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Abstract

This paper explores populating adjacency matrices with connected cycles whose final
outputs represent the coefficients of rational generating functions (RGFs). An RGF
takes the form of: p(x)/q(x) + r(x). The denominator, q(x), takes the form of: Con-
stant ·(1−c1x

x1)(1−c2x
x2)...(1−cnx

xn) where the ci are complex numbers and where
factors can possibly have multiplicities greater than one. It is well known that a closed
form solution exists for computing coefficients of RGFs. Also, one can write the linear
recurrence relation associated with every RGF into a matrix format. Using matrices,
one can compute coefficients for an RGF, such as Molien series for finite groups, in
logarithmic time.

What has not yet been shown (or is not yet commonly discussed) is that one can
conceptualize an RGF as a system of connected cycles within an overarching adjacency
matrix. For example, a single cycle of length two would have vertex A connect to
vertex B which itself connects back to vertex A with a directed arrow of weight ci.
In this conceptualization, each coefficient of an RGF can be reproduced by taking a
suitable adjacency matrix to an integer power. Nothing essential is lost by taking this
perspective. Due to the self-similar nature of the matrix, we devise an algorithm that
can calculate coefficients of RGFs in constant time. Using memoization, a technique
for caching intermediate results, calculating coefficients of RGFs can also be done in
logarithmic time.

One observation is that, depending on the situation (i.e. what q(x) is), there may
be a computational benefit to taking the cyclical perspective. For example, for certain
q(x), the traditional matrix has cells containing positive and negative values whereas
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the cyclical approach has cells containing only positive values. The computational ben-
efit is probably irrelevant for computers; however, it may be important for restrictive
systems, such as biological systems / neural networks that may have a tight operating
envelope.

We make a final observation that each cyclical matrix representation can be thought
of as a graph which is an epsilon away from being strongly connected. Studying the
behavior of these matrices may yield insight into the behavior of a broader class of
function. In essence, the study of sequences modeled by RGFs can be converted to
the study of connected cyclical graphs that model the RGFs or vice versa.

1 Introduction

We will demonstrate how to create adjacency matrices composed of connected cycles
whose output corresponds to the sequence produced by a general class of rational
generating functions.[16] Let R(x) = P (x)/q(x) where P (x) and q(x) are polynomials
in x and where the coefficients of R(x) are complex numbers. If the numerator P (x) is
of equal or higher degree than the denominator q(x), we can use polynomial division
to rewrite it as:

R(x) = p(x)/q(x) + r(x) (1)

Here p(x) has degree less than q(x) and r(x) is the remainder. Let p(x), q(x), and
r(x) be of the following form:

p(x) = p0 + p1x + p2x
2 + . . . + pnx

n (2)

q(x) = (1− c1x
x1) . . . (1− cix

xi) . . . (1− cjx
xj ) . . . (1− cnx

xn) (3)

r(x) = r0 + r1x + r2x
2 + . . . + rnx

n (4)

In terms of a generating function, r(x) has a one time impact insofar as it modifies
the coefficients in front of the xk terms by adding rk to the otherwise infinite sequence
produced by p(x)/q(x). We thus focus the analysis on finding an algorithm to pop-
ulate a matrix whose powers generate the infinite sequence produced by expanding
p(x)/q(x).

For the purpose of the following discussion, we assume q(x) is of a form where the
powers xi and xj can be, but do not have to be, equal. In other words, terms in the
expansion can have multiplicities greater than one. Also, we assume every ci is a real or
a complex number. Without loss of generality, let x1 ≤ x2 ≤ x3. . . ≤ xn. To produce
the sequence corresponding to p(x)/q(x), we expand p(x) as in 2. Once we have the
underlying infinite sequence produced by the denominator, we can shift it by xi and
multiply the result by pi. We can do this for every xi and pi in seriatim then sum
the total. Thus to find p(x)/q(x) we really only need the infinite sequence produced
by the denominator because any amount of shifting and multiplying by constants is
straightforward.

We touch upon a closed form solution to generating coefficients of an RGF. We
also briefly describe a typical approach to casting an RGF linear recurrence relation
in the context of matrices. However, we will attempt a different approach involving
using an adjacency matrix to represent cyclical graphs that are connected to each
other. Once we have found an adjacency matrix representation, we will find a way to
encode matrix multiplication at a faster than (side length)3 runtime via updating a
graph that is almost strongly connected.[13][24] Let Kp, Kq, and Kr be the degrees
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of p(x), q(x), and r(x) respectively. The algorithm finds the coefficients in front of
xN in a runtime of Ω(KpKqN + Kr). We will also make use of a technique from
dynamic programming, memoization, to find coefficients in front of xN in a runtime
of Ω((KpK

3
q ) log2(N) + Kr).[19] Due to the nature of the encoding, one can transfer

from the matrix to the graph form without loss of information but one cannot do the
reverse. Depending on Kp, Kq and N one method may be superior to the other (or
an entirely different method from the literature, such as an exact solution, may be
preferable.)

This paper contains examples of matrices that represent various RGFs, including a
representation for integer partition numbers restricted to four parts. Also, an example
of memoization for the alternating group A4 is included.

The paper ends with several open questions about using the adjacency matrix
representation to study the underlying RGFs.

2 Expressing an Arbitrary Polynomial in the form of 3

The Fundamental Theorem of Algebra states that every non-zero, single-variable, de-
gree n polynomial anx

n + an−1x
n−1 + ... + a0 with complex coefficients has, counted

with multiplicity, exactly n complex roots.[15] We will show this polynomial can be
expressed in the form of 3.

Let the roots of the arbitrary polynomial be t1, t2, . . . tn. Then for the factor
(1 − cix

xi) of q(x) we can choose ci = 1/ti and the power xi = 1. When x = ti we
have (1 − cix

xi) = 0 and thus q(x) also equals 0 and thus ti is a root of q(x). We
can multiply q(x) by the constant a0 to bring the constant term of q(x), when written
in its expanded form rather than its factored form, into alignment with the constant
term of the arbitrary polynomial. This means a0q(x) = anx

n + an−1x
n−1 + · · ·+ a0.

Finally, the factor of a0 in the expression a0q(x) can be moved into the numerator of 1
as p(x)/a0 where the form of p(x) does not matter. The important thing is that q(x)
has the form of 3, and after this processing it does. Once q(x) has the form of (3),
we can proceed with constructing a matrix representation for finding the coefficient in
front of xN in 1.

Incidentally, there is no theoretical reason why ci should be restricted to an element
of the complex numbers. The ci could be a function of x, such as ci(x) = ex. However,
the technique discussed in this paper does not apply in a straightforward way to such
ci(x), in particular if the ci(x) have an infinite Taylor series expansion. In case ci(x)
has a finite Taylor series, then ci(x) is akin to a finite polynomial of degree N , in
which case (1 − cix

xi) can be re-factored in such a way that the form of q(x) is still
preserved. However, unless an infinite Taylor series can be factored like in 3, then the
algorithm described in this paper will not immediately apply. The contribution to the
coefficient in front of xN in equation 1 would need to be found by a standard approach.
Therefore, theoretically ci could be a function of x, but in practice it appears best to
restrict every ci to a complex number.

