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Abstract

An initial value boundary problem for the linear Schrȯdinger equation with nonlin-
ear functional boundary conditions is considered. It is shown that attractor of problem
contains periodic piecewise constant functions on the complex plane with finite points
of discontinuities on a period. The method of reduction of the problem to a system of
integro-difference equations has been applied. Applications to optical resonators with
feedback has been considered. The elements of the attractor can be interpreted as
white and black solitons in nonlinear optics.

Keywords: The Schrȯdinger equation • The functional two points boundary conditions
• asymptotic periodic piecewise constant distributions of relaxation type

1 Introduction

In this paper it will be considered an initial value boundary problem (IVBP) which describes,
for example, the dynamics of a kicked charged particle moving in a confined ’quantum box’.
We assume that interaction between particles take place only at flat walls, where there is
surface potential W (u1, u2, S1, S2) depending both on surface amplitudes of particles and
their phases (see, [12]. The problem can be described by two linear quantum equations
coupled by nonlinear differential or functional boundary conditions. Such problem arise
in optical waveguide technologies. The boundary conditions used as ’high-speed switches’
[15], and ones plays the role of ’frequency conversion’ which is used to produce laser fields
at wavelengths that are inaccessible to materials [16], and ’can also be used to interface
individual parts of a network or to transfer information from one field to another at a
different wavelength [19]’ [14]. Moreover, the mathematical model below can be used to
describe ridge waveguide. The known example of this aim is MgO : LiNbO3Sakai.

The IVBP boundary describes the dynamics of a kicked charged particle moving in
a double-well, or more complex potential, and a time-dependent magnetic field. In certain
cases the stroboscopic dynamics reduces to the complex logistic map, thus providing physical
meaning for the Mandelbrot set [12]. The logistic map has bounded and stable trajectories
for the control parameter 0 < a < 4. Thus, the same is true for solutions of the quantum
problem for small parameter h > 0, or in the quasiclassic or WKB – approximation [22]. In
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other cases, we obtain iterated function systems consisting of the inverse complex logistic
map, thus providing physical meaning for Julia sets. Remind

Our approach can be generalized to complex mappings with a maximum of order q.ales
with some surdouble-well potential and a time-dependent magnetic field. In certain cases the
stroboscopic dynamics reduces to the complex logistic map, thus providing physical meaning
for the Mandelbrot set. In other cases we obtain iterated function systems consisting of the
inverse complex logistic map, thus providing physical meaning for Julia sets. Our approach
can be generalized to complex mappings with a maximum of order q. which describes
the dynamics of the two free particles with opposite impulses that are places into confined
quantum box. Thus, we consider the dynamics of a kicked charged particle moving in a
double-well or more complex potential which is placed at flat walls if the box. In [12], it
has been studied the deterministic version of a classical Langevin problem, where it has
been looked the movement of a charged particle in a double-well potential. It is shown that
the Langevin problem can be reduced to the study of a family of iterated function systems,
containing the complex logistic map. This result provides physical meaning for the Julia set.
Similar approach has been used in [11] to the study of an initial value boundary problem for
the Liouville equation with nonlinear dynamic boundary conditions. The problem describes
a velocity of changing on time of the probability of particles at walls that confines the
particles. Note that these velocities are nonlinear functions of the density of the probability of
particles to occupied the flat walls. The attractor of the problem has been constructed. This
attractor contains periodic piecewise constant functions with finite, countable or uncountable
(homeomorphic to the Cantor set) lines of discontinuities on a period, which propagate along
characteristics of the Liouville equation. We call such elements of the attractor by the limit
generalized distributions of relaxation, pre-turbulent and turbulent type, correspondingly
with respect to the classification Sharkovsky classification [6]. In the present paper, we
generalise the results [12, 11] on the IVBP, where the motion of free particles with different
impulses will be described by the generalised Shrödinger type equations. Corresponding
operators are linear with a small parameters, and with symbols that are polynomial functions

Pn(p) =
n∑
j=0

ajp
j, n = 2, 3, .... (1)

Here, p ∈ R, p corresponds to the operator p̂ = −ih d
dx

, where h > 0 is a small parameter. If
n− 2 then we have deal with the Shrödinger equation. Let us define

Ê = −ih ∂
∂t
, p̂ = −ih d

dx
(2)

and consider the uncoupled system of equations(
−Ê + P 1

n(p̂)
)
yk(x, t) = 0, k = 1, 2. (3)

Let initial conditions are a special form

yk(x, 0) = e
i
h
αkx. (4)

Then we can find a solution in the form

y1(x, t) = e
i
h
λ11x+λ21t, y2(x, t) = e

i
h
λ12x+λ22t, (5)
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where λji ∈ R, i, j = 1, 2.
A corresponding initial problem has been solved in [9], where is shown that ones may

be reduced to Hamilton-Jacobi equations

λ1
2 + P 1

n(λ1
1) = 0, λ2

2 + P 1
n(λ2

1) = 0, (6)

and, respectively, to a system of transport equations

∂ϕ1

∂t
+
∂P 1

n(λ1
1)

∂p

∂ϕ1

∂x
= 0, (7)

∂ϕ2

∂t
+
∂P 2

n(λ1
2)

∂p

∂ϕ2

∂x
= 0. (8)

Let us define

∂P 1
n(λ1

1)

∂p
= λ1,

∂P 2
n(λ1

2)

∂p
= λ2. (9)

Then

∂ϕ1

∂t
+ λ1

∂ϕ1

∂x
= 0, (10)

∂ϕ2

∂t
+ λ2

∂ϕ2

∂x
= 0, (11)

where we assume that λ1 > 0 and λ2 < 0.
Now we consider the functional boundary conditions

ϕ1(0, t) = ϕ2(0, t), ϕ2(l, t) = Φ(ϕ1(l, t)). (12)

Then integration of these ODE along characteristics with help of boundary conditions (12)
leads to the relations:

ϕ1(l, t) = ϕ1(0, t− l/λ1) = ϕ2(0, t− l/λ1) = ϕ2(l, t− l/λ1− l/λ2) = Φ(ϕ1(l, t− l/λ1)−1/λ2)).
(13)

Define ∆ = l/λ1 + l/λ2. Then from (15) we arrive at

ϕ1(l, t) = Φ(ϕ1(l, t−∆)). (14)

Solutions of this equation can be find, step by step, iterating an initial function h1(t),
which is given on interval [−∆, 0). Let us define y(t) = ϕ1(l, t). Then h1(t) can be determined
by method of characteristic so that y(t) = ϕ(t) = ϕ(t) = ϕ1(t) for t ∈ [−1/λ2, 0), and
ϕ(t) = ϕ2(t) = ϕ1(t) for t ∈ [0, 1/λ1) (see, Figure 85, [23]).

