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Abstract

The sample of 27 quasars with polarized radio emissions located in a region near the North Galactic Pole is shown to have highly 

aligned polarization directions. Furthermore, by extending their polarization directions around the Celestial Sphere, the convergence 

of their polarization directions is close to the sources. Thus, parallax forces the position angles to vary with locations of individual 

sources. The QSOs are taken from the JVAS1450 subset of the JVAS/CLASS 8.4-GHz surveys. The alignment is analyzed by the 

Hub Test. Fewer than about 70,000 randomly directed such samples would be as well aligned, a 4σ result. Some underlying calcula-

tions are presented in a Mathematica-coded Appendix. Access to a .nb notebook is provided in the references.

  

Keywords: Polarized Radio Sources; Alignment;  Quasi-stellar objects

*Department of Sciences, Wentworth Institute of Technology, 550 Huntington Avenue, Boston, MA, USA, 02115, 

orcid.org/0000-0001-5920-759X, e-mail addresses: shurtleffr@wit.edu, momentummatrix@yahoo.com 

0. Preface

The pdf version of this notebook is available online from the viXra archive, try https://vixra.org/abs/2105.0091 

To find the ready-to-run notebook follow the link in Ref. 1. The notebooks in this series were created using Wolfram Mathematica, 

Version Number: 12.1, Ref. 2.

Note(s):

(1) Random numbers should be reliable. Thus, numerical quantities in the pdf version in Sec. 6 Uncertainty and Sec. 7 Probabil-

ity and Significance should differ from the live ready-to-run version in Ref. 1.  Different sets of random runs and uncertainty runs, for 

a sufficiently large number of runs, should provide numerical values that differ only slightly. 

(2) To shorten the document, some Mathematica Notebook Cells have been hidden. The first cell is hidden before the Title and 

Abstract cell. It contains a list of notebook files that are potentially useful for me to know. Starting with Fig. 8 in Part II the 

Appendix, most of the cells that produce the captions for the figures are hidden in cells. 

To open a cell for viewing in the live ready-to-run version from Ref.1:  Highlight the little nub that shows a cell exists there, 

Find Cell: Cell Properties: Check “Open” to see one of the hidden cells.
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1. Introduction to Part I

To have regions of the sky containing QSOs with aligned polarizations, or some other way correlated, is certainly remarkable.  

Large scale alignments are found for both optical and radio quasi stellar objects (QSOs), Refs. 3-8. In some studies, the tests that 

determine significant alignment compare the polarization direction of the electromagnetic radiation from one of the QSOs with one or 

more of its neighbors. An example of the potential value of such research is the finding of correlations between polarization directions 

and the local large scale structure, Refs. 6,7. 

Polarization by way of interaction with local interstellar grains in the Milky Way Galaxy has been discounted, Ref. 5. The typical 

QSO polarization levels are too strong, a percent to several percent, for the cause to be local to the Milky Way. Taking a step further 

out, with the Virgo Supercluster in the same general direction as these QSOs, some mechanism related to the supercluster may be able 

to explain the alignment. Perhaps there are intergalactic magnetic fields, Ref. 9. Or, as mentioned above, the polarizations could exist 

when the radio waves are emitted. In any case, the alignment is intriguing.

 The Hub Test does not compare polarizations directly with each other, but indirectly, by finding points of convergence of the 

great circle geodesics obtained by extending polarization directions around the Celestial Sphere. Places where the geodesics are most 

dense are called “hubs” much as International Travel Hubs are places where the paths of passenger jets converge. The Hub Test is 

especially useful, compared to direct-comparison tests, when the convergence is strong near the sources. In that case, as is true for 

these 27 QSOs, there is parallax which masks the alignment for direct-comparison tests. Some other studies, Refs. 10,11, employ the 

Hub Test that is used here.

 All tests, direct or indirect, serve to add to the information defining the behavior of QSOs and informing other topics of interest, 

such as Large Scale Structure, intergalactic magnetic fields, and the properties of these objects. 

 

2. Sample selection and the Hub Test

The sample of 27 QSOs in this report are taken from  JVAS1450, Ref. 12,13, a catalog of 1450 QSOs that was kindly communi-

cated to me by one of the authors of Ref. 12. Details of the dataset can be found in Ref. 12. As explained there, the JVAS1450 catalog 

builds on data from the earlier large JVAS/CLASS 8.4-GHz catalog, Ref. 14. 

To find candidate samples in  the  JVAS1450 to study, a survey was conducted. The QSO sources were binned, assigned to 5° 

radius circular regions centered on the grid points of a 2° mesh. A minimum of seven sources was enforced. The regions were sorted 

by the significance of their alignments according to the Hub Test. Another report, Ref. 10, evaluates a clump of 13 QSOs, Clump 2 in 

Fig. 1. 

In this report we investigate Clump 1, which consists of the QSOs inhabiting the overlap of fourteen significantly aligned regions 

near the Vernal Equinox and the North Galactic Pole. The sample occupies a roughly 11° radius patch of sky centered on (RA,dec)  =  

(178°,10°). The alignment of these 27 QSOs is evaluated with the Hub Test.
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Figure 1. Survey of 1450 polarized radio QSOs. (Equatorial Coordinates, centered at (α,δ)  =  (180°,0°),  East to the right.) The QSOs 

were grouped into 5° radius regions centered on grid points. Those regions having at least 7 QSOs are plotted as gray dots. Just 35 

regions showed very significant alignment, i.e. S  ≤  0.01  =  10-2, or, equivalently, -Log10 S  ≥  2.0 , and these are shaded in color. 

Clump 1 has 14 regions containing 27 QSOs and is selected for analysis here. Clump 2 has 3 regions containing 13 QSOs and is 

analyzed in Ref. 10.  

The Hub Test is discussed more fully in Ref. 15. The basic idea is analogous to a well-known guide to find Polaris, the North 

Star. Assume one can find the stars Merak and Dubhe which are two stars in the constellation Ursa Major. Then the direction from 

Merak to Dubhe aligns with the direction from Merak to Polaris. While Fig. 2 is not drawn for this case, with the labelling of Fig. 2, 

let the source S be the star Merak, take the direction from Merak to Dubhe to be the direction of polarization vψ, and let Polaris be the 

point H. Then the alignment of the Merak-to-Dubhe direction vψ with the direction toward Polaris, the point H, illustrates the concept 

of alignment in the Hub Test. The alignment angle η  for Merak-Dubhe and Merak- Polaris would be about η = 3.47° and the blue 

great circle would almost coincide with the purple great circle .

Out[ ]=

Figure 2: The Celestial sphere is pictured on the left and on the right is the plane tangent to the sphere at the source S. The linear 

polarization direction  vψ lies in the tangent plane and determines the purple great circle on the sphere. A point H on the sphere 

together with the point S determine a second great circle, the blue circle drawn on the sphere. Clearly, H and S must be distinct in 

order to determine a great circle. The angle η measures the alignment of the polarization direction ψ with the point H. 

In Fig. 2, the “alignment angle” η  is the acute angle η between two great circles at S,  0° ≤  η  ≤  90° . The alignment angle η 

4     20211030ReplaceClump1PaperFirst.nb



measures how well the polarization direction  vψ matches the direction vH toward the point H.  Perfect alignment occurs when η  =  0° 

and the two great circles overlap. Perpendicular great circles, η   =  90°, indicates maximum “avoidance” of the polarization direction 

v

ψ with the point H on the sphere. The halfway value, η   =  45°,  favors neither alignment nor avoidance.

With N sources Si, i  =  1, ..., N, there are N alignment angles ηiH at each point H . One can calculate an average alignment angle 

η at H,

η(H)  =  1
N
∑i=1

N ηiH , (1) 

where 

cos( ηiH ) = | vψ.vH |  . (2)

Each angle ηiH is taken to be the acute angle solving (2). Then the average alignment angle η(H) at the point H must also be acute. 

The alignment angle η(H) is a function of position H on the sphere. It is symmetric across diameters,  η(H)  =  η(-H), because 

great circles are symmetric across diameters. The function  η(H)  measures convergence and divergence of the great circles deter-

mined by the polarization directions. For random polarization directions, the average  η(H) is most likely near 45°, since each 

alignment angle ηiH is acute, 0° ≤ ηiH ≤ 90°, and random polarization directions should not favor any one value. Points H where the 

alignment angle  η(H)  is smaller than 45°, the great circles tend to converge; where  η(H)  is larger than 45°, the great circles can be 

said to diverge. 

In this article and notebook, we often use “min” to label the smallest alignment angle ηmin and the associated points on the 

sphere, the “hubs” Hmin and -Hmin. Thus “min” is associated with convergence of the polarization directions. For divergence, the 

hubs  Hmax and -Hmax locate places where the polarization directions avoid, as indicated by the largest alignment angle ηmax.  Thus, 

we very often label an avoidance related quantity with “max”.

3. The alignment of the polarization directions for the 27 QSOs

For the 27 sources considered in this report, the alignment angle function η(H), Eq. 1,  makes the following contour map. The 

global and local maps are computed in the Mathematica program below in Part II, Secs. 5b,c. 
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Figure 3: The alignment angle function η(H), Eq. 1, mapped on the Celestial Sphere (Aitoff plot, centered on (α,δ)  =  (180°,0) , East 

to the right). The QSOs are shaded green . To guide the eye, two Great Circles are plotted in gray, one through the sources’ center 

point and the avoidance hubs Hmax and -Hmax while the other Great Circle runs through the sources’ enter and the alignment hubs  

Hmin and -Hmin. The circles cross at an angle of 88.1° ± 3.7°. The smallest alignment angle, ηmin =  21.64° ± 0.86°, is located at the 

hubs Hmin and -Hmin, where the polarization directions converge best. One alignment hub Hmin is located very close to the QSOs. 
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Figure 4: The region near the QSOs. The QSOs are located at the green dots. The short black lines through the QSOs indicate the 

polarization directions.  Measuring polarization directions ψ clockwise from North, one sees that the angles ψ range from about ψ  =  

150° for many of the northern-most QSOs to a little more than 90° or so for the more southerly QSOs. The QSOs display parallax: 

almost all are in the general direction of the alignment hub Hmin at  (α,δ)  =  (189°, -1°), but the directions depend on where the 

sources are located. A couple, say 2 or 3 of the 27 QSOs, have polarization directions that do not point toward Hmin, but somewhat 

perpendicular to the direction favored by the others.

4. Experimental uncertainty

A fundamental characteristic of measurements such as polarization is uncertainty. Some measured quantities, such as the 

location of the sources, are so accurately measured that their uncertainty, while not zero, is considered negligible. The maps above 

were drawn based on the “best” polarization directions reported in the JVAS1450 catalog. The catalog also reports uncertainties in the 

polarization directions. In Part II Sec. 6, below, the uncertainties are carried through the calculations yielding the uncertainties in the 

results. 

The uncertainties reported with the observed polarization directions are assumed to make normal distributions, i.e. Gaussians that 

integrate to unity. For example, one of the QSOs, the sixth one, has a measured polarization position angle of ψobs ± σ  =  146.3° ± 

2.9°.  We take this to mean that the probability that the actual value of ψ was not ψobs  =  146.3°, but some other value ψ1, is given by 

the Gaussian 

P(ψ1)  = 1

σ 2 π
exp -1

2
 ψ1-ψobs

σ

2
 . (3) 

The Mathematica software has a special command, “RandomVariate”, that produces random values of ψ1 with respect to the 

probability distribution in Eq. (3). Thus, an “uncertainty run” begins by selecting a set of polarization directions for the 27 QSOs 

conforming to the uncertainty distributions like the one in Eq. (3). The alignment angle function  η(H) in Eq. (1) is evaluated to find 

the smallest alignment angle ηmin. As expected, the small changes to the observed polarization directions make small changes to the 

resulting angle ηmin. By repeating the process many times, one obtains a distribution of values for the smallest alignment angle  ηmin. 

The many uncertainty run values for the smallest alignment angle  ηmin produce a distribution of the smallest alignment angle  

ηmin, as well as the locations of alignment hubs. These distributions have corresponding mean values and distribution widths.  See 

Fig. 5. The distribution of the uncertainty run values for the smallest alignment angle  ηmin in Fig. 5 can be summarized by  ηmin  =   

0.377 ± 0.015 radians  =  21.64° ± 0.86°  This disagrees a little with the observed value,   ηmin  =  21.09°, i.e. the value found using 

the recorded polarization directions ψobs, the “best” values of ψ. But all is well, since 21.09° is in the range,  ηmin  =  21.64° ± 0.86°, 

of most likely values determined by experimental uncertainty. 
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Figure 5: Histogram of the smallest alignment angle ηmin for R  =  10,000 uncertainty runs. The height ΔR is the number of uncer-

tainty runs with a value of  ηmin in the ‘bin’, the range covered by each bar. This Gaussian distribution peaks at a mean value of ηmin 

of  0.3777 radians  =  21.64°  and has a half-width of  σ  =  0.0150  =  0.86°  where the distribution is down from the peak by a 

fraction   ⅇ-1/2  =  0.607  =  60.7% . One writes the result as ηmin  =   0.3777 ± 0.0150 radians  =  21.64° ± 0.86°. 

Besides the uncertainty in the smallest alignment angle ηmin, the uncertainty runs yield uncertainty ranges for other quantities 

such as the largest avoidance angle ηmax. Each uncertainty run has its own set of alignment and avoidance hubs, Hmin and Hmax, 

respectively. A plot of the polarization directions with their uncertainties and the locations of many of the uncertainty run hubs is 

displayed in Fig. 6.
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Figure 6: The QSOs as green dots plotted with the experimental uncertainties in polarization directions. The most likely locations of 

the nearest alignment hub Hmin are enclosed in the orange oval. In the following section, we find that the avoidance of the  hubs Hmax 

and -Hmax is very significant and the alignment of the polarization directions with the hubs Hmin and -Hmin is also very significant. 
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5. Significance

Finally, we need to determine the significance of the alignment found for the polarization directions of these 27 QSOs. ‘Signif-

icance’ means how likely it is that randomly directed polarization vectors would give the same or better alignments than the observed 

polarization directions give. 

To determine significance, we repeatedly find the smallest alignment angle function  η(H) many times, but with random values 

of  ψ chosen for the 27 QSOs. The only experimental data used in this process are the locations of the 27 QSO sources. The goal is to 

see what fraction of random runs yield a value with a lower  ηmin than the value  ηmin  =  21.09° obtained with the observed data. 

For this study, we created 10,000 random runs. By sorting those 10,000 runs by the value of  ηmin, smaller  ηmin before larger  

ηmin, one can find how many of those 10,000 runs gives a smaller alignment angle  ηmin than the observed value of  ηmin, i.e.  ηmin  =  

21.09° using the recorded polarization directions ψobs from the catalog. For this batch of 10,000 random runs, none of  the 10,000 runs 

is smaller than 21.09°, with 22.04° being the closest random value of ηmin.  But the smallest random run value, 22.04°, is quite close 

to the observed value 21.09°, so one can roughly estimate the significance of the observed  ηmin  =  21.09° is about one in 10,000 or 

0.0001, probably less. Clearly, we would need many more sets of 10,000 random runs for such considerations to produce a reliable 

value of significance.

Rather than expending a large amount of computer time generating more random runs, we follow conventional practice and 

make assumptions so we can get a significance from the set of already-completed 10,000 random runs. We start by finding a function 

that fits the distribution of the 10,000 ηmin, which is the number of  ηmin since there is one smallest alignment angle ηmin per random 

run. See Part II the Appendix Sec. 7 for details. Having found a function that fits the distribution, we assume that the function 

accurately describes the distribution down along the “tail” of the function where our well-aligned QSOs have their ηmin.

A histogram of the resulting smallest alignment angles ηmin from 10,000 runs is displayed in Fig. 7. Look closely at the distribu-

tion in Fig. 7. The right side, the side toward  ηmin → π/4  ~ 0.79 , has a steeper slope than the left side, the side  toward  ηmin → 0. 

Thus, the low ηmin  side is favored; probability is pushed from the right side to the left side.  A simple, symmetrical Gaussian would 

not fit the data well. The fitting curve shown combines a Gaussian with a unit step-function, that is unity to the left, and zero to the 

right, of the peak. Since the 27 QSOs have an alignment angle ηmin that is about 0.38 radians, it occurs down the tail of the curve on 

the side where the step-function is unity and the curve is a Gaussian.

It is important for the application here to notice that the step-function is unity along the tail of the distribution on the left, the  

ηmin → 0, side. The well-aligned sample of 27 QSOs has a smallest alignment angle around  ηmin  =  0.38 radians, which is down the 

tail a bit, see the blue arrow in Fig. 7. The net effect of the steep right side of the distribution is to raise the probability of the observed   

ηmin  by about 20%. Since random runs are thereby more likely in the region of the observed result, that makes the observed result 

somewhat less significant than if the distribution were symmetric and Gaussian. 
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Figure 7. The distribution of the 10,000 values of the smallest alignment angle   ηmin  from R  =  10,000 random runs. The height ΔR 

is the number of runs with  ηmin in the designated range of each bin. The fraction ΔR/R represents the likelihood that a random run 

result ηmin is in the bin. Thus the histogram approximates the shape of the probability distribution, aside from a normalizing scale 

factor. The observed polarization directions determine a value of  ηmin at the blue arrow that is just a little bit lower than the lowest 

populated bin. 

To find the significance of the observed smallest alignment angle  ηmin  =  21.09°, we integrate the probability distribution to find 

the likelihood that a random run would produce a smaller value. The significance is found to be 0.44 to 4.5 x10-5 or about one in 22 

to 230 thousand random runs would be better aligned than is observed for these QSOs. The range here is based on the distribution of 

random runs in Fig. 7.

Experimental uncertainty of the polarization directions yields  ηmin  =   21.64° ± 0.86°, as found in Sec. 4 above and Part II 

Appendix Sec. 6b below. The corresponding range in significances is 0.72 x 10-5 to 5.25 x 10-5, or about one in 19 to 139 thousand 

would give a smaller alignment angle than the observed polarization directions provide. The range here is based on the distribution of 

uncertainty runs in Fig. 5. The alignment of the polarization directions with the hub Hmin is, therefore, very significant. 

6. Conclusions

The polarization directions of these 27 QSOs are well-aligned with a point on the Celestial Sphere, the hub Hmin, that is very 

close to the sample, see Figs. 4 and 6. Finding a correlation among polarization directions that display parallax is a property that 

distinguishes the Hub Test from other tests. Thus, the 27 QSOs offer a satisfying illustration of the Hub Test.

It is unlikely that the alignment is a consequence of selection bias. These 27 QSOs, Clump 1 in Fig. 1, are not alone; a sample of 

13 QSOs, Clump 2, has been evaluated by the Hub Test. Clump 1 is better aligned than one in more than 20,000 random runs, similar 

to the significance of the alignment for Clump 2. Since the survey of 5°-radius regions, Fig. 1, involves 1863 regions, the number of 

regions considered is not close to the number 20,000 taken twice. It seems that the alignments are not due to selection bias. 