3 Exact / Closed Form Solution for Rational Generating
Functions

There is an explicit formula for finding the coefficients of RGFs. Pantone, in [11],
describes a procedure for finding an exact solution. The first step is that partial
fraction decomposition can be applied to q(x).[21] We can then obtain a form for
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q(x) that looks like: q(x) = d(x) + b1(x–a1)(−r1) + · · · + bn(x–an)(−rn) where the
ai and bi are complex numbers and the ri are positive integers. We can then apply
Newton’s Generalized Binomial Theorem to each (x–ai)

(−ri).[14] We then sum the
results together to obtain the final explicit result for the coefficient of xN of q(x).

Though q(x) can be factored over the complex numbers into its most basic parts,
many times it is easier to think of q(x) in the form of 3 where the xi are positive
integers. For example, rather than break (1 − x4) into (1 − x)(1 + x)(1 − ix)(1 + ix)
and then apply partial fraction decomposition, we can leave it unfactored. As will
soon be described, we can then build a matrix representing q(x) that often has large
swaths of zeros interspersed with occasional ones and the ci.

The matrix representation brings a change in perspective that may be useful in
its own right. Additionally, it is possible that certain cases occur in which computing
with the matrix form may be quicker than obtaining and then using the closed form
approach.

4 Traditional Method to use an RGF Linear Recurrence
Relation to Populate a Matrix

The typical method to produce a matrix that represents an RGF is to make use of
the expanded form of q(x) by writing a linear recurrence relationship.[3] We write
q(x) as 1 + q1x + q2x

2 + · · · + qnx
n. We then rewrite it in the form of a recurrence

an = f(an−1, ..., a0) by noticing that an = −(q1an−1 + q2an−2 + ... + qna0). This can
be converted into a matrix. Note that the ”1’s” below the main diagonal transition
the position occupied by an−i to that occupied by an−i−1.

−q1 −q2 . . . −qn
1 0 . . . 0
...

...
. . .

...
0 0 . . . 0

 ·

an−1

an−2

...
a0

 =


an

an−1

...
a1

 (5)

Depending on the RGF, the typical method based on a linear recurrence may
involve cells with negative numbers whereas the alternative method based on connected
cycles may contain only positive entries. (The derivation of the second method will be
discussed in detail later in this paper. Just as the traditional method follows a simple
procedure, so too does the alternative method.) An example of an RGF where this
situation occurs is q(x) = (1− x)(1− 2x2) = 1− x− 2x2 + 2x3 which corresponds to
a recurrence of an = an−1 + 2an−2 − 2an−3. The corresponding typical matrix is on
the left hand side whereas the alternative cycle matrix is on the right hand side. After
taking the matrix to the proper power, the uppermost cell of the resultant column
vector contains the value of the coefficient of the RGF.1 2 −2

1 0 0
0 1 0

N

·

1
0
0

 versus

1 1 0
0 0 1
0 2 0

N+1

·

0
1
0

.

While mathematically both matrices produce the same output (in the uppermost
cell of the resultant column vector), the matrix on the left contains a negative value.
It is possible that certain use cases may arise when having a matrix with strictly
positive numbers is preferable. For example, it is conceivable that physical constraints
in biological systems, such as perhaps a neural network, would preferentially select for
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a relationship that involves strictly positive weights. 1 For the remainder of the paper,
we focus primarily on describing the adjacency matrix basod on connected cycles.

5 A New Convention for Labeling Cycles and Vertices within
an Adjacency Matrix that Represents an RGF

We will soon exhibit an adjacency matrix that represents the sequence produced by
an RGF. This matrix, when interpreted as a graph, is composed of multiple connected
cycles and each cycle is itself composed of sequentially connected vertices. It will be
helpful to be able to uniquely identify a specific cycle, to pinpoint a vertex within that
particular cycle, and to identify the connections that vertex has with other vertices.
We develop a new labeling convention which fulfills the above requirements without
needing to make recourse to complicated subscripts which would be needed if we were
using the traditional aij notation that refers to the ith row and jth column within a
matrix.

We label the horizontal and vertical axes of matrix M as in figure 1: Matrix
Labeling Convention. In order to not confuse the traditional (i,j) notation with the
new convention, we insert an X in front of the ”i” to signify we are referring to a cycle
per the new notation. We thus read “(Xi, j)” as meaning the unique row (or column)
whose primary label is Xi and whose secondary label is j. The i refers to the ith cycle
and the j refers to the jth vertex within that cycle. The ith cycle does not necessarily
have a length of i. Rather, the ith cycle has a length of Yi. We begin counting from
vertex 0 up through vertex Yi − 1. Every cycle has a vertex labeled 0 and the length
is at least 1.

Consider the unique value of ci near the upper middle of figure 1. If we scroll our
eyes verticaly upward from the cell in which ci resides, we find the label ”Xi Yi − 1”
i.e. (Xi, Yi − 1). This translates to ”cycle number i vertex number Yi − 1.” If instead
we scroll our eyes horizontally leftward from the cell in which ci resides, we find the
label ”Xi 0” i.e. (Xi, 0). This translates to ”cycle number i vertex 0” where ”vertex
0” means the formative vertex that ”begins” cycle i. Based on the interpretation of
an adjacentry matrix as a graph, we can interpret this value of ci located at this
specific place of the overarching matrix, as meaning, ”Within the ith cycle, whose
length happens to be Yi, the ultimate (Yi-1) vertex has a directed arrow of weight ci
toward the formative (0th) vertex.”

As an additional example, consider figure 2. There is a single entry near the middle
of the matrix whose value is ”3.” Looking upward, we find the label ”3 1” i.e. (3,1).
Looking leftward, we find the label ”3 0” i.e. (3, 0). The interpretation of this cell is
thus, ”The vertex labeled 1 within the third cycle has a directed arrow of weight ”3”
toward the vertex labeled 0 within that selfsame cycle.” The column under the header
”3 0” i.e. (3,0) has three separate 1’s. The interpretation of this column is thus, ”The
vertex labeled 0 within the third cycle has directed arrows each of weight ”1” toward
a) the single vertex labeled 0 in the first cycle, b) the single vertex labled 0 in the
second cycle, c) the vertex labeled 1 within the third cycle.”

To refer to a specific cell in a matrix, we can substitute the new notation for the
aij notation. We can triangulate a position in the matrix by finding the intersection
of the horizontal label (Xi, j) and the vertical label (Xk, l) We can refer to the cell

1 The author is not a neurobiologist and thus this in pure speculation, but it illustrates the
point that some real life situations might occur for which one representation may be superior
to the other even though the output of the system is the same.
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corresponding to the intersection of ”row” (Xi, j) and ”column” (Xk, l) without am-
biguity. For example, in figure 2, we can identify the value of ”2” in the sixth row and
fifith column, traditionally denoted as the value of cell i = 6, j = 5 in the aij notation,
with the alternative notation as the cell corresponding to row (4, 1) and column (4,
0). We sometimes write this notation as row 4 subsection 1 and column 4 subsection
0.

