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Abstract. We build a combinatorial technique to solve several long standing

problems in linear algebra with a particular focus on algorithmic complexity

of matrix completion and tensor decomposition problems. For all appropriate
integral domains R, we show the polynomial time equivalence of the problem

of the solvability of a system of polynomial equations over R to

• the minimum rank matrix completion problem (in particular, we answer
a question asked by Buss, Frandsen, Shallit in 1999),

• the determination of matrix rigidity (we answer a question posed by

Mahajan, Sarma in 2010 by showing the undecidability over Z, and we
solve recent problems of Ramya corresponding to Q and R),

• the computation of tensor rank (we answer a question asked by Gonzalez,
Ja’Ja’ in 1980 on the undecidability over Z, and, additionally, the special

case with R = Q solves a problem posed by Bläser in 2014),

• the computation of the symmetric rank of a symmetric tensor, whose
algorithimic complexity remained open despite an extensive discussion

in several foundational papers. In particular, we prove the NP-hardness

conjecture proposed by Hillar, Lim in 2013.
In addition, we solve two problems on fractional minimal ranks of incom-

plete matrices recently raised by Grossmann, Woerdeman, and we answer, in

a strong form, a recent question of Babai, Kivva on the dependence of the
solution to the matrix rigidity problem on the choice of the target field.

1. Introduction

One particular motivation of this study is to reach the full understanding of
the algorithmic complexity of tensor rank, which is the function sending a tensor
T ∈ U ⊗ V ⊗W to the smallest integer r for which one can write

T = λ1T1 + . . .+ λrTr

with Ti = ui ⊗ vi ⊗ wi and λi ∈ F . Here, one usually takes F to be a field, but
it is convenient for us to allow it to be an arbitrary commutative ring. As one
can see from this definition, we restrict our attention to three-way tensor products
because, as we show in this paper, this setting is already sufficient to understand
the algorithmic complexity of rank decompositions. The rank of a three-way ten-
sor corresponds to the invariant known as the multiplicative complexity for bilinear
programs [32, 35, 80], which appears in the famous problem on the complexity of
matrix multiplication [22, 48, 79]. The general problem of tensor rank decompo-
sitions was introduced eighty years ago [37] and, apart from the above mentioned
application in computational complexity theory, it appears as a fundamental tool
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in statistics [68], signal processing [49], psychology [19], linguistics [77], chemomet-
rics [21] and many other contexts, see a more detailed survey in [45].

The first step towards understanding the computational complexity of tensor
rank was made by H̊astad [35], who showed that this problem is NP-hard over Q
and NP-complete over finite fields. A recent paper of Hillar and Lim [36] shows
that H̊astad’s approach works well enough to prove the NP-hardness over R and C
as well. In this paper, we show that, for any integral domain R, the computation
of the tensor rank over R is polynomial time equivalent to the general problem of
the solvability of a system of polynomial equations over R. We note a recent paper
of Schaefer and Štefankovič [66], which proves the same result but restricted to the
case when R is a field. Our result is more general, and, in particular, it shows
that the tensor rank over Z is undecidable, which answers the question asked by
Gonzalez and Ja’Ja’ in 1980. Moreover, we note that our result is original even
if R is a field because, although the work [66] is already peer reviewed, the first
version of the current paper [70] appeared on arXiv earlier than the first version
of [66]. In the perspective of applied mathematics, one is usually focused with the
real number version of tensor rank, and our result implies that the corresponding
problem is ∃R-complete, that is, it is polynomial time equivalent to the existential
theory of the reals [2, 7, 23, 53, 55, 61, 64, 65, 71, 72]. Also, Bläser [9] asked a
question on the complexity of the rational number version of tensor rank, and we
get an answer as the special case R = Q in our descrption.

The symmetric tensor rank appears if we assume U = V = W and ui = vi = wi
in the above definition of the rank, and this invariant is also relevant in pure math-
ematics and engineering [20, 43, 56, 76]. The practical applications motivate a
search of algorithms computing this invariant as well as the study of its computa-
tional complexity, and, indeed, many authors went on to discuss these issues. In
particular, the potential hardness of the computation of the symmetric rank was
discussed in the foundational paper of Comon, Golub, Lim, Mourrain [20] and in
subsequent works [6, 11, 56, 62] focused on the algorithmic computation of sym-
metric decompositions. However, although the authors of these papers wrote that
the problem should be hard, no particular hardness result was known, and Hillar,
Lim posed its NP-hardness as a conjecture in a further notable paper [36]. This
question was reiterated in subsequent studies [31] and remained open before the
publication of our work. We prove this conjecture, and, moreover, we show that
the symmetric rank admits the same description of the complexity as the one given
for tensor rank in the above paragraph, whenever R is a field with |R| > 4.

The starting point of the technical part of this paper is an appropriate reduction
of the problem of the solvability of a family of polynomial equations to another
problem known as the minimum rank matrix completion. In this problem, one is
given a positive integer r and a matrix A with entries in R ∪ {∗}, where ∗ is a
placeholder symbol for an unknown entry, and the task is to fill in the placeholders
in A with elements of R so that the rank of the resulting matrix is at most r.
As it turns out, this simply looking problem takes one of the central places in
modern applied mathematics [1, 13, 15, 14, 16, 17, 39, 59, 84], and the current
paper is the first one that gives a full description of its algorithmic complexity. In
particular, it turns out that the minimum rank matrix completion is ∃R-complete
in the most relevant case of the real numbers, and hence we get a solution to the
problem discussed by Buss, Frandsen, Shallit [12] and Laurent [47]. More generally,
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we show that the minimum rank matrix completion is polynomial time equivalent
to the solvability of a system of polynomial equations over any commutative ring
R, and this conclusion remains valid even if we require that the desired minimum
rank equals three. In addition to these results, our approach leads to a resolution
of two recent problems of Grossmann, Woerdeman on fractional minimal rank [34].

Another application of our technique comes from the problem of matrix rigidity,
which was introduced many decades ago [33, 82] and became one of the central
topics in arithmetic complexity [3, 4, 30]. In matrix rigidity, we are given two
positive integers k, r and a matrix A with entries in R, and we need to express A
as the sum L+S, where L has rank at most r, and S has at most k nonzero entries.
This problem is NP-hard over any field [27], but until now, beyond the NP-hardness,
there has been no clear understanding of its complexity in the general case, and the
dependence of its answer on the choice of R remained unclear [4, 29, 51, 60, 63].
For instance, Fomin, Lokshtanov, Meesum, Saurabh, Zehavi [29] and Mahajan,
Sarma [51, 63] discuss the question of the decidability of the integer version of
matrix rigidity. In fact, Mahajan, Sarma [51, 63] state that ‘an upper bound of
NP is not obvious’ over Z, so it might have been considered plausible that the
integer version of matrix rigidity is in NP. However, as we will see, this problem
is algorithmically undecidable! Also, a recent paper of Babai, Kivva [4] raises the
question of the dependence of the answer to the matrix rigidity problem on the
choice of the ground field R, and the current paper answers this question in a
strong form. More generally, we prove the polynomial time equivalence of matrix
rigidity to the solvability of polynomial equations for all relevant choices ofR, which
solves several additional problems posed by Ramya [60].

Our paper is structured as follows. In the forthcoming Sections 2, 3, 4, we collect
precise definitions of notions discussed in this paper, we formulate our main results,
and we recall several basic techniques. In particular, Section 2 is devoted to tensor
decompositions, Section 3 points out their relation to the substitution method and
matrix completion problems, and Section 4 introduces the notion of matrix rigidity
and a related algorithmic question. The remaining technical Sections 5–9 collect
the proofs of our results, and their content is outlined in Section 5.

We conclude this introduction with a notational convention that is necessary
because we discuss the issues of algorithmic complexity.

Remark 1.1. Throughout this paper, the letter R denotes a ring whose elements are
encoded by strings in some finite alphabet so that the addition and multiplication
in R are performed by polynomial time algorithms.

