
QUANTUM PARTIAL AUTOMORPHISMS OF FINITE GRAPHS

TEO BANICA

Abstract. The partial automorphisms of a graphX havingN vertices are the bijections
σ : I → J with I, J ⊂ {1, . . . , N} which leave invariant the edges. These bijections form

a semigroup G̃(X), which contains the automorphism group G(X). We discuss here
the quantum analogue of this construction, with a definition and basic theory for the

quantum semigroup of quantum partial automorphisms G̃+(X), which contains both
G(X), and the quantum automorphism group G+(X). We comment as well on the case

N =∞, which is of particular interest, due to the fact that G̃+(X) is well-defined, while
its subgroup G+(X), not necessarily, at least with the currently known methods.
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Introduction

Associated to any finite graph X, having N vertices, is its quantum automorphism
group G+(X) ⊂ S+

N , obtained as the subgroup of Wang’s quantum permutation group [26]
which leaves invariant the edges. This quantum group contains the usual automorphism
group, G(X) ⊂ G+(X), but this inclusion is in general not an isomorphism. When this
latter inclusion is proper, the graph X is said to have quantum symmetries, and the study
of G+(X) is an interesting question. The basic theory here goes back to [2], [3], [11], [12],
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and then to [6], [7], [8], papers from the mid 00s. More recent work on the subject, mostly
from the mid and late 10s, includes the papers [13], [14], [17], [18], [19], [20], [21], [22],
[23], [24], solving some old questions, and making the link with advanced graph theory,
and with nonlocal games and quantum information theory.

We will be interested here in the semigroup of partial automorphisms G̃(X) ⊂ S̃N , and

in its quantum analogue G̃+(X) ⊂ S̃+
N . These are objects which are far more specialized

than G(X) and G+(X), and explaining our motivations will be our first goal.

In what regards the classical automorphisms, the main object to be studied is definitely

the group G(X), with the bigger semigroup G̃(X) being something rather abstract, having
little to no interest. However, in what regards the quantum automorphisms, while the
quantum group G+(X) remains of course the main object to be studied, talking about

the bigger quantum semigroup G̃+(X) makes sense, and can be potentially helpful, due
to a number of subtle algebraic and analytic reasons, as follows:

(1) As a first piece of motivation, the semigroup S̃+
N was introduced in [10], the work

there being motivated by the fact that the semigroups G ⊂ S̃+
N encode the combinatorics

of the partial Hadamard matrices, with the main interest in these latter matrices coming
from the work in [15], which shows that the Hadamard Conjecture problematics is far more
tractable in the rectangular matrix setting. All this is quite heavy, with a considerable
amount of algebraic and analytic work to be done, and from this perspective, the study

of the quantum semigroups of type G̃+(X) ⊂ S̃+
N can only be useful.

(2) As a second piece of motivation, the semigroup S̃+
N is part of a whole family of

semigroups, including as well objects of type Õ+
N , Ũ+

N , discussed in [4], [5] and subsequent
papers, and with all these semigroups being the key ingredients for constructing objects
like free Grassmannians, flag manifolds, Stiefel manifolds, and so on. In short, all this
is related to the development of “free geometry”. As before with the partial Hadamard
matrix program, there is a lot of work here to be done, and from this perspective, the

study of the quantum semigroups of type G̃+(X) ⊂ S̃+
N can only be useful.

(3) As a third piece of motivation, one big question is that of understanding what the
quantum automorphism group G+(X) of an infinite graph X is. This is a notoriously
difficult question, the problem coming from the fact that we can have both compact
quantum group actions G y X and discrete quantum group actions Γ y X, and also
from the fact that for the simplest infinite graph, having no edges at all, the quantum
symmetry group S+

∞ is not well-defined [16]. From this perspective, looking at subgroups

of the semigroups G̃+(X), which are well-defined, is a good way to be followed.
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Summarizing, we have a number of good motivations for studying G̃+(X). Observe that
all these motivations are of genuine “quantum” nature, having no classical counterpart.

Observe also that all this puts G̃(X) into a more favorable light. Indeed, this apparently
anecdotical semigroup gains in this way some motivations to be studied, for the simple

reason that this semigroup appears as the classical version of G̃+(X).

We will develop in this paper the basic theory of the construction X → G̃+(X). Besides

the precise definition of G̃+(X), which is not exactly obvious, and which will be one of our
main results here, we will work out semigroup analogues of some of the basic results from
[2], [6] regarding the construction X → G+(X). As we will see, with a good definition

for G̃+(X) in hand, some of the basic results will extend in a straightforward way, some
other part of the basic results will extend in a tricky way, and some other part of the basic
results will not extend at all. For the precise statements of our results, which require some
discussion and new definitions, we refer to the body of the paper.

In what concerns the possible continuations of the present work, there are several of
them, as part of the long-term programs (1,2,3) mentioned above, and we intend to come
back to this in due time. Among these programs (3) is the most recent, and the most
graph-theoretical one as well, and we will comment on this at the end of the paper.

The paper is organized as follows: 1 is a preliminary section, in 2-3 we construct the

semigroup of quantum partial automorphisms G̃+(X) and we discuss its basic properties,

in 4-5-6 we discuss a number of more advanced properties of G̃+(X), notably with results
about color independence and cycles, and in 7 we discuss the general question of locating

G+(X) inside G̃+(X), in the case where the graph is infinite, |X| =∞.

1. Quantum permutations and partial permutations

Let us start with the following definition, which is standard:

Definition 1.1. A partial permutation of {1 . . . , N} is a bijection σ : I ' J , with

I, J ⊂ {1, . . . , N}. We denote by S̃N the semigroup formed by such partial permutations.

Observe that we have SN ⊂ S̃N . The embedding u : SN ⊂MN(0, 1) given by permuta-

tion matrices can be extended to an embedding u : S̃N ⊂MN(0, 1), as follows:

uij(σ) =

{
1 if σ(j) = i

0 otherwise

By looking at the image of this embedding, we see that S̃N is in bijection with the
matrices M ∈MN(0, 1) having at most one 1 entry on each row and column.
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In what follows we will be interested in certain algebraic aspects of the partial permuta-
tions, and their quantum analogues. Before starting, let us record however the following
result, which shows that the bare partial permutations are very interesting objects:

Proposition 1.2. The number of partial permutations is given by

|S̃N | =
N∑
k=0

k!