6 Matrix Form for Rational Generating Functions

In this section we construct a matrix that represents the sequence produced by rational
generating functions. To most easily understand the construction, it is important to
arrange the cycles from smallest to largest such that the xi in 3 satisfy x1 ≤ x2 ≤
x3. . . ≤ xn.2 3 We can translate between the terminology of figure 1 and the expansion
of q(x) by letting the length of cycle i, which is Yi, equal xi. Note the uppercase Y’s
correspond to the lower case x’s.

We can interpret the adjacency matrix in terms of cycles because if we view the
adjacency matrix information as a graph then vertex / node (Xi, 0) links to node
(Xi, 1), and (Xi, 1) links to (Xi, 2), etc. In general, node (Xi, k) links to node (Xi, (k+
1) mod Yi). Consequently, (Xi, Yi − 1) links back to (Xi, 0) which had initiated the
cycle. The cyclical feature being built into the matrix is reminiscent of the cyclical
nature of the sequence produced by an RGF of the form (1 − cix

xi)−1 with ci = 1.
Letting Yi = xi, we have the sequence produced by this RGF as: 1, xi − 1 zeros, 1,
xi − 1 zeros . . . .

For cycles of length greater than 1, if i < n and there is a constant ci associated
with cycle i, we place the ci into the cell corresponding with row Xi subsection 0 and
column Xi subsection Yi − 1. If there are multiple cycles multiplying each other, we
place a “1” in the cell corresponding to row Xi subsection 1 column Xi + 1 subsection
0. However, if i = n, we place cn in the cell corresponding to row Xn subsection 1 and
column Xn subsection 0.

For cycles of length 1, we also have two cases. If the cycle of length 1 corresponds
to row (Xi, 0) and column (Xi, 0) and if i < n, then the cell corresponding to row
(Xi, 0) has a ci and the entire column above is also populated with ci’s. In other
words, every cell in column Xi subsection 0 corresponding to row X1 subsection 0
through row Xi subsection 0 has a value of ci. Otherwise, if i = n, then only the cell
corresponding to row (Xi, 0) has a ci and all the cells above it in column (Xi, 0) have
a value of 1.

To replicate the sequence produced by q(x), we require a method to choose the
cell of the matrix that corresponds to tabulating the sequence of coefficients of q(x).
Let v1 be a row vector of length equal to the side length of the square matrix M with
a value of 1 in cell i = 1, j =1 and zeros elsewhere. Let v2 be the Read column vector
which has 0’s everywhere except for a single 1 corresponding to row Xn subsection 0.
Call MN · v2 the N th Result vector. The coefficient of xN when q(x) is expanded will
be generated in the uppermost cell of the N th Result vector. In other words, we have:

coefficient of xN = v1 ·MN · v2 (6)

2 Technically, because q(x) factors over the complex numbers, q(x) can be broken into a
series of cycles of length 1. Nonetheless, it is helpful to think of cycles of length xi, which is
the convention adopted in this paper.

3 The inequalities are not strictly necessary because one can use any other adjacency matrix
that preserves the connections.
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Fig. 2: Matrix for x2((1 − x)(1 − 2x)(1 − 3x2)(1 − 2x3))−1. Light gray refers to
the cyclical components. Gray refers to the “creators” of smaller cycles.

The process described in 6 is equivalent to picking out the cell in the matrix cor-
responding to row (1, 0) and column (Xn, 0). We call this cell the tabulator of the
sequence. The original sequence q(x) is produced when k, the time delay, equals 0. A
time delay of k is equivalent to xk · q(x). A time delay of 0 < k < n corresponds to
picking a column to the right of column (Xn, 0) by changing the Read column vector
so that the 1 is in the row corresponding to (Xn, n − k) and the rest of the vector is
populated with zeros.

Figure 2 illustrates several of the features discussed in the preceding paragraphs.
The sequence begins as: 0, 0, 1, 3, 10, 26, 67, 155, 362, . . . . Note that the two
initial zeros correspond to the x2 term in the RGF and they correspond to the Read
vector picking out the sixth column (as opposed to the fifth column) in the matrix
representation.

We now explore how to create the initial cycle corresponding to (1− c1x
x1)−1. If

x1 = 1, then the matrix corresponding to (1− c1x)−1 is a single c1 along the diagonal
of the matrix. The matrix M =

[
c1
]

to the N th power is cN1 . We have the special

case that v1 = v2 =
[
1
]

and hence v1 ·MN · v2 = cN1 , which is the sequence we want
produced. Stepping forward 1 step at a time produces a sequence of 1, c1, c

2
1, . . . which

is the sequence of coefficients in the expansion of (1− c1x)−1.
On the other hand, if x1 > 1, then the matrix corresponds to a cycle of size 2

or more. This can be arranged by introducing a 0 in cell i=1, j=1 then building a
cycle directly to the right and down. An additional 1 in cell (i=1, j=2) acts as the
tabulator, which is the creator of the sequence that the matrix produces. There are
other ways to build a cyclical matrix and to tabulate the produced sequence but this
method aligns nicely with the proof that will follow. After the proof, we will describe
a slightly modified version of the matrix that is equivalent and nicer to use but slightly
harder to understand.

For example, the matrix corresponding to the generating function (1 − 2x2)−1 is
shown in Figure 3. The read vector begins with a 1 corresponding horizontally to
row (2,0). The sequence produced by reading the uppermost cell of the Result vector
under consecutive matrix powers is 1,0,2,0,4,0,8. . . which is as expected.

We will soon prove the construction outlined above populates a matrix whose
powers, dotted with the read vector, produce a sequence corresponding to a generic
q(x) in the uppermost cell of the result vector. As an illustration, Figure 4 shows the
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Fig. 3: Matrix for (1 − 2x2)−1. Light gray refers to the cyclical components.
Gray refers to the “creators” of smaller cycles.

Fig. 4: Matrix for ((1 − 2x2)(1 − 2x3))−1 Version A. Light gray refers to the
cyclical components. Gray refers to the “creators” of smaller cycles.

matrix for (1 + 2x2/(1− 2x2)) · 1/(1− 2x3) = ((1− 2x2)(1− 2x3))−1 whose sequence4

is 1, 0, 2, 2, 4, 4, 12, 8, 24, 24, 48, 48 . . . . Note the Read vector has a 1 corresponding
horizontally to row (3,0) i.e. it picks out the fourth column. If we wanted a time delay
of 1 for the entire sequence, (that is, the generating function times x) then we would
have picked the sixth column, which is labeled (3,2).

7 Proving the Adjacency Matrix Form for Rational
Generating Functions

We now use strong induction to prove that Figure 1 and the method by which it is
populated corresponds to finding the sequence produced by q(x).

Base Case: Stepping forward by one step is equivalent to multiplying by M. We
have already demonstrated how to create any single cycle with a time delay less than
or equal to the cycle length. We will now show how to multiply cycles together in
matrix form. Let us assume that for 0 < i < n we have 7 and for i = n we have 8. To
avoid double subscripts, read Mxi as Mxi for the remainder of this paper.