2 Hamilton-Jacobi equations

The Hamilton-Jacobi equations have solutions
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λ1
1 = α1, λ

2
1 = −P 1

n(α2), λ1
2 = α1, λ

2
2 = −P 2

n(α2). (15)

Thus,

Sk(x, t) = αkx− P k
n (αk)t, k = 1, 2. (16)

For the solvability of IVBP we must assume that

∂P 1
n(λ1

1)

∂p

∂P 1
n(λ1

1)

∂p
< 0. (17)

Now for the Hamilton-Jacobi equations

∂Sk
∂t

+ P k
n

(
∂S1

∂t

)
= 0, k = 1, 2, (18)

we postulate the periodic boundary conditions

S1(0, t) = S1(l, t), S2(0, t) = S2(l, t), t > 0, (19)

S1(x, 0) = S0
1(x), S2(x, 0) = Sl1(x), 0 < x < l. (20)

Next, we prolonged the initial conditions on x ∈ R l - periodically. In this case, solutions
of initial problem for a phase will be a solution of the boundary problem with help of
prolongation of linear phases S1(ζ), S1(η) periodically, where

Sk(x, t) = α1x− P k
n (α1)t, k = 1, 2;n = 0, 1, .... (21)

3 WKB - approximation with a complex phase

Thus, we consider IVBP for two linear PDE with symbols, which are polynomial of order [1]
n = 2, 3, ..., and with nonlinear functional or dynamic boundary conditions. For example,
for n = 2 we have the two uncouples Shrödinger equations. The boundary conditions reflect
the connection between amplitudes and phases of (in) and (out) waves at walls of quantum
box. We consider 1D case, but results may be generalized on 3D case. It must be noted
that the boundary conditions include an exponential factor that depends of a phase. Initial
conditions have the form

u(x, t, h) = A(ω)[ϕ0(x, t)eiωS1(x,t)e−iωS2(x,t) +O(1/ω)] (22)

where S1, S2 ≥ 0, ϕ0 are smooth functions. If

S(x, t) = S1(x, t) + iS1(x, t), ω = 1/h, (23)

then a solution (22) has the form

u(x, t, h) = A(1/h)

(
ϕ0(x, t)e

i
h
S(x,t) +O(h)

)
. (24)
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We call such solutions by WKB - solutions. Here, h > 0 is a small parameter. It means that
we consider high-frequency approximation or approximation of geometric optics. In some
cases, this approximation is called by the approximation ’of thin laser beams’: that is, for
each fixed t > 0 a solution is ’localized’ at a neighbourhood of some curve (see, [22],c.33)).
The motivation of the introduction of a small parameter h > 0 or ’inner Planck constant’ is
explanted by the fact that for the quantization are used asymptotic on h → 0 solutions of
this equations ([22],.31). The construction of the asymptotic solutions can be provided by
the method of reduction of the problem to a system of equations of quantum mechanics to
a system of equations of classic mechanics: to the Hamilton-Jacobi equations for phases and
transport equations or Liouville equations for amplitudes.

The construction of complex solutions of these equations of quantum mechanics for
infinitly thin laser beams allows to find WKB - solutions in the form

uk(x, t, h) = eiSk/h

m∑
j=0

ϕkj (x, t)h
j, k = 1, 2, (25)

where Sk and ϕkj (x, t) are solutions of the Hamilton-Jacobi equations and Liouville equations.
Note that the Hamilton-Jacobi equations can be solved exactly. A zero approximation can
be determined with accuracy O(h2) and one is a real function, but another functions admit
imaginary corrections to a phase, that is for each next π/2. In applications to the boundary
problem, it is similar to the famous that the

In the present paper, this method of reduction will be applied to the boundary problems
of quantum mechanics. The results can be applied to problems of nonlinear optics, to the
Ginzburg-Landau equations for a two-component order parameter: example is the system of
the Gor’kov equations, which describe a density of Cooper pairs in superconductors of type
2 [7], and so on.

u1(0, t) = λ1u
2(0, t), u2(l, t) = λ2u

2(l, t), t > 0. (26)

Let us consider a system of partial differential equations with constant coefficients which
have polynomial symbols

Pn(p) =
n∑
j=0

ajp
j, (27)

where Pn(p) is a polynomial of variable p ∈ R1 of power n = 1, 2, .... Formally, the transfor-
mation of variable p on operator p̂ = −h d

dx
leads to the differential operator (27)

Pn(p̂) = Pn(−ih d
dx

) =
n∑
j=0

aj(−ih)j
dj

(dx)j
(28)

with constant coefficients. (
−Êk + P k

n (p̂)
)
φ(x, t) = 0, k = 1, 2, (29)

where Ê = ih ∂
∂t

.
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Figure 1: The trajectories of hyperbolic dynamical systems with attractive and saddle points in a plane.

