New insight into introducing a $(2-\varepsilon)$-approximation ratio for minimum vertex cover problem

Majid Zohrehbandian
Department of Mathematics, Karaj Branch, Islamic Azad University, Karaj, Iran.
zohrebandian@yahoo.com

Abstract

Vertex cover problem is a famous combinatorial problem, which its complexity has been heavily studied over the years. It is known that it is hard to approximate to within any constant factor better than 2 , while a 2-approximation for it can be trivially obtained. In this paper, new properties and new techniques are introduced which lead to approximation ratios smaller than 2 on special graphs. Then, by a combination of semidefinite programming and a rounding procedure, along with satisfying the proposed assumptions, we introduce an approximation algorithm with a performance ratio of 1.999999 on arbitrary graphs.

Keywords: Discrete Optimization, Vertex Cover Problem, Complexity Theory, NP-Complete Problems. MSC 2010: 90C35, 90C60.

1. Introduction

In complexity theory, the abbreviation $N P$ refers to "nondeterministic polynomial", where a problem is in $N P$ if we can quickly (in polynomial time) test whether a solution is correct. P and $N P$-complete problems are subsets of $N P$ Problems. We can solve P problems in polynomial time while determining whether or not it is possible to solve $N P$-complete problems quickly (called the P vs $N P$ problem) is one of the principal unsolved problems in Mathematics and Computer science.

Here, we consider the vertex cover problem which is a famous $N P$-complete problem. It cannot be approximated within a factor of 1.36 [1], unless $P=N P$, while a 2 -approximation factor for it can be trivially obtained by taking all the vertices of a maximal matching in the graph. However, improving this simple 2-approximation algorithm has been a quite hard task [2,3].

In this paper, we introduce a $(2-\varepsilon)$-approximation ratio on special graphs, and then, we show that on arbitrary graphs a $(2-\varepsilon)$-approximation ratio can be obtained by a combination of semidefinite programming (SDP) and a rounding procedure. The rest of the paper is structured as follows. Section 2 is
about the vertex cover problem and introduces new properties and new techniques which lead to a $(2-\varepsilon)$-approximation ratio on special graphs. In section 3 , we propose a rounding procedure along with using the satisfying properties to propose an algorithm with a performance ratio smaller than 2 on arbitrary graphs. Finally, Section 4 concludes the paper.

2. Introducing a $(2-\varepsilon)$-approximation ratio on special graphs

In the mathematical discipline of graph theory, a vertex cover of a graph is a set of vertices such that each edge of the graph is incident to at least one vertex of the set. The problem of finding a minimum vertex cover is a typical example of an $N P$-complete optimization problem. In this section, new properties and new techniques are introduced which lead to approximation ratios smaller than 2 on special problems.

Let $G=(V, E)$ be an undirected graph on vertex set V and edge set E, where $|V|=n$. Throughout this paper, suppose that the vertex cover problem on G is hard and we have produced an arbitrary feasible solution for the problem, with vertex partitioning $V=V_{1 G} \cup V_{-1 G}\left(V_{1 G}\right.$ is a vertex cover of the graph $\left.G\right)$ and objective value $\left|V_{1 G}\right|$.

By defining the decision variables x_{j} and $x_{i j}$ as follows:

$$
\begin{gathered}
x_{j}=\left\{\begin{array}{cc}
+1 & j \in V_{1 G}^{*} \\
-1 & j \in V_{-1 G}^{*}
\end{array}\right. \\
x_{i j}=\left\{\begin{array}{cc}
+1 & i, j \in V_{1 G}^{*} \text { or } i, j \in V_{-1 G}^{*} \\
-1 & \text { otherwise }
\end{array}\right.
\end{gathered}
$$

We can introduce the following integer linear programming (ILP) model for the minimum vertex cover problem:

$$
\begin{gathered}
\quad \min _{s . t .} \quad z^{1}=\sum_{1 \leq j \leq n} \frac{1+x_{j}}{2} \\
+x_{i}+x_{j}-x_{i j}=+1 \quad i j \in E, 1 \leq i<j \leq n \\
+x_{i j}+x_{j k}+x_{i k} \geq-1 \\
+x_{i j}-x_{j k}-x_{i k} \geq-1 \leq i<j<k \leq n \\
-x_{i j}+x_{j k}-x_{i k} \geq-1 \\
-x_{i j}-x_{j k}+x_{i k} \geq-1 \leq i<j<k \leq n \\
x_{j}, x_{i j} \in\{-1,1\} \\
1 \leq i<j<k \leq n \\
1 \leq i<j \leq n
\end{gathered}
$$