By the survey in Fig. 1, one sees that very significantly aligned regions are rare with QSOs. This is unlike polarized starlight 

sources in the Milky Way which has a large proportion of 5° regions well aligned, with -Log10(S) often well over 9, when surveyed 

as in Fig. 1. See Ref. 11. Another difference is the percent polarization. While typical QSOs have percent polarizations of  1% or 

more, starlight is usually less, a few tenths of a percent. Thus, QSOs, in general, have a higher percent polarization, but with lower 

significances of the alignments, than is typical with starlight. It may be worthwhile to search the sky near the very significant regions, 

the color dots in Fig. 1,  or near the hubs in Fig. 3, for objects that may have a polarizing effect on the radio waves from the QSOs. 

While the article, Ref. 6, relating alignments to Large Scale Structure constrains the QSOs to have like-redshifts, one might 

argue that the alignment found in this article is due to a subset of the 27 QSOs with more-or-less equal redshifts. One might try the 15 

or so QSOs in the sample with redshifts between 1.0 and 1.5. Then the alignment would speak to Large Scale Structures, as in Ref. 6. 

Astronomical data is being acquired at fantastic rates. Investigations of new data would be intriguing. However, the main 

motivation for this study is to illustrate an application of the Hub Test, an application involving parallax which makes it special. 

Interpreting the results is deemed beyond the scope of the study. One hopes the results are of interest and potentially useful.
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Part II Computer Program

1. Introduction to Part II

The following computer program, a Mathematica notebook, performs the calculations made to evaluate the alignment of the 

sources in the sample under consideration. The setup is similar to that in Refs. 10 and 11. 

Since Mathematica encodes the instructions, it is inconvenient to try to run the computer program from the pdf  version of this 

work. A viable .nb version that runs on Mathematica is available by following the link in Ref. 1. 

2. Coordinates, utility functions, derivation of basic formula 

2a. Coordinates, utility functions

Consider the “Celestial Sphere”, a sphere with unit radius in 3 dimensional Euclidean space. See Figs. 1, 2, 3 in the article, Part 1 

above.  The sphere is also called  the “sphere” or sometimes “the sky”. Picture the dome of a planetarium viewed from the outside. 

The center of the sphere is the origin of a 3D Cartesian coordinate system with coordinates (x, y, z). The direction of the positive z 

-axis is due “North”.  Equatorial longitude is the Right Ascension α and latitude is the declination δ.

Definitions:

homeDirectory directory containing the notebook and data files

Utilities:

er, eN, eE  unit vectors in a 3D Cartesian coordinate system  

(α,δ)   equatorial coordinates longitude and latitude

er(α,δ)    radial unit vectors from Origin

eN(α,δ)    local North at a point on the Celestial Sphere

eE(α,δ)    local East at a point on the Celestial Sphere

αFROMr(er)  α determined by a radial unit vector er

δFROMr(er)  δ determined by a radial unit vector er

Aitoff Plot Functions:

αHA(α,δ) ,  xH(α,δ) ,  yH(α,δ),   where xH is centered on α  =  0 and α increases from left-to-right, with α = -180° on the left and 

+180° on the right

xH180(α,δ) ,  yH180(α,δ),   where xH is centered on α  =  180° and α increases from left-to-right, with α = 0° on the left and 360° on 

the right

mean the arithmetic average of a set of numbers, 1
N
∑i=1
N ni

stanDev the standard deviation. Given a set of N numbers ni with mean value m, the standard deviation is  

 1

N
∑i=1
N (ni - m)2

1/2,  the square root of the average of the squares of the differences of the numbers with the mean. Note that we 

divide by N to get the average of the deviations squared.

Derivation of ηiH:

denoSquared1  magnitude of  rH - (rH.rS) rS part of the formula for vH, see Fig. 2
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vHperpS  the part of  vH  that  contributes to the dot product   cosη  =  vψ.vH, Eq. 2

 vψ  the unit vector in the 2D tangent plane at S pointing in the direction of the polarization position angle ψ

 ηiH0  the alignment angle ηiH between vH and  vψ for the ith source

 ηiHwithIndeterminate  - same as ηiH0, but simplified. It includes the indeterminacy where H  =  S, 

 ηiH  same as ηiHwithIndeterminate, but with ηiH  =  π/4 when H and S are closer than 10-3 radians.

In[1]:= Print["The computer time expended so far is ", TimeUsed[], " seconds."]

Print["The date and time that this statement was evaluated: ", Now]

The computer time expended so far is 0.594 seconds.

The date and time that this statement was evaluated: Sat 6 Nov 2021 08:24:53 GMT-4.

In[3]:= homeDirectory =

"C:\\Users\\shurt\\Dropbox\\HOME_DESKTOP-0MRE5OJ\\SendXXX_CJP_CEJPetc\\SendViXra\\

20200715AlignmentMethod\\20210505AlignmentMethodv4\\20210515Clump1QSOsNearNGP";

(*The notebook file and data files for this notebook are put in this directory. *)

In[4]:= (* For a Source at (α,δ) = (α,δ): er, eN,

eE are unit vectors from Origin to Source, local North, local East, resp. *)

er[α_, δ_] := er[α, δ] = Cos[α] Cos[δ], Sin[α] Cos[δ], Sin[δ]

eN[α_, δ_] := eN[α, δ] = -Cos[α] Sin[δ], -Sin[α] Sin[δ], Cos[δ]

eE[α_, δ_] := eE[α, δ] = -Sin[α], Cos[α], 0

"Check er.er = 1, er.eN = 0, er.eE = 0, eN.eN

= 1, eN.eE = 0,eE.eE = 1, erXeE = eN, eEXeN = er, eNXer = eE: ",

{0}⩵ UnionFlattenSimplify[{er[α, δ].er[α, δ] - 1, er[α, δ].eN[α, δ], er[α, δ].eE[α, δ],

eN[α, δ].eN[α, δ] - 1, eN[α, δ].eE[α, δ], eE[α, δ].eE[α, δ] - 1, Cross[er[α, δ], eE[α, δ]] -

eN[α, δ], Cross[eE[α, δ], eN[α, δ]] - er[α, δ], Cross[eN[α, δ], er[α, δ]] - eE[α, δ]}]

Out[7]= {Check er.er = 1, er.eN = 0, er.eE = 0, eN.eN = 1,

eN.eE = 0,eE.eE = 1, erXeE = eN, eEXeN = er, eNXer = eE: , True}

Get (α,δ) in radians from a radial vector r:

In[8]:= αFROMr[r_] := N[ArcTan[Abs[r[[2]]/r[[1]]]]] /; (r[[2]] ≥ 0 && r[[1]] > 0)

αFROMr[r_] := N[π - ArcTan[Abs[r[[2]]/r[[1]]]]] /; (r[[2]] ≥ 0 && r[[1]] < 0)

αFROMr[r_] := N[π + ArcTan[Abs[r[[2]]/r[[1]]]]] /; (r[[2]] < 0 && r[[1]] < 0)

αFROMr[r_] := N[2. π - ArcTan[Abs[r[[2]]/r[[1]]]]] /; (r[[2]] < 0 && r[[1]] > 0)

αFROMr[r_] := π/2. /; (r[[2]] ≥ 0 && r[[1]]⩵ 0)

αFROMr[r_] := 3 π/2. /; (r[[2]] < 0 && r[[1]]⩵ 0)

In[14]:= δFROMr[r_] := NArcTanr[[3]]
√

(r[[1]]^2 + r[[2]]^2) /; 
√

(r[[1]]^2 + r[[2]]^2) > 0

δFROMr[r_] := Sign[r[[3]]] (π/2.) /; 
√

(r[[1]]^2 + r[[2]]^2) == 0

The following Aitoff Plot formulas can be found in Wikipedia, Ref. 16.
For these formulas the angles α and δ should be in degrees.
They give an Aitoff Plot that is centered on (0°,0°)
The quantity “αH” is the RA coordinate of a point H on the Celestial Sphere. Thus, we use “αHA” for Aitoff function.

In[16]:= αHA[α_, δ_] := αHA[α, δ] = ArcCos[Cos[((2. π)/360.) δ] Cos[((2. π)/360.) α/2.]]

xH[α_, δ_] := xH[α, δ] = 2. Cos[((2. π)/360.) δ] Sin[((2. π)/360.) α/2.]Sinc[αHA[α, δ]]

yH[α_, δ_] := yH[α, δ] = Sin[((2. π)/360.) δ]Sinc[αHA[α, δ]]
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Using the following functions produces an Aitoff Plot that is centered on (180°,0°)

In[19]:=

xH180[α_, δ_] :=

xH180[α, δ] = 2. Cos[((2. π)/360.) δ] Sin[((2. π)/360.) (α - 180.)/2.]Sinc[αHA[(α - 180.), δ]]

yH180[α_, δ_] := yH180[α, δ] = Sin[((2. π)/360.) δ]Sinc[αHA[(α - 180.), δ]]

In[21]:= mean[data_] := 1  Length[data] Sum[data[[i4]], {i4, Length[data]}];

(* arithmetic average *)

stanDev[data_] :=

1  Length[data] Sumdata[[i5]] - mean[data]2, {i5, Length[data]}
1/2

(*standard deviation*)

2b. Derivation of a formula for the alignment angle ηiH given the position rS of the ith source , the location rH of point H , and the 

polarization direction ψ for the ith source

From Fig 2b, we see that cosη  =  vψ.vH, Eq. 2. 

vH  =  rH - (rH.rS) rS
[(rH - (rH.rS) rS).(rH - (rH.rS) rS)]1/2

: unit vector in the 2D tangent plane at S, in the direction of H from S, vH.rS  =  0, where 

er[αH,δH].er[αS,δS]     =  rH.rS  is the inner product of the radial unit vectors rH and rS to  point H and source S

Since vψ  is  also perpendicular to rS, it follows that vψ.rS  =  0, and we have  rH
[(rH - (rH.rS) rS).(rH - (rH.rS) rS)]1/2

 as the part of  vH  that  

contributes to the dot product   cosη  =  vψ.vH . Therefore, define

vHperpS  =  rH
[(rH - (rH.rS) rS).(rH - (rH.rS) rS)]1/2

Simplify the denominator,

In[23]:= denoSquared1 = FullSimplifyer[αH, δH] - er[αH, δH].er[αS, δS] er[αS, δS].

er[αH, δH] - er[αH, δH].er[αS, δS] er[αS, δS];

(* denoSquared = rH - rH.rS rS.rH - rH.rS rS =

rH.rH - 2rH.rS2 + rH.rS2rS.rS =

1 - 2rH.rS2 + rH.rS2 = 1 - rH.rS2*)

In[24]:= FullSimplifydenoSquared1 - 1 - er[αH, δH].er[αS, δS]2(*check that*)

Out[24]= 0

Write the formula for the vector  vHperpS, with a denominator of1 - (rH.rS)2
1/2 :

In[25]:= vHperpS[αS_, δS_, αH_, δH_] := er[αH, δH]  1 - er[αH, δH].er[αS, δS]2
1/2
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In[26]:= Simplify[vHperpS[αH, δH, αH, δH] ];(* BANG,

BOOM!! when H = S . See Fig. 2 for why this happens.*)

Simplify : Expression
Cos[αH] Cos[δH]

1 - Power[2] Power[2] + Power[2] Power[2] + Sin[1]22
simplified to ComplexInfinity.

Simplify : Expression
Cos[δH] Sin[αH]

1 - Power[2] Power[2] + Power[2] Power[2] + Sin[1]22
simplified to ComplexInfinity.

Simplify : Expression
Sin[δH]

1 - Power[2] Power[2] + Power[2] Power[2] + Sin[1]22
simplified to Indeterminate.

General : Further output of Simplify::infd will be suppressed during this calculation.

The other vector we need is vψ, the unit vector in the 2D tangent plane at S pointing in the direction of the polarization position angle 

ψ. By Fig. 2b, one sees that

vψ  =  cos(ψ) N  +  sin(ψ) E ,

where N and E are local north and east unit vectors in the 2D tangent plane at S.

In[27]:= vψ[αS_, δS_, αH_, δH_, ψ_] := Cos[ψ] eN[αS, δS] + Sin[ψ] eE[αS, δS]

(*vψ[αS,δS,αH,δH,ψ]*)

The alignment angle η is the acute angle between  vψ and vH in the 2D tangent plane at S. By Eq. 2,

In[28]:= ηiH0[αS_, δS_, αH_, δH_, ψ_] :=

ArcCos[ Abs[vψ[αS, δS, αH, δH, ψ].vHperpS[αS, δS, αH, δH] ] ]

(*ηiH0[αS,δS,αH,δH,ψ]*)

FullSimplify[ηiH0[αS, δS, αH, δH, ψ]]

Out[29]= ArcCos

Abs
Cos[δS] Cos[ψ] Sin[δH] + Cos[δH] -Cos[αH - αS] Cos[ψ] Sin[δS] + Sin[αH - αS] Sin[ψ]

1 - Cos[αH - αS] Cos[δH] Cos[δS] + Sin[δH] Sin[δS]2


In[30]:= (*The following function is well-

behaved everywhere except where ±H coincides with ±S.*)

ηiHwithIndeterminate[αS_, δS_, αH_, δH_, ψ_] := ArcCosAbs

Cos[δS] Cos[ψ] Sin[δH] + Cos[δH] -Cos[αH - αS] Cos[ψ] Sin[δS] + Sin[αH - αS] Sin[ψ] 

1 - Cos[αH - αS] Cos[δH] Cos[δS] + Sin[δH] Sin[δS]2 

In[31]:= (*Since η is an acute angle, let us take the halfway value,

η = π/4 in the neighborhood where H ≈ S.*)

ηiH[αS_, δS_, αH_, δH_, ψ_] :=

ηiHwithIndeterminate[αS, δS, αH, δH, ψ] /; 1 - er[αH, δH].er[αS, δS]2 ≥ 0.000001

ηiH[αS_, δS_, αH_, δH_, ψ_] := π / 4. /; 1 - er[αH, δH].er[αS, δS]2 < 0.000001

Print

"Thus ηiH = π/4 wherever ±H is 'close' to ±S, with 'close' meaning within an angle of ",

ArcSin0.0000011/2, " radians, or ", ArcSin0.0000011/2
360.

2. π
, "°."

Thus ηiH = π/4 wherever ±H is 'close' to ±S, with 'close' meaning within an angle of

0.001 radians, or 0.0572958°.
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3. Polarization and Position Data

3a. Source Data

The JVAS1450 catalog incorporates data from the large JVAS/CLASS 8.4 Ghz catalog Jackson 2007, Refs. 12,13,14. The 

JVAS1450 catalog sources were filtered from Jackson 2007 sources by identification as QSOs. Filters: for percent polarization, p > 

0.6%, for the largest fractional uncertainty in percent polarization, σp/p < 0.6%, and for uncertainty in the polarization position angle 

σψ < 16°. 

We consider Quasi-Stellar Objects, QSOs. From the data in JVAS1450,  5° radius regions are constructed, one centered at each 

of the 10518 grid points of a 2°x2° mesh. The 1450 QSOs were assigned to the regions based on location and we calculated the 

significance  of the alignment of the polarization directions for the sources in each region. 

The three such QSO regions selected for this notebook satisfied many requirements: (i) have 7 or more sources in order to use 

the significance formulas in Sec. 4 accurately, (ii) have longitude RA 160°  ≤  α  ≤ 180°, (iii) have latitude dec 40°  ≤  δ   ≤  55°, (iv) 

whose QSOs are very significantly aligned, S  ≤ 10-2. There are 3 regions satisfying (i) - (iv) containing a total of 27 sources. See Fig. 

1.

Definitions:

data00 the catalog data, JVAS1450 

secondClumpQsosIDinData001450   - record numbers in the catalog of the QSOs in the sample

nSrc number of sources

αSrc   right ascension of the sources, longitude (radians )

δSrc   declination  of the sources, latitude (radians)

ψSrc      PPA, polarization position angle of the sources: clockwise from North with East to the right. 

σψSrc uncertainty in PPA 

percentPol percentage of linear polarization of the sources

redshift redshift, no uncertainty reported

rSrc unit vectors from the Origin to Sources on Celestial Sphere

eNSrc Local North at each Source

eESrc Local East at each Source

ηBarAtHwithAnyψ alignment angle function η(H), Eqn. 1, obtained using the location of the sources 

sourceCenter unit radial vector to the arithmetic center of the sources

αSourceCenter Right Ascension at the sourceCenter

δSourceCenter Declination at the sourceCenter

angleSourceToCenter angle from each Source to the sourceCenter

ρRgnRadius angle to the furthest QSO from the sourceCenter

ρRMS root-mean-square angular distance to the sources from the sourceCenter

Alternate names:

A position search of the NASA/IPAC Extragalactic Database (NED)*, Ref. 17,  returned the following names of  27 QSOs whose 

position is coincident with those reported in the JVAS1450 catalog:

{QSO #, ID from NED}  =  
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{1, [HB89] 1111+149}, {2, WISEA J111609.96+082922.1}, {3, [HB89] 1116+128},

{4, [HB89] 1119+183}, {5, WISE J112736.52+055532.0}, {6, WISEA J112907.69+164322.6},

{7, WISEA J113036.99+105401.2}, {8, WISEA J113613.49+144819.7},

{9, WISEA J114120.70+100524.3}, {10, WISEA J114207.75+154754.0},

{11, [HB89] 1142+052}, {12, WISEA J115225.91+073357.5}, {13, [HB89] 1150+095},

{14, [HB89] 1151+102}, {15, [HB89] 1155+169}, {16, WISE J115910.42+030211.0},

{17, WISEA J115923.73+015223.8}, {18, WISEA J120301.01+063441.1},

{19, PKS 1200+045}, {20, WISEA J120518.70+052748.4}, {21, WISE J120712.62+121145.8},

{22, WISEA J121459.93+082922.5}, {23, LBQS 1213+0922}, {24, LBQS 1215+1121},

{25, WISEA J121827.99+061659.0}, {26, [HB89] 1219+044}, {27, WISEA J122354.62+065002.7}

Note that there is a disagreement in the redshift values for object 10. “WISEA J114207.75+154754.0”, JVAS: z  =  0.299 and NED: z  

=  -0.000435. The other redshifts were nearly the same in both NED and JVAS1450. 

These identifications are FYI, for your information. No data from the NED search is used in this notebook.

*The NASA/IPAC Extragalactic Database (NED) is funded by the National Aeronautics and Space Administration and operated by 

the California Institute of Technology.

In[34]:= (*Recorded here for personal use. The QSO data needed is copied below. *)

firstClumpQsosIDinData001450 = {659, 660, 663, 667, 674, 680, 682, 690, 695, 696, 698,

707, 712, 714, 718, 720, 721, 727, 728, 731, 734, 744, 746, 751, 752, 762, 764};

In[35]:= (*right ascension in radians*)

αSrc = 10-6.