2. Tensor decompositions

We consider tensors of order three over a commutative ring R. From the com-
binatorial point of view, a tensor is a three-dimensional array T with elements
T (i|j|k) in R, where i, j, k run over corresponding indexing sets I, J,K. We write

T ∈ RI×J×K

and say that T is an I×J×K tensor overR. The size of T is defined as |I|×|J |×|K|.
A tensor T is called symmetric if I = J = K and T (i|j|k) = T (i′|j′|k′) whenever
(i, j, k) is a permutation of (i′, j′, k′). Given three vectors

a ∈ RI , b ∈ RJ , c ∈ RK ,



4 YAROSLAV SHITOV

we define the I × J ×K tensor a⊗ b⊗ c by setting its (i, j, k)th entry to be aibjck.
Tensors arising in this way are called decomposable or simple with respect to R.
We note that, if we allow the vectors a, b, c to contain elements not from R but
rather from some extension S, we may possibly get a different set of simple tensors.

Definition 2.1. Let R ⊆ S be commutative rings, and let T be a tensor over R.
The rank of T with respect to S is the smallest integer r such that T can be written
as a sum of r tensors decomposable over S. This quantity is denoted by rkS T .

It is well known that the rank of a tensor with entries in R may depend on S
even if R is a field [5, 24]. In the setting of integral domains, the rank may depend
on the extension even for matrices, which we think of as m× n× 1 tensors.

Example 2.2. (Example 17 in [69].) The rank of the matrixx −z 0
0 y x
y 0 z


is three over the ring R[x, y, z] and two over the field R(x, y, z).

Now we are ready to formulate one of the main results. We recall that, as in
Remark 1.1, the elements of the ring R are labeled by strings in a fixed finite
alphabet, and the arithmetic operations on R are represented by polynomial time
algorithms taking the corresponding strings as inputs. We note that this assumption
may not transfer to the extension S as in Definition 2.1 and similar occasions,
including Theorem 2.4 below, so S can be an arbitrary ring containing R.

Example 2.3. In particular, Theorem 2.4 below holds for the real ranks of rational
tensors, which corresponds to the special case R = Q, S = R.

Theorem 2.4. Let R ⊆ S be integral domains, and let f1, . . . , fp be polynomials
with coefficients in R. There is a polynomial time algorithm that constructs an
order-three tensor T over R and an integer r such that the following are equivalent:
(1) the equations f1 = 0, . . . , fp = 0 have a simultaneous solution in S;
(2) the rank of T with respect to S does not exceed r.

Moreover, these T and r do not depend on the choice of S.

On the other hand, a straightforward formulation of Definition 2.1 gives a system
of polynomial equations with coefficients in R, and the inequality rkS T 6 r holds
if and only if this system has a solution in S. Therefore, Theorem 2.4 gives a
complete description of the algorithmic complexity of the tensor rank.

Theorem 2.5. Let R ⊆ S be integral domains. Given a tensor T over R and
r ∈ Z, checking the inequality rkS T 6 r is polynomial time equivalent to deciding
if a given system of polynomial equations with coefficients in R has a solution in S.

A particularly important special case R = Q, S = R shows that the real tensor
rank is what is called an ∃R-complete problem [53]. In other words, the real tensor
rank is polynomial time equivalent to many classical problems in geometry, which
include oriented matroids [55], polytope realizability [61], Nash equilibria [23], graph
drawings [7], art galleries [2], linkages [64]. A similar characterization is known for
other problems on rank decompositions in linear algebra, including the nonnegative
rank [71] and positive semidefinite rank of matrices [72].
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Theorem 2.5 with R = S = Q shows that the rational tensor rank is polynomial
time equivalent to deciding if a given Diophantine equation has a rational solution,
which answers the question of Bläser, see Open Problem 2 on page 119 in [9]. We
recall that the rational Diophantine solvability is a famous problem that is believed
to be undecidable, but its complexity status remains open despite extensive re-
search [41, 42, 52, 54, 58]. Therefore, Theorem 2.4 can be seen as a conditional
proof of the undecidability of the rational tensor rank, which would confirm Con-
jecture 13.3 in the paper [36] by Hillar and Lim. We remark that the solvability of
Diophantine equations over Z was the content of Hilbert’s tenth problem, and this
question was proved to be undecidable a half century ago [52]. Using Theorem 2.4
together with this undecidability result, we get the following.

Corollary 2.6. Tensor rank over Z is undecidable.

Corollary 2.6 answers the question by Gonzalez and Ja’Ja’ dating back to 1980,
see page 77 of [32]. Finally, we note that the solvability of Diophantine equations is
NP-hard over any integral domain [41], so we have another corollary of Theorem 2.4,
generalizing the results of H̊astad [35] and Hillar and Lim [36], who stated the NP-
hardness of the tensor rank over Q, R, C and over finite fields.

Corollary 2.7. Tensor rank is NP-hard over any integral domain.

Now we switch to the symmetric case. As explained in the introduction, the
symmetric rank of a symmetric tensor T with respect to a field S is the smallest
number of simple symmetric tensors over S whose linear span contains T . We can
prove the symmetric counterpart of Theorem 2.4.

Theorem 2.8. Let F ⊆ K be fields with |K| > 4. The problem of checking if

srkK T 6 r

for a symmetric tensor T over F and r ∈ Z is polynomial time equivalent to deciding
if a given family of polynomials with coefficients in F have a common zero over K.

In particular, the computation of the symmetric rank is NP-hard over any field
with at least four elements, which proves the conjecture of Hillar and Lim [36] dis-
cussed in the introduction. The most well studied cases are R and C, see [20, 36, 56],
so our additional assumption on the cardinality seems to be quite mild. In particu-
lar, the symmetric ranks are often studied in terms of the Waring rank function of
homogeneous polynomials, which is not well defined over fields of characteristic 2
or 3, see [10]. Our technique could cover the case of cardinality three as well, but,
as said above, this case is not especially relevant and leads to significant technical
difficulties, so we decided to omit it. Also, we did not work with the case |K| = 2
because it is quite pathological, which can be seen, in particular, from the fact that
the symmetric tensor

e1 ⊗ e2 ⊗ e2 + e2 ⊗ e1 ⊗ e2 + e2 ⊗ e2 ⊗ e1
does not admit any symmetric decomposition over Z/2Z.

3. Substitutions and matrix completions

In comparison to many recent studies that approach the general and symmetric
tensor decomposition problems from the point of view of algebraic geometry [6, 18,
45], our methods involve a more combinatorial background. In particular, one of
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the ideas of our approach is to combine the standard substitution method of tensor
rank computation with a classical problem of linear algebra, known as the minimal
rank matrix completion, which we discuss later in this section.

Definition 3.1. If T is an I × J ×K tensor, then we define the kth 3-slice of T
as an I × J matrix whose (i, j) entry equals T (i|j|k). For all i ∈ I, j ∈ J , we can
define the ith 1-slice of T and the jth 2-slice of T similarly.

The substitution method rests on the following easy lemma. We refer the reader
to [46] for a recent account on this method and to [73, 74] for further developments.
The paper [38] gives an earlier appearance of a related result.

Lemma 3.2. Let F be a field, and let T be a tensor in FI×J×K with K =
{1, . . . , k} ∪ {1′, . . . , τ ′}. Let Si be the ith 3-slice of T and assume that S1′ , . . . , Sτ ′

are linearly independent and rank-one. Then rankF T is equal to

τ ′ + min rankF T (V1, . . . , Vk),

where T (V1, . . . , Vk) is the tensor formed by the slices S1−V1, . . . , Sk−Vk, and the
matrices V1, . . . , Vk are taken in the F-linear span of S1′ , . . . , Sτ ′ .

