Ultimate AI-Memory1

Ruolin Jiu
jiurl@outlook.com

Abstract

A completely new learning rule, is applicable to convolutional neural networks,
can do long-term accumulative learning, make neuron’s meaning explicit. Similar
to the learning rule in the brain, completely different with gradient descent.

This learning rule, is the foundation and the key of whole memory, will open a
huge growth potential for Artificial Intelligence.

1 New Learning Rule

True Artificial Intelligence, needs lots of memories, and the thinkings based on memory.

Making neural networks can get knowledge through visual perception, for example: cherry is
red, banana is yellow, is the best choice for the first step. Then, making memory’s all kinds of
characteristics.

Getting knowledge through perception system, is extremely important, and irreplaceable.

But, current learning rule: gradient descent, can’t brace these. Whether neural networks getting
knowledge through visual perception, nor memory’s other characteristics, for example: association,
language attaching, all can’t be braced by gradient descent.

I propose a completely new learning rule, to brace the realization of whole memory.

This learning rule, is applicable to convolutional neural networks, can do long-term accumulative
learning, make neuron’s meaning explicit. Similar to the learning rule in the brain, completely
different with gradient descent. Really great!

Without this learning rule, "neural networks getting knowledge through visual perception”, most
memory’s characteristics, and so on, can’t be accomplished. Lots of important things can’t start.
With this learning rule, whole memory part can start to do. Lots of important things can start to do.
This learning rule, is the foundation and the key of whole memory, will open a huge growth potential
for Artificial Intelligence.

New learning rule, consists of four parts, they are: convolution layer part, neuron part, 4c9901 I ¢ part,
long-term accumulative learning.

Preliminarily validation has been done, MNIST handwritten digits "0", "1" recognition (memory
generation, memory recall).

Code and paper all will be released.

In Memory1,2 (has done), have made "new learning rule".

In Memory3, will do "improving new learning rule futher".

In Memory4, will do "neural networks learn basic knowledge through visual perception”, for example:
cherry is red, banana is yellow.

2 Experiment AI-Memoryl

MNIST handwritten digits "0" recognition.
Al-Memory1 code: https://github.com/jiurl/AI-Memoryl
all details are in code.

https://github.com/jiurl/AI-Memory1

Al-Memory1 focus on convl learning, remove those parts which belong to Memory?2.

2.1 Network Architecture

Entire network consists of two convolution layers.
convl. kernel_size:7, stride:2. number of features:300. learning steps:1500.
conv2. kernel_size:11, stride:1. number of features:100. learning steps:1000.

2.2 Training Data

MNIST dataset, 500 images of digit "0".
New learning rule, will not need data labeling in the future.

2.3 The Features Learned by Convl

#0 #1 #2 #3 #4 #5 #6 #7 #3 #9

#10 #11 #12 #13 #14 #15 #16 #1T #12 #19

#20 #21 #22 #23 #24 #25 #26 #27 #28 #29

#30 #31 #32 #33 #34 #35 #36 #3T #38 #39

#40 #41 #42 #43 #dd #45 #46 #47 #43 #49

Figure 2-1

As shown in Figure 2-1.
In weight figure, pink color is positive weight, blue color is negative weight.

2.4 Code Introduction

Al-Memory1 is a pure C++ program.
The parts of "Tensor" and "convolution layer computing input sum", are based on libtorch library. All
rest parts are written by myself.

Main subject of code:

Implementations of things about neural networks.
The observation tool: TensorObserver.

All kinds of observations of neural networks.

The observation of all kinds of internal procedures, in neural networks running, is crucial and
indispensable.

So, I design and implement a simple, stand-alone, observation tool: TensorObserver, which included
in AI-Memory1, in source code form.

All kinds of observations, are all based on TensorObserver.

Most figures in this paper, are generated by TensorObserver too.

3 Learning Rule - Convolution Layer Part

Input is 1x28x28 image. conv1, kernel_size:7, stride:2, number of features:300.
so, conv] has 300*11%*11 neurons.