4 Beck’s type boundary conditions

We consider the functional boundary conditions

φ1(0, t, h) = S1(φ2(0, t, h)), φ1(0, t, h) = S2(φ2(0, t, h)) (30)

and the initial conditions

φ1(x, 0, h) = h1(x, h), φ2(x, 0, h) = h2(x, h), (31)

where S1, S2 : R → R are given functions. As follows from [12], such boundary conditions
can describe the dynamics of a kicked free particle moving in quantum box with a double-well
surface potentials. A corresponding classical case it has been considered in [8]. Indeed, as
noted by Beck [12], we ’Though we will usually call the dynamical variable in our equations
the velocity of a particle, our approach is much more general. Double-well potentials have
many applications in physics, in subject areas as diverse as chemical kinetics, non-equilibrium
thermodynamics, elementary particle physics and cosmology’.

Indeed, at time t the free particle gets a strength c = a + ib in x - direction. Consider
the velocity v−(t) = (u−(t), w−(t)) and v+(t) = (u+(t), w+(t)) before and after the kick.
Then we have

u+ = u− + a, w+ = w− + b (32)

that is equivalent
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Figure 2: Limit solutions of relaxation type.

z+ = z− + c, (33)

where c = a + ib ia a complex constant. Next, we assume that the strength is acting at
each of two flat walls in a quantum box. Then we can consider a generalization of (33) on
nonlinear case so that

ψ1(0, t) = Φ(ψ2(0, t)), ψ2(l, t) = ψ1(l, t)) (34)

where Φ : I → I is a given function, I is an open bounded interval. Here, ψ1 = z+ and
ψ2 = z−. The index (±) labels quantities before (−) and after (+) the kick. If Φ := Id,
where Id is identical map, then we obtain linear boundary conditions of type (33).

In [12] it is shown that in unbounded homogeneous space the complex nonlinear map-
pings Φ arise as stroboscopic mappings of certain classical particle dynamics. In a sense,
that it has been studied the deterministic version of a typical Langevin problem. General-
ization of [12] it has been considered in [11] on example on 2D - dimensional initial value
boundary problem for the Liouville equation with nonlinear dynamic boundary conditions
which describes velocity of changing on time of the probability of particles at walls that con-
fines the particles. These velocities are nonlinear functions of the density of the probability
of particles to occupied the flat walls. The attractor of the problem has been constructed.
This attractor contains periodic piecewise constant functions with finite, countable or un-
countable points of discontinuities on a period, which propagates along characteristics of the
Liouville equation. We call such elements of the attractor by the distributions of relaxation,
pre-turbulent and turbulent type, respectively. There are also random distributions of par-
ticles, which can be produced by the nonlinear feedback on the walls. The results has been
obtained by the reduction of the problem to dynamical system which is described by system
of difference equations, depending on coordinates and momenta as of parameters. It is shown
that the changing of these parameters leads to period doubling bifurcations of elements of
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the attractor on 4 - dimensional torus. The problem is solved in class of quasi-periodic
functions.

The main contribution in behaviour of solutions of IVBP include boundary conditions
in complex space because we assume that equations of quantum mechanics are linear. next,
these equations can be reduced in WKB - approximation to a canonical system, which
represents coupled system of the Hamilton-Jacobi and transport equations fore phases and
amplitudes, respectively. equations and the system of transport equation. The problem is to
reduce boundary conditions for quantum equation to the boundary conditions for classical
canonical equations. The corresponding example has been done in [12] for the problem
which describes the dynamics of a charged particle moving in some arbitrary potential and
a magnetic field under the influence of kicks.

5 Decomposition on amplitudes and phases

In this section, it will be discussed a problem of decomposition of density u as

u = u1e
iτS1 + ...+ uke

iτSk , (35)

where τ = 1/h. The problem is to fined phases Sj. If j = 1 then we have the known WKB -
decomposition. If in the series is unique term then appears only phase factor. But for many
terms the choice of relative phases for the Cauchy problem is important. Below it will be
shown a special procedure for the determination of phases.

We begin with the Cauchy problem. Let a solution is

u(x, t) =
∞∑
l=0

hlφl(x, t). (36)

As example, consider the initial problem(
Ê + Pn()̂

)
ψ(x, t = 0, (37)

ψ(x, 0) = eih(λ1x+λ2t)φ0x. (38)

Then solutions are

y(x, t) = eih(λ1x+λ2t)φ(x, t). (39)

Substituting (39) into equation

(−ih ∂
∂t

+ Pn(−ih ∂
∂x

))y(x, t) = 0, (40)

we arrive at [
(λ2 − ih

∂

∂t
) + Pn(λ1 − ih

∂

∂x
)

]
φ(x, t) = 0. (41)

Initial conditions give
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y(x, 0) = e
i
h
λ1xφ(x, 0) = e

i
h
αxφ0(x). (42)

From (42) it follows that

λ1 = α, φ(x, 0) = φ0(x). (43)

Now we note that the term

(λ2 − ih
∂

∂t
) + Pn(λ1 − ih

∂

∂x
) (44)

can be obtained from the function

(λ2 − ihE ′) + Pn(λ1 − ihp′) (45)

by the formal transformation E ′ → ∂/∂x. Now we decompose functional (45) in the Taylor
series on h so that

F (h) =
n∑
k=0

hk

k!

dk

dhk
F (h)

∣∣∣∣
h=0

= (λ2+Pn(λ1))+h(−iE ′−∂Pn
∂p

(λ1)p′)+
n∑
k=2

hk

k!
(−i)k ∂

kPn
∂pk

(λ1)(P ′)k.

(46)
Then the transformation E ′ → ∂

∂t
and p′ → ∂

∂x
leads to

(λ2−ih
∂

∂t
+Pn(λ1ih

∂

∂x
) = (λ2+pn(λ))−ih(

∂

∂t
+
∂Pn
∂p

(λ1)
∂

∂x
+

n∑
k=2

(−ih)k

k!

∂kPn
∂pk

(λ1)
∂k

∂xk
. (47)

From (47) it follows that relation (47) can be rewritten as

(λ2 + Pn(λ1))φ(x, t)− ih
(
∂φ

∂t
+
∂Pn
∂p

(λ1)
∂φ(x, t)

∂x

)
+

n∑
k=2

(−ih)k

k!