Another tool important for our paper is the minimal rank matrix completion
problem. If ∗ is a new placeholder symbol, we say that a matrix M with entries in
R∪ {∗} is an incomplete matrix over R; any matrix obtained by replacing the ∗’s
with elements in S is called a completion of M over S. What is the smallest value
that the rank of a completion of a given incomplete matrix may take? The reduction
of the problem of computing the rank of a tensor over a field to the minimal rank
matrix completion is straightforward by Lemma 3.2, see Section 7 for details. The
opposite reduction was given by Derksen in [26], so he showed that the minimal
rank completion and tensor rank are polynomial time equivalent problems in the
case of fields. However, the algorithmic complexity of both problems remained
open, so we need to prove the following result on the way to Theorem 2.5.

Theorem 3.3. Let R ⊆ S be commutative rings. The problem of deciding if a
given incomplete matrix with entries in R ∪ {∗} has a completion of rank three
with respect to S is polynomial time equivalent to the problem of deciding if a given
system of polynomial equations with coefficients in R has a solution over S.

The author believes that this result is new even in the case of fields. Numerous
related problems are shown to be NP-hard, and, as noted by Derksen in [25], the
NP-hardness of the problem being discussed in the case of fields follows from the
earlier paper by Peeters [57]. There are several related problems whose complexity
is described completely, which include a result similar to Theorem 3.3 but for the
version of the minimal rank problem in which some of the ∗ entries may be required
to take the same value [12]. However, the complexity of our version was discussed by
Buss, Frandsen, Shallit without any progress on lower bounds, see page 575 in [12].
Also, Laurent writes that the minimal rank completion seems to be a difficult task,
but again she does not mention any particular result on the complexity of this
problem, see page 1972 in [47]. As said above, our Theorem 3.3 does not only
prove the NP-hardness, but fully determines the complexity of the problem over
any commutative ring. Other related completion problems whose complexity has
been known are the Euclidean distance completion [47], minimal rank sign pattern
completion [8], and the problem of minimizing the rank of matrices over a finite field
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that fit a given graph [57]. We note that the approximate version of the minimal
rank completion problem naturally arises in applied mathematics [15, 40], and a
version with random positions of the ∗’s is particularly important [16].

4. On the complexity of matrix rigidity

As explained in the introduction, the rigidity of matrices is a well known topic
useful in arithmetic complexity theory [3, 4, 30, 33, 82]. Although the algorithmic
complexity of this concept was discussed in many research papers [29, 51, 60, 63], no
general lower bound on its complexity was known except the NP-hardness result of
Deshpande [27]. In particular, Fomin, Lokshtanov, Meesum, Saurabh, Zehavi [29]
give an extensive study of parametrized versions of matrix rigidity over R, but if the
restrictions on the corresponding parameters are omitted, the time complexity of
their algorithm becomes exponential. Mahajan, Sarma [51, 63] use the connection of
matrix rigidity to matrix completion and prove that, if the former problem belongs
to NP, then the latter problem is in NP as well. Also, as explained by Mahajan,
Sarma [51, 63], Ramya [60], the real version of the problem is in PSPACE.

Moreover, before the recent work of Babai, Kivva [4], there has been no progress
reported on a related question of the dependence of the answer to the matrix rigidity
problem on the choice of the field of the output. Another motivation to raise this
issue comes, as explained in [4], from the recent paper of Dvir, Edelman [28] in
which a certain family of matrices, previously expected to be rigid by some experts
in the topic, were shown to be non-rigid with respect to some extension of the
initial field of their definition as at the same time their rigidity with respect to
the initial field remained open. Our approach to the computational complexity of
matrix rigidity covers the situation when the output matrices are taken in a larger
field, so we formulate this issue in the decision form as follows.

Remark 4.1. As explained above, the practical applications are focused on the
conventional definition of matrix rank over a field. However, we can take a slightly
more general perspective because, as in Definition 2.1, we define the rank of a
matrix A with respect to an arbitrary commutative ring S as the smallest integer
k such that A represents as the product of an m × k and k × n matrices over S.
Since this definition coincides with the conventional rank over the fraction field of
S whenever S is a principal ideal domain, by the Smith normal form [78], we can
assume that the ring S in Problem 4.2 below is a principal ideal domain.

Problem 4.2 (rigidity of a matrix over R with respect to S).
Given: A matrix A with entries in R, integers k, r.
Question: Do there exist matrices L, S with entries in S such that A = L + S,

the rank of L is at most r, and S has at most k nonzero entries?

In our considerations on the complexity of matrix rigidity, we sometimes need the
following mild technical assumption, which is obviously true in all relevant cases.

Definition 4.3. Let R be an infinite ring as in Remark 1.1. An injective sequence
oracle on R is an algorithm that

• takes a positive integer n as input,
• halts in time polynomial in n,
• returns a sequence (r1, . . . , rn) of pairwise different elements of R.
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Example 4.4. For instance, the function n→ (1, 2, . . . , n) represents an injective
sequence oracle whenever R is a field of characteristic 0.

Now we formulate our main result on the complexity of matrix rigidity.

Theorem 4.5. Let S be a principal ideal domain containing R. Then,

(1) if R is endowed with an injective sequence oracle, then Problem 4.2 allows
a polynomial reduction from the problem to decide if a given system of
polynomial equations with coefficients in R has a solution in S,

(2) if S is a field, then there is a polynomial reduction in the opposite direction.

Corollary 4.6. If S is a field, and R ⊆ S is endowed with an injective sequence
oracle, then Problem 4.2 is polynomial time equivalent to the problem to decide if
a given system of polynomial equations with coefficients in R has a solution in S.

Remark 4.7. If S is finite, then both problems in Corollary 4.6 are NP-complete [27],
so the conclusion remains valid. Therefore, it may only fail if S is infinite but the
subring R has no injective sequence oracle, and a generalization of our reduction
to this setting may require more technical efforts. However, it may not be relevant
because Theorem 4.5 is sufficient for all cases considered in current work.

Now we look at some earlier work related to Theorem 4.5. Mahajan, Sarma [51,
63] study the complexities of several versions of matrix rigidity restricted to the
class NP by declaring, for instance, that the entries of the corresponding matrix S
are taken in some finite subset of S fixed in advance. As said in the introduction,
they state that ‘an upper bound of NP is not obvious’ over Z, so it might have been
considered plausible that the integer version of matrix rigidity is in NP.

Question 4.8 ([51, 63]). If R = S = Z, do we have Problem 4.2 ∈ NP?

This question was reiterated in a weaker form by the authors of [29], who said
that the corresponding problem is not known to be decidable. As we see from
Theorem 4.5, the setting R = S = Z makes Problem 4.2 undecidable, so we get a
negative answer to Question 4.8 and resolve the above mentioned weaker problem
in [29]. In other words, the integer version of matrix rigidity is undecidable, and
the rational number analogue of this question was also discussed in literature.

Question 4.9 ([29, 60]). If R = S = Q, what is the complexity of Problem 4.2?

Corollary 4.6 gives a full answer to this question in the way similar to the dis-
cussion after Theorem 2.5 above. Namely, the rational number vesion of matrix
rigidity turns out to be polynomial time equivalent to the famous decision problem
of whether a given Diophantine equation has a rational solution or not [41, 42, 52,
54, 58]. Let us also comment on the real number analogue of this question.

Question 4.10 ([60]). IfR = Q and S = R, what is the complexity of Problem 4.2?

Ramya [60] noticed that this problem belongs to PSPACE (by using the mem-
bership of the minimum rank matrix completion in ∃R and an exhaustive search
over all possible zero-nonzero patterns of the matrices S in Problem 4.2). From
Corollary 4.6, we immediately see that Problem 4.2 is ∃R-complete in the setting
R = Q, S = R, so we get a resolution of Question 4.10 as well. We proceed with a
related question of the dependence of the answer to the matrix rigidity problem on
the choice of S, which was raised in a recent paper of Babai, Kivva [4].
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Question 4.11 ([4]). Suppose S ⊂ S ′ are different fields containing the entries of
a matrix A in Problem 4.2. Can the answer be different for S and S ′?

Babai, Kivva [4] exhibit a field F and a matrix whose rigidity with respect to F
is different from the one over S = F[

√
2], so they obtain an affirmative answer to

Question 4.11. Apart from the algorithmic complexity results in Theorem 4.5, our
technique gives an answer to a much stronger form of this question.