(
N

k

)2

that is, 1, 2, 7, 34, 209, . . ., and with N →∞ we have |S̃N | ' N !
√

exp(4
√
N−1)

4π
√
N

.

Proof. Indeed, in terms of partial bijections σ : I ' J as in Definition 1.1, we can set
k = |I| = |J |, and this leads to the formula in the statement. Equivalently, in the MN(0, 1)

picture, k is the number of 1 entries,
(
N
k

)2
corresponds to the choice of the k rows and

k columns for these 1 entries, and k! comes from positioning the 1 entries. Finally, the
asymptotic formula if well-known, see OEIS, sequence A002720. �

Getting back now to our present purposes, which are mostly algebraic, we have so far

an inclusion of semigroups SN ⊂ S̃N , along with a useful linear algebra interpretation of
it. In functional analysis terms, following [10], [26], the result is as follows:

Proposition 1.3. The algebras C(S̃N)→ C(SN) have presentations as follows,

C(SN) = C∗comm

(
(uij)i,j=1,...,N

∣∣∣u = magic
)

C(S̃N) = C∗comm

(
(uij)i,j=1,...,N

∣∣∣u = submagic
)

with “submagic” meaning formed of projections, pairwise orthogonal on rows and columns,
and with “magic” assuming in addition that the row and column sums are 1.

Proof. This is standard, by using the Gelfand theorem. Indeed, this theorem shows that

the algebras on the right must be of the form C(XN), C(X̃N), for certain compact spaces

XN ⊂ X̃N , and by using the coordinate functions uij we obtain XN ⊂ X̃N ⊂ MN(0, 1),

with the equations for XN ⊂ X̃N being those for SN ⊂ S̃N . See [10], [26]. �

Still following [10], [26], the above presentation result, along with the fact that SN is a

finite group and S̃N is a finite semigroup, has the following quantum analogue:

Theorem 1.4. We have universal C∗-algebras C(S̃+
N)→ C(S+

N) as follows,

C(S+
N) = C∗

(
(uij)i,j=1,...,N

∣∣∣u = magic
)

C(S̃+
N) = C∗

(
(uij)i,j=1,...,N

∣∣∣u = submagic
)

and the underlying compact quantum spaces S+
N ⊂ S̃+

N are respectively a compact quantum
group, and a compact quantum semigroup, which are infinite at N ≥ 4, 2.
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Proof. Since the entries uij are projections, we have ||uij|| ≤ 1, and so the universal C∗-
algebras in the statement are indeed well-defined. Next, by using the universality property
of these algebras, we can define in both cases morphisms of algebras, as follows:

∆(uij) =
∑
k

uik ⊗ ukj

ε(uij) = δij

S(uij) = uji

In the case of C(S+
N) the matrix u = (uij) is unitary, so the Woronowicz axioms in

[27], [28] are satisfied, and S+
N is a compact quantum group. In the case of C(S̃+

N) the

matrix u = (uij) is no longer unitary, and we can only say that S̃+
N is a compact quantum

semigroup with subantipode, with the subantipode condition meaning that we have:

m3(S ⊗ id⊗ S)∆2 = S

Finally, the simplest example of a magic matrix having noncommuting entries appears
at N = 4, as follows, with p, q being suitable projections on H = l2(N):

u =


p 1− p 0 0

1− p p 0 0
0 0 q 1− q
0 0 1− q q


As for the simplest submagic matrix having noncommuting entries, this appears at

N = 2, as follows, with p, q, r, s being suitable projections on H = l2(N):

u =

(
p⊕ 0 0⊕ q
0⊕ r s⊕ 0

)
But this gives the last assertion. For details on all this, see [10], [26]. �

As a conclusion to all this, we have a diagram as follows, with all maps being inclusions,
and with the vertical inclusions being liberation operations:

S+
N

// S̃+
N

SN

OO

// S̃N

OO

Finally, let us mention that, in addition to what has been said above, there are many
known things about S+

N , with virtually all important properties of SN having their quan-

tum counterpart. As for S̃+
N , which is more of a technical object, a bit like S̃N , there is a

growing body of literature here. See [1], [4], [5], [9], [10], [26] and related papers.
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2. Graphs and their quantum partial automorphisms

Let us get now into the graph problematics. Things are quite tricky here, and this
already in what regards the automorphism groups, where two possible definitions were
proposed in the quantum case [2], [11]. The statement from [2], that we will use here,
along with the classical definition, suitably formulated, are as follows:

Proposition 2.1. Given a graph X with N vertices, and adjacency matrix d ∈MN(0, 1),
the algebra of functions on its automorphism group G(X) ⊂ SN is given by:

C(G(X)) = C(SN)
/〈

du = ud
〉

The quantum automorphism group of X is defined by the following formula,

C(G+(X)) = C(S+
N)
/〈

du = ud
〉

which defines indeed a closed subgroup G+(X) ⊂ S+
N , whose classical version is G(X).

Proof. In order to prove the first assertion, consider the standard coordinates on SN ⊂ ON ,
which are the following characteristic functions:

uij = χ
(
σ ∈ SN

∣∣∣σ(j) = i
)

With this formula in hand, du = ud is equivalent to dij = dσ(i)σ(j), and this gives the
first assertion. As for the second assertion, this is standard, coming from the fact that
du = ud can be rewritten as d ∈ End(u), which is a relation of “Hopf type”. See [2]. �

As already mentioned, the above might look quite straightforward, but it is not. The
point indeed is that an equally natural idea is that of saying that the quantum automor-
phism group should act on both the vertices and edges of X, and this leads to a certain
intermediate quantum group G(X) ⊂ G×(X) ⊂ G+(X), constructed in [11], and having
a number of interesting technical uses. For a recent discussion here, see [23].

