCrossMine[[i]] })^{1 / 2 .}}\right.$,
\{i, Length [Hmin α] \}];
uRunsCrossMax0 = Table[Cross[er[Hmax $\alpha[$ [i]], $H \max \delta[[i]]$, sourceCenter], \{i, Length [Hmax α] \}];
uRunsCrossMax $=\operatorname{Table}\left[\frac{\text { uRunsCrossMax0[[i]] }}{(\text { uRunsCrossMax0[[i]].uRunsCrossMax0[[i]] })^{1 / 2 .}}\right.$,
\{i, Length [Hmax α] \}];
uRunseminMAXgreatcircles = Table[ArcCos[uRunsCrossMax[[i]].uRunsCrossMin[[i]]] ($\left.\frac{360 .}{2 . \pi}\right)$,
\{i, Length $[H \max \alpha]\}$;

$\eta \theta \theta=$ mean [uRuns θ minMAXgreatcircles]; (*Guess the mean for the Gaussian. *)
$\sigma \theta=$ stanDev [uRuns Θ minMAXgreatcircles]; (*Guess the half-width.*)
histogramrange $=\{\eta \theta \theta-5 \sigma \theta, \eta \theta \theta+5 \sigma \theta, 0.4 \sigma \theta\}$;
hl0 = HistogramList [sortӨminMAX, histogramrange];
h1 =
Table [\{(1/2) (hl0[[1, i1]] +hl0[[1, i1 + 1]]), hlo[[2, i1]]\}, \{i1, Length[hl0[[2]]]\}];
nlm $=$ NonlinearModelFit $\left[h 1, a \operatorname{Exp}\left[-(1 / 2.)((x-x 0) / b)^{2}\right]\right.$, $\{\{a$, Length $[\operatorname{sort\theta minMAX/6]\} ,~}\{b, \sigma \theta\},\{x \theta, \eta \theta \theta\}\}, x] ;(* x$ is $\Theta \operatorname{minMAX*})$
$\operatorname{In}[\circ]:=$ showNLM $=$ Show [$\{$ Histogram [sortӨminMAX, histogramrange,
PlotLabel \rightarrow "Angle θ between the Two Gray Great Circles in Fig. 5",
AxesLabel \rightarrow \{" θ, degrees", " Δ R"\}],
Plot [Normal [nlm $]$, $\{x, \eta \theta \theta-5 \sigma \theta, \eta \theta \theta+5 \sigma \theta\}$], ListPlot [hl] \}]
Print["Figure 8: The Gaussian fit to the angle θ histogram,
where the height is the number of runs ΔR in"]
Print [" each bin of width $\Delta \theta=$ ", $0.4 \sigma \theta$, " degrees."]
Print [" The total number of runs is $R=\Sigma(\Delta R)=$ ", Length[runData], "."]

Angle θ between the Two Gray Great Circles in Fig. 5

Figure 8: The Gaussian fit to the angle θ histogram, where the height is the number of runs $\Delta \mathrm{R}$ in each bin of width $\Delta \theta=1.47323$ degrees.

The total number of runs is $R=\Sigma(\Delta R)=5000$.
$\ln [\cdot]:=\operatorname{ParametersNLM\theta }=\{a, b, x 0\} / . n l m \theta[" B e s t F i t P a r a m e t e r s "] ;$
pTableNLM $\theta=n l m \theta[$ "ParameterTable"]
$\{\sigma \Theta$ minMAXFit, Θ minMAXFit $\}=\left\{\right.$ ParametersNLM $\left[\right.$ [2]] , ParametersNLM ${ }^{[}[3]$] \}; (*degrees*)
Out[0]= $\left.=\begin{array}{l|llll} & \mid l l l l \\ \hline \text { a } & 783.396 & 26.644 & 29.4024 & 3.74098 \times 10^{-19} \\ \text { b } & 3.78289 & 0.148563 & 25.4632 & 8.12067 \times 10^{-18} \\ & \text { x0 } & 92.3208 & 0.148563 & 621.425\end{array}\right) 3.44853 \times 10^{-48}$

6g. Map of the Hubs for the Uncertainty Runs

In this subsection, we map the locations of the many alignment hubs $H_{\min }$ and the locations of the avoidance hubs $H_{\max }$ that are found in the uncertainty runs.