{2 940 786, 2 950 332, 2 962 501, 2 977 947, 3 000 259, 3006 888, 3 013383, 3 037 854, 3 060 196,

3 063 615, 3 077 693, 3 108 571, 3 111 962, 3 114 578, 3 131037, 3 137987, 3 138 954, 3 154 756,

3 156 278, 3 164 771, 3 173 054, 3 207 036, 3 209 928, 3 222030, 3 222168, 3 239 225, 3 245 921};

In[36]:= nSrc = Length[αSrc]

Out[36]= 27

In[37]:= (*declination in radians*)

δSrc = 10-6. {256 694, 148 170, 219 533, 315742, 103 421, 291 870, 190 246, 258405,

176 105, 275 734, 85 942, 132 052, 161 164, 173 344, 290 596, 52995, 32 695, 114 811,

73 978, 95 356, 212862, 148 171, 158 862, 193 466, 109 659, 73 672, 119 278};

In[38]:= (* position angle in radians*)

ψSrc = 10-6.

{1 788 962, 1 120 501, 2 185 152, 2 724 459, 2 022 837, 2553 417, 2 045526, 2 857 104, 1 733 112,

2 485 349, 1 877 974, 2 331 760, 2 406 809, 2 277 655, 1 937315, 1 106539, 1 799 434, 2 961 824,

2 586 578, 2 912 955, 1 925 098, 2 600 541, 2 188 643, 2 352704, 2 827433, 1 527 163, 2 905 973};

In[39]:= histψData = HistogramψSrc
360.

2. π
, {12}, PlotLabel → "PPA ψ, number ΔR per bin",

AxesLabel → {"ψ", "ΔR"}, PlotRange → {{0, 200}, Automatic};
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Out[40]=
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Figure 8: Distribution of position angles for the 27 polarization directions in the

sample. Note the wide distribution over a hundred degrees or so, ψ = 60° to ψ = 160°.

In[42]:= (*uncertainty in ψ in radians*)

σψSrc = 10-6. {4242, 252, 2254, 99, 106992, 51 458, 112 351, 26 729,

137 622, 18 357, 10 877, 271 821, 37 352, 134 004, 48 856, 98 592, 277 921,

7249, 5633, 5724, 66 923, 35 001, 138200, 114 372, 105 062, 7815, 7653};

In[43]:= (* % polarization*)

percentPol = 10-6.

{2 386 846, 4 130 478, 2 023 713, 1 658 885, 1 784 232, 1979 194, 2 210679, 6 381 769, 5 954 787,

2 903 853, 3 866 300, 3 070 517, 1 080 690, 1 854 161, 492130, 2 652 914, 10 217 777, 3 754 306,

1 874 058, 3 174 907, 604 797, 653 203, 5 457402, 615 497, 16 210 481, 901 464, 3 306 869};

In[44]:= (* uncertainty in % polarization*)

σpercentPol = 10-6. {20 249, 2078, 9121, 328, 381 771, 203679, 496 710, 341 137,

1 638 906, 106 607, 84 105, 1 669146, 80 727, 496 898, 48 084, 523 076, 5 679057,

54 428, 21 111, 36344, 80 945, 45 723, 1 508 313, 140 783, 3 405959, 14 090, 50 611};

In[45]:= (*Redshift*)

redshift =

10-6. {867 400, 486 000, 2 125 700, 1040 000, 2 217000, 1 996 700, 1 323 900, 603 700, 1 051 400,

299 000, 1 343 600, 876 100, 695900, 895 000, 1 061 200, 1 009 800, 2 440 000, 2 180 900,

1 226 000, 1 300 000, 890 500, 2 359 000, 2721 600, 1 404000, 2 078 200, 966 000, 1 189 000};

In[46]:= redshiftFromNED =

N10-6 {865 791, 486 000, 2 125 285, 1040 957, 575, 1 996 476, 1 322 300, 603 397, 1049 919,

-435, 1 338 667, 876 665, 695517, 893 539, 1 060 245, 1 008 851, 2 440 000, 2 180 078,

1 224 294, 1 297 708, 891 817, 2 366 153, 2720 127, 1 402712, 2 073 279, 966 360, 1 189 000}

Out[46]= {0.865791, 0.486, 2.12529, 1.04096, 0.000575, 1.99648, 1.3223, 0.603397, 1.04992,

-0.000435, 1.33867, 0.876665, 0.695517, 0.893539, 1.06025, 1.00885, 2.44, 2.18008,

1.22429, 1.29771, 0.891817, 2.36615, 2.72013, 1.40271, 2.07328, 0.96636, 1.189}

In[47]:= rSrc = Table[er[ αSrc[[i]], δSrc[[i]] ], {i, nSrc}];(*calculated from Input.*)

eNSrc = Table[eN[ αSrc[[i]], δSrc[[i]] ], {i, nSrc}];(*calculated from Input.*)

eESrc = Table[eE[ αSrc[[i]], δSrc[[i]] ], {i, nSrc}];(*calculated from Input.*)
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In[50]:= ηBarAtHwithAnyψ[αH_, δH_, ψ_] :=

1

nSrc
Sum[ηiH[αSrc[[i]], δSrc[[i]], αH, δH, ψ[[i]] ], {i, nSrc}]

(*ηBarAtHwithAnyψ[3.5,0.6,ψSrc]*)(* An example with a selected

αH and δH and with the observed polarization directions for ψ*)

In[51]:= sourceCenter0 =
1

nSrc
Sum[rSrc[[i]], {i, nSrc}];

sourceCenter =
sourceCenter0

sourceCenter0.sourceCenter01/2
;

(*unit radial vector to the arithmetic average center of the sources.*)

αSourceCenter = αFROMr[sourceCenter];

δSourceCenter = δFROMr[sourceCenter];

angleSourceToCenter = Table[ArcCos[rSrc[[i]].sourceCenter], {i, nSrc}];

ρRgnRadius = Sort[angleSourceToCenter][[-1]]; (*Furthest source from center*)

ρRMS =
1

nSrc
SumangleSourceToCenter[[i]]2, {i, nSrc}

1/2

;

3b. Section Summary 

In[58]:= Print["There are ", nSrc, " sources in the sample."]

Print["Check that the Sample obeys the data cuts:"]

Print[

"Check that the smallest % polarization p in the sample is 0.5% or more. Smallest: ",

Sort[percentPol][[1]], "% ."]

Print"Check that the largest fractional uncertainty in % polarization, σp/p,

is less than 0.6 . Largest: ", SortσpercentPol  percentPol[[-1]], " ."

Print"Check that the largest PPA ψ uncertainty σψ is less than 16°. Largest: ",

Sort[σψSrc][[-1]]
360.

2. π
, "° ."

There are 27 sources in the sample.

Check that the Sample obeys the data cuts:

Check that the smallest % polarization p in the sample is 0.5% or more. Smallest: 0.49213% .

Check that the largest fractional uncertainty

in % polarization, σp/p, is less than 0.6 . Largest: 0.555802 .

Check that the largest PPA ψ uncertainty σψ is less than 16°. Largest: 15.9237° .

In[63]:= αδForSrc = ListPlot

Table{αSrc[[j]], δSrc[[j]]}
360.

2. π
, {j, nSrc}, PlotRange → {{0, 360}, {-90, 90}},

Ticks → {Table[{i, i}, {i, 0, 360, 60}], Table[{j, j}, {j, -90, 90, 30}]},

PlotLabel → "Sources", AxesLabel → {"α, degrees", "δ, degrees"}, PlotStyle → Green;
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Out[64]=

60 120 180 240 300 360
α, degrees

-90

-60

-30

0

30

60

90
δ, degrees

Sources

Figure 9: The locations of the 27

QSOs in the sample. The center of the sample has (RA,Dec) = {177.931, 9.51268}

, in degrees. The angular separation of the furthest QSO from the sample center is

11.1277°. The RMS radius is 6.82492°.

4. Grid

While we have a formula  η(H) for the alignment angle  at a point H on the Celestial Sphere, there are occasions when it is 
better not to use it and, instead,  construct a discrete table of values. To locate the values η(H) at a finite number of points H on 
the sphere, we create a grid, or ‘mesh’. 

When building the grid, we avoid bunching at the poles by taking into account the diminishing radii of constant latitude 
circles as the latitude approaches the poles. Successive grid points along any latitude or along any longitude make an arc that 
subtends the same central angle dθ .

We grid one hemisphere. Symmetry across  diameters gives the other hemisphere. The grid is conveniently built centered at 
the North pole and then moved so that it is centered on the sample of sources. For detailed work near the sources a 30° finely 
spaced grid cap is produced to supplement the more coarsely spaced grid. The fine and coarse grids are offset so that no grid 
points are common to the two grids. 

4a. Construct the grid

Definitions:

gridSpacing, coarseGridSpacing - fine, coarse grid separation in degrees between grid points on and between constant latitude circles

fineCapRadius radius of the fine grid cap in radians

dθ1, dθ2 fine, coarse grid spacing in radians

idN, ai, ji, δj dummy indices

αpointH,δpointH α and δ of the grid points H j

fineGrid, coarseGrid, gridN, grid  -  tables of data associated with grid points, record descriptions below

rotzToSample rotation matrix from North pole to sourceCenter

lpgrid plot of the radial unit vectors to the grid points

nGrid number of grid points 

αGrid longitudes at the grid points ( -π  ≤  α  ≤ +π )

δGrid latitudes at the grid points ( -π/2  ≤  α  ≤ π/2 )

20211030ReplaceClump1PaperFirst.nb     19



rGrid radial unit vectors from origin to grid points, in 3D Cartesian coordinates 

In[66]:= gridSpacing = 0.6(*degrees*);

fineCapRadius = 0.5;

In[68]:= (*KEEP this cell - DO NOT DELETE*)

(*The Northern Grid "gridN". *)

dθ1 =
2. π

360.
gridSpacing (*Convert gridSpacing to radians*); fineGrid = {}; idN = 1;

Forδj = 0., δj <
fineCapRadius

dθ1
, δj++, δpointH =

π

2.
- δj dθ1 -

dθ1

2.1/2
;

(*Print"{δj,δpointH} = ",δj,δpointH;*)

For ai = 0., ai < Ceiling
2. π

dθ1
CosδpointH + 0.01, ai++, αpointH = ai dθ1CosδpointH + 0.01;

(*Print"{ai,αpointH} = ",ai,αpointH;*)

AppendTofineGrid, idN, ai, δj, αpointH, δpointH, erαpointH, δpointH;

idN = idN + 1



LengthfineGrid;

lpFine = ListPointPlot3DTablefineGridi, 6, i, 1, LengthfineGrid, 10, PlotRange →

{{-1.2, 1.2}, {-1.2, 1.2}, {-1.2, 1.2}}, AxesLabel → {"x", "y", "z"}, BoxRatios → {1, 1, 1};

Coarse Grid band runs from latitude  ( π
2
-  fineGridMAX) to latitude  ( π

2
-  southOfEquator)

In[72]:= coarseStart = fineCapRadius; coarseEnd = 1.65 ;(*radians*)

coarseGridSpacing = 2.0(*degrees*);

In[74]:= (*KEEP this cell - DO NOT DELETE*)

(*The coarse grid band. *)

dθ2 =
2. π

360.
coarseGridSpacing (*Convert grid spacing to radians*);

coarseGrid = {};

idB = 1 + LengthfineGrid;(* ID for the coarse band grid points*)

Forδj = 0., δj <
(coarseEnd - coarseStart)

dθ2
, δj++, δpointH =

π

2.
- coarseStart - δj dθ2 -

dθ2

3.1/2
;

(*Print"{δj,δpointH} = ",δj,δpointH;*)

For ai = 0., ai < Ceiling
2. π

dθ2
CosδpointH + 0.01, ai++, αpointH = ai dθ2CosδpointH + 0.01;

(*Print"{ai,αpointH} = ",ai,αpointH;*)

AppendTocoarseGrid, idB, ai, δj, αpointH, δpointH, erαpointH, δpointH;

idB = idB + 1



In[76]:= lpCoarse1 = ListPointPlot3D[Table[coarseGrid[[i, 6]], {i, 1, Length[coarseGrid], 10}],

PlotRange → {{-1.2, 1.2}, {-1.2, 1.2}, {-1.2, 1.2}},

AxesLabel → {"x", "y", "z"}, BoxRatios → {1, 1, 1}];

Length[coarseGrid];

(*Show[{lpFine,lpCoarse}]*)
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Now we need to rotate the combined fine/coarse grid ‘gridN’ so that it is centered on  the sample, the sourceCenter . 

In[78]:= rotzToSample = RotationMatrix[{{0, 0, 1}, sourceCenter }];

%.{0, 0, 1};

sourceCenter ;

In[81]:= gridN = Join[fineGrid, coarseGrid];

grid = Table[{gridN[[i, 1]], gridN[[i, 2]], gridN[[i, 3]], gridN[[i, 4]],

gridN[[i, 5]], rotzToSample.gridN[[i, 6]]}, {i, Length[gridN]}];

nGrid = Length[grid];

lpgrid = ListPointPlot3D[Table[grid[[i, 6]], {i, 1, Length[grid], 10}],

PlotRange → {{-1.2, 1.2}, {-1.2, 1.2}, {-1.2, 1.2}},

AxesLabel → {"x", "y", "z"}, BoxRatios → {1, 1, 1}];

Out[85]=

Figure 10: The grid. The grid is centered on the source sample, with a finely spaced cap. The

grid covers one hemisphere, centered on the sample. The fine and coarse grids are off-set,

so they do not share any grid points. There are 12 485 grid points on the hemisphere.

In[87]:= αGrid = Table[αFROMr[grid[[j, 6]] ], {j, Length[grid]}];

δGrid = Table[δFROMr[grid[[j, 6]] ], {j, Length[grid]}];

rGrid = Table[grid[[j, 6]] , {j, Length[grid]}];

4b. Section Summary
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In[90]:= Print["The fine grid on the 'cap' has ", Length[fineGrid], " grid points."]

Print["The grid points on the cap are separated by gridSpacing = ",

gridSpacing, "° in latitude and longitude."]

Print["On the entire hemisphere, there is a second set of grid

points that are separated by gridSpacing = ", coarseGridSpacing,

"° in latitude and longitude. The two sets do not share any grid points."]

Print["The second set has ", Length[coarseGrid], " grid points."]

Print["The total grid, 'grid', has ", Length[fineGrid],

" + ", Length[coarseGrid], " = ", Length[grid], " grid points."]

The fine grid on the 'cap' has 7459 grid points.

The grid points on the cap are separated by gridSpacing = 0.6° in latitude and longitude.

On the entire hemisphere, there is a

second set of grid points that are separated by gridSpacing =

2.° in latitude and longitude. The two sets do not share any grid points.

The second set has 5026 grid points.

The total grid, 'grid', has 7459 + 5026 = 12 485 grid points.

5. The alignment function  η(H) for the sample of sources 

“Best” means we use the ψSrc that were listed in the catalog. We calculate the alignment function  η(H) at the grid points H . 

Given the alignment function   η(H) , one can find the smallest alignment angle ηmin and the largest avoidance angle ηmax and 

determine the significances for the alignment and avoidance of the polarization directions.

5a.  Determine the alignment angle η(H) 

First find  η(Hj)  on the grid and find the smallest and largest values of the alignment function on the grid. Then use the function 

“ηBarAtHwithAnyψ” derived in Secs. 2 and 3 to go between grid points and locate the smallest and largest angles,  ηmin and  ηmax, 

and their locations, the hubs Hmin and Hmax . These are the extremes for convergence and divergence of the polarization directions.

Definitions:

vψSrc unit vectors along the polarization directions ψ in the tangent planes of  the sources 

eN local unit vectors along local North 

eE local unit vectors along local East

gridjηBarHj {j,  η(Hj) }, where j is the index for grid point H j and  η(H) is the average alignment angle at H j. See Eq. (1). 

sortgridjηBarHj {j,  η(Hj) }, with smallest angles η(H) first.

gridjηBarMin {j,η(H)}, the j and η for the smallest value of η(H) , best alignment

gridjηBarMin index j for the grid point H with the smallest value of η(H)

gridηBarMin smallest η(H) on grid

gridjηBarMax {j,η(H)}, the j and η for the largest value of η(H) , best alignment

gridjηBarMax index j for the grid point H with the largest value of η(H)

gridηBarMax  largest η(H)  on grid
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ηminαδHObs smallest η(H) and H, local min near gridjηBarMin (use “ηBarAtHwithAnyψ” off-grid)

ηmaxαδHObs largest η(H) and H, local max near gridjηBarMax

funcDataObs off-grid data for extreme alignment angles η and their hubs H 

ηBarMinfunDataObs ηmin 

ηBarMaxfunDataObs ηmax

HminαfunDataObsHmin location RA α in radians

HminδfunDataObs Hmin location dec δ in radians

HminαδfunDataObs Hmin location (RA,dec) = (α, δ) in radians

HmaxαfunDataObs Hmax location RA α in radians

HmaxδfunDataObsHmax location dec δ in radians

HmaxαδfunDataObs Hmax location (RA,dec) = (α, δ) in radians

In[95]:=

(* vψ, eN, eE unit vectors in the tangent plane of each source Si,

pointing along the polarization direction, local North,

and local East, respectively. See Fig. 2.*)

vψSrc = Table[Cos[ ψSrc[[i]] ] eN[ αSrc[[i]], δSrc[[i]] ] +

Sin[ ψSrc[[i]] ] eE[ αSrc[[i]], δSrc[[i]] ], {i, nSrc}];

In[96]:= (* Analysis using Eq (5) in Ref. 15 to get η(Hj). First ηiH, cos(ηiH) = v

H.v

ψi ,

where "v

H" was called "vHperpS" in a previous discussion. Thus,

we can get η(Hj), by Eq. 2: *)

gridjηBarHj =

Tablej, 1  nSrc SumArcCos Abs rGrid[[j]].vψSrc[[i]]  rGrid[[j]] - rGrid[[j]].

rSrc[[i]] rSrc[[i]].rGrid[[j]] - rGrid[[j]].rSrc[[i]]

rSrc[[i]]1/2  - 0.000001  , {i, nSrc}, {j, nGrid};

sortgridjηBarHj = Sort[gridjηBarHj, #1[[2]] < #2[[2]] &];

gridjηBarMin = sortgridjηBarHj[[1]]; (* j,η(Hj) for smallest η(Hj) *)

gridηBarMin = gridjηBarMin[[2]];

gridjηBarMax = sortgridjηBarHj[[-1]]; (* j,η(Hj) for largest η(Hj) *)

gridηBarMax = gridjηBarMax[[2]] ;

The results just found on the grid should be close to the results. Use FindMinimum and FindMaximum to go off-grid and get closer.

20211030ReplaceClump1PaperFirst.nb     23



In[102]:= ηminαδHObs = FindMinimum[ηBarAtHwithAnyψ[αH, δH, ψSrc],

{{αH, αGrid[[ gridjηBarMin[[1]] ]]}, {δH, δGrid[[ gridjηBarMin[[1]] ]]}}];

ηmaxαδHObs =

FindMaximum[ηBarAtHwithAnyψ[αH, δH, ψSrc],

{{αH, αGrid[[ gridjηBarMax[[1]] ]]}, {δH, δGrid[[ gridjηBarMax[[1]] ]]}}];

funcDataObs = {1, { ηminαδHObs[[1]], {αH, δH} /. ηminαδHObs[[2]]},

{ ηmaxαδHObs[[1]], {αH, δH} /. ηmaxαδHObs[[2]]}}

FindMinimum: The function value 0.367378 + 1.56099×10-9 ⅈ is not a real number at {αH, δH} = {3.29794, -0.00456653}.