Let us discuss now the partial automorphism groups, and their quantum analogues.
Things are quite tricky here as well, and skipping a discussion of the various possible
wrong ways that can be taken, the idea will be that of using the following relation, with
R,C being the diagonal matrices formed by the row and column sums of u:

R(du− ud)C = 0

In order to explain this, let us begin with the classical case. Here the definition of

G̃(X), along with the corresponding presentation of C(G̃(X)), and with a result as well
about what happens when imposing the condition du = ud, is as follows:
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Proposition 2.2. Given a graph X with N vertices, and adjacency matrix d ∈MN(0, 1),
consider its partial automorphism semigroup, given by:

G̃(X) =
{
σ ∈ S̃N

∣∣∣dij = dσ(i)σ(j), ∀i, j ∈ Dom(σ)
}

We have then the following formula, with R = diag(Ri), C = diag(Cj), with Ri, Cj being
the row and column sums of the associated submagic matrix u:

C(G̃(X)) = C(S̃N)
/〈

R(du− ud)C = 0
〉

Moreover, when using the relation du = ud instead of the above one, we obtain a certain

semigroup Ḡ(X) ⊂ G̃(X), which can be strictly smaller.

Proof. We have two assertions here, the idea being as follows:

(1) With the convention i ∼ j when i, j are connected by an edge of X, the definition

of G̃(X) from the statement reformulates as follows:

G̃(X) =
{
σ ∈ S̃N

∣∣∣i ∼ j,∃σ(i),∃σ(j) =⇒ σ(i) ∼ σ(j)
}

We have the following computations:

(du)ij(σ) =
∑
k

dikukj(σ) =
∑
k∼i

ukj(σ) =

{
1 if σ(j) ∼ i

0 otherwise

(ud)ij(σ) =
∑
k

uikdkj(σ) =
∑
k∼j

uik(σ) =

{
1 if σ−1(i) ∼ j

0 otherwise

Here the “otherwise” cases include by definition the cases where σ(j), respectively
σ−1(i), is undefined. We have as well the following formulae:

Ri(σ) =
∑
j

uij(σ) =

{
1 if ∃σ−1(i)
0 otherwise

Cj(σ) =
∑
i

uij(σ) =

{
1 if ∃σ(j)

0 otherwise

Now by multiplying the above formulae, we obtain the following formulae:

(Ri(du)ijCj)(σ) =

{
1 if σ(j) ∼ i and ∃σ−1(i) and ∃σ(j)

0 otherwise

(Ri(ud)ijCj)(σ) =

{
1 if σ−1(i) ∼ j and ∃σ−1(i) and ∃σ(j)

0 otherwise
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We conclude that the relations in the statement, which read Ri(du)ijCj = Ri(ud)ijCj,

when applied to a given σ ∈ S̃N , correspond to the following condition:

∃σ−1(i), ∃σ(j) =⇒ [σ(j) ∼ i ⇐⇒ σ−1(i) ∼ j]

But with i = σ(k), this latter condition reformulates as follows:

∃σ(k), ∃σ(j) =⇒ [σ(j) ∼ σ(k) ⇐⇒ k ∼ j]

Thus we must have σ ∈ G̃(X), and we obtain the presentation result for G̃(X).

(2) Regarding now the second assertion, the simplest counterexample here is simplex
XN , having N vertices and edges everywhere. Indeed, the adjacency matrix of this simplex
is d = IN − 1N , with IN being the all-1 matrix, and so the commutation of this matrix
with u corresponds to the fact that u must be bistochastic. Thus, u must be in fact magic,

and we obtain Ḡ(XN) = SN , which is smaller than G̃(XN) = S̃N . �

With the above result in hand, we are led to the following statement:

Theorem 2.3. Given a graph X with N vertices, and adjacency matrix d ∈ MN(0, 1),
the following construction, with R,C being the diagonal matrices formed by the row and

column sums of u, produces a quantum semigroup with subantipode G̃+(X) ⊂ S̃+
N ,

C(G̃+(X)) = C(S̃+
N)
/〈

R(du− ud)C = 0
〉

called quantum semigroup of quantum partial automorphisms of X, whose classical version

is G̃(X). Moreover, when using du = ud instead of the above relation, we obtain a

semigroup Ḡ+(X) ⊂ G̃+(X), which can be strictly smaller.

Proof. We have to construct morphisms ∆, ε, S and then prove the last two assertions,
and the proof goes as follows:

(1) In order to construct the comultiplication ∆, consider the following elements:

Uij =
∑
k

uik ⊗ ukj
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We must prove that the relations in the statement are satisfied by U = (Uij). For this
purpose, observe that we have, by using the fact that u is submagic:

RU
i (dU)ijC

U
j =

∑
k

Uik
∑
l

dilUlj
∑
m

Umj

=
∑
kn

uin ⊗ unk
∑
lo

dilulo ⊗ uoj
∑
mp

ump ⊗ upj

=
∑
klmnop

dil · uinuloump ⊗ unkuojupj

=
∑
klmno

dil · uinuloumo ⊗ unkuoj

=
∑
klno

dil · uinulo ⊗ unkuoj

On the other hand, we have as well the following formula:

Ri(du)ijCj =
∑
k

uik
∑
l

dilulj
∑
m

umj

=
∑
klm

dil · uikuljumj

=
∑
kl

dil · uikulj

Now by getting back to our computation, we can finish it as follows:

RU
i (dU)ijC

U
j =

∑
klno

dil · uinulo ⊗ unkuoj

=
∑
kn

uin ⊗ unk
∑
lo

dil · ulo ⊗ uoj

=
∑
kl

dil ·∆(uik)∆(ulj)

= ∆

(∑
kl

dil · uikulj

)
= ∆(Ri(du)ijCj)
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(2) The second computation that we need is similar. We first have:

RU
i (Ud)ijC

U
j =

∑
k

Uik
∑
l

Uildlj
∑
m

Umj

=
∑
kn

uin ⊗ unk
∑
lo

dljuio ⊗ uol
∑
mp

ump ⊗ upj

=
∑
klmnop

dlj · uinuioump ⊗ unkuolupj

=
∑
klmnp

dlj · uinump ⊗ unkunlupj

=
∑
kmnp

dlj · uinump ⊗ unkupj

On the other hand, we have as well the following formula:

Ri(ud)ijCj =
∑
k

uik
∑
l

uildlj
∑
m

umj

=
∑
klm

dlj · uikuilumj

=
∑
km

dlj · uikumj

Now by getting back to our computation, we can finish it as follows:

RU
i (Ud)ijC

U
j =

∑
kmnp

dlj · uinump ⊗ unkupj

=
∑
kn

uin ⊗ unk
∑
mp

dlj · ump ⊗ upj

=
∑
km

dlj ·∆(uik)∆(umj)

= ∆

(∑
km

dlj · uikumj

)
= ∆(Ri(ud)ijCj)

(3) We can now construct ∆, based on the formulae found in (1,2), namely:

RU
i (dU)ijC

U
j = ∆(Ri(du)ijCj)

RU
i (Ud)ijC

U
j = ∆(Ri(ud)ijCj)

Indeed, we know that the quantities on the right are equal, and the quantities on the
left follow to be equal as well. Thus we can define ∆ by uij → Uij, as desired.
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(4) Regarding now ε, the algebra in the statement has indeed a morphism ε defined by
uij → δij, because the following relations are trivially satisfied:

Ri(d1N)ijCj = Ri(1Nd)ijCj

(5) Regarding now S, we must prove that we have a morphism S given by uij → uji.
Here the best is to use the reformulation of the relations in the statement mentioned
before the statement itself, which is as follows, with R = diag(Ri) and C = diag(Cj):

R(du− ud)C = 0

Indeed, this formula is a certain equality of N × N matrices. Now when transposing
this formula, we obtain:

Ct(utd− dut)Rt = 0

Now since Ct, Rt are respectively the diagonal matrices formed by the row sums and
column sums of ut, we conclude that the relations R(du − ud)C = 0 are satisfied by the
transpose matrix ut, and this gives the existence of the subantipode map S.

(6) The fact that we have G̃+(X)class = G̃(X) follows from (S+
N)class = SN .

(7) Finally, the last assertion follows from the last assertion in Proposition 2.2, by
taking classical versions, the simplest counterexample being the simplex. �

Summarizing, we have a good liberation inclusion G̃(X) ⊂ G̃+(X), that we will study
in what follows. We will sometimes use the “wrong” semigroups Ḡ(X) ⊂ Ḡ+(X) as well,
for certain technical purposes, and the full picture includes of course the automorphism
groups G(X) ⊂ G+(X) as well. The diagram formed by these objects is as follows:

G+(X) // Ḡ(X) // G̃+(X)

G(X)

OO

// Ḡ(X)

OO

// G̃(X)

OO

Here all the maps are inclusions, and the vertical maps are liberations. On the left we
have automorphism groups, on the right we have partial automorphism semigroups, and
in the middle we have the “wrong” semigroups, which can be technically useful objects.

3. General properties, simplices and complementation

In this section and in the next three ones we study the basic properties of the operation

X → G̃+(X), by taking some inspiration from [2], where the basic properties of the
operation X → G+(X) were established. Let us start with a useful technical result,
providing us with some alternative formulations of the relations that we use:
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Proposition 3.1. Given a N×N submagic matrix u, set R = diag(Ri) and C = diag(Cj),
with Ri, Cj being the row and column sums. We have then Ru = u = uC, and given a
matrix d ∈MN(C), the following conditions are equivalent:

(1) R(du− ud)C = 0.
(2) Rdu = udC.
(3) Ri(du)ijCj = Ri(ud)ijCj.
(4) Ri(du)ij = (ud)ijCj.

Proof. In order to check the equalities Ru = u = uC, consider the standard basis
e1, . . . , eN of the space CN . We have the following computation:

Ru(ei) = R

(∑
k

ek ⊗ uki

)
=

∑
k

ek ⊗Rkuki

=
∑
kl

ek ⊗ ukluki

=
∑
k

ek ⊗ uki

= u(ei)

On the other hand, we have as well the following computation:

uC(ei) = u(ei ⊗ Ci)
=

∑
k

ek ⊗ ukiCi

=
∑
kl

ek ⊗ ukiuli

=
∑
k

ek ⊗ uki

= u(ei)

Thus, the equalities Ru = u = uC hold indeed, and with this in hand, (1) ⇐⇒ (2) is
clear. As for (1) ⇐⇒ (3) and (2) ⇐⇒ (4), these are both clear from definitions. �

As a first result now regarding the correspondence X → G̃+(X), we have:

Proposition 3.2. For any finite graph X we have

G̃+(X) = G̃+(Xc)

where Xc is the complementary graph.
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Proof. The adjacency matrices of a graph X and of its complement Xc are related by the
following formula, where IN is the all-1 matrix:

dX + dXc = IN − 1N

Thus, in order to establish the formula in the statement, we must prove that:

Ri(INu)ijCj = Ri(uIN)ijCj

For this purpose, let us recall that, the matrix u being submagic, its row sums and
column sums Ri, Cj are projections. By using this fact, we have:

Ri(INu)ijCj = RiCjCj = RiCj

Ri(uIN)ijCj = RiRiCj = RiCj

Thus we have proved our equality, and the conclusion follows. �

Let us discuss now some basic product operations. Following [25], we first have the
following standard construction:

Proposition 3.3. Given two semigroups G ⊂ S̃+
N and H ⊂ S̃+

M , with submagic matrices

denoted u, v, we can construct a semigroup G ∗̂H ⊂ S̃+
M+N by setting

C(G ∗̂H) = C(G) ∗ C(H)

with submagic matrix w = diag(u, v).

