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Abstract: We will show in this paper in a self contained way that our
basic idea for our space is wrong since Euclid, simply and clearly by using
many simple and interesting figures. The common sense on the division
by zero with a long and mysterious history is wrong and our basic idea on
the space around the point at infinity is also wrong since Euclid. On the
gradient or on derivatives we have a great missing since tan(π/2) = 0. Our
mathematics is also wrong in elementary mathematics on the division by
zero. We will show and give various applications of the division by zero
0/0 = 1/0 = z/0 = 0 with many figures. In particular, we will introduce
several fundamental concepts on Euclidean geometry which show new ele-
mentary concepts on our space. We will know that the division by zero is
our elementary and fundamental mathematics.
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1. Introduction - Simple History of the Division by Zero

By a natural extension of the fractions

(1)
b

a

for any complex numbers a and b, we found the simple and beautiful result,
for any complex number b

(2)
b

0
= 0,

incidentally in [23] by the Tikhonov regularization for the Hadamard product
inversions for matrices and we discussed their properties and gave several
physical interpretations on the general fractions in [7] for the case of real
numbers. The result is a very special case for general fractional functions in
[5].

The division by zero has a long and mysterious story over the world (see,
for example, H. G. Romig [21] and Google site with the division by zero)
with its physical viewpoints since the document of zero in India on AD 628.
In particular, note that Brahmagupta (598 -668 ?) established the four
arithmetic operations by introducing 0 and at the same time he defined as
0/0 = 0 in Brhmasphuasiddhnta. Our world history, however, stated that
his definition 0/0 = 0 is wrong over 1300 years, but, we will see that his
definition is right and suitable.

Indeed, we will show typical examples for 0/0 = 0. However, in this
introduction, these examples are based on some natural feelings and are not
mathematics, because we do still not give the definition of 0/0. However,
following our new mathematics, these examples and results may be accepted
as natural ones later:

The conditional probability P (A|B) for the probability of A under the
condition that B happens is given by the formula

P (A|B) =
P (A ∩B)

P (B)
.

If P (B) = 0, then, of course, P (A∩B) = 0 and from the meaning, P (A|B) =
0 and so, 0/0 = 0.

For the representation of inner product in vectors

cos θ =
A ·B
AB

=
AxBx +AyBy +AzBz√

A2
x +A2

y +A2
z

√
B2

x +B2
y +B2

z

,

if A or B is the zero vector, then we see that 0 = 0/0. In general, the zero
vector is orthogonal for any vector and then, cos θ = 0.

We have furthermore many and concrete examples as we will see in this
paper.

However, we do not know the reason and motivation of the definition of
0/0 = 0 by Brahmagupta, furthermore, for the important case 1/0 we do not
know any result there. – Indeed, we find many and many wrong logics on
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the division by zero, without the definition of the division by zero z/0. How-
ever, Sin-Ei Takahasi ([7]) discovered a simple and decisive interpretation
(2) by analyzing the extensions of fractions and by showing the complete
characterization for the property (2):

Proposition 1. Let F be a function from C×C to C satisfying

F (b, a)F (c, d) = F (bc, ad)

for all

a, b, c, d ∈ C

and

F (b, a) =
b

a
, a, b ∈ C, a ̸= 0.

Then, we obtain, for any b ∈ C

F (b, 0) = 0.

In a long mysterious history of the division by zero, this proposition seems
to be decisive.

Following the proposition, we should define

F (b, 0) =
b

0
= 0,

and consider, for any complex number b, as (2); that is, for the mapping

(3) W =
1

z
,

the image of z = 0 is W = 0 (should be defined from the form).
This fact seems to be a curious one in connection with our well-established
popular image for the point at infinity on the Riemann sphere ([2]). As the
representation of the point at infinity of the Riemann sphere by the zero
z = 0, we will see some delicate relations between 0 and ∞ which show a
strong discontinuity at the point of infinity on the Riemann sphere. We did
not consider any value of the elementary function W = 1/z at the origin
z = 0, because we did not consider the division by zero 1/0 in a good way.
Many and many people consider its value by the limiting like +∞ and −∞ or
the point at infinity as ∞. However, their basic idea comes from continuity
with the common sense or based on the basic idea of Aristotle. – For the
related Greece philosophy, see [31, 32, 33]. However, as the division by zero
we will consider its value of the function W = 1/z as zero at z = 0. We will
see that this new definition is valid widely in mathematics and mathematical
sciences, see ([11, 14]) for example. Therefore, the division by zero will give
great impacts to calculus, Euclidean geometry, analytic geometry, complex
analysis and the theory of differential equations in an undergraduate level
and furthermore to our basic ideas for the space and universe.

Meanwhile, the division by zero (2) was derived from several independent
approaches as in:

1) by the generalization of the fractions by the Tikhonov regularization
or by the Moore-Penrose generalized inverse to the fundamental equation
az = b that leads to the definition of the fraction z = b/a,
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2) by the intuitive meaning of the fractions (division) by H. Michiwaki,

3) by the unique extension of the fractions by S. Takahasi, as in the above,
and

4) by the extension of the fundamental function W = 1/z from C \ {0}
into C such that W = 1/z is a one to one and onto mapping from C \ {0}
onto C \ {0} and the division by zero 1/0 = 0 is a one to one and onto
mapping extension of the function W = 1/z from C onto C, – Here, we can
consider also the above on the real numbers R for the function y = 1/x –

Furthermore, in ([10]) we gave the results in order to show the reality of
the division by zero:

A) a field structure containing the division by zero — the Yamada field
Y,

B) by the gradient of the y axis on the (x, y) plane — tan π
2 = 0,

C) by the reflection W = 1/z of W = z with respect to the unit circle
with its center at the origin on the complex z plane — the reflection point
of zero is zero, (The classical result is wrong, see [14]),

and

D) by considering rotation of a right circular cone having some very in-
teresting phenomenon from some practical and physical problem.

Furthermore, in ([11],[23]), we discussed many division by zero properties
in the Euclidean plane - however, precisely, our new space is not the Eu-
clidean space. More recently, we see the great impact to Euclidean geometry
in connection with Wasan in ([15, 17, 18]). In ([8]), we gave beautiful geo-
metrical interpretations of determinants from the viewpoint of the division
by zero.

The global results were published in the book [24].

2. Division by zero calculus

As the number system containing the division by zero, the Yamada field
structure is complete.

However for applications of the division by zero to functions, we will
need the concept of division by zero calculus for the sake of uniquely deter-
minations of the results and for other reasons. See [11].

For example, for the typical linear mapping

y =
x− 1

x+ 1
,

it gives a mapping on {R \ {−1}} onto {R \ {1}} in one to one and from

y = 1 +
−2

x− (−1)
,

we see that −1 corresponds to 1 and so the function maps the whole {R}
onto {R} in one to one.
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Meanwhile, note that for

y = (x− 1) · 1

x+ 1
,

we should not enter x = −1 in the way

[(x− 1)]x=−1 ·
[

1

x+ 1

∣∣∣∣
x=−1

= (−2) · 0 = 0.

However, in may cases, the above two results will have practical meanings
and so, we will need to consider many ways for the application of the division
by zero and we will need to check the results obtained, in some practical
viewpoints. We will refer to this delicate problem with many examples.

2.1. Introduction of the division by zero calculus. For any Laurent
expansion around x = a,

(4) f(x) =

−1∑
n=−∞

Cn(x− a)n + C0 +

∞∑
n=1

Cn(x− a)n

we define the division by zero calculus by the identity

(5) f(a) = C0.

For the correspondence (5) for the function f(x), we will call it the divi-
sion by zero calculus. By considering the derivatives, we can define any
order derivatives of the function f at the singular point a as follows:

f (n)(a) = n!Cn.

We can give the definition of the division by zero calculus for more general
functions over analytic functions.

For a function y = f(x) which is n order differentiable at x = a, we will
define the value of the function, for n > 0

f(x)

(x− a)n

at the point x = a by the value

f (n)(a)

n!
.

For the important case of n = 1,

f(x)

x− a
|x=a = f ′(a).

In order to avoid any logical confusion in the division by zero, we would
like to refer to the logical essence:

We define 1/0 = 0 for the form; this precise meaning is that for the
function W = f(x) = 1/x, we have f(0) = 0 following the division by
zero calculus. In particular, from the function f(x) ≡ 0 we have 0/0 = 0,
similarly (see Figure 1).
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However, for functions we see that the results by the division by zero cal-
culus have not always practical senses and so, for the results by division
by zero we should check the results, case by case.

x

y

Figure 1.

For example, for the simple example for the line equation on the x, y plane

ax+ by + c = 0

we have, formally

x+
by + c

a
= 0,

and so, by the division by zero, we have, for a = 0, the reasonable result

x = 0.

Indeed, for the equation y = mx, from
y

m
= x,

we have, by the division by zero, x = 0 for m = 0. This gives the case
m = ±∞ of the gradient of the line. – This will mean that the equation
y = mx represents the general line through the origin in this sense. – This
method was applied in many cases, for example see [15, 17].

However, from
ax+ by

c
+ 1 = 0,

for c = 0, we have the contradiction, by the division by zero

1 = 0.

Here, we should consider that

ax+ by

c
+

c

c
= 0,

and for c = 0
c

c
= 0,
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we have the trivial identity.
Meanwhile, note that for the function f(x) = x + 1

x , f(0) = 0, however,
for the function

f2(x) = x2 + 2 +
1

x2
,

we have f2(0) = 2. Of course,

f(0) · f(0) = {f(0)}2 = 0.