The neuron in convolution layer, is named as "cell".
A "cell input", is a sub input which size is input_channels*kernel_size*kernel_size.
Cell index: (channel, y, x).

For example, some convl cell inputs:

(0,0,0) cell input, is a y=0, x=0 (O*stride), 7*7 area of input image.
(0,0,1) cell input, is a y=0, x=2 (1*stride), 7*7 area of input image.
(0,1,0) cell input, is a y=2, x=0, 7*7 area of input image.

3.1 New Feature Generation

One input, the sub areas which not make neurons active, will directly become new features.
So, to generate new features, only one input(e.g. a image) is enough.

As shown in Figure 3-1-1, 3-1-2, 3-1-3.

#0

I

selected cell input

new features:

#0 #1 #2 #3 #4 #5 #6

Figure 3-1-1: new features generated in step 0

If, one input, all sub areas make neurons active, then there is no new feature generation.

Detail in code: ConvolutionLayer::ForwardLearnNewFeature()

3.1.1 Select Cell Input Which Will Become New Feature

Iterate every (11*11 individual) cell input.

Cell input which make active, is forbidden to select.

Cell input which have too much overlap with cell input which make active, is forbidden to select.
Cell input which have too much overlap with cell input which has been selected, is forbidden to
select.

#1

selected cell input

new features:

#7 #2 #9

Figure 3-1-2: new features generated in step 1

#7

selected cell input

new features:

#19 #20 #21 #22 #23 #24

Figure 3-1-3: new features generated in step 7

So, if a cell input, not make active, have no overlap or little overlap (hyper parameter) with forbidden
cell inputs, then this cell input will be selected, to become new feature.

Figure 3-1-1, shows selected cell inputs in step 0. These 7 selected cell inputs become 7 features.

At step 0, there are no features in convl. So, all cell input not make active.

Two types selected cell input, are not drawn out on figure, they are:

If selected cell input’s inputs are all 0, then no feature generate.

If selected cell input’s positive inputs are too few (hyper parameter), then no feature generate.

Figure 3-1-2, shows selected cell inputs in step 1.
At step 1, there are 7 features in convl. So, many sub areas of input, make active, these parts will not
be selected. The sub areas which not make active, will be selected, to generate new features.

3.1.2 The Feature Generated From Cell Input

With a specified cell input, a corresponding feature could be generated, which make:
Similar cell input, will make the feature neuron active.

Distinct cell input, will not make the feature neuron active.

More introduction in Neuron Part.

3.2 Short-Term Memory, Long-Term Memory, Forget

Newly generated feature, is in a short-term memory state.
The short-term memory which frequently be activated, will finally turn to long-term memory.
The shrot-term memory which rarely be activated, will be forgotten.

The feature in a short-term memory state, can continue to learn, weights can be changed.
The feature in a long-term memory state, wouldn’t learn anymore, weights wouldn’t be changed.

That means, newly generated feature, will continue to learn.

#0

wT? E, active 0 in 0

#1

wf 5, active 0 in 1

#99

wT 5, active 1 in 99

#100

wi E, active 0 in 0

Figure 3-2: a example of a feature being forgotten

#62

wldh E, active 0 in 0

#63

wl(5 8, active 0 in 1

#162

wl(5 5, active 11 in 100

#561

wl05 5, active 56 in 499

#5662

wl(5 L, actiwve 56 in 500

Figure 3-3: a example of a feature to long-term memory

3.3 Forget - Remove Unwanted Feature

Using forgetting, remove unwanted feature.

There are some unwanted features in newly generated features.
These unwanted features, will be removed by forgetting.

As shown in Figure 3-2. w7 is a newly generated feature in step 1 (see Figure 3-1-2). It is a unwanted
feature for digit "0" recognition.

It is only being activated 1 time, in 100 steps.

Because too few activations, at step 100, it is being forgotten, being removed.