∂kPn
∂pk

(λ1)
∂kφ(x, t)

∂xk
= 0.

(48)
From (277) with help of choice of constant λ1, λ2 and a function φ(x, t) it is impossible to
obtain an exact solution of the problem. But equating to zero more number of terms in
expansion (48) we can get asymptotic solution on h (h→ 0).

Thus we have the equation

λ2 + Pn(λ1) = 0 (49)

and the equation
∂φ

∂t
+
∂Pn
∂p

(λ1) +
∂φ

∂x
= 0. (50)

Equation (49) has a solution

S(x, t) = αx− Pn(α)t, λ1 = α, λ2 = −Pn(α). (51)
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Equation (49) can be rewritten in more clear form which is equivalent (50). Indeed, consider
at plane (x, t) a vector-field v with coordinates which are independent from x, t. Such vector-
field is

v =

(
∂P k

n

∂pk
(λ1), 1

)
, k = 1, 2. (52)

It means that in left part of equation (50) the derivative along trajectories of vector-field v
exists. Then the transport equation is ODE

dφ

dt
= 0 (53)

where d
dt

is a derivative along trajectories of vector-field. From (53) it follows that φ must be
constant along trajectories. The transport equation allows to obtain a solution with accuracy
O(h2). To obtain following terms of asymptotic series, we must find φ(x, t) as formal power
series on h. For φ0 we again obtain the transport equation. Then the right part of ODE is
order O(hs) for each integer s > 0.

6 Complex transport equations in the first approxima-

tion

Next, we consider a function φ1(x, t). Then, with accuracy of order O(h2), we get the
equation:

∂φ1

∂t
+
∂Pn
∂p

(λ1)
∂φ1

∂x
= − i

2

∂2Pn
∂p2

(λ1)
∂2φ0

∂x2
(54)

which with help of the determination d
dt

can be written as

dφ1

dt
= − i

2

∂2Pn
∂p2

(λ1)
∂2φ0

∂x2
. (55)

If φ0(x, t) has been determined earlier then the integration of equation (55) allows to obtain
a function φ1(x, t).

Further, we consider terms of the equation which have orders h3, h4, ...,. Then we obtain
a recurrent system of equations, which determine functions φs(x, t), where each successive
function can be obtained from the previous function with help of integration along vector-
field v.

7 Systems of linear quantum equations with nonlinear

boundary conditions

Consider the following system of equations

−h∂ψk
∂t

+Hk(x, p, t)ψk = 0, k = 1, 2, (56)

with the initial conditions
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ψk(x, 0) = e
i
hSk0 (x)ψ0(x), (57)

and the boundary conditions

ψ1ψ̄1 = Φ1(ψ2ψ̄2)

∣∣∣∣
x=0

, ψ2ψ̄2 = Φ2(ψ1ψ̄1)

∣∣∣∣
x=1

(58)

where Φ1,Φ2 are given functions. Here, ψ̄ is conjugate quantity to ψ. Hamiltonian of a
problem Hk(x, p, t) satisfies to the estimation∣∣∣∣Dα

xD
β
pHk(x, p, t)

∣∣∣∣ ≤ Cα,β(1 + |x|+ |p|)m (59)

where m > 0 is a fixed number, α, β are multi indexes, Cαβ are constants.

If Hk = P
(k)
n then with accuracy O(h2) the problem can be reduced to the system of

equations

∂φ0
1

∂t
+
∂P 1

n

∂p
(λ1)

∂φ0
1

∂x
= 0, (60)

∂φ0
2

∂t
+
∂P 2

n

∂p
(λ2)

∂φ0
2

∂x
= 0 (61)

with the boundary conditions

|φ0
1|2 = Φ1(|φ0

2)|2|x=0 |φ0
2|2 = Φ2(|φ0

1)|2|x=1, (62)

and the initial conditions

φ0
k(x, 0) = hk(x), k = 1, 2. (63)

A solution has the form

u0
1(x, t) = y(t− x/λ1), u0

2(x, t) = y(t+ x/λ2), (64)

where λ1,2 → ∂P 1,2
n

∂p
(λ1,2),n = 0, 1, 2, ... are coefficients in the corresponding hyperbolic equa-

tions. We assume that λ1λ2 < 0. Then from [8, 23] we arrive at

y(t+ 2∆) = Φ(y(t)), t ∈ [−1,∞), ∆ = l/V1 + l/V2, (65)

with an initial condition

y(t)|[−1,1) = h(t), (66)

where h(t) = φ1(−t) for t ∈ [−1, 0) and h(t) = φ2(t) for t ∈ [0, 1). Difference equation can be
obtained by simple substitution of a solution in form (64) into the boundary conditions. Here,
Φ belongs to a class C2(I, I), the map is structural stable. Particularly, we can consider well-
known unimodal maps [3], for example, the quadratic map u 7→ u2+µ. For some µ ∈ R, such
maps have infinite number of periodic points. Note that a point u and a trajectory O(u) is
called periodic of a period m if f (m)(u) = u, f (j)(u) 6= u, 0 < j < m. For example, a periodic
trajectory of period 2 contains two points u0, u1 = f(u0) f (2)(u0) = u0, f

(2)(u1) = u1). For
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µ = −2 the map has invariant measure which is absolutely continuous with respect to the
Lebesgue measure. It means trajectories of corresponding dynamical system are ’stochastic’.

In structural stable case, we define the separator D of Φ as a set D =
⋃
n≥0 h

−nP̄−.

Here, P̄− is closer of a set P− where P− is a set of repelling points of the map. Separator
represents nowhere dense on interval I closed set of the Lebesque measure zero, which is
finite, countable or uncountable. Particularly, there is the following theorem [23]: D is
uncountable if and only if Φ has circles with periods which are different from 2i, i = 0, 1, ....
Using D, we can construct a set Γ = h̃−1(D) where h̃ depends on initial data of the boundary
problem. In structural stable case, h(t) satisfies to the condition h(t) 6= 0, t ∈ Γ. Then
topological properties of Γ are identical to the topological properties of the separator D. Γ
is closed and nowhere dense in [0, 1] and measure meas (Γ) = 0. Γ determines a set a point
of ’discontinuities’ for solutions of canonical system of equations in the zero approximation
(as h = 0).