Definitions:
\(\left.\begin{array}{ll}xyAitoffHmin \& Aitoff coordinates for the alignment hubs H_{\min } from the uncertainty runs

xyAitoffHmax \& Aitoff coordinates for the avoidance hubs H_{\max } from the uncertainty runs\end{array}\right\}\)| xyAitoffOppositeHmin | Aitoff coordinates for the $-H_{\min }$ |
| :--- | :--- |
| xyAitoffOppositeHmax | Aitoff coordinates for the $-H_{\max }$ |
| mapOff $\sigma \psi$ HminHmax | plot of the alignment and avoidance hubs $H_{\min },-H_{\min }, H_{\max }$, and $-H_{\max }$ |

$\ln [\cdot]:=$ (*The Aitoff coordinates for the hubs $H_{\text {min }}$ locations.*)

yH180[Hmin $\alpha[\mathrm{n}]$] $(360 /(2 \pi)), \operatorname{Hmin} \delta[[n]](360 /(2 \pi))]\},\{n$, Length [Hmin $\delta]\}] ;$
(*The Aitoff coordinates for the hubs $\mathrm{H}_{\max }$ locations.*)
xyAitoffHmax $=\operatorname{Table}[\{\mathrm{xH} 180[\operatorname{Hmax} \alpha[\mathrm{n}]](360 /(2 \pi))$, $\operatorname{Hmax} \delta[\mathrm{n}]](360 /(2 \pi))]$,
$y H 180[H \max \alpha[[n]](360 /(2 \pi)), \operatorname{Hmax} \delta[[n]](360 /(2 \pi))]\},\{n$, Length[Hmin $\delta]\}] ;$
(*The Aitoff coordinates for the hubs $-\mathrm{H}_{\text {min }}$ locations.*)
xyAitoffoppositeHmin = Table [\{xH180[If [0 $\leq \operatorname{Hmin} \alpha[[n]](360 /(2 \pi))<+180$,
$\operatorname{Hmin} \alpha[[n]](360 /(2 \pi))+180, \operatorname{If}[360>\operatorname{Hmin} \alpha[[n]](360 /(2 \pi))>180$, Hmin α [[n]] $(360 /(2 \pi))-180]],-H \min \delta[[n]](360 /(2 \pi))]$, yH180[If[0 $\leq \operatorname{Hmin} \alpha[\mathrm{n}]$] $(360 /(2 \pi))<+180, \operatorname{Hmin} \alpha[[n]](360 /(2 \pi))+180$, $\operatorname{If}[360>\operatorname{Hmin} \alpha[[n]](360 /(2 \pi))>180, H \min \alpha[[n]](360 /(2 \pi))-180]]$, -Hmin $\delta[n]](360 /(2 \pi))]\},\{n$, Length [Hmin $\delta]\}] ;$
(*The Aitoff coordinates for the hubs $-\mathrm{H}_{\max }$ locations.*)
xyAitoffOppositeHmax =
Table [\{xH180[If[0 $\leq \operatorname{Hmax} \alpha[[n]](360 /(2 \pi))<+180, H \max \alpha[[n]](360 /(2 \pi))+180$, $\operatorname{If}[360>\operatorname{Hmax} \alpha[[n]](360 /(2 \pi))>180, H \max \alpha[[n]](360 /(2 \pi))-180]]$, $-\operatorname{Hmax} \delta[[n]](360 /(2 \pi))], y H 180[\operatorname{If}[0 \leq \operatorname{Hmax} \alpha[[n]](360 /(2 \pi))<+180$, $\operatorname{Hmax} \alpha[n]](360 /(2 \pi))+180, \operatorname{If}[360>\operatorname{Hmax} \alpha[[n]](360 /(2 \pi))>180$, $H \max \alpha[[n]](360 /(2 \pi))-180]],-H \max \delta[[n]](360 /(2 \pi))]\},\{n$, Length [Hmax $\delta]\}$];
$\operatorname{In}[\rho]:=$ (*Construct the map of uncertainty run $H_{\min }$ and $H_{\max }$ hubs with \pm regions indicated.*) mapOf $\sigma \psi H$ minHmax $=$