Furthermore, see many examples, [11].

2.2. Ratio. On the real x− line, we fix two different point P1(x1) and P2(x2)
and for x = (x1.x2), we will consider the point, with a real number r

(6) P (x; r) =
x1 + rx2
1 + r

.

If r = 1, then the point P (x; 1) is the mid point of the two points P1 and
P2 and for r > 0, the point P is on the interval (x1, x2). Meanwhile, for
−1 < r < 0, the point P is on (−∞, x1) and for r < −1, the point P is
on (x2,+∞). Of course, for r = 0, P = P1. We see that r tends to +∞
and −∞, P tends to the point P2. We see the pleasant fact that by the
division by zero calculus, P (x,−1) = P2. For this fact we see that for all
real numbers r correspond to all real line numbers.

In particular, we see that in many text books on the undergraduate course
the formula (6) is stated as a parameter representation of the line through
the two pints P1 and P2. However, if we do not consider the case r = −1 by
the division by zero calculus, the classical statement is not right, because
the point P2 may not be considered.

On this setting, we will consider another representation

P (x;m,n) =
mx2 − nx1

m− n

for the exterior division point P (x;m,n) in m : n for the point P1 and P2.
For m = n. we obtain, by the division by zero calculus, P (x;m,m) = x2.
Imagine the result that the point P (x;m,m) = P2 and the point P2 seems
to be the point P1. Such a strong discontinuity happens for many cases. See
[11, 14].

By the division by zero, we can introduce the ratio for any complex num-
bers a, b, c, d as

AC

CB
=

c− a

b− c
.

We will consider the Appollonius circle determined by the equation

(7)
AP

PB
=

|z − a|
|b− z|

=
m

n

for fixed m,n ≥ 0. Then, we obtain the equation for the cirlce

(8)

∣∣∣∣z − −n2a+m2b

m2 − n2

∣∣∣∣2 = m2n2

(m2 − n2)2
· |b− a|2.

If m = n ̸= 0, the circle is the line in (8). For |m|+ |n| ̸= 0, if m = 0, then
z = a and if n = 0, then z = b. If m = n = 0 then z is a or b.
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The representation (7) is valid always, however, (8) is not reasonable for
m = n. The property of the division by zero depends on the representations
of formulas.

On the real line, the points P (p), Q(1), R(r), S(−1) form a harmonic range
of points if and only if

p =
1

r
.

If r = 0, then we have p = 0 that is now the representation of the point at
infinity(see Figure 2).

1
3

B

3

A

1 2−1−2 0

Figure 2.

3. Derivatives of a function

On derivatives, we obtain new concepts, from the division by zero.
From the viewpoint of the division by zero, when there exists the limit,

at x

(9) f ′(x) = lim
h→0

f(x+ h)− f(x)

h
= ∞

or

(10) f ′(x) = −∞,

both cases, we can write them as follows:

(11) f ′(x) = 0.

This property is derived from the fact that the gradient of the y axis is zero;

that is,

(12) tan
π

2
= 0,

that was derived from many geometric properties in [11], and also in the
formal way from the result 1/0 = 0. Of course, by the division by zero
calculus, we can derive the result.

We will look this fundamental result by elementary functions. For the
function

y =
√
1− x2,
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y′ =
−x√
1− x2

,

and so,

[y′]x=1 = 0, [y′]x=−1 = 0.

Of course, depending on the context, we should refer to the derivatives
of a function at a point from the right hand direction and the left hand
direction.

Here, note that, for x = cos θ, y = sin θ,

dy

dx
=

dy

dθ

(
dx

dθ

)−1

= − cot θ.

Note also that from the expansion

(13) cot z =
1

z
+

+∞∑
ν=−∞,ν ̸=0

(
1

z − νπ
+

1

νπ

)
or the Laurent expansion

cot z =
∞∑

n=−∞

(−1)n22nB2n

(2n)!
z2n−1,

we have

cot 0 = 0.

The differential equation

y′ = −x

y

with a general solution

x2 + y2 = a2

is satisfied for all the points of the solutions by the division by zero, however,
the differential equations

x+ yy′ = 0, y′ · y
x
= −1

are not satisfied for all the points of the solutions, because they may not be
considered at the points (0,−a) and (0, a) in the usual sense.

For the function y = log x,

(14) y′ =
1

x
,

and so,

(15) [y′]x=0 = 0.

For the elementary ordinary differential equation

(16) y′ =
dy

dx
=

1

x
, x > 0,

how will be the case at the point x = 0? From its general solution, with a
general constant C (see Figure 3)

(17) y = log x+ C,
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we see that

(18) y′(0) =

[
1

x

]
x=0

= 0,

that will mean that the division by zero 1/0 = 0 is very natural.
In addition, note that the function y = log x has infinite order derivatives

and all the values are zero at the origin, in the sense of the division by zero.

1

C

x

y

Figure 3.

However, for the derivative of the function y = log x, we have to fix the
sense at the origin, clearly, because the function is not differentiable, but it
has a singularity at the origin. For x > 0, there is no problem for (16) and
(17). At x = 0, we see that we can not consider the limit in the usual sense.
However, x > 0 we have (17) and

(19) lim
x→+0

(log x)′ = +∞.

In the usual sense, the limit is +∞, but in the present case, in the sense of
the division by zero, we have:

(20)
[
(log x)′

]
x=0

= 0

and we will be able to understand its sense graphically.

4. Triangles and division by zero

In order to see how elementary of the division by zero, we will see the
division by zero in triangles as the fundamental objects. Even the case of
triangles, we can derive new concepts and results.

We will consider a triangle ABC with length a, b, c. Let θ be the angle of
the side BC and the bisector line of A. Then, we have the identity

tan θ =
c+ b

c− b
tan

A

2
, b < c.

For c = b, we have

tan θ =
2b

0
tan

A

2
.
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Of course, θ = π/2; that is,

tan
π

2
= 0.

Here, we used
2b

0
= 0

and not by the division by zero calculus

c+ b

c− b
= 1 +

2b

c− b

and for c = b
c+ b

c− b
= 1.

We have the formula

a2 + b2 − c2

a2 − b2 + c2
=

tanB

tanC
.

If a2 + b2 − c2 = 0, then C = π/2. Then,

0 =
tanB

tan π
2

=
tanB

0
.

Meanwhile, for the case a2 − b2 + c2 = 0, then B = π/2, and we have

a2 + b2 − c2

0
=

tan π
2

tanC
= 0.

Let H be the perpendicular leg of A to the side BC and let E and M be
the mid points of AH and BC, respectively (see Figure 4). Let θ be the
angle of EMB (b > c). Then, we have

1

tan θ
=

1

tanC
− 1

tanB
.

If B = C, then θ = π/2 and tan(π/2) = 0.

MB CH

E

θ

A

Figure 4.
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Let r be the inradius of the triangle ABC, and rA, rB, rC be the distances
from A, B, C to the lines BC, CA, AB, respectively (see Figure 5). Then
we have

1

r
=

1

rA
+

1

rB
+

1

rC
.

When the point A is the point at infinity, then, rA = 0 and rB = rC = 2r
and the identity still holds (see Figure 6).

A

B C

r rA
rB

rC

Figure 5.

rB

rC

B C

r

Figure 6.

We have identities for the circumradius R and the semiperimeter s of the
triangle ABC,

S =
arA
2

=
1

2
bc sinA =

1

2
a2

sinB sinC

sinA

=
abc

4R
= 2R2 sinA sinB sinC = rs.

If A is the point at infinity, then, S = s = rA = b = c = 0 and the above
identities all valid.

For the identity

tan
A

2
=

r

s− a
,

if the point A is the point at infinity, A = 0, s−a = 0 and the identity holds
as 0 = r/0. Meanwhile, if A = π, then the identity holds as tan(π/2) = 0 =
0/s.
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B C
X

Y P
Q

Figure 7.

Let X be the leg of the perpendicular line from A to the line BC and let Y
be the common point of the angle bisector of A and the line BC (see Figure
7). Let P and Q be the tangential points on the line BC with the incircle of
the triangle and the escribed circle touching BC from the side opposite to
A, respectively. Then, we know that

XP

PY
=

XQ

QY
.

If AB = AC, then, of course, X=Y=P=Q. Then, we have:

0

0
=

0

0
= 0.

X

C

A

B
Y

Q

P

Figure 8.

Let X, Y, Q be the common points with a line and three lines AC, BC
and AB, respectively. Let P be the common point with the line AB and the
line through the point C and the common point of the lines AY and BX (see
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Figure 8). Then, we know the identity

AP

AQ
=

BP

BQ
.

If two lines XY and AB are parallel, then the point Q may be considered
as the point at infinity. Then, by the interpretation AQ = BQ = 0, the
identity is valid as

AP

0
=

BP

0
= 0.

5. Euclidean spaces and division by zero

In this section, we will see the division by zero properties on the Euclidean
spaces. Since the impact of the division by zero and division by zero calculus
is widely expanded in elementary mathematics, here, elementary and typical
topics will be introduced.

5.1. Broken phenomena of figures by area and volume. The strong
discontinuity of the division by zero around the point at infinity will be
appeared as the broken of various figures. These phenomena may be looked
in many situations as the universe one. However, the simplest cases are disc
and sphere (ball) with radius 1/R. When R → +0, the areas and volumes
of discs and balls tend to +∞, respectively, however, when R = 0, they are
zero, because they become the half-plane and half-space, respectively. These
facts may be also looked by analytic geometry, as we see later. However, the
results are clear already from the definition of the division by zero calculus.