Theorem 4.12. If F is an infinite field, and F′ is a proper algebraic extension of
F, then there are a matrix A with entries in F and integers k, r such that

• (A, k, r) is a no-instance of Problem 4.2 with F in the role of both R, S,
• (A, k, r) is a yes-instance of Problem 4.2 with (F,F′) in the role of (R,S).

As in the main results of Sections 2 and 3, the proofs of Theorems 4.5 and 4.12
are to be given in due course in the forthcoming technical part of our paper.

5. Organization of the paper

The following Section 6 is devoted to the proof of Theorem 3.3, which can be seen
as a variation of a recent investigation of the complexity of the positive semidefinite
rank of a matrix [72]. As a byproduct of our approach, we get solutions of two
problems on fractional minimal rank posed by Grossmann and Woerdeman [34].
In Section 7, we employ the construction recently used by Derksen [25] and deduce
Theorem 2.4 from Theorem 3.3. As said above, an immediate consequence of this
construction is that Theorem 3.3 implies Theorem 2.4 over a field, and we adapt
this method to any integral domain. In Section 8, we switch to symmetric tensor
decompositions and complete the proof of Theorem 2.8. The remaining Section 9
is devoted to matrix rigidity and contains proofs of Theorems 4.5 and 4.12.

6. The complexity of minimal rank matrix completion

The main goal of this section is to prove Theorem 3.3 and hence determine the
algorithmic complexity of the minimal rank matrix completion problem. To this
end, it would be sufficient to assume that R and S are commmutative rings satis-
fying R ⊆ S, but the above mentioned application to the problems of Grossmann
and Woerdeman [34] requires us to consider a slightly more general setting.

Remark 6.1. In this section, we assume that R and S are rings satisfying R ⊆ S,
and, additionally, we assume that the implication

(6.1) (C ′C = I)→ (CC ′ = I)

holds for the 3 × 3 matrices C, C ′ over S. In particular, this happens when S is
commutative or when S itself is a matrix ring over a field.

We proceed with several notational conventions needed to reflect the algorithmic
context of the problem. In this section, we represent polynomials with variables
x1, . . . , xn and coefficients in R as elements of the free ring Z〈R, x1, . . . , xn〉, which
are non-commutative polynomials with integer coefficients, where apart from the
variables x1, . . . , xn we have one additional variable for every element in R. In
other words, the elements of Z〈R, x1, . . . , xn〉 are the sums

(6.2) p1 + . . .+ ps
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in which every pi is a monomial with either pi = wi or pi = −wi, where

(6.3) wi = πi1πi2 . . . πiqi

is a word in the alphabet R ∪ {x1, . . . , xn}. The product of monomials is defined
as the concatenation of the corresponding words, and the sign of the product is
the product of the signs of the multipliers. Two elements of the form (6.2) are
equal if they can be brought to the same form by appropriate permutations of the
monomials and cancellations of the pairs of identical words appearing with opposite
signs. Every element f in Z〈R, x1, . . . , xn〉 naturally defines a function from Sn to
S, where the value f(ξ1, . . . , ξn) is computed by replacing every occurrence of xi
with ξi in f with a subsequent evaluation of the obtained expression over S.

Remark 6.2. We write O to denote the empty sum as in (6.2), and we define I as
the empty word of the form (6.3) taken with the positive sign. The elements O and
I are the zero and one of the ring Z〈R, x1, . . . , xn〉, respectively.

Example 6.3. For a ∈ R, the polynomial xy − yx+ a belongs to Z〈R, x, y〉. If S
is commutative, it represents the constant function always equal to a.

We proceed with a reduction needed for the proof of Theorem 3.3. For any
monomial pi = +wi or pi = −wi with wi as in (6.3), we define

σ(pi) = {±I, ±πi1, ±πi1πi2, ±πi1πi2πi3, . . . , ±pi} ∪ {±πi1, ±πi2, . . . , ±πiqi} .
For a general input polynomial f represented as p1 + . . .+ ps, we set

σ(f) = σ(p1) ∪ . . . ∪ σ(ps) ∪ {O,±p1,±(p1 + p2), . . . ,±f},
and for a finite set F = {f1, . . . , ft}, we take σ(F ) = σ(f1) ∪ . . . ∪ σ(ft). Clearly,
the construction of the set σ(F ) can be done in polynomial time.

Example 6.4. If F = {xy − yx+ a} with a ∈ R, then

(6.4) σ(F ) = {O, ±I, ±x, ±y, ±xy, ±yx, ±a, ±(xy − yx), ±(xy − yx+ a)}.

Now we fix a finite set F of input polynomials, each of which is represented as a
sum of monomials in Z〈R, x1, . . . , xn〉. In the rest of this section, we simply write
σ instead of σ(F ), and σ3 stands for the set of all triples of elements in σ.

Definition 6.5. We denote by H = H(F ) the set of those vectors in σ3 that have
one of the coordinates equal to I or −I. We define the matrix U = U(x1, . . . , xn)
whose columns are vectors in H, and we define W(x1, . . . , xn) = U>U .

Example 6.6. If F = {xy− yx+ a} with a ∈ R, then H is the set of all triples of
the elements in (6.4) which have at least one of the coordinates equal to either I or
−I. Since there are 15 elements in (6.4) different from ±I, we have a total of

23 + 3 · 22 · 15 + 3 · 2 · 152

or 1538 elements in H in this case.

In what follows, we label the columns of U by the corresponding elements of H.
In particular, the (u, v) entry of W with u, v ∈ H equals the dot product u · v.

Definition 6.7. For all u, v ∈ H, the polynomial δ(u, v) ∈ Z〈R, x1, . . . , xn〉 is
defined as u · v, or, equivalently, by the formula δ(u, v) = W(u|v). We define the
H×H matrix B = B(F ) with entries in R∪ {∗} as follows:

(B1) if δ(u, v) = ρ with ρ ∈ Z〈R〉, then we define B(u|v) ∈ R as the value of ρ,
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(B2) if δ(u, v) = f with f ∈ F , then we take B(u|v) = 0,
(B3) in the remaining cases, we set B(u|v) = ∗.

Example 6.8. We note that B(xy − yx+ a) is an incomplete matrix with known
entries in Z[a] ⊆ R. According to Example 6.6, its size is 1538× 1538.

It is clear that the matrixW(ξ1, . . . , ξn) is a rank-three completion of B provided
that (ξ1, . . . , ξn) ∈ Sn is a simultaneous solution of the equations f1 = 0, . . ., ft = 0.
We are going to show that all rank-three completions arise in this way up to the
natural action of the group of invertible 3× 3 matrices.

Lemma 6.9. Let P be an H× 3 matrix over S, and let L be a 3×H matrix over
S such that the product PL is a completion of B. Let C be the matrix obtained by
taking the columns of L with indexes in E = {(I,O,O), (O, I,O), (O,O, I)}. Then

(6.5) PC = U(ξ1, . . . , ξn)> and C−1L = U(ξ1, . . . , ξn),

where (ξ1, . . . , ξn) is a simultaneous solution of the equations f1 = 0, . . . , ft = 0.

Proof. Step 1. Since the 3 × 3 submatrix of B with row and column indexes in
E is the unity matrix, we get that the submatrix C ′ of P formed by the rows
with indexes in E satisfies C ′C = I, where I is the 3× 3 identity matrix. Since the
condition (6.1) in Remark 6.1 applies, we also have CC ′ = I, and the transformation
(P,L) → (PC,C ′L) cannot change the property of PL to be a completion of B.
Therefore, we can assume without loss of generality that C is the unity matrix,
which means that the rows of P with indexes in E and the columns of L with
indexes in E already satisfy the desired conclusion as in the equalities (6.5).

Step 2. For any u ∈ H, we denote the uth row of P by p(u), and we denote the
uth column of L by l(u). The assumption of the lemma states that the product PL
is a completion of B, which means that

(6.6) p(u) · l(v) = B(u|v) whenever B(u|v) 6= ∗.