Moreover, by consideration of x_{j} 's as $x_{o j}$ and addition of the constraint $x \geqslant 0$, we have the well known SDP formulation as follows:

$$
\begin{gathered}
\text { (2) } \min _{s . t .} \quad z^{2}=\sum_{i \in V} \frac{1+v_{o} v_{i}}{2} \\
+v_{o} v_{i}+v_{o} v_{j}-v_{i} v_{j}=1 \quad i j \in E \\
+v_{i} v_{j}+v_{i} v_{k}+v_{j} v_{k} \geq-1 \quad i, j, k \in V \cup\{o\} \\
+v_{i} v_{j}-v_{i} v_{k}-v_{j} v_{k} \geq-1 \quad i, j, k \in V \cup\{o\} \\
-v_{i} v_{j}+v_{i} v_{k}-v_{j} v_{k} \geq-1 \quad i, j, k \in V \cup\{o\} \\
-v_{i} v_{j}-v_{i} v_{k}+v_{j} v_{k} \geq-1 \quad i, j, k \in V \cup\{o\} \\
v_{i} v_{i}=1 \quad i \in V \cup\{o\} \\
v_{i} v_{j} \in\{-1,+1\} \quad i, j \in V \cup\{o\}
\end{gathered}
$$

Theorem 1. Suppose that $z^{2 *} \geq \frac{n}{2}+\frac{n}{k}=\frac{(k+2) n}{2 k}$. Then, for all feasible solutions $V=V_{1 G} \cup V_{-1 G}$ we have the approximation ratio $\frac{\left|V_{1 G}\right|}{Z^{2 *}} \leq \frac{2 k}{k+2}$.

Proof. $\frac{\left|V_{1 G}\right|}{Z^{2 *}} \leq \frac{n}{Z^{2 *}} \leq \frac{2 k}{k+2}<2$

Assumption 1. From now on, we assume that $\frac{n}{2} \leq z^{2 *}<\frac{n}{2}+\frac{2 n}{1000000}$; Otherwise for all feasible solutions $V=V_{1 G} \cup V_{-1 G}$ we have the approximation ratio $\frac{\left|V_{1 G}\right|}{Z^{2 *}} \leq \frac{2 \times \frac{1000000}{2}}{\frac{1000000}{2}+2}<1.999993<2$.

Theorem 2. Suppose that we have a suitable feasible solution $V_{1 G} \cup V_{-1 G}$ for which we have $\left|V_{1 G}\right| \leq k\left|V_{-1 G}\right|$. Then, we have an approximation ratio $\frac{\left|V_{1 G}\right|}{Z^{2 *}} \leq \frac{2 k}{k+1}<2$.

Proof. $\exists t \leq k$, for which we have $\left|V_{1 G}\right|=t\left|V_{-1 G}\right|=t \frac{n}{t+1}$. Then, $z^{2 *} \geq \frac{n}{2}=\frac{t+1}{2 t}\left|V_{1 G}\right|$ which concludes that $\frac{\left|V_{1 G}\right|}{Z^{2 *}} \leq \frac{2 t}{t+1} \leq \frac{2 k}{k+1}$ ■

Therefore, for bounded values of k, we have some approximation ratios smaller than 2. But, if $k \rightarrow \infty$ then $\frac{\left|V_{1 G}\right|}{Z^{2 *}} \rightarrow 2$.

Corollary 1. Suppose that we have a suitable feasible solution $V_{1 G} \cup V_{-1 G}$. If $\left|V_{1 G}\right|<\frac{k}{k+1} n$ then $\left|V_{1 G}\right|<k\left|V_{-1 G}\right|$ and $\frac{\left|V_{1 G}\right|}{Z^{2 *}}<\frac{2 k}{k+1}<2$.

