
ON THE GENERAL NO-THREE-IN-LINE PROBLEM

T. AGAMA

Abstract. In this paper we show that the number of points that can be

placed in the grid n×n× · · · ×n (d times) = nd for all d ∈ N with d ≥ 2 such

that no three points are collinear satisfies the lower bound

�d nd−1 d
√
d.

This pretty much extends the result of the no-three-in-line problem to all

dimension d ≥ 3.

1. Introduction

The no-three-in-line problem is a well-known problem in discrete geometry that
seeks for the maximum number of points that can be placed in an n × n grid in
such a way that no three of the points are collinear. The problem was posed by the
then English mathematician Henry Dudeney in 1917. The problem is apparently
trivially true for all n ≤ 46, so the only version of the problem still open is for all
sufficiently large values of n. Quite a number of progress has been made in the
context of upper and lower lower bounds. An argument of Erdős (see [3]) yields
the lower bound

� (1− ε)n

for the any ε > 0 and n sufficiently large as the number of points that can be placed
in the n× n grid so that no three are collinear. This was improved (see [4]) to

�
(

3

2
− ε
)
n

in the grid n× n with no three collinear. Various upper bound to the problem had
also been conjectured. For instance it is conjectured that (see [5]) the number of
points that can be placed in an n × n grid so that no three are collinear has the
optimal solution cn with

c =
π√
3
≈ 1.814.

A generalized version of the problem has also been studied in (see [1]). There it is
shown that the number of points that can be placed in an n× n× n grid such that
no three of them are collinear is Θ(n2).
In the current paper we generalize the problem to dimensions d ≥ 2 under the
requirement that our configuration has no three collinear points. By applying the
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method of compression (see [2]), we obtain a lower bound for the number of such
points as

�d n
d−1 d
√
d.

What follows are the lower bound for the grid n× n and n× n× n.

In the sequel the notation f(n) � g(n) for any f, g : N −→ R would mean
there exists some constant c > 0 such that f(n) ≥ cg(n). In the case the constant
depends on some variable, say s then we write simply f(n)�s g(n).

2. Preliminary results

Definition 2.1. By the compression of scale m > 0 (m ∈ R) fixed on Rn we mean
the map V : Rn −→ Rn such that

Vm[(x1, x2, . . . , xn)] =

(
m

x1
,
m

x2
, . . . ,

m

xn

)
for n ≥ 2 and with xi 6= xj for i 6= j and xi 6= 0 for all i = 1, . . . , n.

Remark 2.2. The notion of compression is in some way the process of re scaling
points in Rn for n ≥ 2. Thus it is important to notice that a compression roughly
speaking pushes points very close to the origin away from the origin by certain scale
and similarly draws points away from the origin close to the origin.

Proposition 2.1. A compression of scale m > 0 with Vm : Rn −→ Rn is a bijective
map.

Proof. Suppose Vm[(x1, x2, . . . , xn)] = Vm[(y1, y2, . . . , yn)], then it follows that(
m

x1
,
m

x2
, . . . ,

m

xn

)
=

(
m

y1
,
m

y2
, . . . ,

m

yn

)
.

It follows that xi = yi for each i = 1, 2, . . . , n. Surjectivity follows by definition of
the map. Thus the map is bijective. �

2.1. The mass of compression. In this section we recall the notion of the mass
of compression on points in space and study the associated statistics.

Definition 2.3. By the mass of a compression of scale m > 0 (m ∈ R) fixed, we
mean the map M : Rn −→ R such that

M(Vm[(x1, x2, . . . , xn)]) =

n∑
i=1

m

xi
.