Mxi = ci((1− c1x
x1)(1− c2x

x2)...(1− cix
xi))−1 (7)

Mxn = ((1− c1x
x1)(1− c2x

x2)...(1− cix
xi))−1 (8)

4 If we had chosen ((1 − x2)(1 − x3))−1 we would have had OEIS sequence A103221.[9]
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We will use a suitable choice of 0’s, 1’s, and cn+1’s to populate the matrix correspond-
ing to Mxn+1 according to the construction outlined in Figure 1. We will show the
construction will produce the sequence corresponding to Mxn · (1− cn+1x

xn+1)−1.
Inductive Step: For matrix Mxn+1 extend and then label the horizontal and ver-

tical axis as (Xn+1, 0), (Xn+1, 1), . . . (Xn+1, Yn+1 − 1). This labeling is the same as
that used in Figure 1 and practically the same as that used in Figures 2 through 6.
Next, populate 1’s down the column labeled (Xn+1, 0) in every space corresponding
horizontally to the rows (Xi, 1) for 0 < i ≤ n. Note that a 1 is also entered at the top
of the (Xn+1, 0) column corresponding horizontally to the row labeled (X1,0). This
cell acts as the new tabulator. These 1’s correspond to multiplying the sub matrices
Mxi by 1 and adding them together. Note that each sub matrix has a time delay of
xi − 1 by virtue of the positioning of the 1’s down the new column. Additionally, due
to the creation of the n+1st cycle, each previous cycle will be delayed by an additional
1 step. Therefore, the composite time delay for each sub matrix will be xi. By time
delay, we mean the matrix cells affected by the Mxi will not impact the tabulator for
a period of xi steps, after which point their impact will appear to pop into realization
in the tabulator cell. The impact of the Mxi will first be felt in the tabulator when
N = xi + 1.

We have a 1 (from the top of the (Xn+1, 0) column that is realized now, plus all
Mxi have a composite time delay of xi. To find out what Mxn+1 is, we observe the
equivalence:

Mxn+1 = 1+xx1Mx1+xx2Mx2+ · · ·+xxn−1Mxn−1+cnx
xnMxn+cn+1x

xn+1Mxn+1

(9)
The reason Mxn+1 is equivalent to itself delayed xn+1 steps times cn+1 (plus the
various time delayed Mxk) is because it is a known cycle of length xn+1, which con-
sequently recapitulates itself after xn+1 steps. Also, based on the position of cn+1 in
cycle n + 1, the recapitulation occurs with a factor of cn+1. The xxi in front of each
Mxi come from the time delay discussion in the previous paragraph. In other words,
the left hand side of the equation refers to the n + 1st cycle beginning immediately
and the right hand side refers to the subsequences produced by column Xn+1 with
their appropriate time delays plus a single delayed revolution of cycle n+ 1 which has
a factor of cn+1 in front of it.

The cn in front of Mxn arises because the cn switches positions in the matrix when
the next cycle is appended as can be seen in Figure 1 by contrasting the positioning of
ci with cn within their respective cycles. The meaning of the switching of the position
of cn is that we must arrange the matrix so that cn impacts the tabulator on the
N + 1st step. This is in line with the sequence produced by (1 − cnx

n)−1 beginning
as: 1, n−1 zeros, cn, . . . which shows that the impact of a constant cn associated with
a cycle of length n is not realized until N = n + 1. Consequently, if Xn is a cycle of
length two or more, the cn switches places from corresponding to row (Xn, 1) column
(Xn, 0) with the value of 1 sitting in row (Xn, 0) column (Xn, Yn− 1). In case Xn is a
cycle of length 1, once the n+ 1st cycle is appended, then the entire column above the
cell corresponding to row (Xn, 0) column (Xn, 0), including that cell itself, gets filled
with a value of cn.

Rearranging the terms in 9 and then factoring out Mxn+1 from the left side leads
to the equality:

Mxn+1(1−cn+1x
xn+1) = 1+xx1Mx1+xx2Mx2+· · ·+xxn−1Mxn−1+cnx

xnMxn (10)

Now the right hand side telescopes after we used strong induction to replace each
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Fig. 5: Matrix for ((1 − 2x2)(1 − 2x3))−1 Version B. Light gray refers to the
cyclical components. Gray refers to the “creators” of smaller cycles.

Mxi with ci((1 − c1x
x1)(1 − c2x

x2)...(1 − cix
xi))−1 as described in 7. For example,

1 + xx1Mx1 = 1 + c1x
x1/(1 − c1x

x1) = (1 − c1x
x1)−1. Then adding the next term

allows us to factor out the (1− c1x
x1)−1 from ((1− c1x

x1)−1 + xx2Mx2) to get (1−
c1x

x1)−1(1+c2x
x2/(1−c2x

x2)) which equals (1−c1x
x1)−1 ·1/(1−c2x

x2) which equals
((1− c1x

x1)(1− c2x
x2))−1.

For the Xth
i term, we have: ((1− c1x

x1) . . . (1− ci−1x
xi−1))−1 + cix

xiMxi which
translates to:

((1−c1xx1) . . . (1−ci−1x
xi−1))−1(1+cix

xi(1−cixxi)−1) = ((1−c1xx1) . . . (1−cixxi))−1

(11)
We now recall cnx

xnMxn, which is cn times (8), has the same form as 7. Thus the
sum can continue to telescope through term Mxn. Eventually we have Mxn+1(1 −
cn+1x

xn+1) = ((1−c1xx1)(1−c2xx2) . . . (1−cnxxn))−1. Then we move (1−cn+1x
xn+1)

to the right hand side and we have:

Mxn+1 = ((1− c1x
x1)(1− c2x

x2) . . . (1− cn+1x
xn+1))−1 (12)

Finally, we note that the position of cn+1 in the matrix is under column Xn+1 subsec-
tion 0, which was the “spot” previously held by cn on the previous inductive step and
that 12 has the form of 8. This completes the induction.

We have thus proven that the constructed matrix as described in Figure 1 forms
the sequence corresponding to q(x)−1 in the new tabulator cell corresponding to row
(X1, 0) and column (Xn+1, 0).

8 Alternative Matrix Form for Rational Generating Functions

Let us investigate a slightly condensed version of a matrix whose least cycle is greater
than 1. We can modify the algorithm for populating the matrix by removing the very
first 1 in cell (1,2) shifting all other 1’s in the first row downward by 1 cell, and then
removing the first column and first row. The Read vector gets modified by removing
the uppermost cell. Everything else remains the same. The matrix whose output
corresponds to ((1 − 2x2)(1 − 2x3))−1 is shown as Figure 5 Version B, which can be
contrasted with Figure 4, Version A.

The reason this modified version of the matrix works is because we have condensed
the first two terms (1+xx1Mx1) = (1+c1x

x1(1−c1xx1)−1) into one term (1−c1xx1)−1.
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Only the first two rows and first column (of zeros) changed which means all cycles,
their delays, and the corresponding matrix representations for Mx2, . . .Mxn are not
affected. The reason they are not affected is because we could have removed all the
rows and columns corresponding to Mx1 and this would just have removed Mx1,
leaving Mx2 as the new “first” cycle. Thus, the only impact of the aforementioned
modifications is on Mx1.

The first term, the +1 that was previously realized immediately in Figure 4 Version
A, no longer exists on its own. Instead, of a cycle of length 1 beginning immediately
and everything else time delayed, what is realized immediately in Figure 5 version B
is the entire first cycle, that is, Mx1. In the example for Version B, we can see the
value of 1 in cell i = 1, j = 3 corresponds horizontally to row 1 subsection 0, which
means the cycle of length 2 begins immediately. This corresponds to the generating
function 1/(1 − 2x2) and not to the time delayed expression that is found in Version
A, which was 1 + 2x2/(1− 2x2).