For this fact, note the following:
The behavior of the space around the point at infinity may be considered

by that of the origin by the linear transform W = 1/z (see [2]). We thus see
that

(21) lim
z→∞

z = ∞,

however,

(22) [z]z=∞ = 0,

by the division by zero. Here, [z]z=∞ denotes the value of the function
W = z at the topological point at the infinity in one point compactification
by Aleksandrov. The difference of (21) and (22) is very important as we
see clearly by the function W = 1/z and the behavior at the origin. The
limiting value to the origin and the value at the origin are different. For
surprising results, we will state the property in the real space as follows:

lim
x→+∞

x = +∞, lim
x→−∞

x = −∞,

however,

[x]+∞ = 0, [x]−∞ = 0.

Of course, two points +∞ and−∞ are the same point as the point at infinity.
However, ± will be convenient in order to show the approach directions. In
[11], we gave many examples for this property.
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In particular, in z → ∞ in (21), ∞ represents the topological point on
the Riemann sphere, meanwhile ∞ in the left hand side in (21) represents
the limit by means of the ϵ - δ logic.

5.2. Parallel lines. We write lines by

Lk : akx+ bky + ck = 0, k = 1, 2.

The common point is given by, if a1b2 − a2b1 ̸= 0; that is, the lines are not
parallel (

b1c2 − b2c1
a1b2 − a2b1

,
a2c1 − a1c2
a1b2 − a2b1

)
.

By the division by zero, we can understand that if a1b2−a2b1 = 0, then the
common point is always given by

(0, 0),

even the two lines are the same. This fact shows that the image of the
Euclidean space is right, because any line is extended to the point at infinity
and the point is represented by zero; the origin.

In particular, note that the concept of parallel lines is very important
in the Euclidean plane and non-Euclidean geometry. In our sense, there is
no parallel line and all lines pass the origin. This will be our world in the
Euclidean plane. However, this property is not geometrical and has a strong
discontinuity. This surprising property may be looked clearly by the polar
representation of a line.

We write a line by the polar coordinate

r =
d

cos(θ − α)
,

where d = OH > 0 is the distance of the origin O and the line such that
OH and the line is orthogonal and H is on the line, α is the angle of the
line OH and the positive x axis, and θ is the angle OP (P = (r, θ) on the
line) and the positive x axis. Then, if θ − α = π/2: that is, OP and the
line is parallel and P is the point at infinity, then we see that r = 0 by the
division by zero calculus; the point at infinity is represented by zero and we
can consider that the line passes the origin, however, it is in a discontinuous
way.
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H

l

O

α

P = (r, θ)

d

θ

d

Figure 9.

This will mean simply that any line arrives at the point at infinity and
the point is represented by zero and so, for the line we can add the point
at the origin. In this sense, we can add the origin to any line as the point
of the compactification of the line. This surprising new property may be
looked in our mathematics globally.

The distance d from the origin to the line determined by the two planes

Πk : akx+ bky + ckz = 1, k = 1, 2,

is given by

d =

√
(a1 − a2)2 + (b1 − b2)2 + (c1 − c2)2

(b1c2 − b2c1)2 + (c1a2 − c2a1)2 + (a1b2 − a2b1)2
.

If the two planes are coincident, then d = 0. Further, if the two planes
are parallel, by the division by zero, d = 0. This will mean that any plane
contains the origin as in a line.

5.3. Tangential lines and tan π
2 = 0. We looked the very fundamental

and important formula tan π
2 = 0. For its importance we will furthermore

see its various geometrical meanings.
We consider the high tan θ

(
0 ≤ θ ≤ π

2

)
that is given by the common point

of two lines y = (tan θ)x and x = 1 on the (x, y) plane (see Figure 10). Then,

tan θ −→ ∞; θ −→ π

2
.

However,

tan
π

2
= 0,

by the division by zero. The result will show that, when θ = π/2, two lines
y = (tan θ)x and x = 1 do not have a common point, because they are
parallel in the usual sense. However, in the sense of the division by zero,
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parallel lines have the common point (0, 0). Therefore, we can see the result
tan π

2 = 0 following our new space idea.

θ
(0, 1)

x

y

Figure 10.

We consider the unit circle with its center at the origin on the (x, y)
plane. We consider the tangential line for the unit circle at the point that
is the common point of the unit circle and the line y = (tan θ)x

(
0 ≤ θ ≤ π

2

)
(see Figure 11). Then, the distance Rθ between the common point and the
common point of the tangential line and x-axis is given by

Rθ = tan θ.

Then,

R0 = tan 0 = 0,

and

tan θ −→ ∞; θ −→ π

2
.

However,

Rπ/2 = tan
π

2
= 0.

This example shows also that by the stereoprojection mapping of the unit
sphere with its center the origin (0, 0, 0) onto the plane, the north pole
corresponds to the origin (0, 0).

y

θ

1

x

R
θ = tan θ

Figure 11.
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In this case, we consider the orthogonal circle CRθ
with the unit circle

through at the common point and the symmetric point with respect to the
x-axis with the center ((cos θ)−1, 0) (see Figure 12). Then, the circle CRθ

is
as follows:

CR0 is the point (1, 0) with curvature zero, and CRπ/2
(that is, when

Rθ = ∞, in the common sense) is the y-axis and its curvature is also zero.
Meanwhile, by the division by zero, for θ = π/2 we have the same result,
because (cos(π/2))−1 = 0.

The point (cos θ, 0) and ((cos θ)−1, 0) are the symmetric points with re-
spective to the unit circle, and the origin corresponds to the origin.

CRθ

θ

1

x

y

((cos θ)−1, 0)

Figure 12.

In particular, the formal calculation√
1 +R2

π/2 = 1

is not good. The identity cos2 θ + sin2 θ = 1 is valid always, however 1 +
tan2 θ = (cos θ)−2 is not valid for θ = π/2.

However from
cos2 θ

cos2 θ
+

sin2 θ

cos2 θ
=

1

cos2 θ
we have the right result for θ = π/2.

On the point (p, q) (0 ≤ p, q ≤ 1) on the unit circle, we consider the
tangential line Lp,q of the unit circle. Then, the common points of the line
Lp,q with x-axis and y-axis are (1/p, 0) and (0, 1/q), respectively. Then, the
area Sp of the triangle formed by the three points (0, 0), (1/p, 0) and (0, 1/q)
is given by

Sp =
1

2pq
.

Then,

p −→ 0; Sp −→ +∞,

however,

S0 = 0

(H. Michiwaki: 2015.12.5.).
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We denote the point on the unit circle on the (x, y) with (cos θ, sin θ) for
the angle θ with the positive real line. Then, the tangential line of the unit
circle at the point meets at the point (Rθ, 0) for Rθ = [cos θ]−1 with the
x-axis for the case θ ̸= π/2. Then,

θ
(
θ <

π

2

)
→ π

2
=⇒ Rθ → +∞,

θ
(
θ >

π

2

)
→ π

2
=⇒ Rθ → −∞,

however,

Rπ/2 =
[
cos
(π
2

)]−1
= 0,

by the division by zero. We can see the strong discontinuity of the point
(Rθ, 0) at θ = π/2 (H. Michiwaki: 2015.12.5.).

θ

y

(Rθ, 0)
x

Figure 13.

The line through the points (0, 1) and (cos θ, sin θ) meets the x axis with
the point (Rθ, 0) for the case θ ̸= π/2 by

Rθ =
cos θ

1− sin θ
.

Then,

θ
(
θ <

π

2

)
→ π

2
=⇒ Rθ → +∞,

θ
(
θ >

π

2

)
→ π

2
=⇒ Rθ → −∞,

however,

Rπ/2 = 0,

by the division by zero (see Figure 13). We can see the strong discontinuity
of the point (Rθ, 0) at θ = π/2.
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5.4. Two Circles. We consider two circles with radii a, b > 0 with centers
(a, 0) and (−b, 0), respectively. Then, the external common tangent La,b (we
assume that a < b) meets the x-axis in point (Ra, 0) which is given by, by
fixing b

(23) Ra =
2ab

b− a
.

We consider the circle CRa with its center at (Ra, 0) with radius Ra (see
Figure 14). Then,

a → b =⇒ Ra → ∞,

however, when a = b, then we have Rb = −2b by the division by zero, from
the identity

2ab

b− a
= −2b− 2b2

a− b
.

CRa

(Ra, 0)

a
b

y

O x

Figure 14.

Meanwhile, when we interpret (23) as

Ra =
−1

a− b
· 2ab,

we have, for a = b, Rb = 0. It means that the circle CRb
is the y axis with

curvature zero through the origin (0, 0).
The above formulas will show strong discontinuity for the change of the

a and b from a = b (H. Okumura: 2015.10.29.).

We denote the circles Sj :

(x− aj)
2 + (y − bj)

2 = r2j .

Then, the common point (X,Y ) of the co- and exterior tangential lines of
the circles Sj for j = 1, 2,

(X,Y ) =

(
r1a2 − r2a1
r1 − r2

,
r1b2 − r2b1
r1 − r2

)
.
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We will fix the circle S2. Then, from the expansion

(24)
r1a2 − r2a1
r1 − r2

=
r2(a2 − a1)

r1 − r2
+ a2

for r1 = r2, by the division by zero, we have

(X,Y ) = (a2, b2).