Show $[\{$ Table [ParametricPlot $[\{\mathrm{xH} 180[\alpha, \delta], \mathrm{yH} 180[\alpha, \delta]\}$, $\{\delta,-90,90\}$, PlotStyle $\rightarrow\{$ Black, Thickness [0.002] \}, PlotPoints $\rightarrow 60$, PlotRange $\rightarrow\{\{-7,7\},\{-3,3\}\}$, Axes \rightarrow False], $\{\alpha, 0,360,30\}]$,
Table[ParametricPlot $[\{x H 180[\alpha, \delta], y H 180[\alpha, \delta]\},\{\alpha, 0,360\}$, PlotStyle \rightarrow
$\{$ Black, Thickness [0.002] \}, PlotPoints $\rightarrow 60]$, \{ $\delta,-60,60,30\}]$, Graphics [\{PointSize [0.007], Text[StyleForm["N", FontSize -> 10, FontWeight -> "Plain"], \{0, 1.85\}], LightBlue, (*Hmin:*) Point [xyAitoffHmin], (*-Hmin:*) Point[xyAitoffOppositeHmin], LightRed, (*Hmax:*) Point [xyAitoffHmax], (*-Hmax:*)Point[xyAitoffOppositeHmax] \}],
Table[ParametricPlot $[\{x H 180[\alpha, \delta], y H 180[\alpha, \delta]\},\{\delta, \delta 1 M a x, \delta 2 M a x\}$, PlotStyle $\rightarrow\{$ Purple, Thickness [0.002] \}, PlotPoints $\rightarrow 60$], $\{\alpha, \alpha 1$ Max, $\alpha 2$ Max, $\alpha 2$ Max $-\alpha 1$ Max $\}$],
Table[ParametricPlot [\{xH180[$\alpha, \delta], y H 180[\alpha, \delta]\},\{\alpha, \alpha 1 M a x, \alpha 2 M a x\}$, PlotStyle \rightarrow \{Purple, Thickness [0.002] \}, PlotPoints $\rightarrow 60$], \{ $\delta, \delta 1$ Max, $\delta 2$ Max, $\delta 2$ Max $-\delta 1$ Max \}],
Table[ParametricPlot [\{xH180[$\alpha, \delta], y H 180[\alpha, \delta]\},\{\delta,-\delta 2 M a x,-\delta 1 M a x\}$, PlotStyle \rightarrow
$\{$ Purple, Thickness [0.002] \}, PlotPoints $\rightarrow 60$], $\{\alpha, \alpha 1 \operatorname{Max}+180, \alpha 2 \operatorname{Max}+180, \alpha 2 \operatorname{Max}-\alpha 1$ Max $\}$],
Table[ParametricPlot [\{xH180[$\alpha, \delta], y H 180[\alpha, \delta]\},\{\alpha, \alpha 1 M a x+180, \alpha 2 M a x+180\}$, PlotStyle $\rightarrow\{$ Purple, Thickness [0.002] \}, PlotPoints $\rightarrow 60$], \{ $\delta,-\delta 2$ Max, $-\delta 1$ Max, $\delta 2$ Max - $\delta 1$ Max $\}$],
Table[ParametricPlot [\{xH180[$\alpha, \delta], y H 180[\alpha, \delta]\},\{\delta,-\delta 2 M i n 1,-\delta 1 M i n 1\}$, PlotStyle \rightarrow \{Purple, Thickness [0.002] \}, PlotPoints \rightarrow 60],
$\{\alpha, \alpha 1 \operatorname{Min} 1+180, \alpha 2 M i n 1+180, \alpha 2 M i n 1-\alpha 1 M i n 1\}]$,
Table[ParametricPlot[\{xH180[$\alpha, \delta], y H 180[\alpha, \delta]\},\{\alpha, \alpha 1 M i n 1+180, \alpha 2 M i n 1+180\}$, PlotStyle \rightarrow
$\{$ Purple, Thickness [0.002] \}, PlotPoints $\rightarrow 60],\{\delta,-\delta 2 M i n 1,-\delta 1 M i n 1, \delta 2 M i n 1-\delta 1 M i n 1\}]$,
Table[ParametricPlot [\{xH180[$\alpha, \delta], y H 180[\alpha, \delta]\},\{\delta, \delta 1 M i n 1, \delta 2 M i n 1\}$, PlotStyle \rightarrow
$\{$ Purple, Thickness [0.002] \}, PlotPoints $\rightarrow 60$], $\{\alpha, \alpha 1 \operatorname{Min1}, \alpha 2 M i n 1, \alpha 2 M i n 1-\alpha 1 M i n 1\}]$,