FindMaximum: The line search decreased the step size to within the tolerance specified by AccuracyGoal and PrecisionGoal

but was unable to find a sufficient increase in the function. You may need more than MachinePrecision digits of working

precision to meet these tolerances.

Out[104]= {1, {0.368159, {3.30455, -0.0153025}}, {1.16344, {2.56781, -0.438086}}}

In[105]:=

ηBarMinfunDataObs = funcDataObs[[2, 1]];

ηBarMaxfunDataObs = funcDataObs[[3, 1]];

HminαfunDataObs = funcDataObs[[2, 2, 1]];

HminδfunDataObs = funcDataObs[[2, 2, 2]];

HminαδfunDataObs = funcDataObs[[2, 2, 1]];

HmaxαfunDataObs = funcDataObs[[3, 2, 1]];

HmaxδfunDataObs = funcDataObs[[3, 2, 2]];

HmaxαδfunDataObs = {funcDataObs[[3, 2, 1]], funcDataObs[[3, 2, 2]]};

In[113]:= Print["When moving off-grid, check that the

hubs Hmin and Hmax did not move more than a grid spacing:"]

Print"When we found a local minimum, the hub Hmin moved off-grid by ",

ArcCos[er[HminαfunDataObs, HminδfunDataObs].

er[αGrid[[ gridjηBarMin[[1]] ]], δGrid[[ gridjηBarMin[[1]] ]]] ]
360.

2. π
, "°."

Print"When we found a local maximum, the hub Hmax moved off-grid by ",

ArcCos[er[HmaxαfunDataObs, HmaxδfunDataObs].

er[αGrid[[ gridjηBarMax[[1]] ]], δGrid[[ gridjηBarMax[[1]] ]]] ]
360.

2. π
, "°."

Print"The alignment hub Hmin is ",

ArcCos[er[HminαfunDataObs, HminδfunDataObs].sourceCenter ]
360.

2. π
,

"° from the source center."

Print"The avoidance hub Hmax is ",

ArcCos[er[HmaxαfunDataObs, HmaxδfunDataObs].sourceCenter ]
360.

2. π
,

"° from the source center."

Print"Now compare that with the grid: The fine grid spacing close to the sources is ",

gridSpacing, "°. If the hub is more than ", fineCapRadius
360.

2. π
,

"° from the sample center, then the grid spacing is ", coarseGridSpacing, "°."
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When moving off-grid, check that the hubs Hmin and Hmax did not move more than a grid spacing:

When we found a local minimum, the hub Hmin moved off-grid by 0.0328513°.

When we found a local maximum, the hub Hmax moved off-grid by 0.052382°.

The alignment hub Hmin is 15.3924° from the source center.

The avoidance hub Hmax is 45.8139° from the source center.

Now compare that with the grid: The fine grid spacing close to the sources is 0.6

°. If the hub is more than 28.6479° from the sample center, then the grid spacing is 2.°.

5b. Plot the Alignment Angle Function η(H)

Definitions

αHminDegrees Hmin location RA α in degrees

αHminHours Hmin location RA α in hours

δHminDegrees Hmin location Dec δ in degrees

αHmaxDegrees Hmax location RA α in degrees

αHmaxHours Hmax location RA α in hours

δHmaxDegrees Hmax location Dec δ in degrees

rHmin, rHmax radial unit vectors to the alignment and avoidance hubs Hmin and Hmax

rPerpHmin (max) a unit vector in the plane of the great circle combining rCenterSrc and rHmin (max)

rGreatMinCircle(θ)  (Max) radial unit vector to a point on the great circle

αGreatMin (Max)  longitude at the point for θ

δGreatMin (Max) latitude at the point for θ

xyAitoffGreatMin (Max) Aitoff plot coordinates for the great circles

crossMin (Max) unit vector perpendicular, normal to the plane of the great circle

θminMAXgreatcircles angle between the vectors normal to the planes of the two great circles

αjδjηBarHjTable {α j, δ j, η(H)} at each grid point H  =  H j, in degrees

xyηBarAitoffTable {x, y, η(x,y)} , where x,y are Aitoff coordinates and η(x,y) is the alignment angle on grid

xyAitoffSources {x,y} Aitoff coordinates for the sources’ locations on the sphere

dηContourPlot separation of successive contour lines, in degrees

listCP list contour plot of  η(H) from xyηBarAitoffTable

rPlusψ  unit vector in the polarization directions  ψ

polarLines  lines from each source along its polarization direction  ψ 

mapOfηBar contour plot of the alignment angle η(H) , adorned with source locations and labels 

mapOfηBarLocal magnified, local view of the map
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In[119]:= (* Equatorial coordinates (α,δ) for the hubs Hmin and Hmax in other units.*)

αHminDegrees = HminαfunDataObs (360/(2 π));

αHminHours = HminαfunDataObs (24/(2 π));(*Hmin*)

δHminDegrees = HminδfunDataObs (360/(2 π));

αHmaxDegrees = HmaxαfunDataObs (360/(2 π)); (*Hmax*)

αHmaxHours = HmaxαfunDataObs (24/(2 π));

δHmaxDegrees = HmaxδfunDataObs (360/(2 π));

In[125]:= rHmin = er αHminDegrees
2. π

360.
+ π, -δHminDegrees

2. π

360.
;

rPerpHmin0 = rHmin - rHmin.sourceCenter sourceCenter;

rPerpHmin =
rPerpHmin0

rPerpHmin0.rPerpHmin01/2.
;

rGreatMinCircle[θ_] := Cos[θ] sourceCenter + Sin[θ] rPerpHmin

αGreatMin[θ_] := αFROMr[rGreatMinCircle[θ]]

δGreatMin[θ_] := δFROMr[rGreatMinCircle[θ]]

xyAitoffGreatMin = TablexH180 αGreatMin[θ] 360  2 π, δGreatMin[θ] 360  2 π ,

yH180 αGreatMin[θ] 360  2 π, δGreatMin[θ] 360  2 π , {θ, 1, 360};

In[132]:= rHmax = er αHmaxDegrees
2. π

360.
+ π , -δHmaxDegrees

2. π

360.
;

rPerpHmax0 = rHmax - rHmax.sourceCenter sourceCenter;

rPerpHmax =
rPerpHmax0

rPerpHmax0.rPerpHmax01/2.
;

rGreatMaxCircle[θ_] := Cos[θ] sourceCenter + Sin[θ] rPerpHmax

αGreatMax[θ_] := αFROMr[rGreatMaxCircle[θ]]

δGreatMax[θ_] := δFROMr[rGreatMaxCircle[θ]]

xyAitoffGreatMax = TablexH180 αGreatMax[θ] 360  2 π, δGreatMax[θ] 360  2 π ,

yH180 αGreatMax[θ] 360  2 π, δGreatMax[θ] 360  2 π , {θ, 1, 360};

In[139]:= crossMin0 = Cross[rHmin, sourceCenter];

crossMin =
crossMin0

crossMin0.crossMin01/2.
;

crossMax0 = Cross[rHmax, sourceCenter];

crossMax =
crossMax0

crossMax0.crossMax01/2.
;

θminMAXgreatcircles = ArcCos[crossMax.crossMin]
360.

2. π
;
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In[144]:= (*The following table αjδjηBarHjTable is created to

generate a map of the alignment angle η(H) over the sphere.*)

(* Table αjδjηBarHjTable

entries: 1. α 2. δ 3. alignment angle ηBarRgnkj at grid point all in degrees*)

αjδjηBarHjTable =  αjδjηBarHjTable0 = {};

Forj = 1, j ≤ LengthgridjηBarHj, j++,

AppendTo αjδjηBarHjTable0, αGridj*(360./(2. π)), δGridj*(360./(2. π)),

gridjηBarHjj, 2*(360./(2. π)) ; If 360. ≥ αGridj*(360./(2. π)) > 180.,

AppendTo αjδjηBarHjTable0, αGridj*(360./(2. π)) - 180.,

-δGridj*(360./(2. π)), gridjηBarHjj, 2*(360./(2. π))  ;

If 180. > αGridj*(360./(2. π)) > 0., AppendTo αjδjηBarHjTable0,

αGridj*(360./(2. π)) + 180., -δGridj*(360./(2. π)),

gridjηBarHjj, 2*(360./(2. π))  ;

If 360. ≥ αGridj*(360./(2. π)) > 354., AppendTo αjδjηBarHjTable0, αGridj*(360./

(2. π)) - 360., δGridj*(360./(2. π)), gridjηBarHjj, 2*(360./(2. π))  ;

If +6. > αGridj*(360./(2. π)) ≥ 0., AppendTo αjδjηBarHjTable0,

αGridj*(360./(2. π)) + 360, δGridj*(360./(2. π)),

gridjηBarHjj, 2*(360./(2. π))  ;

αjδjηBarHjTable0;

In[145]:= (*The grid does not cover the sphere. Check that the

αjδjηBarHjTable table covers the entire Celestial Sphere. *)

lpCheckCoverage = ListPlot[Table[

{αjδjηBarHjTable[[i, 1]], αjδjηBarHjTable[[i, 2]]}, {i, Length[αjδjηBarHjTable]}]];

Out[146]=
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Figure 11: Check. Since the grid does not cover the sphere, only half, we

should check that the αjδjηBarHjTable table covers the entire Celestial Sphere.
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In[148]:= (*Transcribe the alignment function η(H), the location of the sources,

and the Celestial Equator onto an Aitoff plot.*)

xyηBarAitoffTable = TablexH180αjδjηBarHjTable[[k, 1]], αjδjηBarHjTable[[k, 2]],

yH180αjδjηBarHjTable[[k, 1]], αjδjηBarHjTable[[k, 2]], αjδjηBarHjTable[[k, 3]],

k, LengthαjδjηBarHjTable; (* The alignment angle function η(H) on the grid,

mapped onto a 2D Aitoff projection of the sphere. *)

xyAitoffSources = Table[{xH180[ αSrc[[n]] (360/(2 π)), δSrc[[n]] (360/(2 π)) ],

yH180[ αSrc[[n]] (360/(2 π)), δSrc[[n]] (360/(2 π)) ]}, {n, nSrc}];

(*The Aitoff coordinates for the sources' locations.*)

In[150]:= (* Contour plot of the alignment angle function η(H) on the grid. *)

dηContourPlot = 6 ;

(*, in degrees. *)listCP = ListContourPlotUnionxyηBarAitoffTable(*,xH180αHminDegrees,

δHminDegrees,yH180αHminDegrees,δHminDegrees,ηBarMin*(360./(2.π))-1.0,

{{xH180[αHmaxDegrees,δHmaxDegrees],yH180[αHmaxDegrees,δHmaxDegrees],ηBarMax*(360./(2.π))+

1.0}}*), AspectRatio → 1/2, Contours → Tableη, η, FloorgridjηBarMin[[2]]*

(360./(2. π)) + 1, CeilinggridjηBarMax[[2]]*(360./(2. π)) - 1, dηContourPlot,

ColorFunction → "TemperatureMap", PlotRange → {-4.0, 3.5},
7.5

11.0
{-3, 3}, Axes -> False,

Frame → False, PlotLegends → PlacedBarLegendAutomatic, LegendMargins → {{0, 0}, {10, 5}},

LegendLabel → "η(H), °", LabelStyle → Plain, FontFamily → "Times", Right ;
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In[151]:= (*Construct the map of η(H).*)

mapOfηBar =

ShowlistCP, TableParametricPlot{xH180[α, δ], yH180[α, δ]},

{δ, -90, 90}, PlotStyle → Black, Thickness[0.002], (*Mesh→{11,5,0}

(*{23,11,0}*),MeshStyle→Thick,*)PlotPoints → 60, {α, 0, 360, 30},

TableParametricPlot{xH180[α, δ], yH180[α, δ]}, {α, 0, 360},

PlotStyle → Black, Thickness[0.002], (*Mesh→{11,5,0}(*{23,11,0}*),

MeshStyle→Thick,*)PlotPoints → 60, {δ, -60, 60, 30}, Graphics

PointSize[0.004], TextStyleForm"N", FontSize -> 14, FontWeight -> "Plain", {0, 1.85},

TextStyleForm"Equatorial Coordinate System", FontSize -> 14, FontWeight -> "Plain",

{0, -1.85}, (*Sources S:*)PointSize[0.006], Green, Point xyAitoffSources ,

Gray, PointSize[0.002], Point xyAitoffGreatMin , Point xyAitoffGreatMax ,

Black, TextStyleForm"Hmax", FontSize → 12, FontWeight -> "Bold", {-3.3, +1.0},

ArrowBezierCurve[{{-3.3, +1.2}, {-1.3, +3.0},

{xH180[αHmaxDegrees, δHmaxDegrees], yH180[αHmaxDegrees, δHmaxDegrees]}}],

TextStyleForm"Hmin", FontSize → 12, FontWeight -> "Bold", {3.3, 1.0},

ArrowBezierCurve{3.3, 1.2}, {0.3, 3.0},

xH180αHminDegrees, δHminDegrees, yH180αHminDegrees, δHminDegrees,

TextStyleForm"Hmin", FontSize → 12, FontWeight -> "Bold", {-3.3, -1.0},

ArrowBezierCurve{-3.3, -1.2}, {-2.3, -2.5}, xH180αHminDegrees - 180, -δHminDegrees,

yH180αHminDegrees - 180, -δHminDegrees, (**)

TextStyleForm"Hmax", FontSize → 12, FontWeight -> "Bold", {3.3, -1.0} ,

ArrowBezierCurve[{{3.3, -1.2}, {2.3, -2.0}, {xH180[αHmaxDegrees + 180, -δHmaxDegrees],

yH180[αHmaxDegrees + 180, -δHmaxDegrees]}}]

, ImageSize → 0.9×432;

5c. Section Summary

Out[152]=
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Figure 12: The alignment function η(H), Eq. (1). The map is

centered on (α,δ)=(180°,0°), with East to the right, Equatorial Coordinates.

The sources are located at the dots, shaded .

The smallest alignment angle is ηmin = 21

°, located at the alignment hubs Hmin and -Hmin in the areas shaded .

The hubs Hmin and -Hmin are located at (α,δ) = {189, -1} and {9, 1} , in degrees.

The arc along the Celestial Sphere from the sample's center and the closest alignment hub Hmin is

15.3924°.

The largest avoidance angle is ηmax = 67

°, located at the avoidance hubs Hmax and -Hmax in the areas shaded .

The hubs Hmax and -Hmax are located at (α,δ) = {327, 25} and at {147, -25} , in degrees.

The arc along the Celestial Sphere from the sample's center and the closest avoidance hub Hmax is

45.8139°.

To guide the eye, two Great Circles are plotted, one through the sources' center and the

avoidance hubs Hmax and -Hmax. The other connects the center of the sources' locations

with the alignment hubs Hmin and -Hmin. The Great Circles are shaded Gray, .

The angle between the normals to the planes of the two great circles is 88.4516°.

Note: Although somewhat obscured by the distortion needed to plot a

sphere on a flat surface, the function η(H) is symmetric across diameters:

Diametrically opposite points -H and H have the same alignment angle η(H).

In[164]:= (* Local contour plot of the alignment function ηBar(H). *)

dηContourPlot = 6 ;(*, in degrees. *)

frameticks =  yH[135, 24], 30 °, yH[135, 0], 0 °, None,

{xH180[150, 0], "10h"}, {xH180[180, 0], "12h"}, xH180[190, 0],

StyleForm"Hmin", FontSize → 12, FontWeight -> "Bold", {xH180[210, 0], "14h"}, {None};

listCPlocal = ListContourPlotUnionxyηBarAitoffTable(*,xH180αHminDegrees,δHminDegrees,

yH180αHminDegrees,δHminDegrees,ηBarMin*(360./(2.π))-1.0,

{{xH180[αHmaxDegrees,δHmaxDegrees],yH180[αHmaxDegrees,δHmaxDegrees],

ηBarMax*(360./(2.π))+1.0}}*), AspectRatio → 1/2,

Contours → Tableη, η, FloorgridjηBarMin[[2]]*(360./(2. π)) + 1,

CeilinggridjηBarMax[[2]]*(360./(2. π)) - 1, dηContourPlot,

ColorFunction → "TemperatureMap", PlotRange → {{xH180[145, 0], xH180[215, 0]},

{yH180[180, -5], yH180[180, 32]}}, Axes -> False, Frame → True,

FrameLabel → "α", "δ", "Close-Up View", FrameTicks → frameticks,

PlotLegends → PlacedBarLegendAutomatic, LegendMargins → {{0, 0}, {10, 5}},

LegendLabel → "η(H), °", LabelStyle → Plain, FontFamily → "Times", Right ;
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In[167]:= (*Plot polarization directions*)

rPlusψ[i_, d_] :=

rSrc[[i]] + d vψSrc[[i]]  rSrc[[i]] + d vψSrc[[i]].rSrc[[i]] + d vψSrc[[i]]1/2

polarLines[d_] :=

TableLinexH180αFROMr[ rPlusψ[i, d]]
360.

2. π
, δFROMr[ rPlusψ[i, d]]

360.

2. π
,

yH180αFROMr[ rPlusψ[i, d]]
360.

2. π
, δFROMr[ rPlusψ[i, d]]

360.

2. π
,

xH180αFROMr[ rPlusψ[i, -d]]
360.

2. π
, δFROMr[ rPlusψ[i, -d]]

360.

2. π
,

yH180αFROMr[ rPlusψ[i, -d]]
360.

2. π
, δFROMr[ rPlusψ[i, -d]]

360.

2. π
, {i, nSrc}

In[169]:= (*Construct the map of η(H).*)

mapOfηBarLocal =

ShowlistCPlocal, TableParametricPlot{xH180[α, δ], yH180[α, δ]}, {δ, -5, 60},

PlotStyle → Black, Thickness[0.002], PlotPoints → 60, {α, 120, 240, 30},

TableParametricPlot{xH180[α, δ], yH180[α, δ]}, {α, 90, 270},

PlotStyle → Black, Thickness[0.002], PlotPoints → 60, {δ, 0, 90, 30},

GraphicsPointSize[0.009], Black, Thick, polarLines[0.03], (*Sources S:*)

Green, PointSize[0.012], Point xyAitoffSources , Gray,

PointSize[0.007], Point xyAitoffGreatMin , Point xyAitoffGreatMax ,

Black, TextStyleForm"X", FontSize → 12, FontWeight -> "Bold",

xH180αHminDegrees, δHminDegrees, yH180αHminDegrees, δHminDegrees,

ArrowBezierCurve{0.17, -0.1}, {-0., -0.1}, xH180αHminDegrees, δHminDegrees - 0.02,

yH180αHminDegrees, δHminDegrees - 0.01

, ImageSize → 0.9×432;

Out[170]=
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Figure 13: Map of the alignment angle function

η(H) in the neighborhood of the sources. The polarization directions display parallax,

generally pointing toward the alignment hub Hmin. Note how close the hub Hmin is to the sources.
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6. Uncertainty Runs

6a. Creating and Storing Uncertainty Runs

For each “uncertainty run”, the polarization direction ψ for each source is allowed to differ from the best value ψSrc by an 

amount δψ chosen according to a Gaussian distribution with a mean equal to the best value ψSrc and half-width σψSrc,   ψ  =  ψSrc + 

δψ. Both values ψSrc and σψSrc are taken from the JVAS1450 catalog. 