Using this language, we can rewrite the result of Step 1 as

(6.7) p(I,O,O) = (1, 0, 0), p(O, I,O) = (0, 1, 0), p(O,O, I) = (0, 0, 1),

(6.8) l(I,O,O) = (1, 0, 0), l(O, I,O) = (0, 1, 0), l(O,O, I) = (0, 0, 1).

Now let u ∈ H be a vector whose j-th coordinate belongs to Z〈R〉, that is, this
coordinate does not depend on x1, . . . , xn, so, as a function, it identically equals
to some uj ∈ R. Straightforwardly, if we now write ej for the length three vector
with I at the j-th position and with O’s everywhere else, the product ej · u equals
the j-th coordinate of u, and we get

(6.9) B(ej |u) = uj

by the item (B1) of Definition 6.7, and hence

(6.10) L(j|u) = p(ej) · l(u) = uj ,

where the first equality comes from (6.7), and the second equality is deduced
from (6.9) by the condition (6.6). From (6.10) we get that L(j|u) equals the value
of U(j|u) whenever U(j|u) ∈ Z〈R〉, and, either by the symmetry of the construction
or with a similar argument using (6.8) instead of (6.7), we get that P (u|j) equals
the result of the evaluation of U(j|u), again provided that U(j|u) ∈ Z〈R〉.
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Step 3. Using Step 2, we get that, for any variable xi, there is yi ∈ S such that

(6.11) l(I,O, xi) = (1, 0, yi).

In what follows, we denote by yi the element of S such that the formula (6.11) is
satisfied. We also write x = (x1, . . . , xn), y = (y1, . . . , yn).

Step 4. We say that the label u = (a, b, c) is p-good if

p(u) = (a(y), b(y), c(y)),

where a(y) is the result of the evaluation of the polynomial a ∈ Z〈R, x1, . . . , xn〉 at
the point y = (y1, . . . , yn). Similarly, we say that u is l-good if

l(u) = (a(y), b(y), c(y)).

By Step 2, the labels consisting of elements in Z〈R〉 are both necessarily p-good
and l-good. In order to complete the proof, we need to check that

(i) every label in H is both p-good and l-good, and

(ii) f(y) = 0 for all f ∈ F .

Step 5. Now let us see what happens if a vector (g,O, h) is l-good.

Step 5.1. Since either g = ±I or h = ±I by Definition 6.5, we have gh = hg and

(6.12) (−h, g, g) · (g,O, h) = (−h, g, g) · (O,−I, I) = O,
so we can use the item (B1) of Definition 6.7 to get

(6.13) B(−h, g, g|g,O, h) = B(−h, g, g|O,−I, I) = 0,

and then the application of (6.6) to (6.13) gives

(6.14) p(−h, g, g) · l(g,O, h) = p(−h, g, g) · l(O,−I, I) = 0.

Since the vector (g,O, h) is l-good by the assumption of Step 5, and the vector
(O,−I, I) is l-good by the result of Step 2, the equalities (6.14) imply

p(−h, g, g) · (g(y), 0, h(y)) = p(−h, g, g) · (0,−1, 1) = 0

or that p(−h, g, g) = (π1, π2, π3) ∈ S3 with

(6.15) π1g(y) + π3h(y) = 0 and π2 = π3.

Again, since either g = ±I or h = ±I, the equalities (6.15) can be used to check that
(−h, g, g) is a p-good vector1. A similar consideration starting from the equalities

(−h, g, g) · (g, h,O) = (O,O, I) · (g, h,O) = O,
taken instead of (6.12), shows that the vector (g, h,O) is l-good.

Step 5.2. Still assuming that (g,O, h) is l-good, we deduce that (−h,O, g) is
p-good by the argument as in Step 5.1 starting from

(−h,O, g) · (g,O, h) = (−h,O, g) · (O, I,O) = O.
Similarly, the condition that (−h,O, g) is p-good in turn implies that (g,O, h) is
l-good, again by the same argument but starting from

(−h,O, g) · (g,O, h) = (O, I,O) · (g,O, h) = O.

Step 5.3. Now we can get the main conclusion of Step 5, using the symmetry
and results of Steps 5.1 and 5.2. Namely, a vector (g,O, h) is l-good if and only

1For instance, if g = I, then π2 = π3 = 1 by the result of Step 2, and we get π1 = −h(y) from
the first equality in (6.15). The cases when g = −I or h = ±I can be treated in a similar fashion.
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if any permutation of (g,O, h) is l-good, which in turn happens if and only if any
permutation of (−h,O, g) is p-good.

Step 6. Now we assume that (I,O, α), (I,O, β) are l-good vectors.

Step 6.1. Further, we assume that α + β is in the set σ from Definition 6.5.
Using the argument outlined in Step 5.1 but with

(I, I,O) · (−I, I, α) = (O,−α, I) · (−I, I, α) = O
instead of (6.12), we conclude that (−I, I, α) is an l-good vector2. Similarly, the
vector (−β,−α− β, I) can be shown to be p-good starting from the equalities

(−β,−α− β, I) · (−I, I, α) = (−β,−α− β, I) · (I,O, β) = O
involving the l-good vectors (−I, I, α) and (I,O, β). Finally, the fact that the vector
(O, I, α+ β) is l-good can be shown from the equalities

(I,O,O) · (O, I, α+ β) = (−β,−α− β, I) · (O, I, α+ β) = O
involving the p-good vectors (−β,−α− β, I) and (I,O,O). Therefore, we can con-
clude that the vector (I,O, α+ β) is l-good by the result of Step 5.3.

Step 6.2. Now we switch to the case when βα belongs to σ. Then, the vector
(βα, I, α) is l-good by the argument similar to that in Step 5.1 but starting from

(O,−α, I) · (βα, I, α) = (I,O,−β) · (βα, I, α) = O
instead of (6.12), where the vectors (O,−α, I) and (I,O,−β) are p-good by Step 5.
Similarly, the vector (I,−βα,O) is p-good by the same argument starting with

(I,−βα,O) · (O,O, I) = (I,−βα,O) · (βα, I, α) = O.
Therefore, the vector (I,O, βα) is l-good by Step 5.3.

Step 7. The results of Step 6 show that the vector (I,O, s) is l-good for all s ∈ σ.

Step 8. In order to check the condition (i) as in Step 4, because of the symmetry,
it is sufficient to check that the vector (I, u, v) is l-good whenever u, v are taken in σ.
Again, this follows from the argument similar to Step 5.1 applied to the equalities

(−u, I,O) · (I, u, v) = (−v,O, I) · (I, u, v) = O
involving the vectors (−u, I,O) and (−v,O, I) that are p-good by Steps 5 and 7.

Step 9. In order to check the condition (ii) as in Step 4, we consider an arbitrary
polynomial f in F . Since we have

(O,O, I) · (I,O, f) = f,

we get B(O,O, I|I,O, f) = 0 by the item (B2) of Definition 6.7. This implies

p(O,O, I) · l(I,O, f) = 0

by the condition (6.6), and hence

(6.16) (0, 0, 1) · (1, 0, f(y)) = 0

because, according to Step 8, the vectors (O,O, I), (I,O, f) are both p-good and
l-good. Since the equality (6.16) means that f(y) = 0, the proof is complete. �

The following corollary is immediate from Lemma 6.9.

Corollary 6.10. The matrix B(F ) admits a completion of rank three with respect
to S if and only if the equations f1 = 0, . . . , ft = 0 have a common solution in S.