Table[ParametricPlot[\{xH180[$\alpha, \delta], \operatorname{yH180}[\alpha, \delta]\},\{\alpha, \alpha 1 M i n 1, \alpha 2 M i n 1\}$, PlotStyle \rightarrow
$\{$ Purple, Thickness [0.002] \}, PlotPoints \rightarrow 60], $\{\delta, \delta 1 M i n 1, \delta 2 M i n 1, \delta 2 M i n 1-\delta 1 M i n 1\}](* *)\}$,
ImageSize $\rightarrow 1.5 \times 432$, PlotLabel \rightarrow "The Hubs Found from the Uncertainty Runs"];
6h. Section Summary
$\ln [\theta]:=$ Print["To estimate the effects of experimental uncertainty, there were ", Length[runData], " uncertainty runs."] Print["Uncertainty runs have polarization directions $\psi=\psi \mathrm{n}+\delta \psi$, ", "where $\delta \psi$ is chosen with a normal
distribution of half-width $\sigma \psi$ about the best value $\psi \mathrm{n} . \mathrm{"}]$
Print["The uncertainty runs determine the smallest alignment angle to be $\bar{\eta}_{\text {min }}=$ ", η BarMinFit (360./(2. π)) , " ${ }^{\circ} \pm$ ", $\sigma \eta$ BarMinFit ($360 . /(2 . \pi)$) , "。."]
Print["The uncertainty runs determine the largest avoidance angle to be $\bar{\eta}_{\max }=$ ",
 Print["The uncertainty runs give the location
for one of the alignment hub $H_{\text {min }}$ as $(\alpha, \delta)="$,
$\{\alpha$ MinFit1 (360. / (2. π)) + 180, - δ MinFit1 (360. / (2. π)) \}, " \pm ",
$\{\sigma \alpha$ MinFit1 $(360 . /(2 . \pi))$, $\sigma \delta \operatorname{MinFit1}(360 . /(2 . \pi))\}$, ", in degrees."]
Print["The other hub, $-H_{\text {min }}$, is located diametrically opposite from $H_{\text {min }}$."]
Print ["The uncertainty runs give the location of the avoidance hub $H_{\max }$ as $(\alpha, \delta)="$, $\{\alpha$ MaxFit (360. / (2. π)) , δ MaxFit (360. / $(2 . \pi)$) \}, " \pm ", $\{\sigma \alpha$ MaxFit (360./ (2. π)) , $\sigma \delta \operatorname{MaxFit}(360 . /(2 . \pi))\}$, ", in degrees."]
Print["The other hub, $-\mathrm{H}_{\max }$, is located diametrically opposite from $\mathrm{H}_{\max }$ •"]
Print["The uncertainty runs determine the angle θ between the two grey Great Circles in Fig. 5. to be $\theta=$ ", θ minMAXFit, $" 0 \pm$ ", $\sigma \theta$ minMAXFit, " 0 ."]
To estimate the effects of experimental uncertainty, there were 5000 uncertainty runs.
Uncertainty runs have polarization directions $\psi=\psi \mathrm{n}+\delta \psi$,
where $\delta \psi$ is chosen with a normal distribution of half-width $\sigma \psi$ about the best value $\psi \mathrm{n}$.
The uncertainty runs determine the smallest alignment angle to be $\bar{\eta}_{\text {min }}=21.7226^{\circ} \pm 0.850515^{\circ}$.
The uncertainty runs determine the largest avoidance angle to be $\bar{\eta}_{\text {max }}=66.0725^{\circ} \pm 0.921618^{\circ}$.
The uncertainty runs give the location for one of the alignment hub $H_{\text {min }}$ as $(\alpha, \delta)=$ $\{189.688,-1.392\} \pm\{2.20497,2.43013\}$, in degrees.