The notebook .nb version generates new uncertainty runs. The pdf version uses old uncertainty runs that are uploaded from 

previously saved files that are not publically available. Thus both versions have some cells commented out: (* comments are not 

processed by Mathematica*).

Definitions:

 rSrcxrGrid unit vector Si×H j , the cross product of the radial unit vector to source Si with the radial unit vector to grid point H j 

 nR number of uncertainty runs

 nRun sequential index labeling the runs

ψData table {nRun, ψ} of polarization directions ψ  =  ψSrc  +  δψ for each run 

runData collection of data to save from the uncertainty runs, see below for content list

nRunPrint dummy index controlling when current TimeUsed and MemoryInUse are printed

ψSrcU the polarization direction ψ for the run. 

rSrcxψSrc unit vector, Si×ψi, cross product of the radial vector Si to the source with the vector vψ in the direction of the polariza-

tion

jηBarToGridU {j, η(H j)}, where j is the index for the grid point H j and  η(H j) is the alignment angle function, (1), at H j 

sortjηBarToGridU sort {j, η(H j)}, with the smaller angle η(H) first.

jηBarMinU {j,η(H)} for the smallest value of η(H) , best alignment

jηBarMaxU {j,η(H)}, for the largest value of η(H) , most avoided

ηminαδHU off-grid local min data {ηmin, {α,δ} at Hmin}

ηmaxαδHU off-grid local max data {ηmax, {α,δ} at Hmax}

funcDataU off-grid, superior values of {nRun, ηminαδHU, ηmaxαδHU} collected results

HminαfunDataU values of  α = α for hub Hmin from uncertainty runs, alignment

HminδfunDataU values of  δ = δ for hub Hmin from uncertainty runs, alignment

HmaxαfunDataU values of  α = α for hub Hmax from uncertainty runs, avoidance

HmaxδfunDataU values of  δ = δ for hub Hmax from uncertainty runs, avoidance 

Tables:

ψData entries: 1. Run # 2. ψSrcU, list of polarization position angles ψ

gridDataUn on-grid, entries: 1. Run # 2. {ηmin, {α,δ} at Hmin} 3. {ηmax, {α,δ} at Hmax}

funcDataU off-grid, (better) entries: 1. Run # 2. {ηmin, {α,δ} at Hmin} 3. {ηmax, {α,δ} at Hmax}

To generate your own Uncertainty Runs:

First calculate “rSrcxrGrid” and then evaluate the “For” statement in the following two cells. 

One can save the results with the “Put[]” statements. 

Once saved, there is no need to repeat the runs. Comment out the “rSrcxrGrid” and “For” statements by enclosing them in (*comment 
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brackets*). 

The data can be retrieved with the “Get” statements.

In[172]:= (*Remove comment marks, "(*" and "*)", below to generate your own tables. *)

In[173]:=

(* Evaluate this cell for the notebook .nb version *)

(*

nR=10000;

t1=TimeUsed[];

rSrcxrGrid1=Table[ Cross[ rSrc[[i]],rGrid[[j]] ] , {i,nSrc},{j,nGrid}];

(*first step: αw cross product, not unit vectors*)

rSrcxrGrid=Table rSrcxrGrid1[[i,j]]

rSrcxrGrid1[[i,j]].rSrcxrGrid1[[i,j]]+ 0.0000011/2. , {i,nSrc},{j,nGrid};

Clear[rSrcxrGrid1];

gridDataUn={};ψData={};funcDataU={};nRunPrint=0;

FornRun=1,nRun≤nR,nRun++,

If[nRun>nRunPrint,Print["At the start of run ",nRun,", the time is ",

TimeUsed[]," seconds and the memory in use is ",MemoryInUse[]," bytes."];

nRunPrint=nRunPrint+500];

ψSrcU=Table[RandomVariate[NormalDistribution[ψSrc[[i]],σψSrc[[i]]]],{i,nSrc}];

(*table of PPA angles ψ for the sources in region j0, in radians*)

rSrcxψSrc = Table[ Sin[ψSrcU[[i]]]eNSrc[[i]]-

Cos[ψSrcU[[i]]] eESrc[[i]], {i,nSrc}];

(*table of the cross product of rSrc and vector in direction of ψSrcU,

a unit vector*)jηBarToGridU = Tablej,1nSrcSum[ArcCos[

Abs[ rSrcxψSrc[[i]].rSrcxrGrid[[i,j]] ] - 0.000001 ],{i,nSrc}],{j,nGrid};

(*

{grid point #, value of the alignment angle ηnHj[j] averaged over all sources,

in radians}*) sortjηBarToGridU=Sort[jηBarToGridU,#1[[2]]<#2[[2]]&];

(*jηBarToGridU, {j,ηj}, but sorted with the smallest alignment angles first

*)

jηBarMinU=sortjηBarToGridU[[1]]; (* {j,ηj}, at the grid point Hj with minimum η*)

jηBarMaxU=sortjηBarToGridU[[-1]]; (* {j,ηj},

at the grid point Hj with maximum η*)AppendTo[ψData,{nRun,ψSrcU}];

AppendTo[gridDataUn,{nRun,{ jηBarMinU[[2]],

{αGrid [ [ jηBarMinU[[1]] ]],δGrid [[ jηBarMinU[[1]] ]]}},

{ jηBarMaxU[[2]],{αGrid [[ jηBarMaxU[[1]] ]],δGrid [[ jηBarMaxU[[1]] ]]}}} ];

(*collect discrete on-grid data*)

ηminαδHU=FindMinimum[ηBarAtHwithAnyψ[αH,δH,ψData[[nRun,2]]],

{{αH,gridDataUn[[nRun,2,2,1]]},{δH,gridDataUn[[nRun,2,2,2]]}}];

ηmaxαδHU=

FindMaximum[ηBarAtHwithAnyψ[αH,δH,ψData[[nRun,2]]],

{{αH,gridDataUn[[nRun,3,2,1]]},{δH,gridDataUn[[nRun,3,2,2]]}}];

AppendTo[funcDataU,{nRun,{ ηminαδHU[[1]],{αH,δH}/.ηminαδHU[[2]]},{ ηmaxαδHU[[1]],

{αH,δH}/.ηmaxαδHU[[2]]}} ](*collect continuous function-based data*) 

t2=TimeUsed[];

Print["Time used to compute ψData, gridDataUn, and funcDataU: t2 - t1 = ",t2-t1]

*)
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Hint: You can save memory if you do not get the “ψData”. The table ψData is needed to reconstruct the exact values of the gridDa-

taUn table, but it is not needed in any following calculation.

In[174]:= SetDirectory[homeDirectory];

(*Save a new data file*)

(*

Put[ψData,"20211031PsiDataUqsoClump1U10000.dat" ]

*)

(*

Put[gridDataUn,"20211031gridDataUnqsoClump1U10000.dat" ]

*)

(*

Put[funcDataU,"20211031funcDataQSON27U10000.dat" ]

*)

Hint: Saving data files avoids the time it takes to complete the “For” statement. You can make the above “For” statement into a 

remark so that it doesn’t evaluate.

In[175]:= SetDirectory[homeDirectory];

(*Retrieve an old data file*)

(*

ψData=Get["20211031PsiDataUqsoClump1U10000.dat"];

*)

(*

gridDataUn=Get["20211031gridDataUnqsoClump1U10000.dat"];

*)

(*Get the funcDataU file for the pdf version:*)

funcDataU = Get["20211031funcDataQSON27U10000.dat"];

In[177]:= (*If needed, edit the following to collect data files together.*)

(*

ψData=Join[ψData4000,ψData6000];

Length[ψData]

ψData[[1]]

gridDataUn=Join[gridDataUn4000,gridDataUn6000];

nR=Length[gridDataUn]

gridDataUn[[1]]

*)

In[178]:= (*nR may not be previously defined, depending on what cells have been processed.*)

(*Define nR for the pdf version:*)

nR = Length[funcDataU]

Out[178]= 10 000
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In[179]:= (*Define quantities based on the function continuous results. The

continuous results should be better than the on-grid quantities.*)

ηBarMinfunDataU = Table[funcDataU[[i1, 2, 1]] , {i1, Length[funcDataU]}];

ηBarMaxfunDataU = Table[funcDataU[[i1, 3, 1]] , {i1, Length[funcDataU]}];

HminαfunDataU = Table[ If[ funcDataU[[i1, 2, 2, 1]] < π ,

funcDataU[[i1, 2, 2, 1]] + π, funcDataU[[i1, 2, 2, 1]]], {i1, Length[funcDataU]}];

HminδfunDataU = Table[If[ funcDataU[[i1, 2, 2, 1]] < π , -funcDataU[[i1, 2, 2, 2]],

funcDataU[[i1, 2, 2, 2]] ], {i1, Length[funcDataU]}];

HminαδfunDataU = Table[{HminαfunDataU[[i1]], HminδfunDataU[[i1]] },

{i1, Length[funcDataU]}];

HmaxαfunDataU = Table[ If[ funcDataU[[i1, 3, 2, 1]] > π , funcDataU[[i1, 3, 2, 1]] - π,

funcDataU[[i1, 3, 2, 1]]], {i1, Length[funcDataU]}];

HmaxδfunDataU = Table[If[ funcDataU[[i1, 3, 2, 1]] > π , -funcDataU[[i1, 3, 2, 2]],

funcDataU[[i1, 3, 2, 2]] ], {i1, Length[funcDataU]}];

HmaxαδfunDataU = Table[{HmaxαfunDataU[[i1]], HmaxδfunDataU[[i1]] },

{i1, Length[funcDataU]}];

In[187]:= (*Check to make sure that the hubs are collected

together and not diamterically across from one another.*)

lpHubs = ListPlot[{HminαδfunDataU, HmaxαδfunDataU}, PlotRange → All,

PlotStyle → {{Blue, PointSize[0.01]}, {Red, PointSize[0.01]}},

PlotLabel → "The hubs from the uncertainty runs", AxesLabel → {"α (rad)", "δ (rad)"}];

Out[188]=
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Figure 14: Uncertainty run hubs. The alignment hubs Hmin are in blue,

The avoidance hubs Hmax are in

. Symmetry across a diameter means there are hubs diametrically opposed to these. Including

any diametrically opposed hubs would ruin the statistical calculations for the hubs.

6b. The Effects of Uncertainty on the Smallest Alignment Angle  ηmin

This section fits a Gaussian distribution to the  ηmin from the uncertainty runs. 

Definitions

sortηBarMin sort the list of ηmin from the uncertainty runs

η0minU estimated mean of the Gaussian fit
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σminU estimated half-width of the Gaussian fit

hlminU0, hlminU histogram {η, bin height} tables needed to set up the NonlinearModelFit

nlmminU non-linear model fit of a Gaussian to the ηmin histogram

showNLMB plot of Gaussian and histogram

pTableNLMminU table of parameter attributes, including standard error

σηBarminUFit, ηBarminUFit   - half-width, and mean of the Gaussian fit

 

In[190]:= Print["The number of uncertainty runs is ", Length[funcDataU], "."]

The number of uncertainty runs is 10 000.

In[191]:= sortηBarMinU = Sort[ηBarMinfunDataU];

η0minU = mean[ηBarMinfunDataU ]; (*Guess the mean for the Gaussian. *)

σminU = stanDev[ηBarMinfunDataU ];(*Guess the half-width.*)

hlminU0 = HistogramList[sortηBarMinU, {η0minU - 5 σminU, η0minU + 5 σminU, 0.4 σminU}];

hlminU = Table1  2 hlminU0[[1, i1]] + hlminU0[[1, i1 + 1]], hlminU0[[2, i1]],

{i1, Length[ hlminU0[[2]] ]};

nlmminU = NonlinearModelFithlminU, a Exp-1  2. x - x0  b
2
,

a, LengthsortηBarMinU  6, {b, σminU}, {x0, η0minU}, x;(*x is ηBarMin*)

In[196]:= pTableNLMminU = nlmminU["ParameterTable"]

{σηBarminUFit, ηBarminUFit} = {b, x0} /. nlmminU["BestFitParameters"];(*radians*)

Out[196]=

Estimate Standard Error t-Statistic P-Value

a 1596.69 11.3899 140.185 5.75282×10-34

b 0.014963 0.00012325 121.404 1.35675×10-32

x0 0.377741 0.00012325 3064.85 1.9563×10-63

In[198]:= showNLMB = ShowHistogramsortηBarMinU, {η0minU - 5 σminU, η0minU + 5 σminU, 0.4 σminU},

PlotLabel → "Uncertainty run ηmin ", AxesLabel → "ηmin, radians", "ΔR",

PlotNormal[nlmminU], {x, η0minU - 5 σminU, η0minU + 5 σminU}, PlotLabel → "ηmin",

ListPlothlminU, PlotLabel → "ηmin" ;

Out[199]=
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Figure 15: The Gaussian fit to the alignment angle ηmin histogram. The

height is the number of runs ΔR in each bin. Note how nicely symmetric this is.

The total number of runs is R = Σ(ΔR) = 10000.

6c. The Effects of Uncertainty on the Largest Avoidance Angle  ηmax

This section fits a Gaussian distribution to the  ηmax returned by the uncertainty runs. 

Definitions: Similar to the definitions in Sec. 6b. 

In[202]:= sortηBarMaxU = Sort[ηBarMaxfunDataU];

η0maxU = mean[ηBarMaxfunDataU ]; (*Guess the mean for the Gaussian. *)

σmaxU = stanDev[ηBarMaxfunDataU ];(*Guess the half-width.*)

histogramrangemaxU = {η0maxU - 5 σmaxU, η0maxU + 5 σmaxU, 0.4 σmaxU};

hl0maxU = HistogramList[sortηBarMaxU, histogramrangemaxU];

hlmaxU = Table1  2 hl0maxU[[1, i1]] + hl0maxU[[1, i1 + 1]], hl0maxU[[2, i1]],

{i1, Length[ hl0maxU[[2]] ]};

nlmmaxU = NonlinearModelFithlmaxU, a Exp-1  2. x - x0  b
2
,

{{a, 300.}, {b, σmaxU}, {x0, η0maxU}}, x;(*x is ηBarmaxU *)

nlmBmaxU = NonlinearModelFithlmaxU, a (* 1+ ⅇ
-4

x-x0+b

b

-1

*) Exp-1  2. x - x0  b
2


(*,b>0*), a, nR  12, {b, σmaxU }, {x0, η0maxU}, x;

In[209]:= pTableNLMmaxU = nlmBmaxU["ParameterTable"]

{σηBarmaxFitU, ηBarmaxFitU} =

ParametersNLMmaxU = {b, x0} /. nlmBmaxU["BestFitParameters"];(*radians*)

Out[209]=

Estimate Standard Error t-Statistic P-Value

a 1568.65 17.1524 91.4541 6.82259×10-30

b 0.0166647 0.000210408 79.2016 1.60057×10-28

x0 1.15348 0.000210408 5482.09 5.44023×10-69

In[211]:= showNLMmaxU = ShowHistogramsortηBarMaxU,

histogramrangemaxU, PlotLabel → "ηmax", AxesLabel → "ηmax, radians", "ΔR",

PlotNormal[nlmBmaxU], {x, η0maxU - 5 σmaxU, η0maxU + 5 σmaxU}, PlotLabel → "ηmax" ,

ListPlothlmaxU, PlotLabel → "ηmax";
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Out[212]=
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Figure 16: The Gaussian fit to the avoidance angle ηmax histogram.

Each bin has a height equal to the number of runs ΔR in the bin. Like

the distribution for ηmin, Fig. 15, this one is well fit by a Gaussian.

6d. The Effects of Uncertainty on the Locations  (α,δ)  of the Alignment Hubs  Hmin

Each uncertainty run returns an alignment hub Hmin. In this section, we investigate the distribution of the locations the alignment 

Hubs  Hmin. 

There are two hubs, Hmin and -Hmin for each uncertainty run, by the symmetry across a diameter. So we collect the data together 

by moving the -Hmin hubs across a diameter to join the Hmin hubs. See Fig. 14.

In[214]:= sortHminαδfunDataU = Sort[Union[HminαδfunDataU]];

lpHminU =

ListPlot[Union[HminαδfunDataU], PlotRange → All, PlotStyle → {Blue, PointSize[0.01]},

PlotLabel → "The alignment hubs from the uncertainty runs",

AxesLabel → {"α (rad)", "δ (rad)"}];

In[216]:= sortHminα = Sort[HminαfunDataU];

x0Hmin = mean[HminαfunDataU ];(*Guess the mean for the Gaussian. *)

dx0Hmin = stanDev[HminαfunDataU ];(*Guess the half-width.*)

histogramrangeRAHminU = {x0Hmin - 5 dx0Hmin, x0Hmin + 5 dx0Hmin, 0.4 dx0Hmin};

hl0xHmin = HistogramList[sortHminα, histogramrangeRAHminU];

hlxHmin = Table1  2 hl0xHmin[[1, i1]] + hl0xHmin[[1, i1 + 1]], hl0xHmin[[2, i1]],

{i1, Length[ hl0xHmin[[2]] ]};

nlmxHmin = NonlinearModelFithlxHmin, a Exp-1  2. x - x0  b
2
,

a, LengthsortHminα  6, {b, dx0Hmin}, {x0, x0Hmin}, x;(*x is Hminα*)
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In[222]:= pTablenlmxHmin = nlmxHmin["ParameterTable"]

{σHminαFit, HminαFit} = ParametersnlmxHmin = {b, x0} /. nlmxHmin["BestFitParameters"];

(*radians*)

Normal[nlmxHmin]

expOfnlmxHmin[x_] := -1  2. x - x0  b
2
/. nlmxHmin["BestFitParameters"]

expOfnlmxHmin[x]

Out[222]=

Estimate Standard Error t-Statistic P-Value

a 2711.63 180.691 15.007 4.86638×10-13

b 0.022115 0.00170162 12.9964 8.46543×10-12

x0 3.2964 0.00170162 1937.22 4.72592×10-59

Out[224]= 2711.63 ⅇ-1022.35 (-3.2964+x)2

Out[226]= -1022.35 -3.2964 + x2

In[227]:= shownlmxHmin = Show[{Histogram[sortHminα, histogramrangeRAHminU,

PlotLabel → "αHmin ", AxesLabel → {"αHmin, radians", "ΔR"}, PlotRange → All],

Plot[Normal[nlmxHmin], {x, 3., 3.51}, PlotRange → All, PlotLabel → "αHmin"],

ListPlot[hlxHmin, PlotLabel → "αHmin"] }];

In[228]:= sortHminδ = Sort[HminδfunDataU];

y0Hmin = mean[HminδfunDataU ];(*Guess the mean for the Gaussian. *)

dy0Hmin = stanDev[HminδfunDataU ];(*Guess the half-width.*)

histogramrangeDecHminU = {y0Hmin - 5 dy0Hmin, y0Hmin + 5 dy0Hmin, 0.4 dy0Hmin};

hl0yHmin = HistogramList[sortHminδ, histogramrangeDecHminU];

hlyHmin = Table1  2 hl0yHmin[[1, i1]] + hl0yHmin[[1, i1 + 1]], hl0yHmin[[2, i1]],

{i1, Length[ hl0yHmin[[2]] ]};

nlmyHmin = NonlinearModelFithlyHmin, a Exp-1  2. y - y0  b
2
,

a, LengthsortHminδ  6, {b, dy0Hmin}, {y0, y0Hmin}, y;(*y is Hminδ*)

In[234]:= pTablenlmyHmin = nlmyHmin["ParameterTable"]

{σHminδFit, HminδFit} = ParametersnlmyHmin = {b, y0} /. nlmyHmin["BestFitParameters"];

(*radians*)

Normal[nlmyHmin]

expOfnlmyHmin[y_] := -1  2. y - y0  b
2
/. nlmyHmin["BestFitParameters"]

expOfnlmyHmin[y]

Out[234]=

Estimate Standard Error t-Statistic P-Value

a 2136.91 202.763 10.539 4.60562×10-10

b 0.0310208 0.00339879 9.12702 6.19224×10-9

y0 -0.00726195 0.00339879 -2.13663 0.0439995

Out[236]= 2136.91 ⅇ-519.592 (0.00726195+y)2

Out[238]= -519.592 0.00726195 + y2

In[239]:= shownlmyHmin = Show[{Histogram[sortHminδ, histogramrangeDecHminU,

PlotLabel → "δHmin ", AxesLabel → {"δHmin, radians", "ΔR"}, PlotRange → All],

Plot[Normal[nlmyHmin], {y, -0.3, 0.2}, PlotRange → All, PlotLabel → "δHmin"],

ListPlot[hlyHmin, PlotLabel → "δHmin"] }];
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In[240]:= histsForHminRAdec = GraphicsRow[{shownlmxHmin, shownlmyHmin}];
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Figure 17: The Gaussian fits to the Hmin RA and DEC

histograms, where the height is the number of runs ΔR in each bin.