Assumption 2. We don't have a suitable feasible solution $V=V_{1} \cup V_{-1}$ for which $\left|V_{1}\right|<\frac{999999}{1000000} n$;
Otherwise, for this feasible solution we have an approximation ratio $\frac{\left|V_{1}\right|}{Z^{2 *}} \leq \frac{2 \times 999999}{999999+1}=1.999998<2$.

Up to now, we could introduce a $(2-\varepsilon)$-approximation ratio on special graphs with suitable characteristics. In section 3, we are going to introduce such a ratio on arbitrary graphs, where we assume that we have $V=V_{1} \cup V_{-1}$ as a feasible solution of the vertex cover problem on arbitrary graph G for which $\left|V_{1}\right| \geq 0.999999 n$ and $\frac{n}{2} \leq z^{2 *}<\frac{n}{2}+\frac{2 n}{1000000}$.

3. A (1.999999)-approximation algorithm for the vertex cover problem

In section 2, we could introduce a $(2-\varepsilon)$-approximation ratio on graphs without the proposed assumptions. Here, we are going to introduce a 1.999999-approximation ratio on arbitrary graphs. To do this, we assume the following assumption.

Assumption 3. By solving the SDP relaxation (2),
a) For less than $\frac{1}{1000000} n$ of vertices $j \in V$ and corresponding vectors we have $v_{o}^{*} v_{j}^{*}<0$; Otherwise based on these vertices, we have a feasible solution with $\left|V_{-1}\right| \geq \frac{1}{1000000} n,\left|V_{1}\right| \leq \frac{999999}{1000000} n$ and an approximation ratio $\frac{\left|V_{1 G}\right|}{Z^{2 *}}<\frac{2(999999)}{999999+1}=1.999998<2$.
b) For less than $\frac{1}{100} n$ of vertices $j \in V$ and corresponding vectors we have $v_{o}^{*} v_{j}^{*}>0.0004$. Otherwise, $\quad z^{2 *} \geq \underbrace{\left(\frac{1+(-1)}{2} \times \frac{n}{1000000}\right)}_{v_{o}^{*} v_{j}^{*}<0}+\underbrace{\left(\frac{1+0}{2} \times \frac{989999 n}{100000}\right)}_{0 \leq v_{o}^{*} v_{j}^{*} \leq 0.0004}+\underbrace{\left(\frac{1+0.0004}{2} \times \frac{n}{100}\right)}_{v_{o}^{*} v_{j}^{*}>0.0004}=\frac{n}{2}+\frac{3 n}{2000000}$ and for all feasible solutions, we have the approximation ratio $\frac{\left|V_{1 G}\right|}{Z^{2 *}}<\frac{2\left(\frac{2000000}{3}\right)}{\frac{2000000}{3}+2}<1.999995<2$.

Definition 1. Let $\varepsilon=0.0004$ and $\mathrm{G}_{\varepsilon}=\left\{j \in \mathrm{~V} \mid 0 \leq v_{o}^{*} v_{j}^{*} \leq+\varepsilon\right\}$.

Based on Assumption (3), for more than $\frac{989999}{1000000} n$ of vertices $j \in V$ and corresponding vectors we have $0 \leq v_{o}^{*} v_{j}^{*} \leq+\varepsilon$; i.e. $\left|\mathrm{G}_{\varepsilon}\right| \geq 0.989999$ n.

Theorem 3. For any normalized vector w, the induced subgraph on $H_{w}=\left\{j \in G_{\varepsilon} ;\left|w v_{j}^{*}\right|>0.5003\right\}$ is a bipartite graph.

Proof. Let us divide the vertex set H_{w} as follows:

$$
S=\left\{j \in H_{w} \mid w v_{j}^{*}<-0.5003\right\} \text { and } T=\left\{j \in H_{w} \mid w v_{j}^{*}>+0.5003\right\}
$$

Then, it is sufficient to show that the sets S and T are null subgraphs. For each edge $i j \in E(G)$ and based on the first constraint of the SDP model (2), if $i, j \in H_{w} \subseteq G_{\varepsilon}$ then we have $v_{i}^{*} v_{j}^{*} \leq-1+2 \varepsilon$. Therefore, if $i, j \in T$ then the triangle inequality between vectors w, v_{i}^{*} and v_{j}^{*} is violated; i.e.