Proof. Since u, v are submagic, so is w = diag(u, v), and the construction of ∆, ε and of
the subantipode map S is standard, as in the quantum group case. �

With the above notion in hand, we can formulate:

Proposition 3.4. Assuming that we have semigroup actions Gi y Xi, we have a semi-
group action as follows:

G1 ∗̂ . . . ∗̂Gn y X1 t . . . tXn

In particular, we have an inclusion of semigroups, as follows:

G̃+(X1) ∗̂ . . . ∗̂ G̃+(Xn) ⊂ G̃+(X1 t . . . tXn)

Proof. The submagic matrix of the semigroup G1 ∗̂ . . . ∗̂Gn and the adjacency matrix of
the graph X1 t . . . tXn are by definition block diagonal, as follows:

u =

u(1) . . .

u(n)

 , d =

d(1) . . .

d(n)
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Regading the row and column sum matrices of u, these are of a similar form:

R =

R(1)

. . .

R(n)

 , C =

C(1)

. . .

C(n)


Now since the relations Rdu = udC are satisfied over each block, they are satisfied

globally, and this gives the first assertion. The second assertion follows from it. �

There are many other types of product operations for graphs, discussed in [1], [2], [6],
[7], [8], [14], [22], [23], which are more specialized, and whose semigroup extension is less
straightforward. We will be back to this later, after developing some general theory.

4. Colored oriented graphs and color independence

Following [2], one basic thing to be done, which is of key importance, is that of exam-
ining the stability of the condition R(du − ud)C = 0 under the joint spectral and color
decomposition of d. We are therefore naturally led into an extension of our formalism,
using matrices d ∈MN(C), so let us start here with the following definition:

Definition 4.1. Associated to any complex-colored oriented graph X, with adjacency
matrix d ∈MN(C), is its semigroup of partial automorphisms, given by

G̃(X) =
{
σ ∈ S̃N

∣∣∣dij = dσ(i)σ(j), ∀i, j ∈ Dom(σ)
}

as well as its quantum semigroup of quantum partial automorphisms, given by

C(G̃+(X)) = C(S̃+
N)
/〈

R(du− ud)C = 0
〉

where R = diag(Ri), C = diag(Cj), with Ri, Cj being the row and column sums of u.

Here the fact that G̃+(X) is indeed a quantum semigroup follows from the proof of
Theorem 2.3, which does not use d ∈MN(0, 1). Observe that the proof of Proposition 2.2
does not use either d ∈MN(0, 1), and so we have the following formula:

C(G̃(X)) = C(S̃N)
/〈

R(du− ud)C = 0
〉

Thus, the inclusion G̃(X) ⊂ G̃+(X) is a liberation, and as a conclusion, everything
that has been said in sections 2-3 above extends to the present “colored” setting.

With this extended formalism in hand, let us discuss now the color independence.

The point here is that the various automorphism groups Γ = G, G̃,G+, G̃+ should be
all invariant under “change of colors”, meaning replacing complex numbers appearing
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all across d ∈ MN(C) by other complex numbers. In other words, the claim is that for

Γ = G, G̃,G+, G̃+, the following implication should hold:[
dij = dkl ⇐⇒ d′ij = d′kl

]
=⇒ Γ(X) = Γ(X ′)

For Γ = G, G̃ this is just obvious from definitions. For Γ = G+, however, this is not
exactly trivial, and the proof here, from [2], consists of an algebraic trick, combined with
an analytic argument, making it for a half a page proof. In what follows we will discuss

the remaining case, Γ = G̃+, by suitably adapting the proof in [2]. As we will see, there
will be many new computations needed, and some tricks too. Let us start with:

Definition 4.2. We let m, γ be the multiplication and comultiplication of CN ,

m(ei ⊗ ej) = δijei

γ(ei) = ei ⊗ ei
and we denote by m(p), γ(p) their iterations, given by the formulae

m(p)(ei1 ⊗ . . .⊗ ei1) = δi1...ipei1

γ(p)(ei) = ei ⊗ . . .⊗ ei
with p components in the last formula, e1, . . . , eN being the standard basis of CN .

We will a number of technical results. Let us start with:

Proposition 4.3. We have the following formulae,

m(p)u⊗p = um(p)

u⊗pγ(p) = γ(p)u

valid for any submagic matrix u.

Proof. (1) We have the following computation, valid for any indices i1, . . . , ip:

m(p)u⊗p(ei1 ⊗ . . .⊗ eip) = m(p)

∑
j1...jp

ej1 ⊗ . . .⊗ ejp ⊗ uj1ii . . . ujpip


=

∑
j

ej ⊗ uji1 . . . ujip

= δi1...ip
∑
j

ej ⊗ uji1
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We have as well the following computation, which proves the first formula:

um(p)(ei1 ⊗ . . .⊗ eip) = u(δi1...ipei1)

= δi1...ipu(ei1)

= δi1...ip
∑
j

ej ⊗ uji1

(2) We have the following computation, valid for any index i:

u⊗pγ(p)(ei) = u⊗p(ei ⊗ . . .⊗ ei)
=

∑
j1...jp

ej1 ⊗ . . .⊗ ejp ⊗ uj1i . . . ujpi

=
∑
j

ej ⊗ . . .⊗ ej ⊗ uji

We have as well the following computation, which proves the second formula:

γ(p)u(ei) = γ

(∑
j

ej ⊗ uji

)
=

∑
j

ej ⊗ . . .⊗ ej ⊗ uji

Summarizing, we have proved both formulae in the statement. �

We will need as well a second technical result, as follows:

Proposition 4.4. We have the following formulae, with u,m, γ being as before,

m(p)R⊗pd⊗pγ(p) = Rd×p

m(p)d⊗pC⊗pγ(p) = d×pC

and with × being the componentwise, or Hadamard, product of matrices.
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Proof. (1) We have the following computation, valid for any index i:

m(p)R⊗pd⊗pγ(p)(ei) = m(p)R⊗pd⊗p(ei ⊗ . . .⊗ ei)

= m(p)R⊗p

∑
j1...jp

ej1 ⊗ . . .⊗ ejp ⊗ dj1i . . . djpi


= m(p)

∑
j1...jp

ej1 ⊗ . . . ejp ⊗Rj1 . . . Rjpdj1i . . . djpi


=

∑
j

ej ⊗Rp
jd
p
ji

=
∑
j

ej ⊗Rjd
p
ji

We have as well the following computation, which proves the first formula:

Rd×p(ei) = R

(∑
j

ej ⊗ dpji

)
=

∑
j

ej ⊗Rjd
p
ji

(2) We have the following computation, valid for any index i:

m(p)d⊗pC⊗pγ(p)(ei) = m(p)d⊗pC⊗p(ei ⊗ . . .⊗ ei)
= m(p)d⊗p(ei ⊗ . . .⊗ ei ⊗ Ci)

= m

∑
j1...jp

ej1 ⊗ . . .⊗ ejp ⊗ dj1i . . . djpiCi


=

∑
j

ej ⊗ dpjiCi

We have as well the following computation, which proves the second formula:

d×pC(ei) = d×p(ei ⊗ Ci)
=

∑
j

ej ⊗ dpjiCi

Thus, we have proved both formulae in the statement. �

We can now prove a key result, as follows:
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Proposition 4.5. We have the following formulae, with u,m, γ being as before,

m(p)(Rdu)⊗pγ(p) = Rd×pu

m(p)(udC)⊗pγ(p) = ud×pC

and with × being the componentwise product of matrices.

Proof. (1) By using the formulae in Proposition 4.3 and Proposition 4.4, we obtain:

m(p)(Rdu)⊗pγ(p) = m(p)R⊗pd⊗pu⊗pγ(p)

= m(p)R⊗pd⊗pγ(p)u

= Rd×pu

(2) Once again by using Proposition 4.3 and Proposition 4.4, we have:

m(p)(udC)⊗pγ(p) = m(p)u⊗pd⊗pC⊗pγ(p)

= um(p)d⊗pC⊗pγ(p)

= ud×pC

Thus, we have proved both formulae in the statement. �

We can now prove the color independence result, as follows:

Theorem 4.6. The quantum semigroup of quantum partial isomorphisms of a graph is
subject to the “independence on the colors” formula[

dij = dkl ⇐⇒ d′ij = d′kl

]
=⇒ G̃+(X) = G̃+(X ′)

valid for any graphs X,X ′, having adjacency matrices d, d′.

Proof. Given a matrix d ∈ MN(C), consider its color decomposition, which is as follows,
with the color components dc being by definition 0-1 matrices:

d =
∑
c∈C

c · dc

We want to prove that a given quantum semigroup G acts on (X, d) if and only if it
acts on (X, dc), for any c ∈ C. For this purpose, consider the following linear space:

Eu =
{
f ∈MN(C)

∣∣∣Rfu = ufC
}

In terms of this space, we want to prove that we have:

d ∈ Eu =⇒ dc ∈ Eu,∀c ∈ C
For this purpose, observe that we have the following implication, as a consequence of

the formulae established in Proposition 4.5 above:

Rdu = udC =⇒ Rd×pu = ud×pC
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We conclude that we have the following implication:

d ∈ Eu =⇒ d×p ∈ Eu,∀p ∈ N
But this gives the result, exactly as in [2], via the standard linear algebra fact that the

color components dc can be obtained from the componentwise powers d×p. �

In contrast with what happens for the groups or quantum groups, in the semigroup
setting we do not have a spectral decomposition result as well. To be more precise,
consider as before the following linear space, associated to a submagic matrix u:

Eu =
{
d ∈MN(C)

∣∣∣Rdu = udC
}

It is clear that Eu is a linear space, containing 1, and the following computation, using
∗ and then S, shows that Eu is stable under the adjoint operation ∗ too:

Rdu = udC =⇒ utd∗R = Cd∗ut

=⇒ Rd∗u = ud∗C

We also know from Theorem 4.6 above that Eu is stable under color decomposition.
However, Eu is not stable under taking products, and so is not an algebra, in general.

This phenomenon will prevent us, in what follows, to work out semigroup analogues of
the various results in [1], [2], [6], [7], [8], [14], [22], [23]. These results are indeed of spectral
nature, and do not have analogues in the present setting. In short, we are reaching to
the conclusion, already formulated in the introduction, that when passing from quantum
groups to quantum semigroups some results extend in a straightforward way, some other
results extend in a tricky way, and some other results do not extend at all.

5. Basic examples, oriented and unoriented cycles

As explained in the previous section, in what regards the potential basic tools for the

study of G̃+(X), namely the color decomposition and the spectral decomposition, one is
available, while the other one isn’t. Thus, we have to take now our distances with the
theory from the quantum group case [1], [2], [6], [7], [8], [14], [22], [23], and rather focus on
the aspects which are purely semigroup-theoretical. As we will soon see, this will actually
lead to some interesting conclusions, which are worth the passage to semigroups.

One basic finding from [2] states that the oriented and unoriented cycles have no quan-
tum symmetry, with the exception of the square C4, whose complement is disconnected,
and which has quantum symmetry. We will see here that the situation changes in the
semigroup setting, by becoming more interesting, with quantum symmetry present.

Let us start with a discussion regarding the usual partial permutation semigroups. In
order to discuss the oriented and unoriented cycles, we make the following convention:
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Definition 5.1. In the context of the partial permutations σ : I → J , with I, J ⊂
{1, . . . , N}, we decompose the domain set I as a disjoint union

I = I1 t . . . t Ip
with each Ir being an interval consisting of consecutive numbers, and being maximal with
this property, and with everything being taken cyclically.

In other words, we represent the domain set I ⊂ {1, . . . , N} on a circle, with 1 fol-
lowing 1, . . . , N , and then we decompose it into intervals, in the obvious way. With this
convention made, in the case of the oriented cycle, we have the following result:

Proposition 5.2. For the oriented cycle C→N we have

G̃(C→N ) = Z̃N
with the semigroup on the right consisting of the partial permutations

σ : I1 t . . . t Ip → J

which are cyclic on any Ir, given there by i→ i+ kr, for a certain kr ∈ {1, . . . , N}.