In both graphs, the total number of runs is R = Σ(ΔR) = 10 000

. These are not symmetric distributions and would be better fit by the functions used in Sec.

7 for Random run ηmin and ηmax results. Keep this in mind when looking at Fig. 19.

In[244]:= expoHminU[x_, y_] := -expOfnlmxHmin[x] + expOfnlmyHmin[y]

Print["The exponent of the probability distribution for

Hmin, i.e. the negative log of the distribution: ", expoHminU[α, δ]]

The exponent of the probability distribution for Hmin, i.e. the negative log of the distribution:

1022.35 (-3.2964 + α)2 + 519.592 (0.00726195 + δ)2

Out[246]=

Figure 18: The negative log of the likelihood of (RA,dec) for Hmin, as

a function of RA and dec. Where the likelihood is down by a factor ⅇ-1/2, the

negative log is 0.5 and that defines the half-width σ of the distribution.
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In[248]:= (*Find the curve for the intersection in Fig. 18*)

frθHmin[r_, θ_] :=

SimplifyexpoHminU[x, y] - 0.5 /. {x → HminαFit + r Cos[θ], y → HminδFit + r Sin[θ]}

frθHmin[r, θ];

solverHminθ[θ_] := Solve[frθHmin[r, θ] ⩵ 0, r];

solverHminθ[θ];

rHminθ[θ_] := Abs[r /. solverHminθ[θ][[2]]]

rHminθ[θ];

rHminθ[0.8];

Plot[rHminθ[θ], {θ, 0, 2. π}];

Solve: Solve was unable to solve the system with inexact coefficients. The answer was obtained by solving a corresponding

exact system and numericizing the result.

Solve: Solve was unable to solve the system with inexact coefficients. The answer was obtained by solving a corresponding

exact system and numericizing the result.

In[256]:= uncertRunHmins =

Show[{lpHminU, ParametricPlot[{HminαFit + rHminθ[θ] Cos[θ], HminδFit + rHminθ[θ] Sin[θ]},

{θ, 0, 2. π}, PlotStyle → Orange, PlotRange → All]}];

Out[257]=
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Figure 19: All of the alignment hubs Hmin from uncertainty runs.

The ellipse encloses the most likely locations of the hubs. Symmetry across

diameters means there is another set diametrically opposite those displayed here.

6e. The Effects of Uncertainty on the Locations  (α,δ)  of the Avoidance Hubs  Hmax

Each uncertainty run returns an avoidance hub Hmax. In this section, we investigate the distribution of the locations the avoidance 

hubs Hmax. 

There are two hubs, Hmax and -Hmax for each uncertainty run, by the symmetry across a diameter. So we collect all the hubs 

together by moving the -Hmax hubs across a diameter to join the Hmax hubs. See Fig. 14.
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In[259]:= (*Check that 0° ≤ α < 180° and -90° ≤ δ < 90° *)

sortHmaxαδfunDataU = SortUnion[HmaxαδfunDataU] 360.  2. π;

lpHmaxU =

ListPlot[Union[HmaxαδfunDataU], PlotRange → All, PlotStyle → {Red, PointSize[0.01]},

PlotLabel → "The avoidance hubs from the uncertainty runs",

AxesLabel → {"α (rad)", "δ (rad)"}];

In[261]:= sortHmaxα = Sort[HmaxαfunDataU];

x0Hmax = mean[HmaxαfunDataU ];(*Guess the mean for the Gaussian. *)

dx0Hmax = stanDev[HmaxαfunDataU ];(*Guess the half-width.*)

histogramrange = {x0Hmax - 5 dx0Hmax, x0Hmax + 5 dx0Hmax, dx0Hmax};

hl0xHmax = HistogramList[sortHmaxα, histogramrange];

hlxHmax = Table1  2 hl0xHmax[[1, i1]] + hl0xHmax[[1, i1 + 1]], hl0xHmax[[2, i1]],

{i1, Length[ hl0xHmax[[2]] ]};

nlmxHmax = NonlinearModelFithlxHmax, a Exp-1  2. x - x0  b
2
,

a, LengthsortHmaxα  6, {b, dx0Hmax}, {x0, x0Hmax}, x;(*x is Hmaxα*)

In[267]:= pTablenlmxHmax = nlmxHmax["ParameterTable"]

{σHmaxαFit, HmaxαFit} = ParametersnlmxHmax = {b, x0} /. nlmxHmax["BestFitParameters"];

(*radians*)

Normal[nlmxHmax]

expOfnlmxHmax[x_] := -1  2. x - x0  b
2
/. nlmxHmax["BestFitParameters"]

expOfnlmxHmax[x]

Out[267]=

Estimate Standard Error t-Statistic P-Value

a 6698.39 1262.39 5.3061 0.00111596
b 0.189369 0.0405819 4.66633 0.00229736
x0 2.56174 0.0246024 104.126 1.9861×10-12

Out[269]= 6698.39 ⅇ-13.9429 (-2.56174+x)2

Out[271]= -13.9429 -2.56174 + x2

In[272]:= shownlmxHmax = Show[{Histogram[sortHmaxα, histogramrange,

PlotLabel → "αHmax ", AxesLabel → {"αHmax, radians", "ΔR"}, PlotRange → All],

Plot[Normal[nlmxHmax], {x, 0.5, 4.}, PlotRange → All, PlotLabel → "αHmax"],

ListPlot[hlxHmax, PlotLabel → "αHmax"] }];

In[273]:= sortHmaxδ = Sort[HmaxδfunDataU];

y0Hmax = mean[HmaxδfunDataU ];(*Guess the mean for the Gaussian. *)

dy0Hmax = stanDev[HmaxδfunDataU ];(*Guess the half-width.*)

histogramrange = {y0Hmax - 5 dy0Hmax, y0Hmax + 5 dy0Hmax, 0.4 dy0Hmax};

hl0yHmax = HistogramList[sortHmaxδ, histogramrange];

hlyHmax = Table1  2 hl0yHmax[[1, i1]] + hl0yHmax[[1, i1 + 1]], hl0yHmax[[2, i1]],

{i1, Length[ hl0yHmax[[2]] ]};

nlmyHmax = NonlinearModelFithlyHmax, a Exp-1  2. y - y0  b
2
,

a, LengthsortHmaxδ  6, {b, dy0Hmax}, {y0, y0Hmax}, y;(*x is Hmaxδ*)
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In[279]:= pTablenlmyHmax = nlmyHmax["ParameterTable"]

{σHmaxδFit, HmaxδFit} = ParametersnlmyHmax = {b, y0} /. nlmyHmax["BestFitParameters"];

(*radians*)

Normal[nlmyHmax]

expOfnlmyHmax[y_] := -1  2. y - y0  b
2
/. nlmyHmax["BestFitParameters"]

expOfnlmyHmax[y]

Out[279]=

Estimate Standard Error t-Statistic P-Value

a 1457. 171.974 8.47226 2.24872×10-8

b 0.282644 0.0385221 7.33719 2.40543×10-7

y0 -0.39549 0.0385221 -10.2666 7.4637×10-10

Out[281]= 1457. ⅇ-6.25878 (0.39549+y)2

Out[283]= -6.25878 0.39549 + y2

In[284]:= shownlmyHmax = Show[{Histogram[sortHmaxδ, histogramrange,

PlotLabel → "δHmax ", AxesLabel → {"δHmax, radians", "ΔR"}, PlotRange → All],

Plot[Normal[nlmyHmax], {y, -2., 0.8}, PlotRange → All, PlotLabel → "δHmax"],

ListPlot[hlyHmax, PlotLabel → "δHmax"] }];

histsForHmaxRAdec = GraphicsRow[{shownlmxHmax, shownlmyHmax}];

Out[286]=
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Figure 20: The Gaussian fits to the Hmax RA and DEC

histograms, where the height is the number of runs ΔR in each bin.

In both graphs, the total number of runs is R = Σ(ΔR) =

10 000. These are not well-fit by Gaussians since

they slant left and right. Keep this in mind when viewing Fig. 22.

In[289]:= expoHmaxU[x_, y_] := -expOfnlmxHmax[x] + expOfnlmyHmax[y]

Print["The exponent of the probability distribution for

Hmax, i.e. the negative log of the distribution: ", expoHmaxU[α, δ]]

The exponent of the probability distribution for Hmax, i.e. the negative log of the distribution:

13.9429 (-2.56174 + α)2 + 6.25878 (0.39549 + δ)2

In[291]:= findHmaxUncertainty =

Plot3D[{expoHmaxU[x, y], 0.5}, {x, x0 - 0.3, x0 + 0.3} /. nlmxHmax["BestFitParameters"],

{y, y0 - 0.5, y0 + 0.5} /. nlmyHmax["BestFitParameters"],

PlotLabel → "Negative log of the probability of (α,δ) for Hmax",

AxesLabel → {"α (rad)", "δ (rad)"}];
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Out[292]=

Figure 21: The negative log of the likelihood of (RA,dec) for Hmax, as

a function of RA and dec. Where the likelihood is down by a factor ⅇ-1/2, the

negative log is +0.5 and that defines the half-width σ of the distribution.

In[294]:= (*Find the curve for the intersection in Fig. 21*)

frθHmax[r_, θ_] :=

Simplify[(expoHmaxU[x, y]) - 0.5 /. {x → HmaxαFit + r Cos[θ], y → HmaxδFit + r Sin[θ]}]

frθHmax[r, θ];

solverHmaxθ[θ_] := Solve[frθHmax[r, θ] ⩵ 0, r];

solverHmaxθ[θ];

rHmaxθ[θ_] := Abs[r /. solverHmaxθ[θ][[2]]]

rHmaxθ[θ];

rHmaxθ[0.8];

Plot[rHmaxθ[θ], {θ, 0, 2. π}];

Solve: Solve was unable to solve the system with inexact coefficients. The answer was obtained by solving a corresponding

exact system and numericizing the result.

Solve: Solve was unable to solve the system with inexact coefficients. The answer was obtained by solving a corresponding

exact system and numericizing the result.

In[302]:= uncertRunHmaxs =

Show[{lpHmaxU, ParametricPlot[{HmaxαFit + rHmaxθ[θ] Cos[θ], HmaxδFit + rHmaxθ[θ] Sin[θ]},

{θ, 0, 2. π}, PlotStyle → Orange, PlotRange → All]}];
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Out[303]=
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Figure 22: Avoidance hubs Hmax from uncertainty runs. The ellipse

encloses the most likely locations of the hubs. Symmetry across diameters

means there is another set diametrically opposite those displayed here.

6f.  The Effects of Uncertainty on the angle θ between the planes of the Sample to Hmin Great Circle and the Sample to Hmax Great 

Circle. 

These are the Gray lines in Figs. 3, 4, 12, 13. Starting at the sources, these Great Circles run through the hubs, the locations of best 

convergence and most divergence for the polarization directions.

Definitions:

“uRuns” prefix results from the uncertainty runs 

uRunsCrossMin unit vector normal to the Great Circle connecting the center of the source region with the alignment hub Hmin

uRunsCrossMax unit vector normal to the Great Circle connecting the center of the source region with the alignment hub Hmax

uRunsθminmaxUgreatcircles angle between the two normals in degrees

sortθminmaxU sort “uRunsθminmaxUgreatcircles”, smallest θ first

See Definitions above in Secs. 6a,6b for other quantities below. There you should find similarly named quantities.

In[305]:= uRunsCrossMin0 = Table[Cross[er[HminαfunDataU[[i]], HminδfunDataU[[i]]], sourceCenter ],

{i, Length[HminαfunDataU]}];

uRunsCrossMin = Table uRunsCrossMin0[[i]]  uRunsCrossMin0[[i]].uRunsCrossMin0[[i]]1/2.,

{i, Length[HminαfunDataU]};

uRunsCrossmaxU0 = Table[Cross[er[HmaxαfunDataU[[i]], HmaxδfunDataU[[i]]], sourceCenter ],

{i, Length[HmaxαfunDataU]}];

uRunsCrossmaxU = Table uRunsCrossmaxU0[[i]] 

uRunsCrossmaxU0[[i]].uRunsCrossmaxU0[[i]]1/2., {i, Length[HmaxαfunDataU]};

uRunsθminmaxUgreatcircles = TableArcCos[uRunsCrossmaxU[[i]].uRunsCrossMin[[i]]]

360.  2. π, {i, Length[HmaxαfunDataU]};
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In[310]:= (*Fit two peaks for θ:*)

sortθminmaxU = Sort[uRunsθminmaxUgreatcircles];

x0θ = mean[uRunsθminmaxUgreatcircles]; (*Guess the mean for the Gaussian. *)

dx0θ = 0.3 stanDev[uRunsθminmaxUgreatcircles ];(*Guess the half-width.*)

histogramrange = {70, 103, 1.5};

hl0 = HistogramList[sortθminmaxU, histogramrange];

hl =

Table1  2 hl0[[1, i1]] + hl0[[1, i1 + 1]], hl0[[2, i1]], {i1, Length[ hl0[[2]] ]};

nlmθ = NonlinearModelFithl, a3 Exp-1  2. x - x03  b3
2


(*+a4 Exp-12.x-x04b4
2
*),

a3, Length[sortθminmaxU]  5., {b3, dx0θ}, {x03, x0θ}, {x};(*x is θminmaxU*)

In[316]:= pTableNLMθ = nlmθ["ParameterTable"]

{dx0θminmaxUFit3, θminmaxUFit3} = {b3, x03} /. nlmθ["BestFitParameters"];(*degrees*)

Out[316]=

Estimate Standard Error t-Statistic P-Value

a3 1602.52 33.0129 48.5423 2.17353×10-21

b3 3.74787 0.0891527 42.0388 3.2631×10-20

x03 88.1025 0.0891525 988.222 3.18201×10-46

In[318]:= showNLMθ = Show[{Histogram[sortθminmaxU, histogramrange,

PlotLabel → "Angle θ between the Two Gray Great Circles in Figs. 3, 4, 12, 13.",

AxesLabel → {"θ, degrees", "ΔR"}],

Plot[Normal[nlmθ], {x, 0, 250}, PlotRange → All], ListPlot[hl] }];

Out[319]=

75 80 85 90 95 100
θ, degrees0

500

1000

1500

ΔR
Angle θ between the Two Gray Great Circles in Figs. 3, 4, 12, 13.

Figure 23: The Gaussian fit to the angle θ histogram.

The Great Circles are nearly perpendicular where they cross.

6g.  Map of the Hubs for the Uncertainty Runs

In this subsection, we map the locations of the many alignment hubs Hmin and the avoidance hubs Hmax that are found in the 

uncertainty runs.