3.4 A Design of Short-Term Memory, Long-Term Memory, Forget

By now, a simple design of short-term memory, long-term memory, forget, is:

Just do some simple statistics. When a feature being activated, a count increase.

Then, after a period of time, feature with a high activation rate, turn to long-term memory state,
feature with a low activation rate, is forgotten.

3.5 Compete to Be Active

Compete to be active: In convolution layer neurons, in one area (across features), only one neuron is
allowed to be active.
Detail in code: ConvolutionLayer::NmsInAllNeurons()

Competing to be active, can be considered as, neurons compete for some resources, or there are
inhibitions between neurons. It is a very important part for a convolution layer activation routine.

As shown in Figure 3-4.

active of neurons before nms

tive of neurons after nms (compete to be active)

Figure 3-4

Neuron (0,3,4) inhibit, neuron (0,2,5), (0,5,3), (1,3,6), (3,5,5) activation.
Neuron (9,10,6) inhibit, neuron (1,10,5), (3,8,7), (5,9,4), (6,9,6), (7,10,4), (7,10,5), (9,9,7) activation.
Neuron (3,7,8) inhibit, neuron (3,6,8), (4,6,8), (9,8,8) activation.

3.6 Continuing Learning of Short-Term Memory Feature

Newly generated feature (short-term memory state), will continue to learn.
Continuing learning of short-term memory feature, is very important, will play an important role in
the future.

3.6.1 Positive Learning

When a feature (short-term memory state) being activated by a cell input, the feature will do a positive
learning to this cell input.
The feature will change towards this cell input direction.

As shown in Figure 3-5.

At step 1, the input make feature 0, 2, 3, 5, 6 (newly generated in step 0) active.

Cell input (1,6), (3,3) make feature 0 active. Feature 0 will do a positive learning to cell input (1,6),
(3,3).

Cell input (2,9), make feature 2 active. Feature 2 will do a positive learning to cell input (2,9).

Cell input (6,3), make feature 3 active. Feature 3 will do a positive learning to cell input (6,3).

Cell input (9,3), make feature 5 active. Feature 5 will do a positive learning to cell input (9,3).

Cell input (9,6), make feature 6 active. Feature 6 will do a positive learning to cell input (9,6).

w0 (1,6) 0.842 (3,3) 0.855
w2 (2,9) 0.808

3 (6,3) 0.833
H
e
aui

b (9,6) 0.78¢

Figure 3-5

3.6.2 Negative Learning

When a cell input, simultaneously make multiple features active, the features except the max activation
one, will do a negative learning to this cell input. The features will change towards distinction this
cell input direction.

As shown in Figure 3-6.

At step 25, the cell input (6,1) simultaneously make feature 38, 40, 50 active.
Input sum of feature 38 is max, 0.920.

Feature 38 will do a positive learning to cell input (6,1).

Feature 40 will do a negative learning to cell input (6,1).

Feature 50 will do a negative learning to cell input (6,1).

#ib

(6, 1) w3d 0. 820 wdl 0,877 wol 0. 853

Figure 3-6

3.7 Internal Procedure of Learning

torch :: Tensor
ConvolutionLayer :: Forward(const torch:: Tensor& input, bool is_learning)

{

torch :: Tensor input_sum = ComputelnputSum (input);

// compete to be active

torch :: Tensor output;

torch :: Tensor active_of_neurons;

vector<vector <Celllnfo>> suppress_list;

std :: tie (output, active_of_neurons, suppress_list) =
ForwardActivation (input_sum);

/!l learning

if (is_learning == true)

{
ForwardNegativeLearn (input, suppress_list);
ForwardLearnNewFeature (input, active_of_neurons);
ForwardPositiveLearn (input, active_of_neurons);

MemoryStateTransition ();

}

return output;

4 Learning Rule - Neuron Part

4.1 The Design of Neuron

As shown in Figure 4-1-1, 4-1-2, 4-1-3.