2This is possible because (I, I,O) is p-good by Step 2 and (O,−α, I) is p-good by Step 5.
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Proof. As said above, the matrix W(ξ1, . . . , ξn) is a rank-three completion of B,
provided that (ξ1, . . . , ξn) is a simultaneous solution of the polynomial equations
f1 = 0, . . . , ft = 0. Conversely, if there is no such a solution over S, then by
Lemma 6.9 the matrix B admits no completion of rank three with respect to S. �

Since the reduction F → B(F ) is polynomial time, we get Theorem 3.3 from
Corollary 6.10. Now we proceed with the application of our technique to the prob-
lems of Grossmann and Woerdeman [34]. Namely, for a positive integer b and an
incomplete m× n matrix A with known entries in a field F , they define A⊗ Ib to
be the mb× nb incomplete matrix seen as the m× n block matrix in which

(1) if A(i|j) = ∗, then the (i, j) block is the b× b block of ∗’s,
(2) if A(i|j) 6= ∗, then the (i, j) block is the scalar matrix A(i|j)Ib.
The authors of [34] define the fractional minimal rank of A as

(6.17) fmr(A) = inf
b

min rkA⊗ Ib
b

with the numerator being the minimal rank of any completion of A ⊗ Ib over F .
Question 4 in Section 5 of [34] asked, is the infimum in (6.17) necessarily attained?
We give a negative resolution of this question. We decided to work with F = Q,
but the following construction is vaild over any field of characteristic zero.

Example 6.11. Let R = F = Q and consider the matrix B = B(xy − yx + 1) as
in Example 6.8. Then fmr(B) = 3 and min rkB ⊗ Ib > 3b+ 1 for all b.

Proof. For b > 1, we can think of B⊗Ib as the matrix B(xy−yx+1) but constructed
with respect to the ring R = Matb(Q) instead of R = Q. We note that the
polynomial xy−yx+1 cannot be vanished by matrices over a field of characteristic
zero because the traces of xy and yx are equal. We apply Lemma 6.9, which is
valid in this setting because of Remark 6.1, and we conclude that no completion
of B ⊗ Ib can be represented as the product PL of rational matrices unless P has
more than 3b columns. In other words, we have min rkB ⊗ Ib > 3b+ 1 for all b.

Now let Db be the b× b matrix with numbers 1, . . . , 1, 1− b on the main diagonal
and zeros everywhere else. A standard result of matrix theory [75] shows that
every trace-zero matrix over Q is a commutator, so, if we considered the matrix B′b
defined as B(xy − yx+Db) with respect to the ring S = Matb(Q), we would have

min rkB′b 6 3b.

As we see from the discussion in Example 6.8, the matrix B ⊗ Ib can be obtained
from B′b by altering a fixed number of its entries, which implies

|min rkB ⊗ Ib −min rkB′b| = O(1) as b→∞
and thus fmr(B) = 3. �

Our technique allows one to solve another problem in [34]. The formulation of
this problem requires the notion of the triangular minimum rank tmr of a partial
matrix, but, since the corresponding definition is relatively complicated, we decided
not to reproduce it here. The relevant properties are that

(T1) tmr(A) 6 fmr(A) 6 min rkA for any incomplete matrix A, and
(T2) tmr(A) > rkA′ for any complete submatrix A′ of A.

Conjecture 6.12 (Problem 3 in Section 5 of [34]). For all incomplete matrices A,
we have either tmr(A) < fmr(A) < min rkA or tmr(A) = fmr(A) = min rkA.



HOW HARD IS THE TENSOR RANK? 15

Using the matrix B in Example 6.11, we can disprove this conjecture.

Example 6.13. We have tmr(B) = fmr(B) = 3 and min rkB > 3.

Proof. The equality fmr(B) = 3 is immediate from Example 6.11. Further, we
have min rkB > 3 by Corollary 6.10 because the equation xy − yx+ 1 = 0 has no
solutions over Q. Also, we have tmr(B) > 3 from the condition (T2) because B
contains a unit 3 × 3 submatrix (namely, this is the submatrix with the row and
column indexes in the set E as in Lemma 6.9). Finally, we have tmr(B) 6 3 from
the condition (T1) because we already know that fmr(B) = 3. �

7. A proof of Theorem 2.4

We switch to the setting of Theorem 2.4, so many results of this section require
that the rings R ⊆ S are integral domains, that is, they are commutative and have
no zero divisors. In several lemmas, we will need to refer to the construction of the
matrix B(F ) and the corresponding family of polynomials F = {f1, . . . , ft} as in
the previous section. The matrix B(F ) is simply denoted as B.

Lemma 7.1. Let F be a field containing an integral domain S. Assume that
W1,W2,W3 are rank-one matrices over F such that W1 +W2 +W3 is a completion
of B. Assume that, for some λ1, λ2, λ3 ∈ F , some rank-one matrix W0 coincides
with λ1W1 + λ2W2 + λ3W3 everywhere except possibly several entries that are ∗’s
in B. Then there is an element µ ∈ F such that W0 is one of µW1, µW2, µW3.

Proof. We define the E-submatrix of B as the one formed by the rows and columns
with indexes in E = {(I,O,O), (O, I,O), (O,O, I)}. We note that this submatrix is
the unity matrix and, in particular, it does not contain the ∗’s. The corresponding
E-submatrices of W1,W2,W3 are rank-one and sum to a rank-three matrix, so the
rank of the E-submatrix of λ1W1 + λ2W2 + λ3W3 equals the number of those λi’s
that are nonzero. Therefore, it suffices to consider the case when W0 coincides with
W3 everywhere except possibly several entries that are ∗’s in B. We are going to
show that W0 = W3; for j = 0, 1, 2, 3, we write

Wj = ajb
>
j with aj , bj ∈ FH.

Using an appropriate scaling, we assume that the coordinates of a0 and b0 with
indexes in E are equal to the corresponding coordinates of a3 and b3.

We define P as the matrix formed by the columns a1, a2, a3, and we take L to
be the matrix formed by the rows b>1 , b

>
2 , b
>
3 . The matrix PL = W1 +W2 +W3 is

a completion of B, and Lemma 6.9 implies that

C−1L = U(ξ1, . . . , ξn),

where (ξ1, . . . , ξn) is a simultaneous solution of f1 = 0, . . . , ft = 0, and C is the
3× 3 matrix formed by the columns of L with indexes in E. Similarly, we define Q
as the matrix formed by the rows b>1 , b

>
2 , b
>
0 , and we get that

C−1Q = U(ψ1, . . . , ψn),

where (ψ1, . . . , ψn) is another simultaneous solution of f1 = 0, . . . , ft = 0. The
entries of Q− L are all zero except possibly those in the third row, so the matrix

(7.1) U(ψ1, . . . , ψn)− U(ξ1, . . . , ξn) = C−1(Q− L)

has rank at most one. By its definition, the set H consists of vectors one of whose
coordinates is constant, so that the matrix (7.1) has a zero in every column. Since
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the rank of (7.1) is at most one, it has a zero row, which suffices to conclude that
(ψ1, . . . , ψn) = (ξ1, . . . , ξn). Therefore, the matrix (7.1) is zero, which means that
Q = L or b0 = b3. Using the symmetry, we get a0 = a3 and W0 = W3. �

We are going to construct a reduction from the matrix completion problem to
tensor rank, and we use the construction that previously appeared in [25].

Definition 7.2. Let B be the matrix as in Section 6; we recall that the rows and
columns of B have indexes in the set H. We enumerate by

k1 = (i1, j1), . . . , kτ = (iτ , jτ )

the entries which correspond to the ∗’s in B, so τ is the number of such entries. We
set K = {0, 1, . . . , τ}, and we define the H×H×K tensor A = A(B) as follows:

(1) A(u|v|t) = B(u|v) if t = 0 and B(u|v) 6= ∗,
(2) A(u|v|t) = 1 if kt = (u, v),

(3) A(u|v|t) = 0 in the remaining cases.

In other words, we begin by taking the matrix B as in Section 6, and we substitute
its ∗’s with zeros to obtain the matrix which we further call A. Then we get A by
the addition to A of the τ new 3-slices equal to the matrix units corresponding to
the positions of the ∗ entries of B. Derksen [25] showed that

(7.2) rkS A(B) = τ + min rkS B
in the case when S is a field; this result comes from Lemma 3.2 as well. We are going
to adapt the substitution technique and prove an appropriate analogue of (7.2) for
any integral domain S. More precisely, we prove that the inequality rkS A 6 τ + 3
is valid if and only if B admits a completion of rank three with respect to S.