Definitions:

vψSrcBig, Small  unit vectors, v(ψ ± σψ), large & small, the one-sigma range of polarization directions ψ 
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In[321]:= (*The Aitoff coordinates for the hubs Hmin locations.*)

xyAitoffHminU = TablexH180 HminαfunDataU[[n]] 360  2 π,

HminδfunDataU[[n]] 360  2 π , yH180 HminαfunDataU[[n]] 360  2 π,

HminδfunDataU[[n]] 360  2 π , {n, Length[HminδfunDataU ]};

In[322]:= (*The Aitoff coordinates for the hubs Hmax locations.*)

xyAitoffHmaxU = TablexH180 HmaxαfunDataU[[n]] 360  2 π,

HmaxδfunDataU[[n]] 360  2 π , yH180 HmaxαfunDataU[[n]] 360  2 π,

HmaxδfunDataU[[n]] 360  2 π , {n, Length[HmaxδfunDataU ]};

In[323]:= (*The Aitoff coordinates for the hubs -Hmin locations.*)

xyAitoffOppositeHminU = TablexH180 If0 ≤ HminαfunDataU [[n]] 360  2 π < +180,

HminαfunDataU[[n]] 360  2 π + 180, If360 > HminαfunDataU[[n]] 360  2 π > 180,

HminαfunDataU[[n]] 360  2 π - 180, -HminδfunDataU[[n]] 360  2 π ,

yH180 If0 ≤ HminαfunDataU[[n]] 360  2 π < +180,

HminαfunDataU[[n]] 360  2 π + 180, If

360 > HminαfunDataU[[n]] 360  2 π > 180, HminαfunDataU[[n]] 360  2 π - 180,

-HminδfunDataU[[n]] 360  2 π , {n, Length[HminδfunDataU ]};

In[324]:= (*The Aitoff coordinates for the hubs -Hmax locations.*)

xyAitoffOppositeHmaxU = TablexH180 If0 ≤ HmaxαfunDataU[[n]] 360  2 π < +180,

HmaxαfunDataU[[n]] 360  2 π + 180, If360 > HmaxαfunDataU[[n]] 360  2 π > 180,

HmaxαfunDataU[[n]] 360  2 π - 180, -HmaxδfunDataU[[n]] 360  2 π ,

yH180 If0 ≤ HmaxαfunDataU[[n]] 360  2 π < +180,

HmaxαfunDataU[[n]] 360  2 π + 180, If

360 > HmaxαfunDataU[[n]] 360  2 π > 180, HmaxαfunDataU[[n]] 360  2 π - 180,

-HmaxδfunDataU[[n]] 360  2 π , {n, Length[HmaxδfunDataU ]};

In[325]:= (* vψ unit vectors pointing along the polarization direction,

have an experimental uncertainty. These are their plusminus values. *)

vψSrcBig = TableCos ψSrc[[i]] + σψSrc[[i]]  eN[ αSrc[[i]], δSrc[[i]] ] +

Sin ψSrc[[i]] + σψSrc[[i]]  eE[ αSrc[[i]], δSrc[[i]] ], {i, nSrc};

vψSrcSmall = TableCos ψSrc[[i]] - σψSrc[[i]]  eN[ αSrc[[i]], δSrc[[i]] ] +

Sin ψSrc[[i]] - σψSrc[[i]]  eE[ αSrc[[i]], δSrc[[i]] ], {i, nSrc};

In[327]:= (*Plot polarization direction Uncertainty in Sec. 6*)

rPlusψBig[i_, d_] := rSrc[[i]] + d vψSrcBig[[i]] 

rSrc[[i]] + d vψSrcBig[[i]].rSrc[[i]] + d vψSrcBig[[i]]1/2

polarLinesBig[d_] := TableLinexH180αFROMr[ rPlusψBig[i, d]] 360.  2. π,

δFROMr[ rPlusψBig[i, d]] 360.  2. π, yH180

αFROMr[ rPlusψBig[i, d]] 360.  2. π, δFROMr[ rPlusψBig[i, d]] 360.  2. π,

xH180αFROMr[ rPlusψBig[i, -d]] 360.  2. π, δFROMr[ rPlusψBig[i, -d]]

360.  2. π, yH180αFROMr[ rPlusψBig[i, -d]] 360.  2. π,

δFROMr[ rPlusψBig[i, -d]] 360.  2. π, {i, nSrc}
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In[329]:= (*Plot polarization direction Uncertainty in Sec. 6*)

rPlusψSmall[i_, d_] := rSrc[[i]] + d vψSrcSmall[[i]] 

rSrc[[i]] + d vψSrcSmall[[i]].rSrc[[i]] + d vψSrcSmall[[i]]1/2

polarLinesSmall[d_] := TableLinexH180αFROMr[ rPlusψSmall[i, d]] 360.  2. π,

δFROMr[ rPlusψSmall[i, d]] 360.  2. π, yH180αFROMr[ rPlusψSmall[i, d]]

360.  2. π, δFROMr[ rPlusψSmall[i, d]] 360.  2. π,

xH180αFROMr[ rPlusψSmall[i, -d]] 360.  2. π, δFROMr[ rPlusψSmall[i, -d]]

360.  2. π, yH180αFROMr[ rPlusψSmall[i, -d]] 360.  2. π,

δFROMr[ rPlusψSmall[i, -d]] 360.  2. π, {i, nSrc}

In[331]:= (* Local contour plot of the alignment angle function η(H) on the grid. *)

(*dηContourPlot = 6 ;*)(*, in degrees. *)

frameticks = {{{ {yH[135, 24], 30 °}, {yH[135, 0], 0 °}}, None},

{{{xH180[150, 0], "10h"}, {xH180[180, 0], "12h"}, {xH180[190, 0], StyleForm["Hmin",

FontSize → 12, FontWeight -> "Bold"]}, {xH180[210, 0], "14h"}}, {None}}};

(*frameticks={{{ {yH[150,22.5],30°},{yH[150,48.5],60°}},None},

{{{xH180[150,(*15*)30],"10h"},

{xH180[180,15],"12h"},{xH180[210,15],"14h"}},{None}}};*)

In[332]:= listCPlocalU = Show TableParametricPlot{xH180[α, δ], yH180[α, δ]},

{δ, -5, 60}, PlotStyle → Black, Thickness[0.002], PlotPoints → 60,

PlotRange → {{xH180[145, 0], xH180[215, 0]}, {yH180[180, -5], yH180[180, 32]}}, Axes -> False,

Frame → True, FrameLabel → "α", "δ", "Close-Up View", FrameTicks → frameticks,

{α, 120, 240, 30}, TableParametricPlot{xH180[α, δ], yH180[α, δ]}, {α, 90, 270},

PlotStyle → Black, Thickness[0.002], PlotPoints → 60, {δ, 0, 90, 30},

GraphicsPointSize[0.01], Red, (*Hmax:*)Point xyAitoffHmaxU ,

Point xyAitoffOppositeHmaxU , PointSize[0.009], Gray, Thick, polarLines[0.03],

Thick, polarLinesBig[0.03], Thick, polarLinesSmall[0.03], (*Sources S:*)

Green, PointSize[0.012], Point xyAitoffSources , PointSize[0.01], Blue, (*Hmin:*)

Point xyAitoffHminU , Point xyAitoffOppositeHminU , Gray, PointSize[0.005]

, ParametricPlotxH180HminαFit + rHminθ[θ] Cos[θ] (360./(2. π)),

HminδFit + rHminθ[θ] Sin[θ] (360./(2. π)), yH180

HminαFit + rHminθ[θ] Cos[θ] (360./(2. π)), HminδFit + rHminθ[θ] Sin[θ] (360./(2. π)),

{θ, 0., 2. π}, PlotStyle → Orange, Thickness[0.01],

ParametricPlotxH180HmaxαFit + rHmaxθ[θ] Cos[θ] (360./(2. π)),

HmaxδFit + rHmaxθ[θ] Sin[θ] (360./(2. π)), yH180

HmaxαFit + rHmaxθ[θ] Cos[θ] (360./(2. π)), HmaxδFit + rHmaxθ[θ] Sin[θ] (360./(2. π)),

{θ, 0., 2. π}, PlotStyle → Orange, Thickness[0.005], ImageSize → 0.9×432 ;
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In[333]:= listCPlocalU

Print"Figure 24: Uncertainty plot. The sources are shaded green, ",

Green, ". Three polarization directions are plotted for each source: the

reported value ψ and the one-sigma values ψ ± σψ are plotted as gray, ", Gray,

", line segments through the sources. All of the alignment hubs Hmin from the uncertainty

runs are plotted as overlapping blue dots, ", Blue, ", with the orange ellipse, ",

Orange, ", denoting the highest ensity of uncertainty-run hubs. "

Out[333]=
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Figure 24: Uncertainty plot. The sources are shaded green,

. Three polarization directions are plotted for each source: the

reported value ψ and the one-sigma values ψ ± σψ are plotted as gray,

, line segments through the sources. All of the alignment hubs Hmin from

the uncertainty runs are plotted as overlapping blue dots,

, with the orange ellipse, , denoting the highest ensity of uncertainty-run hubs.

6h. Section Summary

In[335]:= Print["To estimate the effects of experimental uncertainty, there were ",

Length[funcDataU], " uncertainty runs."]

Print["Uncertainty runs have polarization directions ψ = ψSrc + δψ, ",

"where δψ is chosen with a normal

distribution of half-width σψ about the best value ψSrc."]

Print"The uncertainty runs determine the smallest alignment angle to be ηmin = ",

ηBarminUFit 360.  2. π, "° ± ", σηBarminUFit 360.  2. π, "°." 

Print"The uncertainty runs determine the largest avoidance angle to be ηmax = ",

ηBarmaxFitU 360.  2. π, "° ± ", σηBarmaxFitU 360.  2. π, "°." 

Print["The uncertainty runs determine the angle θ between

the two grey Great Circles in Figs. 3, 4, 12, 13, to be θ = ",

θminmaxUFit3, "° ± ", Abs[dx0θminmaxUFit3], "°." ]
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To estimate the effects of experimental uncertainty, there were 10 000 uncertainty runs.

Uncertainty runs have polarization directions ψ = ψSrc + δψ,

where δψ is chosen with a normal distribution of half-width σψ about the best value ψSrc.

The uncertainty runs determine the smallest alignment angle to be ηmin = 21.643° ± 0.857315°.

The uncertainty runs determine the largest avoidance angle to be ηmax = 66.0895° ± 0.954815°.

The uncertainty runs determine the angle θ between the two

grey Great Circles in Figs. 3, 4, 12, 13, to be θ = 88.1025° ± 3.74787°.

7. Probability and Significance

The problem of “significance” is to determine the likelihood that random polarizations directions would produce better align-

ment or avoidance than the observed polarization directions. 

To determine the probability distributions and related formulas, we made many runs with random data and fit the results. One 

finds that the probability distributions for the smallest alignment angle ηmin and the largest avoidance angle ηmax are not well-

described by Gaussian functions. Better fits have the Gaussian multiplied by a step-function. The fitting functions are based on the 

following distribution, 

f (y) = 1

(2 π)1/2
1 + ⅇ4 (y-1)

-1
ⅇ-

y2

2 (4)

More discussion appears below when the function (4) is needed.

Applied to the probability distribution for the smallest alignment angle ηmin the fitting function takes the form   

Pmin(η)  =   norm

σ (2 π)1/2
 1 + ⅇ4

(η-η0-σ)

σ 
-1

ⅇ-
1

2


η - η0

σ

2

, (5)

where norm makes the integral equal to unity, η0 and σ are parameters that are adjusted to fit the random run results.

7a. Probability and Significance Formulas

Definitions:

norm a constant used to normalize the distribution so the integral of probability is 1. 

probMIN0, probMAX0 probability distributions for alignment (MIN) and avoidance (MAX), functions of  η, η0, σ

signiMIN0, signiMAX0significance as a function of (η, η0, σ)
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In[340]:= (* y = η - η0σ; dy = dησ *)

(* The normalization factor "norm" is needed for the probability density *)

norm = 1  2 π1/2 NIntegrate1 + ⅇ4 (y-1)
-1
ⅇ
-
y2

2 , {y, -∞, ∞}
-1

;

norm ;(*Constant needed to make the integral

of the probability distribution equal to unity.*)

In[342]:= probMIN0[η_, η0_, σ_] := norm  σ 2 π1/2 1 + ⅇ
4

η-η0-σ

σ

-1

ⅇ
-
1

2

η - η0

σ

2

signiMIN0[η_, η0_, σ_] := NIntegrate[probMIN0[η1, η0, σ], {η1, -∞, η}]

probMAX0[η_, η0_, σ_] := norm  σ 2 π1/2 1 + ⅇ
-4

η-η0+σ

σ

-1

ⅇ
-
1

2

η - η0

σ

2

signiMAX0[η_, η0_, σ_] := NIntegrate[probMAX0[η1, η0, σ], {η1, η, ∞}]

The significance signiMIN0[η, η0, σ] is the Integral of probMIN0, i.e. signiMIN0 = ∫-∞
η PMIN (η) ⅆη.

The significance signiMAX0[η, η0, σ] is the Integral of probMAX0, i.e. signiMAX0 = ∫η
∞PMAX (η) ⅆη.

7b. Generating random ψ runs

The notebook .nb version generates new random runs. The pdf version uses old random runs that are uploaded from previously 

saved files that are not publically available. 

Definitions:

nRunMax number of random runs to be generated

ρRgnRadius distance to furthest source from sourceCenter, radians

minGridCenterToHmin, max  -  minimum number of grid spaces between Hmin, Hmax and sources’ center

gridjηBarMinRand

iSminmas parameters for center to hub distance

nRunPrint dummy index to control printing frequency

rSrcxrGrid unit vector perpendicular to the plane of rSrc for Si and rGrid to point H j

ψSrcRand random polarization directions for the sources

rSrcxψSrc cross product of rSrc and the vector in direction of ψSrcR, both are unit vectors

jηBarToGrid {j, η j} = {grid point #,  value of the alignment angle Eq. (1)  averaged over all sources Si, in radians}

sortjηBarToGrid - sort jηBarToGrid, smallest alignment angles η j first

gridjηBarMinRand -  {j,η j} for the grid point H j with the smallest alignment angle η j, not counting H j that are too close to the 

sample

gridjηBarMaxRand -  {j,η j} for the grid point H j with the largest avoidance angle η j, not counting H j that are too close to the 

sample

niSnrData  1. run # 2. iSmin 3. iSmax 4. nSrc 6. ρRgnRadius

ψDataRand 1. run # 2. ψSrcRand table

runData 1. run # 2. sourceCenter 3. {j, η} at point H j where smallest η  4. {j, η} at point H j where largest η  5. nSrc 6. 

ρRgnRadius
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In[346]:=

(*Remove comment marks, "(*" and "*)", below to generate your own table "runData". *)

(* Evaluate this cell for the notebook .nb version *)

(*

nRunMax=500;

niSnrData={};

ψDataRand={};

runData={};

times={};

(*Set up the For statement.*)

nRunPrint=0;

minGridCenterToHmin = 2;

(*minimum number of grid spaces between Hmin and sources' center*)

minGridCenterToHmax = 2;

(*minimum number of grid spaces between Hmax and sources' center*)

*)

In[347]:=

(* Evaluate this cell for the notebook .nb version. You may

have found rSrcxrGrid already with uncertainty. Here it is again:*)

(*rSrcxrGrid1 =Table[ Cross[ rSrc[[i]],rGrid[[j]] ] , {i,nSrc},{j,nGrid}]

(*first step: raw cross product, not unit vectors*);

rSrcxrGrid=Table rSrcxrGrid1[[i,j]]

rSrcxrGrid1[[i,j]].rSrcxrGrid1[[i,j]]+ 0.0000011/2. , {i,nSrc},{j,nGrid};*)
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In[348]:= (* Evaluate this cell for the notebook .nb version *)

(* t[1]=TimeUsed[];

FornRun=1,nRun≤nRunMax,nRun++,

If[nRun>nRunPrint,Print["At the start of run ",nRun,", the time is ",

TimeUsed[]," seconds and the memory in use is ",MemoryInUse[]," bytes."];

nRunPrint=nRunPrint+100];

ψSrcRand=Table[RandomReal[{0.001,π-0.001}],{i,nSrc}];

rSrcxψSrc =

Table[ Sin[ψSrcRand[[i]]]eNSrc[[i]]-Cos[ψSrcRand[[i]]]eESrc[[i]], {i,nSrc}];

(*table of the cross product of rSrc and vector in direction of ψSrcRand,

a unit vector*)

jηBarToGrid = Tablej,1nSrcSum[ ArcCos[

Abs[ rSrcxψSrc[[i]].rSrcxrGrid[[i,j]] ] - 0.000001 ],{i,nSrc}],{j,nGrid};

sortjηBarToGrid=Sort[jηBarToGrid,#1[[2]]<#2[[2]]&];

iSmin=CatchDoIfArcCos[sourceCenter.rGrid[[sortjηBarToGrid[[i,1]] ]] -0.000001 ]

dθ1≥minGridCenterToHmin,Throw[i],{i,100};

gridjηBarMinRand=sortjηBarToGrid[[iSmin]]; (* {j,ηj},

at the grid point Hj with minimum η,not counting the center j0*)iSmax=

CatchDoIfArcCos[sourceCenter.rGrid[[sortjηBarToGrid[[-i,1]] ]] -0.000001 ]dθ1≥

minGridCenterToHmax,Throw[i],{i,100};

gridjηBarMaxRand=sortjηBarToGrid[[-iSmax]]; (* {j,ηj},

at the grid point Hj with maximum η, not counting the center j0*)

AppendTo[niSnrData,{nRun,iSmin,iSmax,nSrc,ρRgnRadius}];

AppendTo[ψDataRand,{nRun,ψSrcRand}];

AppendTo[runData,

{nRun,sourceCenter,{grid[[ gridjηBarMinRand[[1]] ]], gridjηBarMinRand[[2]]},

{grid[[ gridjηBarMaxRand[[1]] ]], gridjηBarMaxRand[[2]]},nSrc,ρRgnRadius } ]

(*collect data for saving in a file.*)  ; *)

In[349]:= (* Evaluate this cell for the notebook .nb version *)

(*t[2]=TimeUsed[];

Print["Computer time needed to generate random runs: ",t[2]-t[1]," seconds."]*)

In[350]:= (*Save a new table*)

SetDirectory[homeDirectory];

(*Put[niSnrData,"20211012niSnrDataQSON27Random2000e.dat" ]*)

(*Put[ψDataRand,"20211012ψDataRandQSON27Random2000e.dat" ]*)

(*Put[runData,"20211012runDataQSON27Random2000e.dat"]*)
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In[351]:= (*Get an old table*)

SetDirectory[homeDirectory];

(*niSnrData=Get["20211012niSnrDataQSON27Random2000e.dat"]*)

(*ψDataRand=Get["20211012ψDataRandQSON27Random2000e.dat"]*)

(*Get the runData files for the pdf version:*)

runData2000a = Get["20210905runDataQSON27Random2000a.dat"];

runData2000b = Get["20210906runDataQSON27Random2000b.dat"];

runData2000c = Get["20210906runDataQSON27Random2000c.dat"];

runData2000d = Get["20210906runDataQSON27Random2000d.dat"];

runData2000e = Get["20210906runDataQSON27Random2000e.dat"];

In[357]:= (*Edit the following statements to Join separate data files, if needed*)

(*Join the runData files for the pdf version:*)

runData = Join[runData2000a, runData2000b, runData2000c, runData2000d, runData2000e];

nRunMax = Length[runData];

 7c. Analyzing random ψ runs

Definitions:

ηBarminData  ηmin in order of random runs

sortηBarmin sorted

η0Bmin, σBmin mean and standard deviation of ηBarminData 

hlmin, hlmin0 histogram data

nlmBmin fit to ηmin histogram

{a,b,x0} best fit parameters 

showNlmBmin figure displaying the fit to the ηmin from random runs

nlmBminPtable Parameter table for the fit

ηBarmaxData  ηmax  

sortηBarmax sorted

η0Bmax, σBmax mean and standard deviation of ηBarmaxData 

hlmax, hlmax0 histogram data

nlmBmax fit to ηmax histogram

{a,b,x0} best fit parameters  

showNlmBmax figure displaying the fit to the ηmax from random runs 

nlmBmaxPtable Parameter table for the fit

rHminR rGrid at Hmin 

anglerHminToCenter θ from Hmin to sourceCenter

θrHminToCenter, σθrHminToCenter  -  mean and standard deviation of θ
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rHmaxR rGrid at Hmax 

anglerHmaxToCenter θ from Hmax to sourceCenter

θrHmaxToCenter, σθrHmaxToCenter  -  mean and standard deviation of θ

runData

1. nRun 2. r at Region Center 3a. grid data for Hmin 3b. ηmin 4a. grid data for Hmax 4b. ηmax 5. nSrc 6.  radius 

ρRgnRadius

“fitData” table

1a. nSrc, number of sources 1b. rgnRadius, nominal radius of region 1c. RMS radius

2a. x0min:  x0 =  η0 align (min) 2b. dx0min error: dx0 - σ for x0 =  η0 align (min)

3a. bmin:  b =  σ align (min) 3b. dbmin:  err: db - σ for  b =  σ align (min) 

4a. amin:  a =  Amplitude align (min) 4b. damin:  err: da - σ for  a =  Amplitude align (min)

5a. x0max:  x0 =  η0 avoid (max) 5b. dx0maxx0max:  err: dx0 - σ for  x0 =  η0 avoid (max)  

6a. bmax:   b =  σ avoid (max) 6b. dbmax:   err: db - σ for  b =  σ avoid (max) 

7a. amax:  a =  Amplitude avoid (max)7b. damax:  err: da - σ for a =  Amplitude avoid (max)

8a. σθrHminToCenter:   stanDev[anglerHminToCenter] - σ for θ to H 8b. θrHminToCenter:  mean[anglerHminToCenter] - θ to H

9a. σθrHmaxToCenter:   stanDev[anglerHmaxToCenter] - σ for θ to H 9b. θrHmaxToCenter:  mean[anglerHmaxToCenter] - θ to H

In[359]:= Print["There are ", Length[runData], " random runs to analyze."]