Proof. According to the definition of G̃(X), we have the following formula:

G̃(C→N ) =
{
σ ∈ S̃N

∣∣∣dij = dσ(i)σ(j), ∀i, j ∈ Dom(σ)
}

On the other hand, the adjacency matrix of C→N is given by:

dij =

{
1 if j = i+ 1

0 otherwise

Thus, the condition defining G̃(C→N ) is as follows:

j = i+ 1 ⇐⇒ σ(j) = σ(i) + 1, ∀i, j ∈ Dom(σ)

But this leads to the conclusion in the statement. �

In the case of the unoriented cycle, the result is as follows:

Proposition 5.3. For the unoriented cycle CN we have

G̃(CN) = D̃N

with the semigroup on the right consisting of the partial permutations

σ : I1 t . . . t Ip → J

which are dihedral on any Ir, given there by i→ ±ri+ kr, for a certain kr ∈ {1, . . . , N},
and a certain choice of the sign ±r ∈ {−1, 1}.
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Proof. The proof here is similar to the proof of Proposition 5.2. Indeed, the adjacency
matrix of CN is given by:

dij =

{
1 if j = i± 1

0 otherwise

Thus, the condition defining G̃(CN) is as follows:

j = i± 1 ⇐⇒ σ(j) = σ(i)± 1, ∀i, j ∈ Dom(σ)

But this leads to the conclusion in the statement. �

An interesting question is whether the semigroups Z̃N , D̃N are related by a formula
similar to DN = ZNoZ2. This is not exactly the case, at least with the obvious definition
for the o operation, because at the level of cardinalities we have:

Theorem 5.4. The cardinalities of Z̃N , D̃N are given by the formulae

|Z̃N | = 1 +NK1(N) +

[N/2]∑
p=2

NpKp(N)

|D̃N | = 1 +NK1(N) +

[N/2]∑
p=2

(2N)pKp(N)

where Kp(N) counts the sets having p cyclic components, I = I1 t . . . t Ip.

Proof. The first formula is clear from the description of Z̃N from Proposition 5.2, because
for any domain set I = I1 t . . . t Ip, we have N choices for each scalar kr, producing a
cyclic partial permutation i→ i+ kr on the interval Ir. Thus we have, as claimed:

|Z̃N | =
[N/2]∑
p=0

NpKp(N)

In the case of D̃N the situation is similar, with Proposition 5.3 telling us that the N
choices at the level of each interval Ir must be now replaced by 2N choices, as to have
a dihedral permutation i → ±ri + kr there. However, this is true only up to a subtlety,
coming from the fact that at p = 1 the choice of the ±1 sign is irrelevant. Thus, we are
led to the formula in the statement, with 2N factors everywhere, except at p = 1. �

In relation with the above, the computation of the numbers Kp(N) is an interesting
problem. At p = 1 the formula, which is actually not entirely obvious, is:

K1(N) = N2 −N + 1

At higher p we do not know the exact formula. As mentioned above, having this would

be interesting, in order to understand the relation between Z̃N , D̃N .
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Regarding now the quantum symmetries, both the oriented cycle and the unoriented
cycle are known from [2] to not have quantum symmetry in the quantum group sense,
unless we are in the special case of the square C4, which has disconnected complement,
and which has quantum group symmetries. However, the proof in [2] is of spectral nature,
using the Fourier diagonalization of the corresponding adjacency matrices, and since we
do not have spectral decomposition results in our present semigroup setting, as explained
at the end of section 4 above, such methods do not apply.

In fact, both the oriented cycle and the unoriented cycle do have quantum symmetries
in the present semigroup setting. We have here, as a first illustration:

Proposition 5.5. For the oriented and unoriented 2-cycles, which coincide, we have

G̃+(C2) = G̃+(C→2 ) = S̃+
2

and this quantum semigroup is infinite.

Proof. The adjacency matrix of the oriented or unoriented 2-cycle is as follows:

d =

(
0 1
1 0

)
=

(
1 1
1 1

)
−
(

1 0
0 1

)
Thus the commutation with d is automatic, and we obtain the formula in the statement.

As for the last assertion, this is known since [10], and explained in section 1 above. �

As explained in [10], the semigroup S̃+
2 is elementary to compute, and basically appears

from the matrices given in section 1 above, namely:

u =

(
p⊕ 0 0⊕ q
0⊕ r s⊕ 0

)
The next computation appears at N = 3. In what regards the unoriented cycle C3, this

is the triangle, which by Proposition 3.2 has quantum symmetries as follows:

G̃+(C3) = G̃+(Cc
3) = S̃+

3

In what regards now the oriented triangle C→3 , we have here the following result:

Theorem 5.6. The equations on the entries of a submagic 3× 3 matrix

u =

a b c
d e f
g h i


producing the semigroup Z̃+

3 = G̃+(C→3 ) are as follows:

bd = db = cg = gc = fh = hf

ce = ec = ha = ah = id = di

af = fa = bi = ib = ge = eg
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Proof. The adjacency matrix of the oriented 3-cycle C→3 is as follows:

d =

0 1 0
0 0 1
1 0 0


We have the following computation:

Rdu = R

0 1 0
0 0 1
1 0 0

a b c
d e f
g h i


= R

d e f
g h i
a b c


=

(a+ b+ c)d (a+ b+ c)e (a+ b+ c)f
(d+ e+ f)g (d+ e+ f)h (d+ e+ f)i
(g + h+ i)a (g + h+ i)b (g + h+ i)c


=

bd+ cd ae+ ce af + bf
eg + fg dh+ fh di+ ei
ha+ ia gb+ ib gc+ hc


We have as well the following computation:

udC =

a b c
d e f
g h i

0 1 0
0 0 1
1 0 0

C

=

c a b
f d e
i g h

C

=

c(a+ d+ g) a(b+ e+ h) b(c+ f + i)
f(a+ d+ g) d(b+ e+ h) e(c+ f + i)
i(a+ d+ g) g(b+ e+ h) h(c+ f + i)


=

 cd+ cg ae+ ah bf + bi
fa+ fg db+ dh ec+ ei
ia+ id gb+ ge hc+ hf


By cancelling the common terms, the equation Rdu = udC reads:bd ce af

eg fh di
ha ib gc

 =

cg ah bi
fa db ec
id ge hf


But these relations, and their adjoints, give the formulae in the statement. �
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The above result shows that C→3 , in analogy with C3, has massive quantum partial
symmetries. The same happens for Cn and C→n at higher n.