input_sum = 1*0.4+ 0.5*0.3+ 0*-0.5+ 1*0.3=0.85
1 min_activation_thresh: 0.7
max_activation_thresh: 0.8

Figure 4-1-1

input_sum = 0.170.4+ 0.3*0.3+ 07-0.5+ 070.3=0.13
0.1 min_activation_thresh: 0.7
max_activation_thresh: 0.8

Figure 4-1-2

10

input_sum = 0.1*0.75+ 0.3*0.75+ 0*-0.5+ 0"0.75 = 0.5
075 min_activation_thresh: 0.7
max_activation_thresh: 0.8

Figure 4-1-3

4.1.1 Output

Output of neuron set as 0-1.
Output of neuron is no negative value. Inhibition is achieved by negative weights.

This setting, imply a hypothesis, from the perspective of output, every neuron is equal.

4.1.2 Activation

As shown in Figure 4-1-1, 4-1-2, 4-1-3.
There are two activation threshold, min_activation_threshold, max_activation_threshold.

When input sum of neuron is less than min_activation_threshold, neuron is not active, output is 0.
When input sum of neuron is greater than min_activation_threshold, neuron is active, output is greater
than 0.

When input sum of neuron is greater than max_activation_threshold, output is 1.
When input sum of neuron is between min_activation_threshold and max_activation_threshold, output
is k*input_sum-+b, a value in 0-1.

pseudo code:

if (input_sum <= min_activation_threshold) output = O0;
else if (input_sum >= max_activation_threshold) output = 1;
else output = k % input_sum + b;

4.1.3 The Intention of Weight Design

As shown in Figure 4-2-1, 4-2-2, 4-2-3. (hide "0.", e.g. "0.027" display "027")

11

000027 698 988 941 278 074
000223 988 988 247 000 000
000776 992 745000000000
298 964 988 439000 000000
333988 901 098 000 000000
333988874 000000000000
3331988 568000000 000000

000376941 992 952 737 164
D008EE 934 992 474 000 000
1881917992 000000000000
866984934 D00 000 000000
984 984 934 000 000000 000
9841984 443 000000000000
9841984 368 D00/000 000 000

al aZ bl
Figure 4-2-1 Figure 4-2-2

There are three input: al, a2, bl.
al, a2 are similar inputs. al, bl are very different inputs.

There’s a neuron, the intention is:

The weights of neuron, is generated from the input al. Then it make:
when input is al, the neuron is active.

when input is a2, the nueron is active.

when input is b1, the nueron is not active.

4.1.4 Weight Design

The weights of a neuron, have positive value, have negative value.
The total amount of positive weights is 1. Any neuron is same.
The total amount of negative weights, is different for different neuron

552000000 000/000:000 000
999 886 447 000000000 000
4471999 999 552000000 000
000000552 999886 000 000
000000000447 999776 000
000000000 000/666 999 223
000000000 000/000/999 666,

Figure 4-2-3

The negative weights is very important, indispensable, for prevent wrong activations.

Figure 4-2-4, shows weights generated from input al.
Figure 4-2-5, shows weights generated from input b1.

222016 408 579551 163 D43
222130579579 144202 220
227454 BE1 436 222 207 220
174/565 579/257|222 222 222,
195579528 0BT 222 202 222
195|5T 9151 2|222|122 212221222
195|579 3331222|222 2221222

391/315315/315/315 315/315
TOB 628316 315315 315315
318 TOBTOB 391 315 315515
315315391 708628 315315
315315315316 TOBEE0 E1E
315/315315/315472 7081158
315/315315/315/315 7081472

* 0.1 * 0.1
weight_al, P: 1.00 N: -0.49
Figure 4-2-4

4.2 Weights Generation - Weight Dispatch

Generating weights by weight dispatch.
Detail in code: Neuron::LearnNewWeight()

12

weight_bl, F: 1.00 N:
Figure 4-2-5

-0, 95

With a specified input:

Positive weights generation:

Every connection which stimulus is greater than 0, will get some positive weight, from the total
amount of positive weight.