Meanwhile, when we interpret (24) as

r1a2 − r2a1
r1 − r2

=
1

r1 − r2
· (r1a2 − r2a1),

we obtain that

(X,Y ) = (0, 0),

that is reasonable. However, the both cases, the results show strong discon-
tinuity.

5.5. Newton’s method. The Newton’s method is fundamental when we
look for the solutions for some general equation f(x) = 0 numerically and
practically. We will refer to its prototype case.

We will assume that a function y = f(x) belongs to C1 class. We consider
the sequence {xn} for n = 0, 1, 2, . . . , n, . . . , defined by

(25) xn+1 = xn − f(xn)

f ′(xn)
, n = 0, 1, 2, . . . .

When f(xn) = 0, we have

(26) xn+1 = xn,

in the reasonable way (see Figure 15). Even the case f ′(xn) = 0, we have
also the reasonable result (26), by the division by zero.

xn−1xnxn+1
x

y

Figure 15.
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5.6. Cauchy’s mean value theorem. For the Cauchy mean value theo-
rem: for f, g ∈ Differ(a, b), differentiable, and ∈ C0[a, b], continuous and
if g(a) ̸= g(b) and f ′(x)2 + g′(x)2 ̸= 0, then there exists ξ ∈ (a, b) satisfying
that

f(a)− f(b)

g(a)− g(b)
=

f ′(ξ)

g′(ξ)
,

we do not need the assumptions g(a) ̸= g(b) and f ′(x)2 + g′(x)2 ̸= 0, by the
division by zero. Indeed, if g(a) = g(b), then, by the Rolle theorem, there
exists ξ ∈ (a, b) such that g′(ξ) = 0. Then, the both terms are zero and the
equality is valid.

For f, g ∈ C2[a, b], there exists a ξ ∈ (a, b) satisfying

f(b)− f(a)− (b− a)f ′(a)

g(b)− g(a)− (b− a)g′(a)
=

f ′′(a)

g′′(a)
.

Here, we do not need the assumption

g(b)− g(a)− (b− a)g′(a) ̸= 0,

by the division by zero.

5.7. Length of tangential lines. We will consider a function y = f(x) of
C1 class on the real line. We consider the tangential line through (x, f(x))

Y = f ′(x)(X − x) + f(x).

Then, the length (or distance) d(x) between the point (x, f(x)) and
(
x− f(x)

f ′(x) , 0
)

is given by, for f ′(x) ̸= 0

d(x) = |f(x)|

√
1 +

1

f ′(x)2
.

How will be the case f ′(x∗) = 0? Then, the division by zero shows that

d(x∗) = |f(x∗)|.

Meanwhile, the x axis point (Xt, 0) of the tangential line at (x, y) and y
axis point (0, Yn) of the normal line at (x, y) are given by

Xt = x− f(x)

f ′(x)

and

Yn = y +
x

f ′(x)
,

respectively. Then, if f ′(x) = 0, we obtain the reasonable results:

Xt = x, Yn = y.
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5.8. Curvature and center of curvature. We will assume that a function
y = f(x) is of class C2. Then, the curvature radius ρ and the center O(x, y)
of the curvature at point (x, f(x)) are given by

ρ(x, y) =
(1 + (y′)2)3/2

y′′

and

O(x, y) =

(
x− 1 + (y′)2

y′′
y′, y +

1 + (y′)2

y′′

)
,

respectively. Then, if y′′ = 0, we have:

ρ(x, y) = 0

and

O(x, y) = (x, y),

by the division by zero. They are reasonable.

y = f(x)

(x, y)

x

y

Figure 16.

We will consider a curve r = r(s), s = s(t) of class C2. Then,

v =
dr

dt
, t =

dr(s)

ds
, v =

ds

dt
,
dt(s)

ds
=

1

ρ
n,

by the principal normal unit vector n. Then, we see that

a =
dv

dt
=

dv

dt
t+

v2

ρ
n.

If ρ(s0) = 0, then

a(s0) =

[
dv

dt
t

]
s=s0

and [
v2

ρ

]
s=s0

= ∞

will be funny. It will be the zero.
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5.9. n = 2, 1, 0 regular polygons inscribed in a disc. We consider n
regular polygons inscribed in a fixed disc with radius a. Then we note that
their area Sn and the lengths Ln of the sum of the sides are given by

Sn =
na2

2
sin

2π

n

and

Ln = 2na sin
π

n
,

respectively (see Figure 17). For n ≥ 3, the results are clear.

a

π
n

2π
n

Figure 17.

For n = 2, we will consider two diameters that are the same. We can con-
sider it as a generalized regular polygon inscribed in the disc as a degenerate
case. Then, S2 = 0 and L2 = 4a, and the general formulas are valid.

Next, we will consider the case n = 1. Then the corresponding regular
polygon is a just diameter of the disc. Then, S1 = 0 and L1 = 0 that will
mean that any regular polygon inscribed in the disc may not be formed and
so its area and length of the side are zero.

For an n = 1 triangle, if 1 means one side, then we can interpretate as in
the above, however, if we consider 1 as one vertex, the above situation may
be consider as one point on the circle which coincides with Sl = Ll = 0.

Now we will consider the case n = 0. Then, by the division by zero
calculus, we obtain that S0 = πa2 and L0 = 2πa. Note that they are the area
and the length of the disc. How to understand the results? Imagine contrary
n tending to infinity, then the corresponding regular polygons inscribed in
the disc tend to the disc. Recall our new idea that the point at infinity is
represented by 0. Therefore, the results say that n = 0 regular polygons are
n = ∞ regular polygons inscribed in the disc in a sense and they are the
disc. This is our interpretation of the theorem:

Theorem. n = 0 regular polygons inscribed in a disc are the whole disc.
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In addition, note that each inner angle An of a general n regular polygon
inscribed in a fixed disc with radius a is given by

(27) An =

(
1− 2

n

)
π.

The circumstances are similar for n regular polygons circumscribed in the
disc, because the corresponding data are given by

Sn = na2 tan
π

n

and

Ln = 2na tan
π

n
,

and (27), respectively.
We consider a disc with radius R > 0 and an n regular inscribed polygon

with vertexes A1, A2, ..., An. We consider the inner circle radius rk of the
triangle A1Ak+1Ak+2, that is, for α = π/n,

rk cos
α

2
=

α

2

{
sin

(2k + 1)α

2
− sin

α

2

}
.

The total sum Ln is given, for k = 1, 2, ..., n− 2 by

Ln = 2R
(
1− n sin2

π

2n

)
.

Note that L2 = L1 = 0, however, by the division by zero calculus,

L0 = 2R.

This is the same that

lim
n→∞

Ln = 2R.

5.10. Our life figure. As an interesting figure which shows an interesting
relation between 0 and infinity, we will consider a sector ∆α on the complex
z = x+ iy plane

∆α =
{
| arg z| < α; 0 < α <

π

2

}
.

We will consider a disc inscribed in the sector ∆α whose center (k, 0) with
radius r. Then, we have

r = k sinα.

Then, note that as k tends to zero, r tends to zero, meanwhile k tends to
+∞, r tends to +∞. However, by our division by zero calculus, we see that
immediately that

[r]r=∞ = 0.

α

k

r

Figure 18: θ: const, r → ∞
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On the sector, we see that from the origin as the point 0, the inscribed
discs are increasing endlessly, however their final disc reduces to the origin
suddenly - it seems that the whole process looks like our life in the viewpoint
of our initial and final.

5.11. H. Okumura’s example. The surprising example by H. Okumura
will show a new phenomenon at the point at infinity.

On the sector ∆α, we shall change the angle and we consider a fixed circle
Ca, a > 0 with its radius a inscribed in the sectors. We see that when the
circle tends to +∞, the angles α tend to zero. How will be the case α = 0?
Then, we will not be able to see the position of the circle. Surprisingly
enough, then Ca is the circle with its center at the origin 0. This result is
derived from the division by zero calculus for the formula

k =
a

sinα
.

The two lines arg z = α and arg z = −α were tangential lines of the circle
Ca and now they are the positive real line. The gradient of the positive real
line is of course zero. Note here that the gradient of the positive imaginary
line is zero by the division by zero calculus that means tan π

2 = 0. Therefore,
we can understand that the positive real line is still a tangential line of the
circle Ca.

O

O

O

?

Figure 19.

This will show some great relation between zero and infinity. We can see
some mysterious property around the point at infinity.

5.12. Interpretation by analytic geometry. For a function

(28) S(x, y) = a(x2 + y2) + 2gx+ 2fy + c,
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the radius R of the circle S(x, y) = 0 is given by

R =

√
g2 + f2 − ac

a2
.

If a = 0, then the area πR2 of the disc is zero, by the division by zero; that
is, the circle is a line (degenerate).

The center of the circle (28) is given by(
−g

a
,−f

a

)
.

Therefore, the center of a general line

2gx+ 2fy + c = 0

may be considered as the origin (0, 0), by the division by zero.

We consider the functions

Sj(x, y) = aj(x
2 + y2) + 2gjx+ 2fjy + cj .

The distance d of the centers of the circles S1(x, y) = 0 and S2(x, y) = 0 is
given by

d2 =
g21 + f2

1

a21
− 2

g1g2 + f1f2
a1a2

+
g22 + f2

2

a22
.