It is important to notice that the condition xi 6= xj for (x1, x2, . . . , xn) ∈ Rn is
not only a quantifier but a requirement; otherwise, the statement for the mass of
compression will be flawed completely. To wit, suppose we take x1 = x2 = · · · = xn,
then it will follows that Inf(xj) = Sup(xj), in which case the mass of compression
of scale m satisfies

m

n−1∑
k=0

1

Inf(xj)− k
≤M(Vm[(x1, x2, . . . , xn)]) ≤ m

n−1∑
k=0

1

Inf(xj) + k

and it is easy to notice that this inequality is absurd. By extension one could
also try to equalize the sub-sequence on the bases of assigning the supremum and
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the Infimum and obtain an estimate but that would also contradict the mass of
compression inequality after a slight reassignment of the sub-sequence. Thus it
is important for the estimate to make any good sense to ensure that any tuple
(x1, x2, . . . , xn) ∈ Rn must satisfy xi 6= xj for all 1 ≤ i, j ≤ n. Hence in this paper
this condition will be highly extolled. In situations where it is not mentioned,
it will be assumed that the tuple (x1, x2, . . . , xn) ∈ Rn is such that xi ≤ xj for
1 ≤ i, j ≤ n.

Lemma 2.4. The estimate holds∑
n≤x

1

n
= log x+ γ +O

(
1

x

)
where γ = 0.5772 · · · .

Remark 2.5. Next we prove upper and lower bounding the mass of the compression
of scale m ≥ 1.

Proposition 2.2. Let (x1, x2, . . . , xn) ∈ Nn, then the estimates holds

m log

(
1− n− 1

sup(xj)

)−1
�M(Vm[(x1, x2, . . . , xn)])� m log

(
1 +

n− 1

Inf(xj)

)
for n ≥ 2.

Proof. Let (x1, x2, . . . , xn) ∈ Rn for n ≥ 2 with xj ≥ 1. Then it follows that

M(Vm[(x1, x2, . . . , xn)]) = m

n∑
j=1

1

xj

≤ m
n−1∑
k=0

1

Inf(xj) + k

and the upper estimate follows by the estimate for this sum. The lower estimate
also follows by noting the lower bound

M(Vm[(x1, x2, . . . , xn)]) = m

n∑
j=1

1

xj

≥ m
n−1∑
k=0

1

sup(xj)− k
.

�

Definition 2.6. Let (x1, x2, . . . , xn) ∈ Rn with xi 6= 0 for all i = 1, 2 . . . , n. Then
by the gap of compression of scale m Vm, denoted G◦Vm[(x1, x2, . . . , xn)], we mean
the expression

G ◦ Vm[(x1, x2, . . . , xn)] =

∣∣∣∣∣∣∣∣(x1 − m

x1
, x2 −

m

x2
, . . . , xn −

m

xn

)∣∣∣∣∣∣∣∣
Proposition 2.3. Let (x1, x2, . . . , xn) ∈ Rn for n ≥ 2 with xj 6= 0 for j = 1, . . . , n,
then we have

G ◦ Vm[(x1, x2, . . . , xn)]2 =M◦ V1

[(
1

x21
, . . . ,

1

x2n

)]
+m2M◦ V1[(x21, . . . , x

2
n)]− 2mn.
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In particular, we have the estimate

G ◦ Vm[(x1, x2, . . . , xn)]2 =M◦ V1

[(
1

x21
, . . . ,

1

x2n

)]
− 2mn+O

(
m2M◦ V1[(x21, . . . , x

2
n)]

)
for ~x ∈ Nn, where m2M◦ V1[(x21, . . . , x

2
n)] is the error term in this case.

Lemma 2.7 (Compression estimate). Let (x1, x2, . . . , xn) ∈ Nn for n ≥ 2, then we
have

G ◦ Vm[(x1, x2, . . . , xn)]2 � nsup(x2j ) +m2 log

(
1 +

n− 1

Inf(xj)2

)
− 2mn

and

G ◦ Vm[(x1, x2, . . . , xn)]2 � nInf(x2j ) +m2 log

(
1− n− 1

sup(x2j )

)−1
− 2mn.

3. Compression lines

In this section we study the notion of lines induced under compression of a given
scale and the associated geometry. We first launch the following language.