The stimulus is stronger, the positive weight being dispatched is more.

The stimulus is 0, then no positive weight being dispatched.

The total amount of positive weight will all be dispatched to connections, by the stimulus intensities
of connections.

Negative weights generation:

Every connection which stimulus is 0, will get some negative weight. The dispatch value are all same.
The negative weight dispatch value, is in proportion to average positive weight value of one connec-
tion.

Figure 4-3, shows internal procedure of generating weights from input al.

016402579551 163043 0164025795081 163043
130579579144 1305679579144
454 LE1 436 454 581 436
174565 579257 174565 579257
195579528 057 195679528057
195679512 1955674512
195679333 195579535
* 0.1 * 0.1
1. dispatch positive weight 2. dispatch negative welght
Figure 4-3

4.2.1 Meaning of Activation Threshold

The weight design, make the input_sum reflecting the degree of similarity between input and weight.
So, min_activation_threshold, max_activation_threshold can be setted, to your needed.

4.3 Continuing Learning of Weight

After generated, the weight can continue to learn.

4.3.1 Positive Learning
When a neuron is being activated, it can do positive learning to this input.

The intention of positive learning is, according to this input, changing weights, make weight a little
more similar with this input.

4.3.2 Negative Learning
When a input simultaneously activate multiple neurons, then except the max activation one, others

will do negative learning.
The intention of negative learning is, changing weights, make weight a little more distinction.

13

4.4 Continuing Learning Design - Weight Recycle, Weight Dispatch, Weight Refresh
4.4.1 Positive Learning

Detail in code: Neuron::PositiveLearn()

As shown in Figure 4-4.

015400567 540159 042
128567 567141
445569 427

171 B3 567 252

191 567 517 056

131 567 502

191 567 326

* 0.1
1. PositiveWeightRecycle

P: 0.9800 N: -0. 4889
recycle 2% from every positive

019410577 549167 044
136577577 146
454 579 427
179563577 252
201577 527 056
201577 506
201577330

0.1
2. WeightDispatch

P: 09998 N: -0, 4887
dissatch 0.02 with insut a2

01941057750 167 044
136577577 146
455579 427

179563577 252

201 577 B2T 056

201577 506

201577330

* 0.1
3. PositiveWeightRefresh

F: 1.0000 N: -0. 4887
refresh P to 1. 0000

019410577 550167 044
136577577 146
455579 427
179563577 252
201577527 056
201577 506
201577330

* 0.1
4. NegativeWelghtRefresh

F: 1.0000 N: -0. 4889
refresh N to —0. 4889

get total amount 0.02

Figure 4-4

First, recycle some positive weight, from the current weights.
Then, dispatch the recycled positive weight to the weights, according to this input.
So, the weight will change towards this input direction.

After these two steps, the total amount of positive weight, has been changed, usually not 1 anymore.
The total amount of negative weight, has been changed too.

So, by weight refreshing, to refresh the total amount of positive weight to 1 again. And refresh the
total amount of negative weight to the origin level.

pseudo code:

float recycle = PositiveWeightRecycle(w, positive_recycle_rate);
WeightDispatch(w, input, recycle);

PositiveWeightRefresh (w, positive_weight_total_amount);
NegativeWeightRefresh (w, negative_weight_total_amount);

4.4.2 Negative Learning

Detail in code: Neuron::NegativeLearn()

First, recycle some negative weight, from the current weights.
Then, dispatch the recycled negative weight to the weights, according to this input.
So, the weight will change towards to inhibit this input direction.

Then, by weight refreshing, to refresh the total amount of positive weight to 1 again, and refresh the
total amount of negative weight to the origin level.

pseudo code:

float recycle = NegativeWeightRecycle (w,
WeightDispatch (w, input, recycle);

PositiveWeightRefresh (w, positive_weight_total_amount);
NegativeWeightRefresh (w, negative_weight_total_amount);

negative_recycle_rate);

14

5 Learning Rule - 4¢99011c¢ Part

The content of AI-Memory1 is interesting. And the content is plenty too.