If a1 = 0, then by the division by zero

d2 =
g22 + f2

2

a22
.

Then, S1(x, y) = 0 is a line and its center is the origin (0, 0). Therefore, the
result is very reasonable.

6. Mirror image with respect to a circle

For simplicity, we will consider the unit circle |z| = 1 on the complex
z = x+ iy plane. Then, we have the reflection formula

(29) z∗ =
1

z

for any point z, as well-known ([2]). For the reflection point z∗, there is no
problem for the points z ̸= 0,∞. As the classical result, the reflection of
zero is the point at infinity and conversely, for the point at infinity we have
the zero point. The reflection is a one to one and onto mapping between the
inside and the outside of the unit circle, by considering the point at infinity.

Are these correspondences, however, suitable? Does there exist the point
at ∞, really? Is the point at infinity corresponding to the zero point, by the
reflection? Is the point at ∞ reasonable from the practical point of view?
Indeed, where can we find the point at infinity? Of course, we know pleas-
antly the point at infinity on the Riemann sphere, however, on the complex
z-plane it seems that we can not find the corresponding point. When we
approach to the origin on a radial line, it seems that the correspondence
reflection points approach to the point at infinity with the direction (on the
radial line).
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On the concept of the division by zero, there is no the point at infinity ∞
as the numbers. For any point z such that |z| > 1, there exists the unique
point z∗ by (29). Meanwhile, for any point z such that |z| < 1 except z = 0,
there exits the unique point z∗ by (29). Here, note that for z = 0, by the
division by zero, z∗ = 0. Furthermore, we can see that

(30) lim
z→0

z∗ = ∞,

however, for z = 0 itself, by the division by zero, we have z∗ = 0. This
will mean a strong discontinuity of the functions W = 1

z and (29) at the
origin z = 0; that is a typical property of the division by zero. This strong
discontinuity may be looked in the above reflection property, physically.

z

z∗

Figure 20.

The result is a surprising one in a sense; indeed, by considering the ge-
ometrical corresponding of the mirror image, we will consider the center
corresponds to the point at infinity that is represented by the origin z = 0.
This will show that the mirror image is not followed by this concept; the
corresponding seems to come from the concept of one-to-one and onto map-
ping.

Should we exclude the point at infinity, from the numbers? We
were able to look the strong discontinuity of the division by zero in the
reflection with respect to circles, physically ( geometrical optics ). The
division by zero gives a one to one and onto mapping of the reflection from
the whole complex plane onto the whole complex plane.

The infinity ∞ may be considered as in as the usual sense of
limits, however, the infinity ∞ is not a definite number.

On the x, y plane, we shall consider the inversion relation with respect to
the circle with its radius R and with its center at the origin:

x′ =
xR2

x2 + y2
, y′ =

yR2

x2 + y2
.
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Then, the line

ax+ by + c = 0

is transformed to the line

R2(ax′ + by′) + c((x′)2 + (y′)2) = 0.

In particular, for c = 0, the line ax + by = 0 is transformed to the line
ax′ + by′ = 0. This corresponding is one-to-one and onto, and so the origin
(0, 0) have to correspond to the origin (0, 0).

7. Stereographic projection

For a great meaning and importance, we will see that the point at infinity
is represented by zero.

7.1. The point at infinity is represented by zero. By considering the
stereographic projection, we will be able to see that the point at infinity is
represented by zero.

Consider the sphere (ξ, η, ζ) with radius 1/2 put on the complex z = x+iy
plane with its center (0, 0, 1/2). From the north pole N(0, 0, 1), we consider
the stereographic projection of the point P (ξ, η, ζ) on the sphere onto the
complex z(= x+ iy) plane; that is,

x =
ξ

1− ζ
, y =

η

1− ζ
.

If ζ = 1, then, by the division by zero, the north pole corresponds to the
origin (0, 0) = 0.

Here, note that

x2 + y2 =
ζ

1− ζ
.

For ζ = 1, we should consider as 1/0 = 0, not by the division by zero
calculus,

ζ

1− ζ
= −1− 1

ζ − 1
.

We will consider the unit sphere {(x1, x2, x3);x21+x22+x23 = 1}. From the
north pole N(0, 0, 1), we consider the stereographic projection of the point
P (x1, x2, x3) on the sphere onto the (x, y) plane; that is,

(x1, x2, x3) =(
2x

x2 + y2 + 1
,

2y

x2 + y2 + 1
,
1− 1/(x2 + y2)

1 + 1/(x2 + y2)

)
.

Then, we see that the north pole corresponds to the origin.
Next, we will consider the semi-sphere (ξ, η, ζ) with its center C(0, 0, 1)

on the origin on the (x, y) plane. From the center C(0, 0, 1), we consider the
stereographic projection of the point P (ξ, η, ζ) on the semi- sphere onto the
complex (x, y) plane; that is,

x =
ξ

1− ζ
, y =

η

1− ζ
.

If ζ = 1, then, by the division by zero, the center C corresponds to the
origin (0, 0).
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Meanwhile, we will consider the mapping from the open unit disc onto
R2 in one to one and onto

ξ =
x
√
x2 + y2

1 + x2 + y2
, η =

y
√

x2 + y2

1 + x2 + y2

or

x =
ξ√

ρ(1− ρ)
, y =

η√
ρ(1− ρ)

; ρ2 = ξ2 + η2.

Note that the point (x, y) = (0, 0) corresponds to ρ = 0; (ξ, η) = (0, 0) and
ρ = 1.

7.2. A contradiction of classical idea for 1/0 = ∞. The infinity ∞ may
be considered by the idea of the limiting, however, we had considered it as
a number, for sometimes, typically, the point at infinity was represented by
∞ for some long years. For this fact, we will show a formal contradiction.

We will consider the stereographic projection by means of the unit sphere

ξ2 + η2 +

(
ζ − 1

2

)2

= 1

from the complex z = x + iy plane onto the sphere. Then, we obtain the
correspondences

x =
ξ

1− ζ
, y =

η

1− ζ

and

ξ =
1

2

z + z

zz + 1
, η =

1

2i

z − z

zz + 1
, ζ =

zz

zz + 1
.

In general, two points P and Q1 on the diameter of the unit sphere corre-
spond to z and z1, respectively if and only if

(31) zz1 + 1 = 0.

Meanwhile, two points P and Q2 on the symmetric points on the unit sphere
with respect to the plane ζ = 1

2 correspond to z and z2, respectively if and
only if

(32) zz2 − 1 = 0.

If the point P is the origin or the north pole, then the points Q1 and Q2 are
the same point. Then, the identities (31) and (32) are not valid that show
a contradiction.

Meanwhile, if we write (31) and (32)

z = − 1

z1

and

z =
1

z2
,

respectively, we see that the division by zero is valid.
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7.3. Natural meanings of 1/0 = 0. For constants a and b satisfying

1

a
+

1

b
= k, (̸= 0, const.)

the function
x

a
+

y

b
= 1

passes the point (1/k, 1/k). If a = 0, then, by the division by zero, b = 1/k
and y = 1/k; this result is natural.

(0, 1
k
)

( 1
k
, 0)

(a, b) = (0, 1
k
)

(a, b) = ( 1
k
, 0)

x

y

Figure 21.

We will consider the line y = m(x−a)+b through a fixed point (a, b); a, b >
0 with gradient m (see Figure 22). We set A(0,−am+b) and B(a−(b/m), 0)
that are common points with the line and both lines x = 0 and y = 0,
respectively. Then,

AB
2
= (−am+ b)2 +

(
a− b

m

)2

.

If m = 0, then A(0, b) and B(a, 0), by the division by zero, and furthermore

AB
2
= a2 + b2.

Then, the line AB is a corresponding to the line between the origin and the
point (a, b). Note that this line has only one common point with the both
lines x = 0 and y = 0. Therefore, this result will be very natural in a sense.
– Indeed, we can understand that the line AB is broken as the two lines
(0, b)− (a, b) and (a, b)− (a, 0), suddenly.
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(a, b)

A −am+ b

B

a− b
m

y = m(x− a) + b

y

x

Figure 22.

The general line equation with gradient m is given by, with a constant b

(33) y = m(x− a) + b

or
y

m
= x− a+

b

m
.

By m = 0, we obtain the equation x = a, by the division by zero. This
equation may be considered the cases m = ∞ and m = −∞, and these
cases may be considered by the strictly right logic with the division by zero.

By the division by zero, we can consider the equation (33) as a general
line equation.

β

γ

B

C

α
A

Figure 23.

In the Lami’s formula for three vectors A, B, C satisfying

A+B+C = 0,

∥A∥
sinα

=
∥B∥
sinβ

=
∥C∥
sin γ

,
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if α = 0, then we obtain:

∥A∥
0

=
∥B∥
0

=
∥C∥
0

= 0.

Here, of course, α is the angle of B and C, β is the angle of C and A, and
γ is the angle of A and B (see Figure 23).

For the Newton’s formula; that is, for a C2 class function y = f(x), the
curvature K at the origin is given by

K = lim
x→0

∣∣∣∣x22y
∣∣∣∣ = ∣∣∣∣ 1

f ′′(0)

∣∣∣∣ ,
we have: for f ′′(0) = 0,

K =
1

0
= 0.