Incidentally, the generating function for Mx1 begins with a “1” and it is then
followed by a number of zeros equal to the cycle length X1 minus one, which in this
case is 2− 1 = 1. At that point, based on the fact that x1 ≤ xk for 1 < k the impact
of Mx2 through Mxn may begin to affect the tabulator.

9 Additional Information Contained in the Adjacency Matrix

It is worthwhile to note that, when using the matrix form to compute q(x)−1, one also
simultaneously computes the sequences produced by restricting q(x)−1 to the first k
terms. If we let q(x) be expressed as in 3, then q(x) restricted to the first k terms,
denoted qk(x), is of the form: (1− c1x

x1) . . . (1− ckx
xk ). The matrix used to produce

the sequence for q(x)−1 also contains cells that tabulate the sequence for either qk(x)−1

or for ckqk(x)−1. For all k less than n, the position of these tabulators correspond to
row one subsection zero and column Xk subsection zero.

One way to determine if there is a ck in front of qk(x)−1 or not is by inspection.
If the value in the tabulator position corresponding to qk(x) within M is a 1, then
we have the sequence for qk(x)−1. Otherwise, we have the sequence for ckqk(x)−1.
Equivalently, we can observe that for any qk, the largest cycle is of length Yk and the
number in the tabulator position for qk will be 1 if Yk > 1 and will be ck if Yk = 1 by
the very process of the matrix’s construction.

The reason we automatically know the tabulators for all the qk(x) is because the
construction of the matrix proceeded by appending cycles to an already functioning
square matrix. We could just as well have removed the final Yn rows and columns
and stopped our construction at cycle n-1, or removed more rows and columns and
stopped our construction at cycle k. The position of the tabulators will stay the same.

Another way to think about it is that the smaller cycles never produce larger
cycles. This is codified in the adjacency matrix construction because the cells below
each cyclical subsection are all zero. Thus the tabulators of the smaller cycles are
never impacted by anything happening within the longer cycles.

The only possible change in the construction of the matrix as it grows is the position
of ck. The impact of the positioning of ck is felt in the tabulator for qk(x) only as
potentially ck times the base sequence for qk(x). Therefore, the cell corresponding
to row X1 subsection zero and column Xk subsection zero tabulates either qk(x) or
ckqk(x).

Consequently, we have the useful result that any time a sequence for q(x)−1 is
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computed so too are the sequences for qk(x)−1.5

10 Node Form for Rational Generating Functions

The name, node form, is to emphasize that the adjacency matrix built using the
construction of Figure 1 has a self-similar quality when represented as a graph that
allows for an algorithm to perfrom the matrix multiplication at a faster than typical
speed. To connect the node form representation with the matrix representation, it is
sufficient to show the time update, cycles, and growth of the cycles behave identically.
These characteristics are found in Section 16 Python Code in the definition “choices.”
Note that several of the If / Else statements are designed to exclude function calls
outside of the display matrix’s range. These out-of-bound calls can be thought of as
adding zero and are thus unrelated to the underlying mathematics.

Time update: causality runs rightward from lower columns to higher columns and
upward from higher rows to lower rows. In particular, the column to the right is one
step forward in time compared to its neighbor on the left. Consequently, as we move
rightward from the position corresponding to xN , we read the coefficient in front of
xN+1 in the expansion of q(x)−1. Each step right mimics matrix multiplication.

Growth: The value of a cell depends on two components. The first, and easiest to
understand, is the input from its own cycle. As the matrix moves to the next state,
each cycle permutes its values by one step. In other words, the value stored in position
k of a cycle of length Yi moves to position (k + 1) mod Yi.

The second component involves the input from all larger cycles in the form of a
running sum. Importantly, the sum of the input to Xi+1 (cycle i+1), is also applied
to Xi (cycle i), which allows for a tabulation of a running sum going from the higher
(larger) cycles to the lower (smaller) cycles. This fact can be seen by conceptualizing
the higher cycles as “sequence generators” and then noting that each sequence of
larger length creates the sequences of smaller length. Equivalently, it can be seen
in the growth columns (these are the columns of ones corresponding to cycle i+1
subsection zero) in the matrix form. Each nonzero cell of the growth component of
these columns is identically 1, or identically ci+1. The growth component of cycle i+1
is identical to that of cycle i except for an additional 1 (or ci+1) located at row Xi

subsection 1 and column Xi+1 subsection 0. This can be seen most clearly in figure 6.
It is this similarity throughout the adjacency matrix that allows for the running sum
trick to work.6

Taking both the input from its own cycle and that of the input from the larger
cycles culminates with the final value for that cell. Notably, only the values of the
realized part of the sub sequences (those with zero time delay) impact the growth
component of the smaller cycles.

The above points are all codified in the definition for “choices.” These points can
also be implemented in a calculator file using If / Else statements and the Indirect
command.

5 Since ultimately the ordering of the cycles by their length from least to greatest was
unnecessary, we can arrange the cycles in any way we please and make use of the tabulators
for the rearranged qk(x)−1.

6 By shifting one’s perspective, one could just as well view the matrix representation as
smaller cycles producing larger cycles. There is symmetry in how one can interpret the
representation because xi does not necessarily need to be less than or equal to xi+1. Ultimately
the only thing that matters is that the connections in the adjacency matrix are preserved.
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Recall equation 1: R(x) = p(x)/q(x) + r(x). Let Kp equal the number of nonzero
coefficients of p(x),Kq equal the degree of q(x) when it is written as an expanded
polynomial, and Kr equal the number of nonzero coefficients in r(x). Our objective is
to find the coefficient in front of xN .

The running sum is what speeds the node form calculation from regular matrix
runtime of (side length)3 = K3

q computations per step to only 2Kq computations. Each
step forward in time involves Kq cycle computations and Kq running sum computations
for a total of 2Kq computations. (If we do not use the running sum trick and instead
sum all realized values per time step then we would have Kq cycle computations and
1 + 2 + 3 + · · ·+ Kq = Kq(Kq + 1)/2 additional sums.) There are N steps to the N th

coefficient, and possibly Kp shifts of the underlying sequence, and possibly a single
entry from r(x) per step, thus yielding a runtime for the node form of:7

Node Form Runtime = Ω(2KpKqN + Kr) (13)

11 Memoization of Matrix Powers Yields Logarithmic
Runtime on Sequences Produced by RGFs

Speeding up calculations of sequences produced by rational generating functions has
widespread application. For example, for a finite group, the Molien series corre-
sponding to any finite-dimensional representation is a rational function of the formal
variable.[20][2] Any situation where the denominator q(x) can be written in the form
of 3 where the powers xi and xj can be, but do not have to be, equal is thus amenable
to both the matrix and node form representation as described earlier in the paper.
Because we can add sequences to each other, we can also segregate the underlying
matrix and node form representations for multiple q(x)’s and then add their outputs
together.