Definition 3.1. Let ~x = (x1, x2, . . . , xn) ∈ Rn with x1 6= 0 for 1 ≤ i ≤ n. Then
by the line L~x,Vm[~x] produced under compression Vm : Rn −→ Rn we mean the line
joining the points ~x and Vm[~x] given by

~r = ~x+ λ(~x− Vm[~x])

where λ ∈ R.

Remark 3.2. In striving for the simplest possible notation and to save enough work
space, we will choose instead to write the line produced under compression Vm :
Rn −→ Rn by LVm[~x]. Next we show that the lines produced under compression
of two distinct points not on the same line of compression cannot intersect at the
corresponding points and their images under compression.

Lemma 3.3. Let ~a = (a1, a2, . . . , an) ∈ Rn with ~a 6= ~x and ai, xj 6= 0 for 1 ≤ i, j ≤
n. If the point ~a lies on the corresponding line LVm[~x], then Vm[~a] also lies on the
same line.

Proof. Pick arbitrarily a point ~a on the line LVm[~x] produced under compression for
any ~x ∈ Rn. Suppose on the contrary that Vm[~a] cannot live on the same line as
~a. Then Vm[~a] must be away from the line LVm[~x]. Produce the compression line
LVm[~a] by joining the point ~a to the point Vm[~a] by a straight line. Then It follows
from Proposition 2.3

G ◦ Vm[~x] > G ◦ Vm[~a].

Again pick a point ~c on the line LVm[~a], then under the assumption it follows that
the point Vm[~c] must be away from the line. Produce the compression line LVm[~c]

by joining the points ~c to Vm[~c]. Then by Proposition 2.3 we obtain the following
decreasing sequence of lengths of distinct lines

G ◦ Vm[~x] > G ◦ Vm[~a] > G ◦ Vm[~c].
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By repeating this argument, we obtain an infinite descending sequence of lengths
of distinct lines

G ◦ Vm[~x] > G ◦ Vm[ ~a1] > · · · > G ◦ Vm[ ~an] > · · · .

This proves the Lemma. �

Definition 3.4. Let (x1, x2, . . . , xn) ∈ Nn with xi 6= xj for all 1 ≤ i < j ≤ n.
Then by the ball induced by (x1, x2, . . . , xn) ∈ Nn under compression of scale m,
denoted B 1

2G◦Vm[(x1,x2,...,xn)][(x1, x2, . . . , xn)] we mean the inequality∣∣∣∣∣∣∣∣~y − 1

2

(
x1 +

m

x1
, x2 +

m

x2
, . . . , xn +

m

xn

)∣∣∣∣∣∣∣∣ ≤ 1

2
G ◦ Vm[(x1, x2, . . . , xn)].

A point ~z = (z1, z2, . . . , zn) ∈ B 1
2G◦Vm[(x1,x2,...,xn)][(x1, x2, . . . , xn)] if it satisfies the

inequality. We call the ball the circle induced by points under compression if we
take the dimension of the underlying space to be n = 2.

Theorem 3.5. Let ~z = (z1, z2, . . . , zn) ∈ Nn with zi 6= zj for all 1 ≤ i < j ≤ n.
Then ~z ∈ B 1

2G◦Vm[~y][~y] if and only if

G ◦ Vm[~z] ≤ G ◦ Vm[~y].

Proof. Let ~z ∈ B 1
2G◦Vm[~y][~y] for ~z = (z1, z2, . . . , zn) ∈ Nn with zi 6= zj for all

1 ≤ i < j ≤ n, then it follows that ||~y|| > ||~z||. Suppose on the contrary that

G ◦ Vm[~z] > G ◦ Vm[~y],

then it follows that ||~y|| < ||~z||, which is absurd. Conversely, suppose

G ◦ Vm[~z] ≤ G ◦ Vm[~y]

then it follows from Proposition 2.3 that ||~z|| ≤ ||~y|| and sup(zj) ≤ sup(yj) by
Lemma 2.7. It follows that∣∣∣∣∣∣∣∣~z − 1