Lemma 7.3. If S is an integral domain, then rkS A > τ + 3.

Proof. Since S is an integral domain, there is a field containing S, and the assertion
follows from Lemma 3.2 or from the above mentioned result by Derksen. �

Lemma 7.4. Let S be an integral domain. If B admits a completion of rank three
with respect to S, then rkS A 6 τ + 3.

Proof. If B is such a completion, then we can get a tensor B0 of rank three over
S by setting B0(u|v|t) = B(u|v) if t = 0 and B0(u|v|t) = 0 otherwise. Further, we
define a rank-one tensor St whose entries are all zeros except St(it|jt|0) = −B(it|jt)
and St(it|jt|t) = 1. We get A = B0 + S1 + . . .+ Sτ , so the result follows. �

Lemma 7.5. If S is an integral domain and rkS A 6 τ + 3, then B admits a
completion of rank three with respect to S.

Proof. Let F be a field containing S, and let

A = S1 + . . .+ Sτ+3

be a decomposition of A into the sum of tensors that are rank-one with respect to
S. Let V be the F-linear space spanned by the zeroth 3-slices of S1, . . . , Sτ+3 with
the coordinates k1, . . . , kτ removed. Since the 3-slices of A with indexes 1, . . . , τ are
linearly independent and have zeros outside k1, . . . , kτ , we get dimV 6 3. We say
that a 3-slice is non-trivial if it has a non-zero element somewhere except k1, . . . , kτ .

Therefore, if there were at least four Si’s with non-trivial zeroth 3-slices, then
these 3-slices would become linearly dependent after the removal of the ∗ positions.
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Using Lemma 7.1, we would get that there are two Si’s whose zeroth 3-slices are
non-zero and coincide up to scalings by nonzero elements of F . The sum of these
two Si’s would still be a simple tensor with respect to F , which would imply
rkF A 6 τ+2 and contradict to Lemma 7.3. Therefore, there are at most three Si’s
with non-trivial zeroth 3-slices, and the sum of these 3-slices is a desired completion
of B. �

Lemmas 7.4 and 7.5 prove that rkS A(B) 6 τ + 3 if and only if B admits a
completion of rank three with respect to an integral domain S. By Corollary 6.10,
such a completion exists if and only if the polynomials in the family F as in Section 6
have a common zero over S. Since the reduction F → A(B(F )) can be computed
in polynomial time, we complete the proof of Theorem 2.4.

8. Symmetric tensors

The goal of this section is to prove Theorem 2.8 and, more generally, the analogue
of Theorem 2.4 for the symmetric rank of tensors over a field. Our argument is a
reduction of the standard tensor rank problem to the symmetric version.

Definition 8.1. We say that a tensor T0 is obtained from an I × J ×K tensor T
by adjoining an I × J matrix A as a 3-slice if the 3-slices of T0 are precisely those
of T and A. We use similar definitions for adjoining 1-slices and 2-slices.

Definition 8.2. For all p, q ∈ I ∩ J , we define the (p, q)-unit as the I × J matrix
M such that M(i|j) = 1 if i, j ∈ {p, q} and M(i|j) = 0 otherwise. In particular,
such a matrix becomes a conventional matrix unit whenever p = q.

Now we are ready to present the main tool of this section.

Definition 8.3. Let I, J , K be disjoint indexing sets, and let T be an I × J ×K
tensor over a field F . We define the new indexing set H = I ∪ J ∪ K and the
H ×H ×H tensor S = S(T ) as follows. For all α, β, γ ∈ H, we take

(S1) S(α|β|γ) = T (i|j|k) if (α, β, γ) is a permutation of (i, j, k) ∈ I × J ×K,

(S2) S(α|β|γ) = 0 otherwise.

Definition 8.4. Let I, J,K,H be the indexing sets as in Definition 8.3, and let S
be an H ×H ×H tensor over F . We define I2 as the set of all {p, q} with p, q in
I. The sets J2,K2 are defined similarly, and we denote H = H ∪ I2 ∪ J2 ∪K2. We
define the H × H × H tensor T = T (S) by adjoining of the π-unit 1-slices to S,
and then the subsequent adjoining of the π-unit 2-slices and the π-unit 3-slices to
the resulting tensors. Here, an index π runs over the set I2 ∪ J2 ∪K2.

Remark 8.5. In Definition 8.4 and in what follows, we use π ∈ I2 ∪ J2 ∪K2 as the
label of the slice of T (S(T )) corresponding to the adjoined π-unit matrix.

Remark 8.6. The resulting tensor T (S(T )) is symmetric.

In what follows, we assume |I| = |J | = |K| = n, and we are going to prove that

(8.1) srkF T (S(T )) = rkF T + 4.5(n2 + n)

whenever |F| > 4. This would show that T → T (S(T )) is a polynomial time many-
one reduction from the standard rank problem to the symmetric one; we note that
the assumption |I| = |J | = |K| does not cause a loss of generality because the rank
of a tensor remains unchanged if one adjoins several zero slices to it. In particular,
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the equality (8.1) implies Theorem 2.8, which is the main goal of this section.
Therefore, the rest of our paper is devoted to the confirmation of (8.1).

Lemma 8.7. Let S(T ) be the tensor as in Definition 8.3, and T (S(T )) be the
tensor as in Definition 8.4. Then rkF T (S(T )) > rkF T + 4.5(n2 + n).

Proof. Let M3 be a linear combination of the 3-slices of T with indexes in I2 ∪
J2 ∪K2. By Definition 8.4, all non-zero entries of these slices belong to the blocks
(I|I), (J |J), (K|K), and the same conclusion holds for M3. Therefore, the addition
of M3 to any slice of T does not change its (I|J |K) block. Similarly, the addition
of any linear combination of the 2-slices (and 1-slices, afterwards) with indexes in
I2 ∪ J2 ∪K2 to any 2-slice (or 1-slice, respectively) of the resulting tensor does not
affect its (I|J |K) block.

We apply Lemma 3.2 to the 1-slices with indexes in I2 ∪ J2 ∪K2, then to the
2-slices with these indexes, and then to the 3-slices. We get the desired inequality
because the total number of adjoined linearly independent slices is

3(|I2|+ |J2|+ |K2|) = 4.5(n2 + n)

and because the (I|J |K) block of T is T . �

Since the rank cannot exceed the symmetric rank, Lemma 8.7 implies

srkF T (S(T )) > rkF T + 4.5(n2 + n),

which gives one direction of the equality (8.1). Our proof of the opposite direction
is more technical, and we need some more notation.

Definition 8.8. Let T be an I × I × I symmetric tensor over a field F . Let ρ be
a permutation of I, and let (fi) be a family of non-zero elements of F , where the
index i runs over I. We say that the tensor whose (i|j|k) entry equals

fi fj fk T (ρi|ρj |ρk)

is obtained from T by a monomial transformation. Indexes i, ı̂ ∈ I are called twins
for T if the ı̂th 1-, 2-, and 3-slices are equal to the corresponding ith slices. The
removal of an index i is the operation of restricting T to the indexing set I \ {i}.

Observation 8.9. A monomial transformation and the removal of a twin do not
change the symmetric ranks of a given tensor.

Lemma 8.10. Let F be a field with |F| > 4, and let x be a scalar in F . We define
the 2× 2× 2 symmetric tensor A such that

A(1|1|1) = x, A(1|1|2) = 1, A(1|2|2) = A(2|2|2) = 0.

Then srankF A 6 3.