7.4. Double natures of the zero point z = 0. Any line on the complex
plane arrives at the point at infinity and the point at infinity is represented
by zero. That is, a line is, indeed, contains the origin; the true line should
be considered as the union of a usual line and the origin. We can say that
it is a compactification of the line and the compacted point is the point at
infinity, however, it it is represented by z = 0. We looked this property by
analytic geometry and the division by zero calculus in many situations.

In addition, for the general line equation

ax+ by + c = 0,

by using the polar coordinates x = r cos θ, y = r sin θ, we have

r =
−c

a cos θ + b sin θ
.

When a cos θ + b sin θ = 0, by the division by zero, we have r = 0; that is,
we can consider that the line contains the origin in our sense.

The envelop of the linear lines represented by, for constants m and a fixed
constant p > 0,

(34) y = mx+
p

m
,

we have the function, by using an elementary ordinary differential equation,

(35) y2 = 4px.

The origin of this parabolic function is missing from the envelop of the
linear functions, because the linear equations do not contain the y axis as
the tangential line of the parabolic function. Now recall that, by the division
by zero, as the linear equation for m = 0, we have the function y = 0, the x
axis. Note that both the x axis y = 0 and the parabolic function have the
zero gradient at the origin; that will mean that in the reasonable sense the x
axis is a tangential line of the parabolic function. Anyhow, by the division
by zero, the envelop of the linear functions may be considered as the whole
parabolic function containing the origin.

When we consider the limiting of the linear equations as m → 0, we will
think that the limit function is a parallel line to the x axis through the point
at infinity. Since the point at infinity is represented by zero, it will become
the x axis.
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Meanwhile, when we consider the limiting function as m → ∞, we have
the y axis x = 0 and this function is an ordinally tangential line of the
parabolic function. From these two tangential lines, we see that the origin
has double natures; one is the continuous tangential line x = 0 and the
second is the discontinuous tangential line y = 0.

In addition, note that the tangential point of (34) for the line (35) is given
by (

p

m
,
2p

m

)
and it is (0, 0) for m = 0.

We can see that the point at infinity is reflected to the origin; and so,
the origin has the double natures; one is the native origin and another is
reflected to the origin of the point at infinity.

8. Interesting examples in the division by zero

We will give interesting examples in the division by zero. Indeed, the
division by zero may be looked in the elementary mathematics and also in
the universe.

• For the line
x

a
+

y

b
= 1,

if a = 0, then by the division by zero, we have the line y = b. This
is a very interesting property creating new phenomena at the term
x/a for a = 0.

Meanwhile, from

x+ a
y

b
= a,

by setting a = 0, we have the reasonable result x = 0.
Note that here we can not consider the case a = b = 0.

• For the area S(a, b) = ab of the rectangle with sides of lengths a, b,
we have

a =
S(a, b)

b
and for b = 0, formally

a =
0

0
.

However, there exists a contradiction. S(a, b) depends on b and by
the division by zero calculus, we have, for the case b = 0, the right
result

S(a, b)

b
= a.

• We consider 4 lines

a1x+ b1y + c1 = 0,

a1x+ b1y + c′1 = 0,

a2x+ b2y + c2 = 0,

a2x+ b2y + c′2 = 0,
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Then, the area S surrounded by these lines is given by the formula

S =
|c1 − c′1| · |c1 − c′1|

|a1b2 − a2b1|
.

Of course, if |a1b2 − a2b1| = 0, then S = 0.
• 1

sin 0 = 1
cosπ/2 = 0. Consider the linear equation with a fixed positive

constant a
x

a cos θ
+

y

a sin θ
= 1.

Then, the results are clear from the graphic meanings.

θ

a

a cos θ

a sin θ

x

y

Figure 24.

• For the tangential line at a point (a cos θ, b sin θ) on the elliptic curve

(36)
x2

a2
+

y2

b2
= 1, a, b > 0

we have Q(a/(cos θ), 0) and R(0, b/(sin θ)) as the common points
with x and y axises, respectively (see Figure 25). if θ = 0, then
Q(a, 0) and R(0, 0). If θ = π/2, then Q(0, 0) and R(0, b).

θ

b

a

R

Q

y

x
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Figure 25.

For the representation

y/b

1− (x/a)
=

1 + (x/a)

y/b)
,

we see that the points (−a, 0) and (a, 0) are also represented by this
equation, by the division by zero. If we do not consider the division
by zero, these two points are not represented by this equation.

• For the tangential line at the point (a cos θ, b sin θ) on the elliptic
curve, we shall consider the area S(θ) of the triangle formed by this
line and x, y axises

S(θ) =
ab

| sin 2θ|
.

Then, by the division by zero calculus, we have S(0) = 0.
• The common point of B (resp. B′) of a tangential line (36) and the
line x = a (resp. x = −a) is given by

B

(
a, b tan

θ

2

) (
resp. B′

(
−a, b cot

θ

2

))

(see Figure 26). The circle with diameter BB′ is given by

x2 + y2 − 2b

sin θ
y − (a2 − b2) = 0.

Note that this circle passes two forcus points of the elliptic curve.
Note that for θ = 0, we have the reasonable result, by the division
by zero calculus

x2 + y2 − (a2 − b2) = 0.

In the classical theory for quadratic curves, we have to arrange
globally it by the division by zero calculus.
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θ

b

a

R

Q

B

B′

y

x

Figure 26.

• The area S(x) surrounded by two x, y axises and the line passing
through a fixed point (a, b), a, b > 0 and a point (x, 0) is given by

S(x) =
bx2

2(x− a)

(see Figure 27). For x = a, we obtain, by the division by zero
calculus, the very interesting value

S(a) = ab.

(a, b)

(x, 0) x

y

Figure 27.

•
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For example, for a fixed point (a, b); a, b > 0 and a fixed line
y = (tan θ)x, 0 < θ < π, we will consider the line L(x) passing
through the two points (a, b) and (x, 0) (see Figure 28). Then, the
area S(x) of the triangle surround by the three lines y = (tan θ)x,
L(x) and the x axis is given by

S(x) =
b

2

x2

x− (a− b cot θ)
.

For the case x = a−b cot θ, by the division by zero calculus, we have

S(a− b cot θ) = b(a− b cot θ).

Note that this is the area of the parallelogram through the origin
and the point (a, b) formed by the lines y = (tan θ)x and the x axis.

(a, b)

y = (tan θ)x

θ
(x, 0)(a− b cot θ)

x

y

Figure 28.

• We consider an equilateral triangle with vertices (±a/2,
√
3a/2) and

the origin. The area S(h) of the triangle surrounded by the three
lines that the line through (0, h +

√
3a/2) and (−a/2,

√
3a/2), the

line through (0, h+
√
3a/2) and (a/2,

√
3a/2) and the x- axis is given

by

S(h) =

(
h+ (

√
3/2)a

)2
2h

.

Then, by the division by zero calculus, we have, for h = 0,

S(0) =

√
3

2
a2.

h
(

a
2
,
√
3a
2

)(
−a

2
,
√
3a
2

)

S(h)

x

y

Figure 29.
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• Similarly, we will consider the cone formed by the rotation of the
line

kx

a(k + h)
+

y

k + h
= 1

and the x, y plane with center the z- axis (a, h > 0, and a, h are
fixed). Then, the volume V (x) is given by

V (k) =
π

3

a2(k + h)3

k2
.

Then, by the division by calculus, we have the reasonable value

V (0) = πa2h.

• As in the line case, in the hyperbolic curve

x2

a2
− y2

b2
= 1, a, b > 0,

by the representations by parameters

x =
a

cos θ
=

a

2

(
1

t
+ t

)
and

y =
b

tan θ
=

b

2

(
1

t
− t

)
,

the origin (0, 0) may be included as the point of the hyperbolic curve,
as we see from the cases θ = π/2 and t = 0.

In addition, from the fact, we will be able to understand that the
asymptotic lines are the tangential lines of the hyperbolic curve.

The two tangential lines of (36) with gradient m is given by

(37) y = mx±
√
a2m2 − b2

and the gradients of the asymptotic lines are

m = ± b

a
.

Then, we have asymptotic lines y = ± b
ax as tangential lines in (36).

The common points of (36) and (37) are given by(
± a2m√

a2m2 − b2
,± b2m√

a2m2 − b2

)
.

For the case a2m2 − b2 = 0, we have they are (0, 0).
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• We fix a circle

x2 + (y − a)2 = a2, a > 0.

From the point (0, 2a+ h) (h > 0), we consider two tangential lines

to the circle, which meet the x-axis in points (±a
√

(2a+ h)/h, 0).
Let 2θ be the angle between the two tangential lines at the point
(0, 2a+ h). From L(h) = L(θ) = a

√
(2a+ h)/h = (2a+ h) tan θ, we

have h = a(1/ sin θ − 1). Hence we have

L(h) = L(θ) = a

(
1

cos θ
+ tan θ

)
.

Let S(h) be the area of the triangle formed by the tangential lines
and the x-axis. Then we have

S(h) = S(θ) =
a√
h
(h+ 2a)

3
2

=
a2

cos θ

(
sin θ + 2 +

1

sin θ

)
.

For h = 0, by division by zero calculus, we see L = S = 0. However
for θ = 0, we have L = a and S = 2a2.

L

a

h

θ

x

y

Figure 30.

• We consider two spheres defined by

x2 + y2 + z2 + 2ajx+ 2bjy + 2cjz + 2dj = 0, j = 1, 2.

Then, the angle θ by two spheres is given by

cos θ =
a1a2 + b1b2 + c1c2 − (d1 + d2)√

a21 + b21 + c21 − 2d1
√
a22 + b22 + c22 − 2d2

.

