Enomoto＇s problem in Wasan geometry

Hiroshi Okumura
Maebashi Gunma 371－0123，Japan
e－mail：hokmr＠yandex．com

Abstract

We consider Enomoto＇s problem involving a chain of circles touching two parallel lines and three circles with collinear centers．Generalizing the prob－ lem，we unexpectedly get a generalization of a property of the power of a point with respect to a circle．

Keywords．sangaku．
Mathematics Subject Classification（2010）．01A27，51M04．
Japanese mathematics developed in Edo era is called Wasan．In this note we consider a problem in Wasan geometry appeared in a sangaku，which is a framed wooden board with geometric problems written on it．The figures of the problems were beautifully drawn in color and the board was dedicated to a shrine or a temple．Today，sangaku is an iconic word for Wasan geometry．For a brief introduction of Wasan geometry，see［4］．In this note，we consider the sangaku problem proposed by Enomoto（榎本信房）in 1807 ［3］，which is stated as follows （see Figure 1）：

Figure 1： $4 r_{1} r_{2}=(n-1)^{2} r^{2}$ ．
Problem 1．Let $D_{1}, D_{2}, \cdots, D_{n}$ be a chain of circles of radius r touching two parallel lines t_{1} and t_{2} ．A circle C_{i} of radius r_{i} touches t_{i} from the side opposite to t_{j} for $\{i, j\}=\{1,2\}$ so that the line joining the centers of C_{1} and C_{2} is the perpendicular bisector of the segment joining the centers of D_{1} and D_{n} ．If a circle touches C_{1}, C_{2}, D_{1} and D_{n} internally，then show that the following relation holds：

$$
\begin{equation*}
4 r_{1} r_{2}=(n-1)^{2} r^{2} \tag{1}
\end{equation*}
$$

The relation（1）shows that the product $r_{1} r_{2}$ is constant if the circles D_{1}, D_{2} ， \cdots, D_{n} are fixed．Problem 1 is generalized as follows．

Theorem 1．For a segment DH and a circle δ of center H ，let γ be a semicircle of diameter $A B$ for points A and B lying on the perpendicular to $D H$ at D ．If the two tangents of δ parallel to $D H$ meet $A B$ in points E and F so that $\overrightarrow{A B}$ and
$\overrightarrow{E F}$ have the same direction，then the following statements hold．
（i）If δ touches γ internally，then $|A E||B F|=|D H|^{2}$ ．
（ii）If δ touches γ externally，then $|A F||B E|=|D H|^{2}$ ．
Proof．Assume that $r>0$ and the points A, B, E and F have coordinates $(-r, 0)$ ， $(r, 0),(2 e, 0)$ and $(2 f, 0)$ ，respectively，and C is the center of γ ，i．e．，the origin． Then D has coordinates $(e+f, 0),|C D|=|e+f|$ and δ has radius $f-e$ ．If δ touches γ internally（see Figures 2 and 3），we get $|C H|=|r-(f-e)|$ and

$$
|A E||B F|=|-r-2 e||r-2 f|=|C H|^{2}-|C D|^{2}=|D H|^{2}
$$

by the right triangle $C H D$ ．This proves（i）．The part（ii）is proved similarly， where we use $|C H|=|r+(f-e)|$（see Figure 4）．

Figure 2：$|A E||B F|=|D H|^{2}$ ．

Figure 4：$|A F||B E|=|D H|^{2}$ ．

Figure 3：$|A E||B F|=|D H|^{2}$ ．

Figure 5：$|A D||B D|=|D H|^{2}$ ．

The theorem shows that the products $|A E||B F|$ and $|A F||B E|$ are constant if the segment $C H$ and the circle δ are fixed while the points A and B vary． Problem 1 and its solution（1）are obtained if $|D H|=(n-1) r$ in（i）．The solution of the same problem cited in［1］（Problem 4．9．2）and［2］（Problem 8．9．3）states $r_{1} r_{2}=((2 n-1) / 2)^{2} r^{2}$ ，which is incorrect by（1）．If the circle δ degenerates to the point H ，we get the relation $|A D \| B D|=|D H|^{2}$ ，which shows the unsigned power of the point D with respect to the circle γ（see Figure 5）．Therefore Theorem 1 is also a generalization of this relation．

References

［1］H．Fukagawa，J．Rigby，Traditional Japanese Mathematics Problems of the 18th \＆19th Centuries，SCT publishing，Singapore， 2002.
［2］H．Fukagawa，D．Sokolowsky，Japanese mathematics；How many problems can you solve？ （日本の数学－何題解けますか？）vol．2，Morikita Shuppan（森北出版） 1994 （in Japanese）．
［3］Nakamura（中村時万）ed．，Saishi Shinsan（賽祠神算），1830，Tohoku University Digital Col－ lection．
[4] H. Okumura, Wasan Geometry. In: B. Sriraman (eds) Handbook of the Mathematics of the Arts and Sciences, Springer. https://doi.org/10.1007/978-3-319-70658-0_122-1