Learning rule - 4c99011c (4c99011cf7805508ecb764e0b233c237a12232ac), is a very very important
rule, and is a astonishing rule.

For keep some suspense, and for easier to understand, learning rule - 4c9901 1c will be published in
Al-Memory?2.

Al-Memory?2 has been done, coming soon.

6 Learning Rule - Long-Term Accumulative Learning

6.1 Long-Term Accumulative Learning

For example,
neural networks can learn digit "0" first, after a while, learn digit "1".
learning digit "1", won’t affect the memory of digit "0" learned before.

So, neural networks can keep learning continuously.

6.2 Long-Term Accumulative Learning Rule
For every layer, long-term memory features won’t be changed, won’t be deleted. Once a feature
turned to long-term memory, then exist forever.

The features of this layer, only base on long-term features of previous layer, not base on any short-term
features of previous layer.

From begin to end, learn layer by layer.

By this way, learning new things, wouldn’t change any features (of any layer) learned before. Just
generating new features (of various layers).

6.3 Features Accumulate and Share
Features learned before, will be used in new things learning, will make new things learning a lot
easier.

For example,
Some features (of various layers) learned in digit "1", maybe are active and used in digit "7" learning.
No need to generate these features again.

7 Contact

Email: jiurl @outlook.com
More Contact Information: https://jiurl.github.io
Al-Memoryl Homepage: https://github.com/jiurl/AI-Memoryl

8 Some Chat

8.1 Can True Artificial Intelligence Be Made Out?

Yes. In my opinion, 100% yes.
At present, percent complete is very low. It is faraway and difficult. But it could be done. And it will
be done finally.

All kinds of rules of memory, all kinds of rules of thinking, lots of things need to do. In software
aspect, lots of things need to do too.

15

https://jiurl.github.io
https://github.com/jiurl/AI-Memory1

8.2 Some Chat

The long-term objective of Ultimate Al project is, making out True Artificial Intelligence.
Wish a lot of people can join this project, we do this together.
Wish some people can support this project, by various means.

I’'m looking foward to some cooperation, if you are interested, contact me please.
Wish people who are interested in Al, can communicate a lot together. That must be fun.

References

[I]https://nba.uth.tmc.edu/neuroscience/

[2] Principles of Neural Science

16

https://nba.uth.tmc.edu/neuroscience/

	New Learning Rule
	Experiment AI-Memory1
	Network Architecture
	Training Data
	The Features Learned by Conv1
	Code Introduction

	Learning Rule - Convolution Layer Part
	New Feature Generation
	Select Cell Input Which Will Become New Feature
	The Feature Generated From Cell Input

	Short-Term Memory, Long-Term Memory, Forget
	Forget - Remove Unwanted Feature
	A Design of Short-Term Memory, Long-Term Memory, Forget
	Compete to Be Active
	Continuing Learning of Short-Term Memory Feature
	Positive Learning
	Negative Learning

	Internal Procedure of Learning

	Learning Rule - Neuron Part
	The Design of Neuron
	Output
	Activation
	The Intention of Weight Design
	Weight Design

	Weights Generation - Weight Dispatch
	Meaning of Activation Threshold

	Continuing Learning of Weight
	Positive Learning
	Negative Learning

	Continuing Learning Design - Weight Recycle, Weight Dispatch, Weight Refresh
	Positive Learning
	Negative Learning

	Learning Rule - 4c99011c Part
	Learning Rule - Long-Term Accumulative Learning
	Long-Term Accumulative Learning
	Long-Term Accumulative Learning Rule
	Features Accumulate and Share

	Contact
	Some Chat
	Can True Artificial Intelligence Be Made Out?
	Some Chat