The other hub, $-\mathrm{H}_{\text {min }}$, is located diametrically opposite from $\mathrm{H}_{\text {min }}$.
The uncertainty runs give the location of the avoidance hub $H_{\max }$ as $(\alpha, \delta)=$
$\{144.136,-24.9252\} \pm\{19.6147,13.6058\}$, in degrees.
The other hub, $-\mathrm{H}_{\max }$, is located diametrically opposite from $\mathrm{H}_{\max }$.
The uncertainty runs determine the angle θ between
the two grey Great Circles in Fig. 5. to be $\theta=92.3208^{\circ} \pm 3.78289^{\circ}$.
$\ln [\cdot]:=\operatorname{mapOf\sigma } \sigma H m i n H m a x$
Print["Figure 9: The ", Length[runData], " sets of hubs found for the uncertainty runs."]
Print ["The alignment hubs $H_{m i n}$ and $-H_{m i n}$ are plotted as light blue dots, ", LightBlue, ". "]
Print ["The avoidance hubs $H_{\max }$ and $-H_{\max }$ are plotted as pink dots, ", LightRed, "."]
Print ["The most likely locations of the hubs are outlined in purple, ", Purple, "."]
The Hubs Found from the Uncertainty Runs

Figure 9: The 5000 sets of hubs found for the uncertainty runs.
The alignment hubs $H_{\min }$ and $-H_{\text {min }}$ are plotted as light blue dots, \square.
The avoidance hubs $\mathrm{H}_{\max }$ and $-\mathrm{H}_{\max }$ are plotted as pink dots, $\square \cdot$
The most likely locations of the hubs are outlined in purple,
As a final image, we superimpose the map of the uncertainty run hubs $H_{\min },-H_{\min }, H_{\max }$, and $-H_{\max }$ in Fig. 9 on the graph of the alignment angle function $\bar{\eta}(H)$, Fig. 5.

```
Show [ {mapOf\etaBar, mapOf\sigma\psiHminHmax } ]
Print[
    "Figure 10: Overlay Fig. 9, Uncertainty Run Hubs, onto Fig. 5, Alignment Function }\overline{\eta}(H
        using Best Values \psin. Note that the light blue alignment hubs from the uncertainty
        runs closely follow the areas of convergence (blue) for the best values \psin. And
        the pink avoidance hubs follow the areas of extreme divergence (red). One sees
        that shifting the polarization directions slightly due to experimental uncertainty,
        shifts the locations of the hubs slightly. The shifted hubs favor areas, in blue
        and red, that are close to the extremes for the alignment function }\overline{\eta}(H)\mathrm{ in Fig.5."]
```


Figure 10: Overlay Fig. 9, Uncertainty Run Hubs, onto Fig. 5, Alignment Function $\bar{\eta}(H)$ using Best Values $\psi \mathrm{n}$. Note that the light blue alignment hubs from the uncertainty runs closely follow the areas of convergence (blue) for the best values $\psi \mathrm{n}$. And the pink avoidance hubs follow the areas of extreme divergence (red). One sees that shifting the polarization directions slightly due to experimental uncertainty, shifts the locations of the hubs slightly. The shifted hubs favor areas, in blue and red, that are close to the extremes for the alignment function $\bar{\eta}(H)$ in Fig. 5 .