Memoization is used to speed up computer programs by storing the results of
expensive function calls and returning the cached results when the same inputs reoccur.
However, if we can write the Read vector as a linear combination of eigenvectors of
M , then the eigenvector method will likely triumph. Nonetheless, there are cases
where the eigenvalues have multiplicities greater than one and thus the span of the
eigenvectors does not cover the full space in which the Read vectors live. For these
situations, memoization of matrix powers may prove useful.

Memoization allows for bootstrapping matrix powers as 2k where k is the number
of iterations that have occurred. The matrix powers produced by this method are
M1,M2,M4,M8 . . .MN with N = 2k and where the next result is the previous result
times itself. This method works for generic matrices. The worst case scenario to find
Mn for n < 2k occurs when every intermediate result must be used (i.e. multiplied
together). This happens at the cases of n = 2k − 1. Because straightforward matrix
multiplication8 of square matrices has a runtime of (L = side length)3, we find using
the memoization technique that approximately log2(n) computations each of which

7 The included Python program has a limitation in that there are extra zeros padding the
sequence output. The number of zeros may be as long as the length of all the cycles added
together, which is Kq . In such cases the runtime is Ω(2Kp(Kq(Kq +N)+Kr). It is likely that
an optimized version of the program could reach maximum efficiency at the runtime shown in
13.

8 There are matrix multiplication algorithms with better asymptomatics than (side length)3

but here we assume the unvarnished straightforward method.
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has L3 sub computations must be performed for a total computational complexity of
L3· log2(n) calculations.[18]

The runtime using the memoized matrix method becomes:

Matrix Form Runtime = Ω(KpK
3
q · log2N + Kr) (14)

We first analyze the component of the expression that is independent of N . To deter-
mine if r(x) contributes to the coefficient in front of N , it is sufficient to check if there
is a nonzero entry in r(x) in front of the position corresponding to xN . This takes one
unit of time, but is repeated Kr times.

Next, assume for the moment that the runtime of the memoized denominator q(x)
is known. Then to find p(x)/q(x) one needs to add the underlying sequence q(x)
multiple times after shifting appropriately. The number of times this must be done
corresponds exactly to the number of nonzero coefficients of p(x). In other words, we
must find q(x) in Kp places. This takes Kp units of time multiplied by however long
it takes to find q(x).

Finally, let us examine the contribution of q(x) to the runtime. The side length of
the matrix is the sum of the powers of the polynomials composing q(x). For example,
with q(x) = (1 − 2x2)(1 − 2x3) as in Figure 5, the side length of the matrix is 2+3
= 5. Another way of expressing this is by finding the degree of the polynomial q(x)
when written as an expansion in x, and this is Kq.

We can decompose every Read / seed vector as a linear combination of its basis
vectors, which are the traditional basis vectors

[
1, 0, ...0

]
,
[
0, 1, 0, ...0

]
, . . .

[
0, 0, ...0, 1

]
,

and where the total length of the vector is Kq. Each of these basis vectors produces a
new read vector under multiplication by the matrix. We can then rebuild the original
vector’s output by adding together the outputs of the original linear combination
of basis vectors. Each rebuilding cycle is equivalent to matrix multiplication. As
discussed before, the runtime for matrix multiplication is (side length)3 which in this
case results in K3

q computations.
Thus, the general procedure of memoization allows for K3

q calculations per time
step which allows for reproducing the sequence for q(x)−1. Putting this together to
find p(x)/q(x) + r(x) yields the result in 14.

At any point in time we can transfer from the matrix multiplication algorithm to
the node form algorithm. However, there is a loss of information when converting to
the node form algorithm because we lose track of what happens to every particular
basis vector and only see what happens to the ensemble. A specific use case of when
changing perspective might be useful would be when calculating outward to find the
coefficient in front of xN where N = 2n + 1 and where 0 < n. In this case, we perform
the matrix bootstrap method n times to get to MN−1 and then switch to the node
form algorithm for the final step. Depending on Kq, N, and how many coefficients we
want to find, and how close they are to each other, there may be situations where
the bootstrapping matrix method can be applied first and then a series of updates
interleaving the node form method can be applied.9

Memoization is not always the best option for finding the coefficient in front of
xN . For example, if Kq is large relative to N , then 13 is faster than 14. The best
situations for applying memoization is when N is very large relative to Kq.

9 It seems reasonable that if one needs to simultaneously calculate the restricted qk(x)−1

then the matrix method will be superior to the explicit solution for RGFs. However, it is not
resolved in this paper if the matrix or node form approaches may be faster in certain cases
than explicit calculation of multiple coefficients using the closed form solution for RGFs.



, 16

Fig. 6: Restricted Integer Partition, Matrix Form P4(N). Light gray refers to
the cyclical components. Gray refers to the “creators” of smaller cycles.

12 Matrix Representation Example for Restricted Integer
Partitions, Pk(N)

We will now associate the generating functions for restricted integer partitions, Pk(N),
to the matrix representation.[22] Pk(N) refers to partitions of N which have elements
less than or equal to k. For example, the partitions of 4 are: 4 =

{
1, 1, 1, 1

}
,
{

2, 1, 1
}

,{
3, 1
}

,
{

4
}

,
{

2, 2
}

. Restricting to k = 3 eliminates 4 from the enumeration, so P3(4)
= 4.

The matrix in Figure 6 is the initially seeded adjacency matrix needed to find
the integer partitions restricted to four parts, P4(N). The generating function is
q(x)−1 = ((1− x)(1− x2)(1− x3)(1− x4))−1. As each additional power of N is taken,
the corresponding result can be read by multiplying MN · v2 where v2 is the Read
vector and then reading the uppermost entry of the resultant column vector. It is
interesting to note that the side length of the matrix is k(k + 1)/2. In this case, with
k = 4, the side length is 10.

The adjacency matrix can be conceptualized as the top row on the traditional
x-axis producing nodes on the traditional y-axis. Thus, (2,0) produces a (1,0) and a
(2,1).

Per the general method for constructing a matrix, we can exhibit an M corre-
sponding to generating a sequence produced by ((1− x)(1− x2) . . . (1− xk))−1, which
is the RGF for Pk(N). Incidentally, this is equivalent to having a matrix M with
unlimited size (that is, letting lim k →∞) but whose read vector has only a single 1
corresponding to Xk = k subsection 0, and zeros elsewhere.

If we let q(x) equal (1−x)(1−x2)(1−x3) . . . then we can appreciate the connection
between Pk(N) and qk(x)−1 because, for all i < k, the matrix used to tabulate the
sequence for Pk(N) automatically includes the tabulators for Pi(N). These tabulators
correspond to row (1, 0) and columns (Xi, 0).

Hence, if we calculate PN (N) (that is, the N th partition number) using the matrix
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method we also derive all Pk(N) simultaneously for k < N .

13 Example of Memoization Using the Molien Series for the
Alternating Group A4

The technique of memoization will be applied to find the coefficient in front of x10

for the Molien series for the alternating group A4. This will show in practice how
the steps are applied. However, in principle, the technique would only be superior
to brute force expansion of the underlying rational function p(x)/q(x) when looking
for the N th coefficient when N is large. (In case only a single coefficient needs to be
calculated for a large N, applying the exact solution may be fastest.)