The main statement of the present paper is that solutions of IVBP for canonical system
of equations are asymptotically stable in Skorohod or Hausdorff metrics if the small param-
eter h < h0, where h0 determines by parameters of the quantum problem. The Hausdorff
metric is well-known. It is distance in corresponding topology between graphics of solutions.
This metric is applied to deterministic solutions. The Skorohod metric can be applied to the
random solutions which represent an attractor of the problem. The Skorohod metric is [23]

s(v, ṽ) = sup
α∈Λ
{||v ◦ α− ṽ||C0(Π,I×I) + ||α− Id||C0(Π,Π)} (67)

where Λ is a set of homeomorphisms, Id is identical homeomorphism. Below it will be
shown that in zero approximation solutions of the canonical problem are stable with respect
to perturbations of initial and boundary conditions in Skorohod and Hausdorff metrics. It
must be noted that there exist specific ’stability’, and for specific initial conditions, which
determine ’solitons’. Indeed, initial functions must be from a region of attraction in the zero
approximation. Then it can be proved that all solutions from an attractive region tend for all
following approximation to a limit solution in zero approximation as t 7→ ∞ with accuracy
O(h2) for first approximation, with accuracy O(h3) for second approximation, and so on. In
this case, we have deal with approximated attractor for the origin IVBP. We can confined
itself by the approximation with accuracy O(h).

A limit solution can be found, step by step, by the formula

p(t) = Φ4m−1 ◦ Φ∆ ◦ h(t− 2(2m− 1)), t ∈ [4m− 3, 4m− 1), m = 1, 2, ..., (68)

where m is least common multiple of periods of attractive circles of the map Φ := Φ1 ◦ Φ2.
A set of points of ’discontinuities’ is determined by the formula

ΥR+ =
∞⋃
n=1

{t : t− 2n ∈ Γ}. (69)

8 The first approximation

Consider one of the components φ1(x, t) for the system of transport equations. Initially, we
selected in the decomposition on small parameter h of the origin quantum equations terms
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of order h2. As a result, we obtain a system of uncoupled linear equations, which determine
perturbations for a zero approximation with accuracy O(h2):

∂φ1
1

∂t
+
∂P 1

n

∂p
(λ1)

∂φ1
1

∂x
= − i

2

∂2P 1
n

∂p2
(λ1)

∂2φ1
0

∂x2
, (70)

∂φ1
2

∂t
− ∂P 2

n

∂p
(λ2)

∂φ1
2

∂x
= − i

2

∂2P 2
n

∂p2
(λ2)

∂2φ2
0

∂x2
. (71)

The complex functions φ1
1, φ

1
2 arise because we used ’incorrect’ decomposition ([9], formula

(19)):

ϕ(x, t) ≡
∞∑
j=0

hjϕj(x, t). (72)

Correct decomposition is

ϕ(x, t) ≡
∞∑
j=0

(ih)jϕj(x, t). (73)

Indeed, from strong theory it follows that common representation of a solutions (on charac-
teristics) is ([1], p.79):

u = u0e
iτS0 + u1e

iτS1 + ...+ uke
iτSk (74)

where τ = 1/h. The difficulty lies in the fact that this expression is not one-to-one for the
choice of phases Sj. If there were only one term in the sum, then this arbitrariness would
lead only to (a rather harmless) phase factor. However, if in the sum of several terms, then
the choice of relative phases is essential. The correct terms for the oscillating terms in (74)
are obtained from the projections of semi-density % that is a solution of a transport equation
by multiplication on a constant phase factor. These factors are different from each to other
by degree i.

This problem can be studied on the lagrange manifolder Λ (see,[1], p.79). For solving
of the problem, the method of stationary phase has been applied.

Indeed, the boundary conditions are

φ1
1 = Φ1(φ1

2)|x=0, φ1
2 = Φ2(φ1

1)|x=l. (75)

The main observation is that in (70),(71) the right parts tend to zero as t → ∞ for almost
all characteristic of the difference equations. Then we may think that, as t → ∞ solutions
of the boundary problem tend to solutions for the non-perturbed equations:

∂φ1
1

∂t
+
∂P 1

n

∂p
(λ1)

∂φ1
1

∂x
= 0, (76)

∂φ1
2

∂t
− ∂P 2

n

∂p
(λ2)

∂φ1
2

∂x
= 0. (77)

Then the problem is reduced to the Sharkovsky problem ([23], p.247) (without right parts
in the hyperbolic equations) with nonlinear boundary conditions:

13



φ0
1 + hφ1

1 = Φ1(φ0
2 + hφ1

2)|x=0 φ0
2 + hφ1

2 = Φ2(φ0
1 + hφ1

1)|x=1. (78)

Then from (78) we arrive at

φ0
1 + hφ1

1 = Φ1(φ0
2) + hΦ′1(φ0

2)φ0
2|x=0, φ0

2 + hφ1
2 = Φ2(φ0

1) + hΦ′2(φ0
1)φ0

2|x=l. (79)

9 Asymptotic for quasi-invariant initial data

If h = 0, we obtain the well-known IVBP with typical attractors which represent piecewise
constant periodic function with finite or infinite lines of discontinuities that lie on charac-
teristics of hyperbolic equations. Define, for simplicity, φ0

1 = u1, φ
0
2 = u2. Then we find

that

Φ1 ◦ Φ2(u1) = u1, u2 = Φ2(u1), Φ1(u2) = u1. (80)

Next we define u1(x, 0) ≡ a1, where a1 is a single attractive fixed point on interval I of the
map f := Φ1 ◦ Φ2 : I → I. Put u2(x, 0) = Φ2(u1(x, 0)). Then the problem can be reduced
to the difference equation [23]

u1(t) = f(u1(t−∆), ∆ = l/V1 + l/V2, (81)

where V1, V2 coefficients in the hyperbolic equations, V1, V2 > 0. Since f ∈ C2(I, I) has
a single point a1 ∈ P+, where P+ is a set of attractive fixed points, from (81) it follows
that (u1 → a1, u2 → Φ2(a1)) as t → ∞. Further, from structural stability of the map
f it follows that the same is true if (u1(x, 0), u2(x, 0)) ∈ (Oδ(P

+,Φ1(P+)), where Oδ are
some neighbourhoods of these points. Next, it is known [23] that if f is monotone (without
extremum) then a set P+ = (a1, ..., an) is finite. Values of piecewise constant limit function
p ∈ P+ almost all points, excluding finite number of ’jumps’, where value of p is ’vertical
interval’. In this case, we have deal with solutions of relaxation type.