2

(
y1 +

m

y1
, . . . , yn +

m

yn

)∣∣∣∣∣∣∣∣ ≤ ∣∣∣∣∣∣∣∣~y − 1

2

(
y1 +

m

y1
, . . . , yn +

m

yn

)∣∣∣∣∣∣∣∣
≤ 1

2
G ◦ Vm[~y].

This certainly implies ~z ∈ B 1
2G◦Vm[~y][~y] and the proof of the theorem is complete. �

Theorem 3.6. Let ~x = (x1, x2, . . . , xn) ∈ Nn with xi 6= xj for all 1 ≤ i < j ≤ n.
If ~y ∈ B 1

2G◦Vm[~x][~x] then

B 1
2G◦Vm[~y][~y] ⊆ B 1

2G◦Vm[~x][~x].

Proof. First let ~y ∈ B 1
2G◦Vm[~x][~x] and suppose for the sake of contradiction that

B 1
2G◦Vm[~y][~y] 6⊆ B 1

2G◦Vm[~x][~x].

Then there must exist some ~z ∈ B 1
2G◦Vm[~y][~y] such that ~z /∈ B 1

2G◦Vm[~x][~x]. It follows

from Theorem 3.5 that

G ◦ Vm[~z] > G ◦ Vm[~x].
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It follows that

G ◦ Vm[~y] ≥ G ◦ Vm[~z]

> G ◦ Vm[~x]

≥ G ◦ Vm[~y]

which is absurd, thereby ending the proof. �

Remark 3.7. Theorem 3.6 tells us that points confined in certain balls induced
under compression should by necessity have their induced ball under compression
covered by these balls in which they are contained.

3.1. Admissible points of balls induced under compression. We launch the
notion of admissible points of balls induced by points under compression. We study
this notion in depth and explore some possible connections.

Definition 3.8. Let ~y = (y1, y2, . . . , yn) ∈ Nn with yi 6= yj for all 1 ≤ i < j ≤ n.
Then ~y is said to be an admissible point of the ball B 1

2G◦Vm[~x][~x] if∣∣∣∣∣∣∣∣~y − 1

2

(
x1 +

m

x1
, . . . , xn +

m

xn

)∣∣∣∣∣∣∣∣ =
1

2
G ◦ Vm[~x].

Remark 3.9. It is important to notice that the notion of admissible points of balls
induced by points under compression encompasses points on the ball. These points
in geometrical terms basically sit on the outer of the induced ball. Next we show
that all balls can in principle be generated by their admissible points.

Theorem 3.10. The point ~y ∈ B 1
2G◦Vm[~x][~x] is admissible if and only if

B 1
2G◦Vm[~y][~y] = B 1

2G◦Vm[~x][~x]

and G ◦ Vm[~y] = G ◦ Vm[~x].

Proof. First let ~y ∈ B 1
2G◦Vm[~x][~x] be admissible and suppose on the contrary that

B 1
2G◦Vm[~y][~y] 6= B 1

2G◦Vm[~x][~x].

Then there exist some ~z ∈ B 1
2G◦Vm[~x][~x] such that

~z /∈ B 1
2G◦Vm[~y][~y].

Applying Theorem 3.5, we obtain the inequality

G ◦ Vm[~y] < G ◦ Vm[~z] ≤ G ◦ Vm[~x].

