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Abstract

We determine the lower bound for arbitrarily aligned perimeter and area Min-
imal Enclosing Rectangle (MER) problems to be Ω(n log n) by using a reduction
technique for a problem with this known lower bound.

Definitions:

Minimum Enclosing Rectangle (MER): (also minimum bounding rectangle,
minimum bounding box) for a point set M in 2 dimensions is the box with the
smallest perimeter within which all the points lie. Second flavor of the problem
concerns area vs perimeter. In the discussion below we consider both flavors.

Maximum Gap: given a set S of N real numbers x1, x2, ..., xN , find the maximum
difference between two consecutive members of S. (Two numbers xi and xj of S
are said to be consecutive if they are such in any permutation of (x1, ..., xN ) that
achieves natural ordering.)

Procedure: Let’s reduce Maximum Gap problem to our target Minimal Enclosing
Rectangle problem.

1. We determine xmin and xmax of set S. (O(n))

2. We will uniformly (meaning — preserving sequencing and relative distances of
the natural ordering) transform set S onto a quarter of a unit circle, such that
xmin maps to (-1,0) and xmax to (0,1) Cartesian coordinates. An example of such
transformation: for xi member of S:

(− cos(
π(xi − xmin)

2(xmax − xmin)
), sin(

π(xi − xmin)

2(xmax − xmin)
))

After transforming S into the upper left quadrant, then we will repeat it for the 3
other quadrants – rotating clockwise π

2
each time. (O(n))
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3. Now, we can make a call to an MER algorithm on the resulting set M .

4. The output of MER is a rectangle R. Let’s take any side of it. This will be an
equation of a line. Now we can plug into it all of the points ofM one by one, taking
care to exclude all xmax vertices. There should be 2 and only 2 which will satisfy
from the same quadrant (see Observation 4 below). If only one point satisfies, we
determine the quadrant it belongs to, then plug in xmax from that quadrant to get
the second point. [We do this because by construction xmax from one quadrant
equals to xmin of the next quadrant clockwise.] (O(n))

5. For any one of these points let’s determine which quadrant it belongs to (they both
must be in the same one, since both ends of the quadrant arc are vertices of M
by construction). Then apply the inverse transformation to get the original values
back. (O(1))

6. Take the absolute value of the difference – this will be the Maximum Gap. (O(1))

Total cost of the transformation is O(n) (we are not including computational cost of
MER in this tally).

Analysis:

Lemma 1 The MER R in step 4 above is a square, having its sides aligned with the
same chord (i.e. chord representing the same original gap from S) in each quadrant.

Observation 1: by construction, all of the points of M are extreme and are vertices of
CH(M).

Observation 2: chords representing the same gap in adjacent quadrants are orthogonal to
each other. Figure 1 demonstrates this situation. Chords AB and CD each correspond
to the gap between some original consecutive elements xi and xj from S. Let’s show why
∠AED = π

2
. By construction, ∠AOC = ∠BOD = π

2
as well as ∠AOB = ∠COD = α,

where 0 < α ≤ π
2
. Therefore β = π

2
+ α. γ = π−α

2
, since △AOB is isosceles [because

AO = BO = 1, where 1 is the radius of our unit circle]. From all of this follows:
δ = γ − π−β

2
= π

4
. By applying same logic to the other quadrant, we get ∠ADE = π

4
as

well. Finally, looking at △AED: ∠AED = π − δ − ∠ADE = π
2
.
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Figure 1: Orthogonal chords

Observation 3: each side of R has to contain either a single vertex or a side of a CH(M).
Assume opposite, then there is some distance between the side of R and a closest vertex
(side) of CH(M). This means either our rectangle cuts into a CH(M) or we can slide
the side parallel to itself towards its closest vertex(side) of CH(M) until it coincides with
the closest vertex (side) of CH(M) to achieve a smaller perimeter and area enclosing
rectangle. In either of these cases, we did not have an MER to begin with. Thus we
achieve contradiction.