10 Asymptotic of limit solutions

As a result, solutions of the transport equations (41′′), (42′′) can be represented as

φk(x, t) = φ1
0(t− (P k

n (λk))′x), k = 1, 2. (82)

Then from (82) it follows that solutions of equations with perturbations can be represented
as

φk(x, t) = φk0(t− (P k
n (λk))′x) + ihφk1(t− (P k

n )′(λk)x), k = 1, 2. (83)

Asymptotic of these solutions are

φk(x, t) = eiπ/2hφk1(t− (P 1
n)′(λk)x), k = 1, 2. (84)
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11 The second approximation

In this case, with accuracy O(h3), we obtain a similar system of equations

∂φ2
1

∂t
+
∂P 1

n

∂p
(λ1)

∂φ2
1

∂x
= − i

2!

∂2P 1
n

∂p2
(λ1)

∂2φ1
1

∂x2
− i

3!

∂3P 1
n

∂p3
(λ1)

∂3φ1
0

∂x3
, (85)

∂φ2
2

∂t
+
∂P 1

n

∂p
(λ1)

∂φ2
2

∂x
= − i

2!

∂2P 2
n

∂p2
(λ2)− ∂2φ2

2

∂x2
− i

3!

∂3P 2
n

∂p3
(λ2)

∂3φ2
0

∂x3
. (86)

Not that the second derivatives of zero and first approximations tend to zero as time tends
to infinity for almost all points on characteristics. It means that limit asymptotic can be
described by the limit equations:

∂φ2
1

∂t
+
∂P 1

n

∂p
(λ1)

∂φ2
1

∂x
=

1

2!

∂2P 1
n

∂p2
(λ1)

∂2φ1
0

∂x2
, (87)

∂φ2
2

∂t
+
∂P 1

n

∂p
(λ1)

∂φ2
2

∂x
=

1

2!

∂2P 2
n

∂p2
(λ2)

∂2φ2
0

∂x2
. (88)

Remind that for next approximations boundary conditions have the form

φ0
1 + hφ1

1 + h2φ1
2 = Φ1(φ0

2 + hφ1
1 + h2φ1

2)|x=0, (89)

φ0
2 + hφ1

2 + h2φ2
2 = Φ2(φ0

1 + hφ1
1 + h2φ2

1)|x=0. (90)

Then, as above, on limit solution (p1, p2), where p1 ∈ P+, where P+ belongs to a set of
attractive points of a map Φ1◦Φ2, p2 = Φ2(p1), we obtain the linearised boundary conditions
(89),(90)

φ1
2 = Φ′1(p1)(φ1

2|x=0, φ1
2 = Φ′2(p2)(φ1

1|x=1. (91)

Define φ2
1 7→ iφ2

1 φ2
2 7→ iφ2

2. As a result, for the non perturbed system (85),(86) we
obtain the difference equation

φ2
1(1, t+ ∆) = Φ′1(p)Φ′2(p)(φ2

1(1, t)), ∆ = l/V1 + l/V2. (92)

Since |Φ′1(p)Φ′2(p)| < 1, then φ2
1(1, t)→ 0 as t→∞. For non perturbed system, the function

Φ1
1 has the same properties.

Below it will be shown that for perturbed system the functions φk1(x, t), k = 1, 2 have
the same property. Formally, it is possible because in the right part of perturbed system
there is the factor ∂2φk0(x, t)∂x2, k = 1, 2, which tend to zero as t→∞.

Then, with accuracy O(h2), we obtain the following system

∂u1

∂t
+
∂P 1

n

∂p
(λ1)

∂u1

∂x
= F1(φ1

0), (93)

∂u2

∂t
− ∂P 2

n

∂p
(λ2)

∂u2

∂x
= F2(φ1

0), (94)

where u1 = φ1
1, u2 = φ1

2.
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The boundary conditions are

u1 = Φ′1(p)u2|x=0, u2 = Φ′2(p)u1|x=1. (95)

The problem of existence and uniqueness of solutions has been considered in [4]. Next,
by integration along characteristics we can show that this solution satisfies to a system of
integro-difference equations:

u1(l, t0) = u1(0, t0 − l/V1) + V1

∫ t0

t0−l/V1

∂2φ1
0

∂x2
(V1t− V1(t0 − l/V1), t)dt = (96)

Φ1(u2(0, t0 − l/V1) + V1

∫ t0

t0−l/V1

∂2φ1
0

∂x2
(V1t− V1(t0 − l/V1), t)dt =

Φ1

(
Φ2(u1(0, t0 − l/V1 − l/V2)) + V2

∫ t0−l/V1

t0−l/V1−l/V2

∂2φ2
0

∂x2
(V2t− V2(t0 − l/V1), t)dt

)
+

V1

∫ t0

t0−l/V1

∂2φ1
0

∂x2
(V1t− V1(t0 − l/V1), t)dt,

u2(l, t0) = u2(l, t0 − l/V2) + V2

∫ t0

t0−l/V2

∂2φ2
0

∂x2
(V2t+ l/V2 − t0, t)dt = (97)

Φ2

(
Φ1(u2(l, t0 − l/V2 − l/V1)) + V1

∫ t0−l/V2

t0−l/V2−l/V1

∂2φ1
0

∂x2
(V1(t− t0 + l/V2 + l/V1), t)dt

)
+

V2

∫ t0

t0−l/V2

∂2φ2
0

∂x2
(V2t+ l/V2 − t0, t)dt.