6. Oriented graphs with small number of vertices

We have seen in the previous sections that the finite graphs X tend to systematically
have quantum partial symmetry, and with this being in contrast with what happens with
the quantum group symmetries, whose lack is something that can happen.

We have no explanation for this phenomenon, but here is one more illustration for it:

Theorem 6.1. All the oriented graphs on 2 vertices have quantum partial symmetry.

Proof. Up to compementation and obvious symmetries of the problem, we have 4 adja-
cency matrices to be investigated, as follows:(

1 0
0 0

)
,

(
0 1
0 0

)
,

(
1 1
0 0

)
,

(
1 0
0 1

)
(1) For the first matrix, the invariance equations are as follows:(

p+ q 0
0 r + s

)(
1 0
0 0

)(
p q
r s

)
=

(
p q
r s

)(
1 0
0 0

)(
p+ r 0

0 q + s

)
By multiplying, these equations become:(

p+ q 0
0 r + s

)(
p q
0 0

)
=

(
p 0
r 0

)(
p+ r 0

0 q + s

)
Thus, the equations are as follows:(

(p+ q)p (p+ q)q
0 0

)
=

(
p(p+ r) 0
r(p+ r) 0

)
By using now the submagic condition, these equations become:(

p q
0 0

)
=

(
p 0
r 0

)
Thus the equations are q = r = 0, and the submagic matrix must be as follows:

u =

(
p 0
0 s

)
It follows that we have indeed quantum partial symmetry, because p, s can be here any

two projections.

(2) For the second matrix, the invariance equations are as follows:(
p+ q 0

0 r + s

)(
0 1
0 0

)(
p q
r s

)
=

(
p q
r s

)(
0 1
0 0

)(
p+ r 0

0 q + s

)
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By multiplying, these equations become:(
p+ q 0

0 r + s

)(
r s
0 0

)
=

(
0 p
0 r

)(
p+ r 0

0 q + s

)
Thus, the equations are as follows:(

(p+ q)r (p+ q)s
0 0

)
=

(
0 p(q + s)
0 r(q + s)

)
By using now the submagic condition, these equations become:(

qr ps
0 0

)
=

(
0 ps
0 rq

)
Thus the equations are qr = rq = 0, telling us that q, r must be in the center of the

algebra. In particular, we have as solutions submagic matrices as follows:

u =

(
p 0
0 s

)
It follows that we have indeed quantum partial symmetry, because p, s can be here any

two projections.

(3) For the third matrix, the invariance equations are as follows:(
p+ q 0

0 r + s

)(
1 1
0 0

)(
p q
r s

)
=

(
p q
r s

)(
1 1
0 0

)(
p+ r 0

0 q + s

)
By multiplying, these equations become:(

p+ q 0
0 r + s

)(
p+ r q + s

0 0

)
=

(
p p
r r

)(
p+ r 0

0 q + s

)
Thus, the equations are as follows:(

(p+ q)(p+ r) (p+ q)(q + s)
0 0

)
=

(
p(p+ r) p(q + s)
r(p+ r) r(q + s)

)
By using now the submagic condition, these equations become:(

p+ qr q + ps
0 0

)
=

(
p ps
r rq

)
Thus the equations are r = q = 0, and the submagic matrix must be as follows:

u =

(
p 0
0 s

)
It follows that we have indeed quantum partial symmetry, because p, s can be here any

two projections.

(4) Finally, for the fourth matrix we obtain S̃+
3 , which is known to be infinite, as

explained before, and we are done. �
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The exact computation of all the graph quantum semigroups appearing at N = 2 is an
interesting question, that we will not get into here. In relation now with our main finding,
namely that all graphs seem to have quantum symmetry in our setting, here is as well a
result at N = 3, dealing with the unoriented case only:

Proposition 6.2. All the unoriented graphs on 3 vertices have quantum partial symmetry.

Proof. This is something that we already know, because at N = 3 we only have the

triabgle and its complement, having semigroup S̃+
3 , and then the 1-edge graph and its

complemenent, which by Proposition 3.4 have semigroup bigger than S̃+
2 . �

Regarding the 1-edge graph, the precise result here is as follows:

Proposition 6.3. The equations on the entries of a submagic 3× 3 matrix

u =

a b c
d e f
g h i


producing the semigroup G̃+(· −) are as follows:

dh = fb = gf = hc = −ib = −ge = −ec = −di

Proof. This is similar to the proof of Theorem 5.6. The adjacency matrix is:

d =

0 0 0
0 0 1
0 1 0


A direct computation gives the following formula:

Rdu =

 0 0 0
eg + fg dh+ fh di+ ei
hd+ id ge+ ie gf + hf


We have as well the following computation:

udC =

0 ce+ ch bf + bi
0 fb+ fh ec+ ei
0 ib+ ie hc+ hf


Thus, we are led to the formulae in the statement. �

In any case, our conjecture is that all graphs should have quantum partial symmetry.
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7. Infinite graphs and functional analysis questions

Generally speaking, most of the present constructions extend to N =∞. We can talk
about the compact quantum semigroup of partial permutations of N, as follows:

C(S̃+
∞) = C∗

(
(uij)i,j∈N

∣∣∣u = submagic
)

This is already quite remarkable, because in what regards S+
∞ itself, this is something

which cannot really be defined, due to technical functional analysis reasons. See [16].

Next in line, we can talk about the compact quantum semigroup of quantum partial
automorphisms of an infinite graph X, as follows:

C(G̃+(X)) = C(S̃+
∞)
/〈

Ri(du)ij = (ud)ijCj

〉
Once again, this is quite remarkable, because as already mentioned above, G+(X)

cannot be really defined for the empty graph X = N, as explained in [16].

Our belief is that these constructions can help in connection with a number of questions,
as for instance with the unification of the compact quantum group actions G y X and
the discrete quantum group actions Γ y X, in terms of actions of certain locally compact

quantum subgroups L ⊂ S̃+
∞. It is our belief that the systematic study at N < ∞ done

in this paper is a useful thing, that can be of help, in connection with these questions.
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