In order to preserve space in this paper and yet not jeopardize showing the tech-
nique in action, let us assume the outputs for the basis vectors are already known for
N = 1, 2, 4, and 8 steps forward.

We commence by taking the generating function for A4 as a given, which is (1 +
x6) · ((1−x)(1−x2)(1−x3)(1−x4))−1, and placing the q(x) portion into matrix form
such as in Figure 6. The read vector is a single 1 in front of the row labeled (4,0)
corresponding to the largest cycle, which is of length 4, and which creates the smaller
cycles.

The cycles that have been created by this initial basis vector after eight steps are
shown in Figure 7 under N = 8. The expression P(n) refers to the number of realized
values ”produced” at time n. We then pull the cached results corresponding to the
new set of basis vectors requiring analysis. The cached results correspond to 10 – 8 =
2 steps of production; they are located in Figure 8. The entries under N = 8 form the
linear combination of basis vectors that need updating. We take the middle matrix
and multiply the linear combination by it to form the Resultant. In other words, Basis
Vector Production · Linear Combination = Resultant. The Resultant corresponds to
q(x) at N = 10. Since p(x) has two non zero coefficients, we now add the sequence for
q(x) to itself shifted by 6 steps. This final step translates to taking the Resultant and
adding what the sequence looks like at step 10 – 6 = 4. Serendipitously, this is the
column under N = 4. These two columns added together produce the final column
A4 at N = 10. Finally, we sum the realized values corresponding to Xi subsection 0
which is +17 (from 1,0), +2 (from 2,0), and +2 (from 3,0) for a total of 21. (Recall
that the unrealized values Xi subsection j > 0 correspond to the coefficient in front
of x10+Xi−j and thus we do not count them now.)

For the purpose of verification, the Molien series for A4 begins: 1, 1, 2, 3, 5, 6, 10,
12, 17, 21 and the final entry of 21 is the 10th coefficient.[8]

The memoized runtime for finding the coefficient in front of xN for A4 can be
found by using the runtime analysis equation with Kp = 2,Kq = 1 + 2 + 3 + 4 = 10,
and Kr = 0. Then the memoized runtime is Ω(KpK

3
q · log2N + Kr) = 2000 · log2N .

Clearly this method is only superior to constant time algorithms when N is very large.
Incidentally, in the process of finding the coefficient of x10 for A4, we simultaneously

solved for Pk(N) with k = 4 and N = 10. We have from the Resultant column that
P4(10) equals +15 (from 1,0), +2 (from 2,0), and +1 (from 3,0) which yields a total
of 18.
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Fig. 7: Memoization Procedure to Find Coefficient of x10 for A4 Part 1.

Fig. 8: Memoization Procedure to Find Coefficient of x10 for A4 Part 2.
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14 Additional Avenues of Analysis / Open Questions

14.1 Runtime for Matrices Akin to those that Model RGFs

Let M be a matrix modeling an RGF. That is, M models q(x)−1. The node form
method whose runtime is described by 13 may have application to a broader class
of matrices than M if it can be shown that the matrix multiplication operation for
this broader class of matrices is equivalent to tabulating a running sum. Recall that
tabulating a running sum was the main requirement for the runtime of 13 because it
reduced the number of computations for each time step to 2Kq because Kq came from
the cycle component and Kq came from the running sum component.

Of course, the memoization technique with a runtime of 14 will also work for any
matrix because one can calculate MK with K = 2N in only N steps by iteratively
multiplying by the previous result.

14.2 Fast Converging Series for RGFs

A fast converging series for PN (N), whose generating function has every (1− xn) ap-
pear with multiplicity one in the denominator, was discovered by Hans Rademacher.[6]
There may be such formula for rational generating functions with multiplicities dif-
ferent than one. Another example would be to take every even (or odd) n in the
denominator up till n = N . A possible avenue of attack would be through analyzing
the underlying matrix representation.

Several methods of analysis are possible. Eigenvector analysis of matrices repre-
senting RGFs may reveal new proofs of old concepts or new insights into additional
avenues of exploration. Also, it may be interesting to explore the Jordan normal form
for these matrices in case this perspective proves useful.[17]

Additionally, something like the Perron-Frobenius Theorem for non-negative real
square matrices may apply.[23] The theorem already has application to the study of
partition numbers, which suggests a possible link to these types of matrices.[10] Unfor-
tunately, the adjacency matrix looks like it is not strongly connected (because smaller
cycles can never impact the larger cycles) and thus the requirements for applying the
theorem may be invalid. Nonetheless, to make the graph strongly connected, one
would only need to add a single positive entry connecting the smallest cycle with the
largest cycle. This can be done by placing a positive entry of size epsilon in the bottom
left corner of the matrix. Perhaps studying the limiting behavior of such a matrix will
prove fruitful.

15 Conclusion

This paper has demonstrated how to construct a matrix such that, as successive matrix
powers are calculated, one of its internal cells mimics the sequence produced by a
rational generating function. The format of the adjacency matrix is a sequence of
connected cycles. For certain RGFs, the denominator q(x) can be represented more
easily, from a computational standpoint, as a matrix of connected cycles than as a
traditional matrix representing a linear recurrence relation. Because the adjacency
matrix has a self-similar quality, it lends itself to being thought of as an array of
nodes upon which an algorithm with a runtime of 13 can operate. Even when the
matrix is thought of specifically as a matrix, memoization allows for a runtime of
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14. Therefore, nothing essential is lost by taking this alternative perspective that
emphasizes connected cycles.

Perhaps further analysis of the techniques described in this paper will lead to new
ideas related to integer partition numbers or rational generating functions. In essence,
one is moving the study of rational generating functions into the study of cyclical
graphs that mimic the sequences or vice versa.

16 Python Code to Calculate Coefficients of RGFs

# −∗− coding : u t f −8 −∗−
”””
Running on Python 3.8
Created on Wed Feb 24 7 : 0 0 : 0 0 2021
@author : Yonah and A r i e l Berwaldt
”””
#S t a r t Program
#This program c a l c u l a t e s the c o e f f i c i e n t s o f r a t i o n a l

g e n e r a t i n g f u n c t i o n s
import numpy as np
import time

def x 12 (maxnum) : # c r e a t e 1 s t and 2nd column f o r l a t e r
r e f e r e n c e
#Cyc les must be arranged from s m a l l e s t to l a r g e s t .
#Constants m u l t i p l y the row each time the corresponding

c y c l e r e p e a t s .
#I f t h e r e are m u l t i p l e c y c l e s o f the same l eng t h , arrange

so the l a r g e r c o n s t a n t s come f i r s t .
c y c l e v e c = [ 1 , 1 , 2 , 3 ]
cons t vec = [ 2 , 1 , 3 , 2 ]
x 1vec to r = np . array ( [ ] )
x 2vec to r = np . array ( [ ] )
x 3vec to r = np . array ( [ ] )
#The Read v e c t o r r v e c t must be manually popu la ted so i t s

l e n g t h e q u a l s the sum of a l l e n t r i e s in c y c l e v e c .
#To g e t [(1− c 1 xˆ x 1 ) ∗ . . . (1 − c n xˆ x n ) ]ˆ( −1) a 1 must be

p l ace d in the r v e c t corresponding to the f i n a l c y c l e
in the row corresponding h o r i z o n t a l l y to p o s i t i o n (X n
, 0 ) .