From these equations we arrive at

u1(l, t0) = u1(0, t0 − l/V1) + l
∂2φ1

0

∂x2
(t0 − l/V1) = Φ1(u2(0, t0 − l/V1) + l

∂2φ1
0

∂x2
(t0 − l/V2) = (98)

Φ1

(
Φ2(u1(0, t0 − l/V1 − l/V2)) + l

∂2φ1
0

∂x2
(t0 − l/V1)

)
+ l

∂2φ2
0

∂x2
(t0 − l/V2),

u2(l, t0) = u2(l, t0 − l/V2) + l
∂2φ1

0

∂x2
(t0 − l/V1) = (99)

Φ2

(
Φ1(u2(l, t0 − l/V2 − l/V1)) + l

∂2φ1
0

∂x2
(t0 − l/V1)

)
+ l

∂2φ1
0

∂x2
(t0 − l/V2).

Note that one of components φ1,2
0 satisfies to the difference equation

u(ζ) = G(u(ζ −∆) (100)

where ∆ = l/V1 + l/V2 and G := Φ1Φ2, or G := Φ2Φ1. Since G is hyperbolic, from (100) it
follows that
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u′(ζ) = G′(u(ζ −∆))u′(ζ −∆) (101)

where u′(ζ) ∈ Oγ(P
+) and P+ is a set of attractive points of the map. Then

u′′(ζ) = G′′(u(ζ −∆))(u′(ζ −∆))2 +G′(u(ζ −∆))u′′(ζ −∆)). (102)

From (102) it follows that

|u′(ζ)| ≤ λ|u′(ζ −∆)|, (103)

where λ < 1. Hence, |u′(ζ)| → 0 as t→ +∞. Then from (102 we obtain that |u′′(ζ)| → 0 as
t→ +∞. At each fixed point a linearised equation

u(ζ) = λu(ζ −∆) (104)

has a positive solution u(ζ) = u(ζ0)ek(t−t0), where k = 1
∆

lnλ and λ < 1. Thus

∂2φj0
∂x2

(t0 − l/Vj) =

(
kj
Vj

)2

ekj(t0−l/Vj), j = 1, 2, kj < 0. (105)

From (105),(98), (99) we arrive at

u1(l, t0) = u1(0, t0 − l/V1) + l

(
k1

V1

)2

ek1(t0−l/V1) = Φ1(u2(0, t0 − l/V1) + l

(
k2

V2

)2

ek2(t0−l/V2) =(106)

Φ1

(
Φ2(u1(0, t0 − l/V1 − l/V2)) +

(
k1

V1

)2

ek1(t0−l/V1)

)
+ l

(
k2

V2

)2

ek2(t0−l/V2),

u2(l, t0) = u2(l, t0 − l/V2) + l

(
k1

V1

)2

ek1(t0−l/V1) = (107)

Φ2

(
Φ1(u2(l, t0 − l/V2 − l/V1)) + l

(
k1

V1

)2

ek1(t0−l/V1)

)
+ l

(
k1

V1

)2

ek1(t0−l/V1).

Without loss of generality, we assume that Φ2 := Id, where Id is identical map. Then from
the above equations we obtain that

u1(l, t0) = Φ1

(
u1(l, t0 − l/V1 − l/V2) +

(
k2

V1

)2

ek1(t0−l/V1)

)
+ l

(
k2

V2

)2

ek1(t0−l/V2), (108)

u2(l, t0) = Φ1(u2(l, t0 − l/V2 − l/V1)) + l

(
k1

V1

)2

ek1(t0−l/V1) + l

(
k1

V1

)2

ek2(t0−l/V1). (109)
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Since k1,2 are negative it is easy to see that exponential factors in these difference equations
with non-autonomic perturbations tend to zero as t → +∞. Then it can be shown that
asymptotic of solutions can be determined as asymptotic of limit difference equations

u1(l, t0) = Φ1 (u1(l, t0 −∆)) + l

(
k2

V2

)2

ek1(t0−l/V2), (110)

u2(l, t0) = Φ1(u2(l, t0 −∆)), ∆ = l/V1 − l/V2. (111)

But we know that for unimodal map (with one extremum) solutions of this equations tend
to piecewise constant periodic functions with finite or infinite points of discontinuities on a
period.

12 Applications to non-coherent optical solitons

The phenomenon of appearing optical solutions determines by the dynamical balance be-
tween the concurrence of the two factors: (1) by the detention of the optical beam to expand
your own media which is produced by the diffraction;(2) by the detention of the beam to
restrict your own media due to self-focusing [21]. Experiments (see, [21]) show the pos-
sibility for existence of solitons which are spatial non-coherent and quasi monochromatic;
(3) non-coherent together on spatial-temporal variables. By these experiments it has been
initiated a set of theoretical works which concern to the non-coherent solitons (see,[20, 21])
. However, these works has been confined by the research of case (3). It means that the
corresponding theory could not model can model, for example, non-coherent white light
that is to study spatial-temporal coherent properties of the solitons and the evolution of the
spectral density. In the present paper it has been studied this problem, and in this section
it will be considered a simplest clear example of such situation. Indeed, below we consider
the spatial-temporal on (x, t) light. We assum that: (4) spatial profile of light belongs to the
interval of frequencies [ω, ω + dω]; (5) spatial correlation length (across of soliton) is always
larger for low frequencies and smaller for high frequencies (see, [21]).