7. Concluding Remarks

The sample of QSOs studied in this notebook has percent polarizations above 0.6%. Polarized starlight in the region is planned to be studied in some future notebook. The data shows that polarized starlight in the region of these QSOs has much lower percent polarizations, about 0.1% or so. This suggests the Milky Way contribution is small. While comparing optical and radio polarization percentages could be innately faulty, it may be that the polarization for these radio QSOs originates with the QSO upon emission or has developed enroute or some mix of the two.

By the survey in Fig. 3, one sees that very significantly aligned regions are rare with QSOs. This is unlike polarized starlight
sources in the Milky Way which has a large proportion of 5° regions well aligned, with $-\log _{10}(S)$ often over 9 , when surveyed as in Fig. 3. While the percent polarization has a higher degree for QSOs compared with starlight, the significances of the alignments is generally much lower for QSOs compared with stars. It may be worthwhile to search the sky near the very significant regions, the color dots in Fig. 3, for objects that may have a polarizing effect on the radio waves from the QSOs.

If the alignment of the polarization directions of these 27 QSOs is due to some interaction with matter enroute, then the alignment hub $H_{\text {min }}$ being near the sources on the sky surely entails a different physical situation than with other situations having hubs that are far from the sources. When the alignment is far from the sources, all sources are polarized in more or less the same direction. A hub close to the sample on the sky, as with the 27 QSOs here, could indicate a magnetic field in different directions for the different sources, yet organized in a way that produces very significant alignment. Whatever the successful explanations are, the explanation of polarization directions aligning with nearby hubs is expected to differ in some essential ways from explanations that fit alignment characterized by near equal position angles.

References

1. R. Shurtleff, the ready-to-run Mathematica version of this notebook is available at the following URL: https://www.dropbox.com/s/10b3te0yib67xgr/20210419Clump1RA175Dec10ForViXra.nb?dl=0
2. Wolfram Research, Inc., Mathematica, Version 12.1, Champaign, IL (2020).
3. Wikipedia contributors. "Aitoff projection." Wikipedia, The Free Encyclopedia. Wikipedia, The Free Encyclopedia, 25 May. 2017. Web. (3 Jan. 2018).
4. R. Shurtleff, "Indirect polarization alignment with points on the sky, the Hub Test", https://vixra.org/abs/2011.0026 (2020).
5. Hutsemékers, D., Braibant, L., Pelgrims, V., and Sluse, D., Alignment of quasar polarizations with large-scale structures, Astron. Astrophys., 572, A18, doi: 10.1051/0004-6361/201424631, arXiv:astro-ph:1409.6098 (2014).
6. Pelgrims, V. and Hutsemékers, D., Polarization alignments of quasars from the JVAS/CLASS 8.4-GHz surveys, MNRAS, 450, 4161-4173, doi: 10.1093/mnras/stv917, arXiv:astro-ph:1503.03482 (2015).
7. Jackson, N., Battye, R. A., Browne, I. W. A., Joshi, S., Muxlow, T. W. B., and Wilkinson, P. N., A survey of polarization in the JVAS/CLASS flat-spectrum radio source surveys - I. The data and catalogue production, MNRAS, 376, 371-377, doi:
10.1111/j.1365-2966.2007.11442.x , arXiv:astro-ph/0703273 (2007).
$\ln [\varepsilon]:=$ Print ["The date and time that this statement was evaluated: ", Now]
The date and time that this statement was evaluated: Sun 9 May 2021 14:51:46 GMT-4.