$$
\left\|v_{i}^{*}-v_{j}^{*}\right\| \leq\left\|w-v_{i}^{*}\right\|+\left\|w-v_{j}^{*}\right\|
$$

$$
\begin{gathered}
\sqrt{2-2 v_{i}^{*} v_{j}^{*}} \leq \sqrt{2-2 w v_{i}^{*}}+\sqrt{2-2 w v_{j}^{*}} \\
\sqrt{2-2(-1+2(0.0004))} \leq \sqrt{2-2 v_{i}^{*} v_{j}^{*}} \leq \sqrt{2-2 w v_{i}^{*}}+\sqrt{2-2 w v_{j}^{*}} \leq 2 \sqrt{2-2(0.5003)}
\end{gathered}
$$

Therefore, we have $1.9995999 \cong \sqrt{3.9984} \leq 2 \sqrt{9994} \cong 1.9993999$, which is a contradiction.
Likewise, if $i, j \in S$ then the triangle inequality between vectors $-w, v_{i}^{*}$ and v_{j}^{*} is violated

Corollary 2. If $\exists k \in V:\left|H_{k}\right| \geq \frac{n}{1000000}$, where $H_{k}=\left\{j \in G_{\varepsilon} ;\left|v_{k}^{*} v_{j}^{*}\right|>0.5003\right\}$, then we have a feasible solution $V_{1 G} \cup V_{-1 G}$, correspondingly, where $\left|V_{-1 G}\right|=\max \{|S|,|T|\} \geq \frac{n}{2000000}$. Hence, $\left|V_{1 G}\right| \leq 1999999\left|V_{-1 G}\right|$ and we have $\frac{\left|V_{1 G}\right|}{z^{2 *}} \leq \frac{2 \times 1999999}{1999999+1}=1.999999<2$.

Corollary 3. By introducing a normalized random vector w, where $\left|H_{w}\right| \geq \frac{n}{1000000}$, we have a feasible solution $V_{1 G} \cup V_{-1 G}$, correspondingly, where $\left|V_{-1 G}\right|=\max \{|S|,|T|\} \geq \frac{n}{2000000}$. Hence, we have $\left|V_{1 G}\right| \leq 1999999\left|V_{-1 G}\right|$ and $\frac{\left|V_{1 G}\right|}{z^{2 *}} \leq \frac{2 \times 1999999}{1999999+1}=1.999999<2$.

Theorem 4. Let u, w be two normalized random vectors, then for any normalized vector v_{j}^{*}, we have $\operatorname{Pr}\left(\left|u v_{j}^{*}\right| \leq 0.5003 \&\left|w v_{j}^{*}\right| \leq 0.5003\right)<0.753$.

Proof. Let $v_{j}^{*}=v_{j}^{\prime}+v_{j}^{\prime \prime}$, where v_{j}^{\prime} is the projection of vector v_{j}^{*} onto the $u-w$ plane (suppose that the vector u is on the $o x$ axis) and $v_{j}^{\prime \prime}$ is the projection of v_{j}^{*} onto the normal vector of that plane. Then, $\left|u v_{j}^{*}\right|=\left|u v_{j}^{\prime}\right| \leq 0.5003$ if and only if the vector v_{j}^{\prime} is projected on the gray region in the first quadrant (or its symmetric region with respect to the oy axis, the $o x$ axis and the origin in the second, fourth and third region), where $\left|v_{j}^{\prime}\right| \leq f(\theta)=\frac{0.5003}{\cos \theta}$. In this manner, $\left|v_{j}^{\prime}\right||u| \cos \theta \leq 0.5003$; See Figure 1 .

Figure 1. The $u-w$ plane.

Therefore, $\operatorname{Pr}\left(\left|u v_{j}^{*}\right| \leq 0.5003 \&\left|w v_{j}^{*}\right| \leq 0.5003\right) \cong \frac{s}{2 \pi}$, where S is the area of the common gray region between two vectors u and w. Note that, the maximum area of the region S and corresponding probability is produced based on the $|u w| \cong 1$ condition (and the minimum value for the probability is
produced when $|u w| \cong 0)$. But, $S=4\left(\int_{0}^{\frac{\pi}{3}} f(\theta) d \theta+\int_{\frac{\pi}{3}}^{\frac{\pi}{2}} d \theta\right)=4\left(\int_{0}^{\frac{\pi}{3}} \frac{0.5003}{\cos \theta} d \theta+\frac{\pi}{6}\right) \cong 4(1.182473)$. Hence, we have:

$$
\operatorname{Pr}\left(\left|u v_{j}^{*}\right| \leq 0.5003 \&\left|w v_{j}^{*}\right| \leq 0.5003\right) \cong \frac{4(1.182473)}{2 \pi}=0.752786<0.753
$$