We begin the research from the following equation:

i

(
∂fω

∂z
+ θ

∂fω

∂x

)
+

1

2kω

∂2fω

∂x2
+
kω
n0

δn(I)fω(x, z, θ) = 0. (112)

Here, fω is the coherent density (on the given frequency) of the optical beam; kω = n0ω/c,
where n0 is refractive index, ω is frequency, c is velocity of light; θ determines angle between
a direction of light (at plane (z, x)) and axes Oz.

Spatial-temporal cogerent properties of a beam may be researched in terms of the spec-
tral density

Bω(x1, x2, z) =

∫ +∞

−∞
dθ exp [ikω(x1 − x2)]fω(x1, z, θ)f

ω(x2, z, θ). (113)

Note that equation (112) is equivalent to the corresponding equation (113).
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We suppose that optical medium is dispersive. If we assume that ∂δn(I)/∂t ≡ 0 then
the dispersion may be included in the consideration with help of the dependence n0 =
n0(ω). Then instead of the classical equation (112) we consider the Shrödinger equation (in
laboratory system of coordinate) with optical source, we confined by 1D - dimensional case.
Note that in [11] it has been considered semiconductor lasers or laser diodes. The laser is
inverted carrier density system. There is the generation and recombination of ’solitons’ which
are recombine. The energy released can be produced by thermal recombination or optical
photon recombination, which is used in semiconductor lasers. Note also that electronic
oscillator is an electronic circuit that produces a periodic signal. Oscillators convert direct
current to an alternative current signal. If we use the feedback oscillator, which increase
which can increase amplitudes of signal then we obtain different boundary conditions for
phases and amplitudes in the canonical equations.

For example, let us consider the region 0 < x < l, z ≥ 0 which is occupied by the res-
onator. The equations have the form

ih

(
∂f

∂t
+ θ

∂f

∂x

)
+
h2

2k

∂2f

∂x2
+

k

n0

δn(I)f = 0 (114)

where index ω will be omitted.
Solutions of equation (114) will be find as f := ϕ(ζ, t), where ζ = t− x/V . Then from

(114)it follows the equation

−ih∂ϕ
∂t

+ +
h2

2k

∂2ϕ

∂ζ2
− k

n0

δn(I)f = 0, (115)

Let x̄ =
√
kx. Then this equation can be written as

−ih∂ϕ
∂t

+
h2

2

∂2ϕ

∂ζ2
− k

n0

δn(I)f = 0. (116)

The Shrödinger equation has the form:

−ih∂ϕ
∂t

+ +
h2

2

∂2ϕ

∂ζ2
= 0 (117)

with the special initial conditions

ϕ(x, 0) = ϕ0e
iS0(x)/h (118)

where V, S0, ϕ0 are smooth real functions. The Hamiltonian is

H(p, q) =
p2

2
+ V (q). (119)

Asymptotic solutions of initial problem (117,118) have the form

ϕ(x, t) = eiS0(x,t)/hϕ(x, t) (120)

where unknown functions S(x, t) and ϕ(x, t) are smooth. Substituting (120) into (117) we
obtain the equation:
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[St + V (x) +
1

2
(Sx)

2
]
ϕ+ (−ih)

[
Sxϕx + ϕt +

1

2
ϕSxx] +

(
−ih

2

)
ϕxx = 0. (121)

From (121) with accuracy O(h2) we arrive at

St + V (x(ζ, t)) +
1

2
S2
ζ = 0, S(ζ, o) = S0(ζ) (122)

where ϕ(ζ, t) satisfies to the initial problem

ϕ + ϕζSζ +
1

2
ϕSζζ = 0, ϕ(ζ, 0) = ϕ0(ζ). (123)

The result is

St +
1

2
S2
ζ = 0. (124)

A solution (124) has a form S(ζ, t) = λ1t+ λ2ζ that leads to the algebraic relation

λ1 + λ2
2 = 0. (125)

From (125) it follows that

S(ζ, t) = λ2

(
ζ − 1

2
λ2t

)
(126)

where λ2 can be find from the relation

S(ζt=0, 0) = λ2ζt=0 = −λ2

θ
x = S0(x). (127)

Thus, a phase has the form

S(x, t) = λ1t+ λ2

(
t− x

θ

)
. (128)

Since the phase is linear, we have ζζ ≡ 0 and Sζ = 0, and the equation has the form

ϕ(ζ, t) := ϕ

(
t− ζ

λ2

)
. (129)

Now, we consider the boundary conditions

ϕt(0, t) = F1[ϕ(0, t)], ϕt(l, t) = F2[ϕ(l, t)], t > 0, (130)

where F1 and F2 are given functions.
Assume that the system of ODE is integrable, so that there is an integral

W [ϕ(0, t), ϕ(l, t)] = µ, µ ∈ R. (131)

Suppose that there is an open bounded interval I ⊂ R+ such that for all ϕ(0, t), ϕ(l, t) ∈ I
for each fixed t > 0 relation (131) is solvable so that
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ϕ(l, t) = Φµ[ϕ(0, t)] (132)

where Φµ : I 7→ I is unimodal map C2 - class. Then

ϕ(l, t) = ϕ

[(
1− 1

λ2

)
t+

l

λ2θ

]
, (133)

ϕ(0, t) = ϕ

[(
1− 1

λ2

)
t

]
. (134)

Let λ = 1− λ−1
2 , t 7→ λt and L = l

λ2θ
. Then functional quality (133) can be written as

ϕ(t+ l) = Φµϕ(t), −l < t < +∞. (135)

As a result, we obtain a difference equation [5, 6]. If Φµ is unimodal, structural stable and
hyperbolic then a set of fixed points of this map is finite. Then there is a set of initial
functions h(t), t ∈ [−L, 0) such that solutions of the difference equation can be find, step by
step, by iterations of the initial function h(t) with help of Φµ. As a result, for t → ∞ the
iterations of h(t) tend to a periodic piecewise constant function with finite or infinite ’points’
of discontinuities Γ on a period. If Γ is finite then we say about oscillations of relaxation
type. If Γ is countable then we have oscillations of pre-turbulent type. If Γ is uncountable
then we have oscillations of turbulent type.
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