If two spheres are orthogonal or one sphere is a point sphere, then,
cos θ = 0.

• For the parabolic equation

y2 = 4px,

assume that the normal at a point (ps2, 2ps) meets the parabola
again in a point (pt2, 2pt) (see Figure 31). Then we have

(s− t){t(s+ t) + 2} = 0; s = −t− 2

t
.
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The distance r between the two points, which is called a diameter
of the parabola, satisfies

r2 = p2(t− s)2{(t+ s)2 + 4}.

Here, we should consider the case t = s = 0 as r = 0 and

0 = −0− 2

0
,

and the x and y axises are the orthogonal two tangential lines of the
parabolic equation.

(ps2, 2ps)

(pt2, 2pt)

y

x

Figure 31.

9. Applications to Wasan geometry

We will introduce typical applications of the division by zero calculus to
Wasan geometry (traditional Japanese geometry), however, the results and
their impacts will create some new fields in mathematics.

9.1. Circle and line. Generalizing a problem in Wasan geometry in [3],
we have the following proposition (see Figure 32).

Proposition[16]. Let α, β, γ be circles of radii a, b, c, respectively. If
s and t are tangents of β parallel to each other, α touches s from the same
side as β and β externally, and γ touches t from the same side as β and α
and β externally, then the following relation holds:

(38) c =
b2

4a
.
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β

s

t

α

F

C

A

γ

Figure 32.

β

α

γ
t

y

(0, b)

s
x

(
2
√
ab, a

)

Figure 33.

We now consider the case in which the circle α is a point or a line. It is
equivalent to a = 0. We setup a rectangular coordinate system with origin
at the point of tangency of the circle β and the line s so that the centers of

the circles β and α have coordinates (0, b) and
(
2
√
ab, a

)
, respectively (see

Figure 33). Then α has an equation

(39)
(
x− 2

√
ab
)2

+ (y − a)2 − a2 = 0.

The equation is arranged as

(40)
x2 + y2√

a
− 4x

√
b− 2

√
a(y − 2b) = 0,

and

(41)
x2 + y2

a
− 4x

√
b

a
− 2(y − 2b) = 0.

If a = 0, then the equations (39), (40), (41) imply

(42) x2 + y2 = 0,

(43) x = 0,

(44) y = 2b,

respectively. The last three equations show that α is the origin, the y-axis,
the line t, respectively. Notice that we can consider that the y-axis touches
the circle β. Therefore the three conclusions are reasonable.
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We now consider the circle γ in the same case. It has an equation(
x− 2

√
bc
)2

+ (y − 2b + c)2 = c2. Since c = b2/(4a), the equation is

arranged as

(45) a(x2 + (y − 2b)2)− 2bx
√
ab+

b2y

2
= 0,

(46)
√
a(x2 + (y − 2b)2)− 2bx

√
b+

b2y

2
√
a
= 0,

(47) x2 + (y − 2b)2 − 2bx

√
b

a
+

b2y

2a
= 0.

If a = 0, the equations (45), (46), (47) give

(48) y = 0,

(49) x = 0

(50) x2 + (y − 2b)2 = 0,

respectively by (d1). Hence γ is the x-axis, the y-axis, the point (0, 2b),
respectively.

β

γ t=α

s

Figure 34.

β

α

t

s=γ

Figure 35.

β

α=γ
t

s

Figure 36.

If α approaches to t, then γ approaches to the point (0, 2b). Therefore
we can easily consider that γ is (0, 2b) if α coincides with t (see Figure 34).
Symmetrically γ is the line s, if α is the origin (see Figure 35). In the rest
of the case, both α and γ coincide with the y-axis (see Figure 36). In all the
cases the circle γ is a point or a line, i.e., c = 0 by (d2). Therefore (38) still
holds in all the three cases.

9.2. Three externally touching circles. For real numbers z, and a, b >
0, the point (0, 2

√
ab/z) is denoted by Vz. H. Okumura and M. Watanabe

gave the theorem in [13]:

Theorem 7. The circle touching the circle α: (x−a)2+ y2 = a2 and the
circle β: (x+ b)2+ y2 = b2 at points different from the origin O and passing
through Vz±1 is represented by

(51)

(
x− b− a

z2 − 1

)2

+

(
y − 2z

√
ab

z2 − 1

)2

=

(
a+ b

z2 − 1

)2

for a real number z ̸= ±1.
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The common external tangents of α and β can be expressed by the equa-
tions

(52) (a− b)x∓ 2
√
aby + 2ab = 0.

Following our concept of the division by zero calculus, we will consider the
case z2 = 1 for the singular points in the general parametric representation
of the touching circles.

9.2.1. Results. First, for z = 1 and z = −1, respectively by the division by
zero calculus, we have from (51), surprisingly

(53) x2 +
b− a

2
x+ y2 ∓

√
aby − ab = 0,

respectively [12].
Secondly, multiplying (51) by (z2−1), we immediately obtain surprisingly

(52) for z = 1 and z = −1, respectively by the division by zero calculus.
In the usual way, when we consider the limiting z → ∞ for (51), we obtain

the trivial result of the point circle of the origin. However, the result may
be obtained by the division by zero calculus at w = 0 by setting w = 1/z.

9.2.2. On the circle appeared. Let ζ be the circle expressed by (53) with
minus sign. Then ζ meets the circles α in two points

Pa

(
2rA, 2rA

√
a

b

)
, Qa

(
2ab

9a+ b
,−6a

√
ab

9a+ b

)
,

where rA = ab/(a+ b) (see Figure 37). Also it meets β in points

Pb

(
−2rA, 2rA

√
b

a

)
, Qb

(
−2ab

a+ 9b
,−6b

√
ab

a+ 9b

)
.

The line PaPb is the external common tangent of the two circles α and β
on the upper half plane. The lines PaQa and PbQb intersect at the point

R :
(
0,−

√
ab
)
, which lies on the remaining external common tangent of

α and β. Furthermore, ζ is orthogonal to the circle with center R passing
through the origin.

α
β

Pa

Pb

QaQb

R

ζ

O

Figure 37.
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9.3. The Descartes circle theorem. We recall the famous and beautiful
theorem ([6, 26]):

Theorem (Descartes) Let Ci (i = 1, 2, 3) be circles touching to each
other of radii ri. If a circle C4 touches the three circles, then its radius r4 is
given by

(54)
1

r4
=

1

r1
+

1

r2
+

1

r3
± 2

√
1

r1r2
+

1

r2r3
+

1

r3r1
.

As well-known, circles and lines may be looked as the same ones in com-
plex analysis, in the sense of stereographic projection and many reasons.
Therefore, we will consider whether the theorem is valid for line cases and
point cases for circles. Here, we will discuss this problem clearly from the
division by zero viewpoint. The Descartes circle theorem is valid except for
one case for lines and points for the three circles and for one exception case,
we can obtain very interesting results, by the division by zero calculus.

We would like to consider all the cases for the Descartes theorem for lines
and point circles, step by step.

9.3.1. One line and two circles case. We consider the case in which the circle
C3 is one of the external common tangents of the circles C1 and C2. This
is a typical case in this paper. We assume r1 ≥ r2. We now have r3 = 0 in
(54). Hence

1

r4
=

1

r1
+

1

r2
+

1

0
± 2

√
1

r1r2
+

1

r2 · 0
+

1

0 · r1
=

1

r1
+

1

r2
± 2

√
1

r1r2
.

This implies
1

√
r4

=
1

√
r1

+
1

√
r2

in the plus sign case. The circle C4 is the incircle of the curvilinear triangle
made by C1, C2 and C3 (see Figure 38). In the minus sign case we have

1
√
r4

=
1

√
r2

− 1
√
r1
.

In this case C2 is the incircle of the curvilinear triangle made by the other
three (see Figure 39).

C1

C2

C4

C3

Figure 38.

C1

C4

C2

C3

Figure 39.

Of course, the result is known. The result was also well-known in Wasan
geometry [29] with the Descartes circle theorem itself.
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9.3.2. Two lines and one circle case. In this case, the two lines have to be
parallel, and so, this case is trivial, because then other two circles are the
same size circles, by the division by zero 1/0 = 0.

9.3.3. One point circle and two circles case. This case is another typical case
for the theorem. Intuitively, for r3 = 0, the circle C3 is the common point
of the circles C1 and C2. Then, there does not exist any touching circle of
the three circles Cj ; j = 1, 2, 3.

For the point circle C3, we will consider it by limiting of circles attaching
to the circles C1 and C2 to the common point. Then, we will examine the
circles C4 and the Descartes theorem.

In Theorem 7, by setting z = 1/w, we will consider the case w = 0; that
is, the case z = ∞ in the classical sense; that is, the circle C3 is reduced to
the origin.

We look for the circles C4 attaching with three circles Cj ; j = 1, 2, 3. We
set

(55) C4 : (x− x4)
2 + (y − y4)

2 = r24.

Then, from the touching property we obtain:

x4 =
r1r2(r2 − r1)w

2

D
,

y4 =
2r1r2

(√
r1r2 + (r1 + r2)w

)
w

D
and

r4 =
r1r2(r1 + r2)w

2

D
,

where

D = r1r2 + 2
√
r1r2(r1 + r2)w + (r21 + r1r2 + r22)w

2.