It follows from Proposition 2.3 that ||~x|| < ||~y|| or ||~y|| < ||~x||. By joining this
points to the origin by a straight line, this contradicts the fact that the point
~y ∈ B 1

2G◦Vm[~x][~x] is an admissible point.. This contradicts the fact that the point

~y ∈ B 1
2G◦Vm[~x][~x] is an admissible point. Now we notice that ~y ∈ B 1

2G◦Vm[~x][~x]

certainly implies G ◦ Vm[~y] ≤ G ◦ Vm[~x]. Conversely we notice as well that ~x ∈
B 1

2G◦Vm[~y][~y], which certainly implies G ◦Vm[~x] ≤ G ◦Vm[~y] by Theorem 3.5. Thus

the conclusion follows. Conversely, suppose

B 1
2G◦Vm[~y][~y] = B 1

2G◦Vm[~x][~x]
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and G ◦ Vm[~y] = G ◦ Vm[~x]. Then it follows that the point ~y must satisfy the
inequality∣∣∣∣∣∣∣∣~z − 1

2

(
y1 +

m

y1
, . . . , yn +

m

yn

)∣∣∣∣∣∣∣∣ =

∣∣∣∣∣∣∣∣~z − 1

2

(
x1 +

m

x1
, . . . , xn +

m

xn

)∣∣∣∣∣∣∣∣
≤ 1

2
G ◦ Vm[~x].

It follows that

1

2
G ◦ Vm[~x] =

∣∣∣∣∣∣∣∣~y − 1

2

(
x1 +

m

x1
, . . . , xn +

m

xn

)∣∣∣∣∣∣∣∣
≤ 1

2
G ◦ Vm[~x]

and ~y is indeed admissible, thereby ending the proof. �

Proposition 3.1. No three admissible points on the ball B 1
2G◦Vm[~x][~x] are collinear.

Remark 3.11. Proposition 3.1 is a known result and balls refereed to in the context
of our work for dimensions bigger than three is just a geometric sphere, to which
the result can be applied.

4. Main result

In this section we prove the main result of this paper.

Theorem 4.1. The number of points that can be placed in the grid n × n × · · · ×
n (d times) = nd for all d ∈ N and with d ≥ 2 such that no three points are collinear
satisfies the lower bound

�d n
d−1 d
√
d.

Proof. Let us pick a point ~x ∈ Nd such that G ◦ V1[~x] = nd for a fixed n. Next we
apply the compression V1 on ~x and construct the induced ball

B 1
2G◦V1[~x][~x].

By virtue of the restriction G ◦ V1[~x] = nd all admissible points ~xk for ~xk 6= ~x on
the ball has the property that

G ◦ V1[~x] = G ◦ V1[ ~xk] = nd

by virtue of Theorem 3.10 and so they all lie within the grid n×n×· · ·×n (d times) =
nd for all d ∈ N with d ≥ 2. In the grid n×n× · · ·×n (d times) = nd for all d ∈ N
with d ≥ 2 the number of points that can be arranged in such a way that no three
are collinear can be lower bounded by counting the number of admissible points on
the ball so constructed, by virtue of Proposition 3.1, so that we obtain the lower
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bound

≥
∑
~xj∈nd

d
√
G◦V1[ ~xj ]=n

1

=
∑

~xj∈nd∩B 1
2
G◦V1[~x]

[~x]

d
√
G ◦ V1[ ~xj ]

n

�d
1

n

∑
~xj∈nd∩B 1

2
G◦V1[~x]

[~x]

d
√
d d

√
Inf(xji)

d
i=1

=
d
√
d

n

∑
~xj∈nd∩B 1

2
G◦V1[~x]

[~x]

d

√
Inf(xji)

d
i=1

≥
d
√
d

n
ndmin ~xj∈nd∩B 1

2
G◦V1[~x]

[~x]
d

√
Inf(xji)

d
i=1

= nd−1
d
√
dmin ~xj∈nd∩B 1

2
G◦V1[~x]

[~x]
d

√
Inf(xji)

d
j=1

≥ nd−1 d
√
d

and the claimed lower bound follows as a consequence. �

Corollary 4.1. The number of points that can be placed in the grid n × n such
that no three points are collinear satisfies the lower bound

�2 n
√

2.

Corollary 4.2. The number of points that can be placed in the grid n × n × n
such that no three points are collinear satisfies the lower bound

�3 n
2 3
√

3.

1.
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