Observation 4: each side of R has to contain one and only side of a CH(M) (eliminating
single vertex as an option). Assume opposite, then at least one side of R only contains
one vertex from CH(M). Let’s drop a line from this vertex to the center of the circle
O. By construction, it’s length is going to be 1. Let’s continue this line through the
center of the circle, until it hits the opposite quadrant’s circle’s circumference. Straight
line has angle of π, which gives us another vertex of CH(M) by two turns of π

2
based

on Observation 2, so this means we found the opposite side of R. By similar logic if we
drop a perpendicular line via O, we hit two other vertices of CH(M) and thus perimeter
of our R is 8 and area is 4.
Now let’s construct another enclosing rectangle L as follows: for the original vertex
above, let’s find the nearest neighbor, we know there has to be at least one (given a set
S at least has to have 2 elements for Maximum Gap to be valid). Let’s draw a straight
line through these two vertices. This line will contain one side of an enclosing rectangle
we are building. [To prove that it is, we need to show that this line does not bisect
CH(M). Assume the opposite, first we observe, since this line bisects a circle which
fully encloses CH(M) which means this line bisects CH(M) within the chord of this
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circle (see Observation 1 ). This means there is another vertex belonging to M between
the two nearest neighbors within it, which is a contradiction.] We continue with our
construction by using the same method as before - from each vertex we drop a straight
line through the center of the circle. We make the same observation that where these
lines intersect the circle in the opposite quadrant (π turn), we find mirror image vertices
(Observation 2 ). The line through those newly identified vertices contains the opposite
side of L. By making π

2
turns and drawing straight lines we find perpendicular sides of

L. We observe that all four sides of L bisect the unit circle by construction. This means
that its perimeter must be < 8 and area < 4.
So we just built an enclosing rectangle L for set M that has a smaller perimeter or area
(depending on the MER flavor used) than MER, which is a contradiction. Thus a side of
MER forM cannot contain just a single vertex, it has to contain an entire side of CH(M)

Conclsuion 1: From the Observations 2 & 4 and since there could be only one perpen-
dicular dropped on a straight line from a single point, all sides of R will be aligned with
the same original element (gap) [mapped to all four quadrants].

Conclusion 2: An interval d from the center of the circle to a midpoint of the chord
lying on a side of R will be orthogonal to that cord (side) [median to the base of an
isosceles triangle]. This interval will also be orthogonal and equal to its “sibling” in the
adjacent quadrant. This means that R must be a square. Also, d is half the length of
the side of the enclosing square.

Conclusions 1 & 2 satisfy Lemma 1 conditions. �
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Figure 2: Arc length to MER side length relationship
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Lemma 2 Two vertices of M identified in step 5 of the Procedure section the largest
arc of any adjacent vertices defined in the Procedure.

As shown in Lemma 1, MER R will align with the chord of a unit circle of two neigh-
boring vertices of M in the same quadrant. This satisfies vertex adjacency. As depicted
on Figure 2, for upper left quadrant, we now need to derive a formula for the arc AB

⌢

expressed solely as a function of d, which is a half of the side of MER R in order to see
the type of relationship between the length of the side of R (and thus its perimeter and
area) and the length of the arc it sections in each quadrant.

AB
⌢

= α

r =

√

d2 +
AB2

4
= 1 ⇒ AB = 2

√
1− d2

AB = 2r sin(
α

2
) = 2 sin(

α

2
)

2
√
1− d2 = 2 sin(

α

2
)

d =

√

1− sin2(
α

2
) =

√

cos2(
α

2
) = cos(

α

2
)

And after final substitution, we get:

d = cos(
AB
⌢

2
) ⇒

∣

∣

∣

∣

∣

Perimeter(R) = 8 cos(
AB
⌢

2
)

Area(R) = 4 cos2(
AB
⌢

2
)

Based on the original construction of set M and looking at only upper left quadrant,
we can derive the possible range of AB

⌢

values as [0, π
2
] with 0 when original S has

repeating numbers to π
2
when the S contains only two elements. On this range, both

functions 8 cos(AB
⌢

2
) and 4 cos2(AB

⌢

2
) are smoothly declining, thus perimeter and area of R

have inverse relationship to the length of AB
⌢

. Since we know R has a minimum possible
perimeter and area (MER and being a square), AB

⌢

is the maximum possible arc between
adjacent vertices of M. �

Theorem 3 Maximum Gap ∝O(n) Minimal Enclosing Rectangle (both perimeter and
area)

From Lemma 2, we know that running MER algorithm on M produces the longest arc
between nearest vertices of M in the same quadrant. Based on how M is constructed
in the Procedure from S, we can derive the original elements of S (steps 4 & 5) xi and
xj which due to the uniformity of the transformation in step 2 have to be the naturally
sequenced members of S with the largest gap of all neighboring pairs among all the
consecutively ordered members of S. Cost of the transformation is O(n). �
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Theorem 4 MER problem is Θ(n logn) (both perimeter and area)

We have shown that Maximum Gap ∝O(n) Minimal Enclosing Rectangle. Maximum
Gap was shown to be Ω(n logn) [1] (Corollary 6.2) in algebraic decision tree model [2],
[3], [4]. Therefore MER is Ω(n log n).
It was also shown [5](Theorem 3) that MER is O(n logn). �
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