By inserting these values to (55), we obtain

f0 + f1w + f2w
2 = 0,

where

f0 = r1r2(x
2 + y2),

f1 = 2
√
r1r2

(
(r1 + r2)(x

2 + y2)− 2r1r2y
)

and

f2 = (r21 + r1r2 + r22)(x
2 + y2) + 2r1r2(r2 − r1)x− 4(r1 + r2)y + 4r21r

2
2.

By using the division by zero calculus for w = 0, we obtain, for the first, for
w = 0, the second by setting w = 0 after dividing by w and for the third
case, by setting w = 0 after dividing by w2,

(56) x2 + y2 = 0,

(57) (r1 + r2)(x
2 + y2)− 2r1r2y = 0

and

(58) (r21+r1r2+r22)(x
2+y2)+2r1r2(r2−r1)x−4r1r2(r1+r2)y+4r21r

2
2 = 0.
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Note that (57) is the red circle in Figure 40 and its radius is

(59)
r1r2

r1 + r2

and (58) is the green circle in Figure 40 whose radius is

r1r2(r1 + r2)

r21 + r1r2 + r22
.

C1

C2

Figure 40.

When the circle C3 is reduced to the origin, of course, the inscribed circle
C4 is reduced to the origin, then the Descartes theorem is not valid. How-
ever, by the division by zero calculus, then the origin of C4 is changed sud-
denly for the cases (56), (57) and (58), and for the circle (57), the Descartes
theorem is valid for r3 = 0, surprisingly.

Indeed, in (9.4) we set ξ =
√
r3, then (54) is as follows:

1

r4
=

1

r1
+

1

r2
+

1

ξ2
± 2

1

ξ

√
ξ2

r1r2
+

(
1

r1
+

1

r2

)
.

and so, by the division by zero calculus at ξ = 0, we have

1

r4
=

1

r1
+

1

r2

which is (59). Note, in particular, that the division by zero calculus may be
applied in many ways and so, for the results obtained should be examined
some meanings. This circle (57) may be looked a circle touching the origin
and two circles C1 and C2, because by the division by zero calculus

tan
π

2
= 0,

that is a popular property.
Meanwhile, the circle (58) is the attaching circle with the circles C1, C2

and the beautiful circle with center ((r2 − r1), 0) with radius r1 + r2. The
each of the areas surrounded by the three cicles C1, C2 and the circle of
radius r1 + r2 is called an arbelos, and the circle (57) is the famous Bankoff
circle of the arbelos.

For r3 = −(r1 + r2), from the Descartes identity (10.4), we have (10.4).
That is, when we consider that the circle C3 is changed to the circle with
center ((r2 − r1), 0) with radius r1 + r2, the Descartes identity holds. Here,
the minus sign shows that the circles C1 and C2 touch C3 internally from
the inside of C3.
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9.3.4. Two point circles and one circle case. This case is trivial, because,
the exterior touching circle is coincident with one circle.

9.3.5. Three points case and three lines case. In these cases we have rj =
0, j = 1, 2, 3 and the formula (54) shows that r4 = 0. This statement is
trivial in the general sense.

As the solution of the simplest equation

(60) ax = b,

we have x = 0 for a = 0, b ̸= 0 as the standard value, or the Moore-
Penrose generalized inverse. This will mean in a sense, the solution does not
exist; to solve the equation (60) is impossible. The zero will represent some
impossibility.

In the Descartes theorem, three lines and three points cases, we can un-
derstand that the attaching circle does not exist, or it is the point and so
the Descartes theorem is valid.

9.4. Circles and a chord. We recall the following result of the old Japan-
ese geometry [28, 26, 13] (see Figure 41):

C

C1 C2

h

Figure 41.

Lemma 10. Assume that the circle C with radius r is divided by a chord
t into two arcs and let h be the distance from the midpoint of one of the
arcs to t. If two externally touching circles C1 and C2 with radii r1 and r2
also touch the chord t and the other arc of the circle C internally, then h,
r, r1 and r2 are related by

1

r1
+

1

r2
+

2

h
= 2

√
2r

r1r2h
.

We are interesting in the limit case r1 = 0 or r2 = 0.

9.4.1. Results. We introduce the coordinates in the following way: the bot-
tom of the circle C is the origin and tangential line at the origin of the circle
C is the x axis and the y axis is given as in the center of the circle C is
(0, r). We denote the centers of the circles Cj ; j = 1, 2 by (xj , yj), then we
have

y1 = h+ r1, y2 = h+ r2.
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Then, from the attaching conditions, we obtain the three equations:

(x2 − x1)
2 + (r1 − r2)

2 = (r1 + r2)
2,

x21 + (h− r + r1)
2 = (r − r1)

2

and

x22 + (h− r + r2)
2 = (r − r2)

2.

Solving the equations for x1, x2 and r2, we get four sets of the solutions.
Let h = 2r3, v = r − r1 − r3. Then two sets are:

x1 = ±2
√
r3v,

x2 = ±2
r1
√
rr3 + r3

√
r3v

r1 + r3
,

r2 =
r1r3(2

√
r(
√
r −

√
v)− (r1 + r3))

(r1 + r3)2
.

The other two sets are

x1 = ±2
√
r3v,

x2 = ∓2
r1
√
rr3 − r3

√
r3v

r1 + r3
,

r2 =
r1r3(2

√
r(
√
r +

√
v)− (r1 + r3))

(r1 + r3)2
.

We now consider the solution

x1 = 2
√
r3v,

x2 = 2
r1
√
rr3 + r3

√
r3v

r1 + r3
,

r2 =
r1r3(2

√
r(
√
r −

√
v)− (r1 + r3))

(r1 + r3)2
.

Then

(x− x2)
2 + (y − y2)

2 − r22 =
g0 + g1r1 + g2r

2
1 + g3

(r1 + r3)2
,

where

g0 = r23(x
2 + y(y − 4r3) + 4rr3),

g1 = 2r3((x−
√
rr3)

2 + y2 − (2r + 3r3)y + 3rr3),

g2 = (x− 2
√
rr3)

2 + y2 − 2r3y,

and

g3 = 4r3
√
v(r1(

√
ry −

√
r3x)− r3

√
r3x).

We now consider another solution

x1 = 2
√
r3v,

x2 = −2
r1
√
rr3 − r3

√
r3v

r1 + r3
,

r2 =
r1r3(2

√
r(
√
r +

√
v)− (r1 + r3))

(r1 + r3)2
.
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Then

(x− x2)
2 + (y − y2)

2 − r22 =
k0 + k1r1 + k2r

2
1 + k3

(r1 + r3)2
,

where

k0 = r23(x
2 + y(y − 4r3) + 4rr3),

k1 = 2r3((x+
√
rr3)

2 + y2 − (2r + 3r3)y + 3rr3),

k2 = (x+ 2
√
rr3)

2 + y2 − 2r3y,

and

k3 = −4r3
√
v(r1(

√
ry +

√
r3x) + r3

√
r3x).

We thus see that the circle C2 is represented by

(g0 + g3) + g1r1 + g2r
2
1 = 0

and

(k0 + k3) + k1r1 + k2r
2
1 = 0.

For the symmetry, we consider only the above case. We obtain the division
by zero calculus, first by setting r1 = 0, the next by setting r1 = 0 after
dividing by r1 and the last by setting r1 = 0 after dividing by r21,

g0 + g3 = 0,

g1 = 0,

and

g2 = 0.

That is, (
x−

√
2rh− h2

)2
+ (y − h)2 = 0,

(
x−

√
rh

2

)2

+

(
y −

(
r +

3h

4

))2

= r2 +
9

16
h2,

and (
x−

√
2rh
)2

+

(
y − h

2

)2

=

(
h

2

)2

.

The first equation represents one (
√
2rh− h2, h) of the points of intersec-

tion of the circle C and the chord t (see Figure 42). The second equation
expresses the red circle in the figure. The third equation expresses the circle
touching C externally, the x-axis and the extended chord t denoted by the
green circle in the figure. The last two circles are orthogonal to the circle
with center origin passing through the points of intersection of C and t.
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C

t

Figure 42

Now for the beautiful identity in the lemma, for r1 = 0, we have, by the
division by zero,

1

0
+

1

r2
+

2

h
= 2

√
2r

0 · r2h
and

r2 = −h

2
.

Here, the minus sigh will mean that the blue circle is attaching with the
circle C in the outside of the circle C; that is, we can consider that when
the circle C1 is reduced to the point (

√
2rh− h2, h), then the circle C2 is

suddenly changed to the blue circle and the beautiful identity is still valid.
Note, in particular, the blue circle is attaching with the circle C and the
cord t.

Meanwhile, for the curious red circle, we do not know its property, how-
ever, we know curiously that it is orthogonal with the circle with the center at
the origin and with radius

√
2rh passing through the points (±

√
2rh− h2, h).

This subsection is based on the paper [18].

10. Conclusion

Apparently, the common sense on the division by zero with a long and
mysterious history is wrong and our basic idea on the space around the point
at infinity is also wrong since Euclid. On the gradient or on derivatives we
have a great missing since tan(π/2) = 0. Our mathematics is also wrong in
elementary mathematics on the division by zero.

The division by zero theory may be developed and expanded greatly.
We have to arrange globally our modern mathematics with our division

by zero in our undergraduate level.
We have to change our basic ideas for our space and world.
We have to change globally our textbooks and scientific books on the

division by zero.
For a systematic development, we are founding the new international

journal on the division by zero calculus as in [19, 25].
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