#Time d e l a y s are not suppor ted in t h i s v e r s i o n .
#Imaginary numbers are not suppor ted in t h i s v e r s i o n .
rvec t = [ 0 , 0 , 0 , 0 , 1 , 0 , 0 ]

for i in range (0 , len ( c y c l e v e c ) ) : #c r e a t e f i r s t and second
r e f e r e n c e column

count = 0
newvec2 = np . z e ro s ( c y c l e v e c [ i ] , dtype = int )
for j in range (0 , c y c l e v e c [ i ] ) :

newvec1 = np . z e ro s (1 )
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newvec1 [ 0 ] = c y c l e v e c [ i ]
x 1vec to r = np . concatenate ( ( x 1vector , newvec1 ) ,

a x i s = 0)
newvec2 [ count ] = j
count = count+1

x 2vec to r = np . concatenate ( ( x 2vector , newvec2 ) , a x i s =
0)

count = 0
f i n a l r a n g e = len ( x 1vec to r )−c y c l e v e c [ len ( c y c l e v e c ) −1]

for i in range (0 , f i n a l r a n g e ) : #c r e a t e t h i r d ( cons tant
m u l t i p l i e r ) r e f e r e n c e column
i f x 2vec to r [ i ] == x 1vec to r [ i ] −1:

newvec1 = np . z e ro s (1 )
newvec1 [ 0 ] = cons t vec [ count ]
x 3vec to r = np . concatenate ( ( x 3vector , newvec1 ) ,

a x i s = 0)
count = count + 1

else :
newvec1 = np . z e ro s (1 )
newvec1 [ 0 ] = 1
x 3vec to r = np . concatenate ( ( x 3vector , newvec1 ) ,

a x i s = 0)

for i in range ( f i n a l r a n g e , len ( x 1vec to r ) ) :
i f x 2vec to r [ i ] == 0 :

newvec1 = np . z e ro s (1 )
newvec1 [ 0 ] = cons t vec [ count ]
x 3vec to r = np . concatenate ( ( x 3vector , newvec1 ) ,

a x i s = 0)
count = count + 1

else :
newvec1 = np . z e ro s (1 )
newvec1 [ 0 ] = 1
x 3vec to r = np . concatenate ( ( x 3vector , newvec1 ) ,

a x i s = 0)

#prepend a [ 0 ] to the f i r s t through f o u r t h r e f e r e n c e
columns to make an empty row f o r the SumIf t a b u l a t i o n

x 1vec to r = np . concatenate ( ( [ 0 ] , x 1vec to r ) , a x i s = 0)
x 2vec to r = np . concatenate ( ( [ 0 ] , x 2vec to r ) , a x i s = 0)
x 3vec to r = np . concatenate ( ( [ 0 ] , x 3vec to r ) , a x i s = 0)
rvec t = np . concatenate ( ( [ 0 ] , r v e c t ) , a x i s = 0)

maxrow = ( len ( x 1vec to r ) ) #The l e n g t h o f x 1 v e c t o r i s the
sum of a l l e n t r i e s in c y c l e v e c .

i f maxrow != len ( rvec t ) :
print ( ” Please manually change the rvec t so i t s l ength
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i s the same as maxrow and l en ( x1 vec to r ) . ” )

return ( x 1vector , x 2vector , x 3vector , rvect , maxrow)

def c h o i c e s ( j , i , maxrow , mat , update vec ) : # s e v e r a l
p o s s i b i l i t i e s to how next c e l l i s updated

i f mat [ i ] [ 1 ] >1 :
update vec [ i ]=mat [ i −1] [ j −1]∗mat [ i ] [ 2 ]

i f mat [ i ] [ 1 ]==1:
k = int ( i+mat [ i ] [ 0 ] )
i f k > maxrow :

update vec [ i ]=mat [ i −1] [ j −1]∗mat [ i ] [ 2 ]
else :

update vec [ i ]=mat [ i −1] [ j −1]∗mat [ i ] [ 2 ] + mat [ k ] [ j ]
i f mat [ i ] [ 1 ]==0:

i f mat [ i ] [ 0 ]==1:
k = int ( i+mat [ i ] [ 0 ] )
i f k >= maxrow :

update vec [ i ] = mat [ i ] [ j −1]∗mat [ i ] [ 2 ]
else :

update vec [ i ] = mat [ i ] [ j −1]∗mat [ i ] [ 2 ] + mat [ k ] [ j
−1]

else :
k = int ( i+mat [ i ] [ 0 ] −1)
update vec [ i ]=mat [ k ] [ j −1]∗mat [ i ] [ 2 ]

mat [ i ] [ j ]= update vec [ i ]
return ( )

def main ( ) :
beg int ime = time . time ( )
maxnum = 9 #i f you want P(N) change cons tant to N+1;
x 1vector , x 2vector , x 3vector , rvect , maxrow = x 12 (

maxnum)
mat = np . z e ro s ( shape = (maxrow , maxnum+3) ) # note the +3

i s f o r the t h r e e e x t r a r e f e r e n c e columns on the l e f t

for n in range (0 , maxrow) : #seed the matrix ’ s 3 l e f t m o s t
columns
mat [ n ] [ 0 ] = x 1vec to r [ n ] #f i r s t r e f e r e n c e column
mat [ n ] [ 1 ] = x 2vec to r [ n ] #second r e f e r e n c e column
mat [ n ] [ 2 ] = x 3vec to r [ n ] #t h i r d r e f e r e n c e column f o r

m u l t i p l y i n g by c o n s t a n t s
mat [ n ] [ 3 ] = rvec t [ n ] #read v e c t o r

for j in range (4 ,maxnum+3 ,1) : #move low to h igh a long the
columns
update vec = np . z e ro s (maxrow)
for i in range (maxrow−1 ,0 ,−1) : #move h igh to low a long

rows
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c h o i c e s ( j , i , maxrow , mat , update vec ) #p o p u l a t e
matrix wi th c y c l e s and growth

for i in range (maxrow−1 ,0 ,−1) :
mat [ i ] [ j ]= update vec [ i ]

for j in range (3 ,maxnum+3 ,1) : #move low to h igh a long the
columns
sum i f = 0 #t a b u l a t e a l l r e a l i z e d e lements in a g iven

column
for i in range (maxrow−1 ,0 ,−1) : #move h igh to low a long

rows
i f mat [ i ] [ 1 ] == 0 :

sum i f = sum i f + mat [ i ] [ j ]
mat [ 0 ] [ j ] = sum i f

print ( ” I f the re are no c y c l e s o f l ength 1 , read the
uppermost row . Else read the second row a f t e r removing

the prepended 0 ’ s . ” )
print (mat)
f i n i s h t i m e = time . time ( )
t o t a l t i m e = round( f i n i s h t i m e −begintime , 3 )
print ( ” cumulat ive computation time = ” , t o t a l t i m e )
#np . s a v e t x t (” c y c l e t y p e m a t r i x . csv ” , mat , d e l i m i t e r = ” ,”)

#remove the l e a d i n g comment to save output
return ( )

i f name == ” main ” : main ( )
#End Program
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