Therefore, by introducing two normalized random vectors u, w, for at most $0.753 n$ of the vectors v_{j}^{*} (the optimal solution of the SDP model) we have $\left|u v_{j}^{*}\right| \leq 0.5003$ and $\left|w v_{j}^{*}\right| \leq 0.5003$, and therefore, for at least $0.247 n$ of the vectors v_{j}^{*} we have $\left|u v_{j}^{*}\right|>0.5003$ or $\left|w v_{j}^{*}\right|>0.5003$.

Hence, one of the two bipartite graphs H_{u} or H_{w} has more than $\frac{0.247 n}{2}$ of vertices which produces a null subgraph with more than $\frac{0.247 n}{4}=0.06175 n$ of the vertices and based on the Corollary (3) we have an approximation ratio $\frac{\left|V_{1 G}\right|}{z^{2 *}} \leq 1.999999<2$.

Now, we can introduce our algorithm to produce an approximation ratio $\rho \leq 1.999999$.

Zohrehbandian Algorithm (To produce a vertex cover solution with a factor $\boldsymbol{\rho} \leq \mathbf{1 . 9 9 9 9 9 9)}$

Step 1. Solve the SDP (2) relaxation.
Step 2. If for more than $\frac{n}{1000000}$ of vertices $j \in V$ and corresponding vectors we have $v_{o}^{*} v_{j}^{*}<0$, then produce the suitable solution $\mathrm{V}_{1 \mathrm{G}} \cup \mathrm{V}_{-1 \mathrm{G}}$, correspondingly, where $\mathrm{V}_{-1 \mathrm{G}}=\left\{\mathrm{j} \mid v_{o}^{*} v_{j}^{*}<0\right\}$. Therefore, based on the Assumption (3. a) we have $\frac{\left|V_{1 G}\right|}{\mathrm{z}^{2 *}} \leq 1.999999$. Otherwise, go to Step 3 .

Step 3. If for more than $\frac{1}{100} n$ of vertices $j \in V$ and corresponding vectors we have $v_{o}^{*} v_{j}^{*}>0.0004$, then $z^{2 *} \geq \frac{n}{2}+\frac{3 n}{2000000}$. Therefore, based on the Assumption (3. b) for all feasible solutions $V=V_{1 G} \cup V_{-1 G}$ we have $\frac{\left|V_{1 G}\right|}{\mathrm{z}^{2 *}} \leq 1.999999$. Otherwise, go to Step 4 .

Step 4. Introduce two normalized random vectors u and w, and produce H_{u} and H_{w}. If $\left|H_{u}\right| \geq \frac{n}{1000000}$ or $\left|H_{w}\right| \geq \frac{n}{1000000}$ then produce the suitable solution $V_{1 G} \cup V_{-1 \mathrm{G}}$, correspondingly. Therefore, based on the Corollary (3) we have $\frac{\left|V_{1 G}\right|}{z^{2 *}} \leq 1.999999$.

Corollary 4. Based on the proposed 1.999999 -approximation algorithm for the vertex cover problem and by assuming the unique games conjecture, then $P=N P$.

4. Conclusions

One of the open problems about the vertex cover problem is the possibility of introducing an approximation algorithm within any constant factor better than 2 . Here, we proposed a new algorithm to
introduce a 1.999999 -approximation algorithm for the vertex cover problem on arbitrary graphs, and this may lead to the conclusion that $P=N P$.

References

1. Dinur, I., \& Safra, S. (2005). On the hardness of approximating minimum vertex cover. Annals of Mathematics, 162, 439-485.
2. Khot, S., (2002, May). On the power of unique 2-Prover 1-Round games. Proceeding of 34th ACM Symposium on Theory of Computing, STOC.
3. Khot, S., \& Regev, O. (2008). Vertex cover might be hard to approximate to within 2-E. Journal of Computer and System Sciences, 74, 335-349.