There are 10 000 random runs to analyze.

In[360]:= ηBarminData = Table[runData[[i1, 3, 2]] , {i1, Length[runData]}];

ηBarmaxData = Table[runData[[i1, 4, 2]] , {i1, Length[runData]}];

rHminR = Table[runData[[i1, 3, 1, 6]] , {i1, Length[runData]}] ;

rHmaxR = Table[runData[[i1, 4, 1, 6]] , {i1, Length[runData]}];

sortηBarmin = Sort[ηBarminData];

η0Bmin = mean[ηBarminData ] ;(*Guess the mean for the Gaussian. *)

σBmin = stanDev[ηBarminData ];(*Guess the half-width.*)

hlmin0 = HistogramList[sortηBarmin, {η0Bmin - 5 σBmin, η0Bmin + 5 σBmin, 0.4 σBmin}];

hlmin = Table1  2 hlmin0[[1, i1]] + hlmin0[[1, i1 + 1]], hlmin0[[2, i1]],

{i1, Length[ hlmin0[[2]] ]};

nlmBmin = NonlinearModelFithlmin, a 1 + ⅇ
4

x-x0-b

b

-1

Exp-1  2. x - x0  b
2


(*,b>0*), a, Length[runData]  12, {b, σBmin}, {x0, η0Bmin}, x;

In[370]:= {amin, bmin, x0min} = {a, b, x0} /. nlmBmin["BestFitParameters"];

{damin, dbmin, dx0min} = nlmBmin["ParameterErrors"]; (*x is ηBarmin*)
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In[372]:= sortηBarmax = Sort[ηBarmaxData];

η0Bmax = mean[ηBarmaxData ]; (*Guess the mean for the Gaussian. *)

σBmax = stanDev[ηBarmaxData ];(*Guess the half-width.*)

hlmax0 = HistogramList[sortηBarmax, {η0Bmax - 5 σBmax, η0Bmax + 5 σBmax, 0.4 σBmax}];

hlmax = Table1  2 hlmax0[[1, i1]] + hlmax0[[1, i1 + 1]], hlmax0[[2, i1]],

{i1, Length[ hlmax0[[2]] ]};

nlmBmax = NonlinearModelFithlmax, a 1 + ⅇ
-4

x-x0+b

b

-1

Exp-1  2. x - x0  b
2


(*,b>0*), a, nRunMax  12, {b, σBmax}, {x0, η0Bmax}, x;

In[377]:= {amax, bmax, x0max} = {a, b, x0} /. nlmBmax["BestFitParameters"];

{damax, dbmax, dx0max} = nlmBmax["ParameterErrors"];(*x is ηBarmax*)

In[379]:= anglerHminToCenter =

Table[ArcCos[Abs[rHminR[[i]].sourceCenter] - 0.00001], {i, Length[rHminR]}];

θrHminToCenter = mean[anglerHminToCenter];

σθrHminToCenter = stanDev[anglerHminToCenter];

anglerHmaxToCenter =

Table[ArcCos[Abs[rHmaxR[[i]].sourceCenter] - 0.00001], {i, Length[rHmaxR]}];

θrHmaxToCenter = mean[anglerHmaxToCenter];

σθrHmaxToCenter = stanDev[anglerHmaxToCenter]; t[6] = TimeUsed[];

fitData = {{nSrc,

ρRgnRadius, ρRMS}, {x0min, dx0min}, {bmin, dbmin}, {amin, damin},

{x0max, dx0max}, {bmax, dbmax}, {amax, damax}, {σθrHminToCenter,

θrHminToCenter}, {σθrHmaxToCenter,

θrHmaxToCenter}} (*collect data for saving in a file.*);

In[386]:= ListPlot[{sortηBarmin, sortηBarmax}];

ListPlot[hlmin];

Normal[nlmBmin];

Print"The parameter table for the fit to ηmin: "

nlmBminPtable = nlmBmin["ParameterTable"]

Normal[nlmBmax];

Print"The parameter table for the fit to ηmax: "

nlmBmaxPtable = nlmBmax["ParameterTable"]

The parameter table for the fit to ηmin:

Out[390]=

Estimate Standard Error t-Statistic P-Value

a 1616.71 15.0943 107.107 2.12649×10-31

b 0.0571078 0.000595943 95.8277 2.4473×10-30

x0 0.609515 0.000498685 1222.24 1.18822×10-54

The parameter table for the fit to ηmax:

Out[393]=

Estimate Standard Error t-Statistic P-Value

a 1611.24 16.0725 100.248 9.09391×10-31

b 0.0572295 0.000638084 89.6895 1.04623×10-29

x0 0.963426 0.00053394 1804.37 2.25554×10-58
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In[394]:= showNlmBmin =

ShowHistogramSort[ηBarminData], {η0Bmin - 5 σBmin, η0Bmin + 5 σBmin, 0.4 σBmin},

PlotLabel → "Histogram for ηmin, random runs", AxesLabel → "ηmin, radians", "ΔR",

Plot[Normal[nlmBmin], {x, η0Bmin - 5 σBmin, η0Bmin + 5 σBmin}],

ListPlot[hlmin], Graphics

Blue, ArrowηBarMinfunDataObs, nRunMax  24, {ηBarMinfunDataObs, 5.} ;

In[395]:= showNlmBmax =

ShowHistogramSort[ηBarmaxData], {η0Bmax - 5 σBmax, η0Bmax + 5 σBmax, 0.4 σBmax},

PlotLabel → "Histogram for ηmax, random runs", AxesLabel → "ηmax, radians", "ΔR",

Plot[Normal[nlmBmax], {x, η0Bmax - 5 σBmax, η0Bmax + 5 σBmax}],

ListPlot[hlmax], Graphics

Red, ArrowηBarMaxfunDataObs, nRunMax  24, {ηBarMaxfunDataObs, 5.} ;

Out[396]=
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Histogram for ηmin, random runs
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ΔR

Histogram for ηmax, random runs

Figure 25: Random run results for smallest alignment angle ηmin and largest avoidance angle

ηmax. Note that both curves have steeper sides toward the middle, η = π/4 = 45°.

That requires non-Gaussian fitting functions in the 'NonlinearModelFit' statements

above. The observed polarization directions give the results indicated by the arrows.

 7d. Significance of the alignment and avoidance Hub Test metrics for the sample studied in this work

Definitions

fitting function parameters from random runs:

η0min mean of probability distribution for smallest alignment angle ηmin 

dη0min standard error in the mean as reported by Mathematica 

σmin half-width of probability distribution for smallest alignment angle ηmin 

dσmin standard error in the half-width as reported by Mathematica 

η0max mean of probability distribution for largest avoidance angle ηmax 

dη0max standard error in the mean as reported by Mathematica 

σmax half-width of probability distribution for largest avoidance angle ηmax 

dσmax standard error in the half-width as reported by Mathematica

probmin probability distribution for smallest alignment angle ηmin . This depends on the random runs.
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signimin significance, integral of probmin over smaller values of ηmin

probmax probability distribution for largest avoidance angle ηmax

signimax significance, integral of probmax over larger values of ηmax

sigηBarMinfunDataObsSignificance of the smallest alignment angle ηmin

sigrangeηBarMinfunDataObs standard errors in η0min and σmin, i.e.  dη0min and dσmin, give the significances plus/minus 

values

sigSmallηBarMinfunDataObs, Big extremes of significance assuming one standard error

sigηBarMaxfunDataObs Significance of the  largest avoidance angle ηmax

sigrangeηBarMaxfunDataObs standard errors in η0max and σmax, i.e.  dη0max and dσmax, give the significances plus/minus 

values

sigSmallηBarMaxfunDataObs, Big extremes of significance assuming one standard error 

In[398]:= (*Parameters η0 and σ from random runs, together with their standard errors.*)

η0min = x0min; dη0min = dx0min;

η0max = x0max; dη0max = dx0max;

σmin = bmin; dσmin = dbmin;

σmax = bmax; dσmax = dbmax;

In[402]:= probmin[η_] := probMIN0[ η, η0min, σmin ]

signimin[η_] := signiMIN0[η, η0min, σmin]

probmax[η_] := probMAX0[ η, η0max, σmax]

signimax[η_] := signiMAX0[η, η0max, σmax]

In[406]:=

Print"For this sample, but with random polarization directions ψ, the

random runs give the mean value η0min and the half-width σmin of the

fitting function of random runs for the smallest alignment angle ηmin:"

Print" η0min = ", η0min 360.  2. π, "° ± ", dη0min 360.  2. π, "° and σmin = ",

σmin 360.  2. π, "° ± ", dσmin 360.  2. π, "°. (Random ψ distribution)"

Print[" "]

Print[

"For this sample, but with random polarization directions ψ, the random runs give the

mean η0max and the half-width σmax for the distributions for avoidance :"]

Print" η0max = ", η0max 360.  2. π, "° ± ", dη0max 360.  2. π, "° and σmax = ",

σmax 360.  2. π, "° ± ", dσmax 360.  2. π, "°. (Random ψ distribution)"

For this sample, but with random polarization directions

ψ, the random runs give the mean value η0min and the half-width σmin of

the fitting function of random runs for the smallest alignment angle ηmin:

η0min = 34.9226° ± 0.0285725° and σmin = 3.27204° ± 0.034145°. (Random ψ distribution)

For this sample, but with random polarization directions ψ, the random runs give

the mean η0max and the half-width σmax for the distributions for avoidance :

η0max = 55.2002° ± 0.0305925° and σmax = 3.27901° ± 0.0365595°. (Random ψ distribution)

58     20211030ReplaceClump1PaperFirst.nb



In[411]:= (*Significance of the smallest alignment angle ηmin .*)

sigηBarMinfunDataObs = signimin[ηBarMinfunDataObs];

sigrangeηBarMinfunDataObs =

Sort[Partition[Flatten[Table[{signiMIN0[ηBarMinfunDataObs, η0min + γ1 dη0min,

σmin + γ2 dσmin], γ1, γ2}, {γ1, -1, 1}, {γ2, -1, 1}] ], 3 ] ];

{sigrangeηBarMinfunDataObs[[1]], sigrangeηBarMinfunDataObs[[-1]]};

sigSmallηBarMinfunDataObs = sigrangeηBarMinfunDataObs[[1, 1]];

sigBigηBarMinfunDataObs = sigrangeηBarMinfunDataObs[[-1, 1]];

In[416]:= (*Experimental uncertainties and the

Significance of the smallest alignment angle ηmin .*)

(*sigηBarMinfunDataObs=signimin[ηBarMinfunDataObs];*)

sigηBarMinfunDataObs;

sigrangeηBarMinfunDataObsU = Sort[Table[

{signiMIN0[ηBarMinfunDataObs + γ1 σηBarminUFit, η0min, σmin], γ1}, {γ1, -1, 1}] ];

sigSmallηBarMinfunDataObsU = sigrangeηBarMinfunDataObsU[[1, 1]];

sigBigηBarMinfunDataObsU = sigrangeηBarMinfunDataObsU[[-1, 1]];

In[420]:= (*Significance of the largest avoidance angle ηmax .*)

sigηBarMaxfunDataObs = signimax[ηBarMaxfunDataObs];

sigrangeηBarMaxfunDataObs =

Sort[Partition[Flatten[Table[{signiMAX0[ηBarMaxfunDataObs, η0max + γ1 dη0max,

σmax + γ2 dσmax], γ1, γ2}, {γ1, -1, 1}, {γ2, -1, 1}] ], 3 ] ];

{sigrangeηBarMaxfunDataObs[[1]], sigrangeηBarMaxfunDataObs[[-1]]};

sigSmallηBarMaxfunDataObs = sigrangeηBarMaxfunDataObs[[1, 1]];

sigBigηBarMaxfunDataObs = sigrangeηBarMaxfunDataObs[[-1, 1]];

In[425]:= (*Experimental uncertainties and the

Significance of the smallest alignment angle ηmax .*)

(*sigηBarMaxfunDataObs=signimax[ηBarMaxfunDataObs];*)

sigηBarMaxfunDataObs;

sigrangeηBarMaxfunDataObsU = Sort[Table[

{signiMAX0[ηBarMaxfunDataObs + γ1 σηBarmaxFitU, η0max, σmax], γ1}, {γ1, -1, 1}] ];

sigSmallηBarMaxfunDataObsU = sigrangeηBarMaxfunDataObsU[[1, 1]];

sigBigηBarMaxfunDataObsU = sigrangeηBarMaxfunDataObsU[[-1, 1]];

In[429]:= (*The names "gridjηBarMinRan", "jηBarMax" are, or perhaps were,

similar to quantities below, so save the current values labeled by "Best".*)

(* jηBar entries: 1. grid point # , 2. alignment angle .*)

{jηBarMinBest, jηBarMaxBest} = {ηBarMinfunDataObs, ηBarMaxfunDataObs} ;
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In[430]:= Print[""]

Print"The smallest alignment angle is ηmin = ", ηBarMinfunDataObs * 360.  2. π,

"° , which has a significance of sig. = ", sigηBarMinfunDataObs,

", plus/minus = + ", sigBigηBarMinfunDataObs - sigηBarMinfunDataObs, " and - ",

sigηBarMinfunDataObs - sigSmallηBarMinfunDataObs, " , giving a range from sig. = ",

sigSmallηBarMinfunDataObs, " to ", sigBigηBarMinfunDataObs, " ."

Print"The largest avoidance angle is ηmax = ", ηBarMaxfunDataObs * 360.  2. π,

"° , which has a significance of sig. = ", sigηBarMaxfunDataObs,

", plus/minus = + ", sigBigηBarMaxfunDataObs - sigηBarMaxfunDataObs, " and - ",

sigηBarMaxfunDataObs - sigSmallηBarMaxfunDataObs, " , giving a range from sig. = ",

sigSmallηBarMaxfunDataObs, " to ", sigBigηBarMaxfunDataObs, " ."

Print["These uncertainties are due to the standard

errors for the parameters in the fit to the random runs."]

The smallest alignment angle is ηmin = 21.094

° , which has a significance of sig. = 0.000014494, plus/minus = + 3.76555×10-6

and - 3.07579×10-6 , giving a range from sig. = 0.0000114182 to 0.0000182596 .

The largest avoidance angle is ηmax = 66.6604

° , which has a significance of sig. = 0.000289222, plus/minus = + 0.0000563087

and - 0.0000486375 , giving a range from sig. = 0.000240585 to 0.000345531 .

These uncertainties are due to the standard

errors for the parameters in the fit to the random runs.

In[434]:= Print[""]

Print"The smallest alignment angle is ηmin = ", ηBarMinfunDataObs * 360.  2. π,

"° , which has a significance of sig. = ", sigηBarMinfunDataObs,

", plus/minus = + ", sigBigηBarMinfunDataObsU - sigηBarMinfunDataObs,

" and - ", sigηBarMinfunDataObs - sigSmallηBarMinfunDataObsU,

" , giving a range from sig. = ", sigSmallηBarMinfunDataObsU,

" to ", sigBigηBarMinfunDataObsU, " . (Very Significant: < 1%.)"

Print"The largest avoidance angle is ηmax = ", ηBarMaxfunDataObs * 360.  2. π,

"° , which has a significance of sig. = ", sigηBarMaxfunDataObs,

", plus/minus = + ", sigBigηBarMaxfunDataObsU - sigηBarMaxfunDataObs,

" and - ", sigηBarMaxfunDataObs - sigSmallηBarMaxfunDataObsU,

" , giving a range from sig. = ", sigSmallηBarMaxfunDataObsU,

" to ", sigBigηBarMaxfunDataObsU, " . (Very Significant: < 1%.)"

Print["These uncertainties are due to the experimental

uncertainty in the observed polarization directions."]

The smallest alignment angle is ηmin = 21.094° , which has a significance of sig. =

0.000014494, plus/minus = + 0.0000304195 and - 0.0000101141

, giving a range from sig. = 4.37992×10-6 to 0.0000449135 . (Very Significant: < 1%.)

The largest avoidance angle is ηmax = 66.6604° , which has a significance of sig. =

0.000289222, plus/minus = + 0.000538206 and - 0.000195894

, giving a range from sig. = 0.0000933282 to 0.000827428 . (Very Significant: < 1%.)

These uncertainties are due to the

experimental uncertainty in the observed polarization directions.
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In[438]:= Print"More Statistics of the Alignment Function η(H) :"

Print[" "]

Print"The min alignment angle, ηmin = ", ηBarMinfunDataObs * 360.  2. π,

"°, is Δη = ", η0min - ηBarMinfunDataObs * 360.  2. π,

"° below the most likely value, ", η0min * 360.  2. π, "°, for random runs."

Print"Since the half-width σ is ", σmin * 360.  2. π,

"°, the difference, Δη = ", η0min - ηBarMinfunDataObs * 360.  2. π,

"° makes ηmin separated from the most likely random run value by ",

η0min - ηBarMinfunDataObs  σmin, "σs."

Print"Thus, the smallest alignment angle ηmin is " , η0min - ηBarMinfunDataObs  σmin,

"σs below the most likely random run value. (4σs is a very high level of confidence.)"

More Statistics of the Alignment Function η(H) :

The min alignment angle, ηmin = 21.094°, is Δη =

13.8287° below the most likely value, 34.9226°, for random runs.

Since the half-width σ is 3.27204°, the difference, Δη = 13.8287

° makes ηmin separated from the most likely random run value by 4.22631σs.

Thus, the smallest alignment angle ηmin is 4.22631

σs below the most likely random run value. (4σs is a very high level of confidence.)

In[443]:= Print"The max avoidance angle, ηmax = ", ηBarMaxfunDataObs * 360.  2. π,

"°, is Δη = ", -η0max - ηBarMaxfunDataObs * 360.  2. π,

"° above the most likely value, ", η0max * 360.  2. π, "°, for random runs."

Print"Since the half-width σ is ", σmax * 360.  2. π,

"°, the difference Δη = ", -η0max - ηBarMaxfunDataObs * 360.  2. π,

"° makes ηmax separated from the most likely random run value by ",

-η0max - ηBarMaxfunDataObs  σmax, "σs."

Print"Thus, the smallest avoidance angle ηmax is " , -η0max - ηBarMaxfunDataObs  σmax,

"σs above the most likely random run value. (3.5σs is a high level of confidence.)"

The max avoidance angle, ηmax = 66.6604°, is Δη =

11.4602° above the most likely value, 55.2002°, for random runs.

Since the half-width σ is 3.27901°, the difference Δη = 11.4602

° makes ηmax separated from the most likely random run value by 3.49502σs.

Thus, the smallest avoidance angle ηmax is 3.49502

σs above the most likely random run value. (3.5σs is a high level of confidence.)

In[446]:= Print["The computer time expended so far is ", TimeUsed[], " seconds."]

The computer time expended so far is 77.97 seconds.
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