Proof. We define the values

q =
p

px− 1
, s1 =

1

p(2− px)
, s2 =

(px− 1)2

p(px− 2)
, s3 =

p2

px− 1

depending on a parameter p, and we check that

A = s1(1, p)⊗3 + s2(1, q)⊗3 + s3(0, 1)⊗3
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provided that we can choose a value of p satisfying 0 /∈ {p, 1− px, 2− px}. This is
possible unless we have both x = 0 and 2 = 0 at the same time, but then

A = σ1(1, 1)⊗3 + σ2(1, q)⊗3 + σ3

(
1,

q

q + 1

)⊗3
with

σ1 =
q2

q + 1
, σ2 =

1

q3 + q2
, σ3 =

(q + 1)3

q2

and q /∈ {0, 1}. �

Further, let us define an (i, j)th 3-transversal of a tensor T as the set of entries
in which the first two coordinates are equal to i and j, respectively. The notions of
1- and 2-transversals are defined in a similar way.

Lemma 8.11. Let I, J,K,H be the indexing sets as in Definition 8.3, and let U
be a symmetric H × H × H tensor over a field F with |F| > 4. If U(i|j|k) = 0
whenever i ∈ I, j ∈ J , k ∈ K, then

srkF T (U) 6 4.5(n2 + n),

where T (U) is the tensor as in Definition 8.4.

Proof. We take an arbitrary total order � on I ∪J ∪K, and we write p � q if p � q
and p 6= q. For any X ∈ {I, J,K} and π = {p, q} ∈ X2 with p � q, we define the
H×H×H tensor Lπ as follows. For all r, s ∈ {p, q}, h ∈ H, x, y, z ∈ H, we set

(L1) Lπ(r|s|h) = U(p|q|h) if either h /∈ X or h � p,
(L2) Lπ(r|s|π) = 1,

(L3) Lπ(z|x|y) = Lπ(y|z|x) = Lπ(x|y|z) if at least one of these is already defined,

(L4) the entries which are not yet defined are zero.

Every Lπ can be reduced to the tensor as in Lemma 8.10 by the transformations
as in Observation 8.9. We have

srkF Lπ 6 3,

so the result of the lemma would follow if we check that the tensor

Φ = T (U)−
∑
Lπ

has symmetric rank at most 9n with respect to F , where the summation goes over
all possibilities of π for which we defined Lπ above. We can check that all the
non-zero entries of Φ are covered by the union of the (u, u)-th 1-, 2-, 3-transversals
over all u ∈ H. We get

Φ =
∑
u∈H
Mu,

where Mu is defined as, for all p, q, r ∈ H,

(M1) Mu(p|q|r) = Φ(p|q|r) if u appears at least twice among p, q, r,

(M2) Mu(p|q|r) = 0 otherwise.

This implies srkF Φ 6 9n because each of the 3n tensors Mu has symmetric rank
at most three again by Observation 8.9 and Lemma 8.10. �

Lemma 8.12. Let T (S(T )) be the tensor as in Definition 8.4. If |F| > 4, then

srkF T (S(T )) 6 rkF T + 4.5(n2 + n).
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Proof. Assuming that rkF T = r, we consider an appropriate decomposition

T =

r∑
t=1

at ⊗ bt ⊗ ct,

where each of (at), (bt), (ct) is a family of r vectors with indexing sets I, J , K,
respectively. We construct the family (wt) of vectors indexed with H by setting the
I part of wt equal to at, the J part equal to bt, the K part equal to ct, and setting
all the other entries equal to zero, which means that the I2 ∪ J2 ∪K2 part of wt is
zero. Now we see that the tensor

T (S(T ))−
r∑
t=1

wt ⊗ wt ⊗ wt

satisfies the assumptions imposed on the tensor T (U) as in Lemma 8.11, and the
application of this lemma completes the proof. �

Lemmas 8.7 and 8.12 prove the equality (8.1) for any field F of cardinality at
least four. This shows that T → T (S(T )) is a desired reduction of the tensor rank
problem to the symmetric rank, which completes the proof of Theorem 2.8.

9. A reduction of matrix completion to matrix rigidity

In order to prove Theorem 4.5, we need to construct a polynomial reduction to
Problem 4.2 from the solvability of systems of polynomial equations, and, in case
when S is a field, we need a polynomial reduction in the opposite direction. Both
reductions are non-trivial, and we begin with the one that is somewhat easier.

Lemma 9.1. Let m, n, s be positive integers such that s 6 n. Let Φ be a family
of polynomial equations with variables separated into two families x = (x1, . . . , xn),
y = (y1, . . . , ym), and assume that the coefficients of Φ are taken in a subring R
of a field S. We define the new family Φ′ of polynomials whose variables are the
initial families x, y and new families (zt), (αt) indexed with t ∈ {1, . . . , n}, and,
additionally, the family (wij) indexed with integers i, j such that 0 6 i < j 6 n,
and two single variables α0 and τ . The family Φ′ itself consists of all equations

(Φ0) in Φ,
(Φ1) (τ i − τ j)wij = 1 for all i, j as above,
(Φ2) xtzt = 0, zt(zt − τ + 1) = 0 for all t,
(Φ3) αt = (zt + 1)αt−1 for all t,
(Φ4) αn = τn−s and α0 = 1.

Then the following are equivalent:

• the polynomials in Φ′ have a simultaneous solution in S,
• the polynomials in Φ have a simultaneous solution in S in which not more

than s of the variables (x1, . . . , xn) take nonzero values.

Proof. After a straightforward elimination of (wij), the equations (Φ1) tell that the
powers (τ0, τ1, . . . , τn) are pairwise distinct, and, since S is infinite, an appropriate
assignment of τ always exists. Similarly, the equations (Φ2) say that

(Z1) zt = 0 if xt 6= 0, and
(Z2) either zt = 0 or zt = τ − 1 if xt = 0,

and hence the equations (Φ3) tell that

(α1) αt = αt−1 if xt 6= 0, and
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(α2) either αt = αt−1 or αt = ταt−1 if xt = 0,

for all appropriate t, so we see that the variables (zt) got eliminated as well. There-
fore, for any solution (x1, . . . , xn) to the equation (Φ0), the corresponding equations
(Φ4) can satisfy if and only we had at least n − s steps of the form (α2), which
means that at least n− s variables in (x1, . . . , xn) are equal to zero. �

Therefore, we can justify the second statement in Theorem 4.5.

Corollary 9.2. If R is a subring of a field S, then there is a polynomial reduction
from Problem 4.2 to the problem to decide whether a given system of polynomial
equations with coefficients in R has a solution in S or not.

Proof. If S is finite, then the result is immediate because both problems are NP-
complete [27]. If S is infinite, then we take an instance (A, k, r) of Problem 4.2,
and, for every row index ρ of A, for every column index σ of A, we replace the
corresponding entry A(ρ|σ) of the matrix A with xρσ +A(ρ|σ), where every xρσ is
a new variable. The resulting matrix A(x) is of rank at most r if and only if there
exist a p× r matrix Y1 and an r × q matrix Y2 such that

(9.1) Y1Y2 = A(x).

Moreover, the matrix A(x) certifies a positive answer to Problem 4.2 if and only
if the equation (9.1) admits a solution in S in which at most k of the variables
(xρσ) are nonzero. According to Lemma 9.1, this question in turn reduces to the
conventional problem for systems of polynomial equations with coefficients in R on
their solvability over S (without constraints on the number of zero variables). �

Now we can focus on a proof of the first statement of Theorem 4.5, and our
approach is based on a classical result on a question of Zarankiewicz [83].

Definition 9.3 (Zarankiewicz problem [44, 83, 85]). Let m, n, s, t be integers such
that 2 6 max{s, t} 6 min{m,n}. One defines

z(m,n, s, t)

as the maximum number z for which there exists an m× n matrix M such that

• exactly z entries of M are zeros,
• M contains no s× t submatrix of all zeros.

Theorem 9.4 (Kővári, Sós, Turán [44]). One has z(n, n, t, t) < (t−1)tn2−1/t+ tn.

Our reduction also requires a standard result on Cauchy matrices.

Definition 9.5. Let G be a matrix with entries in a field F. For purposes of this
paper, we say that G is generic if every square submatrix of G is non-singular.

Theorem 9.6 (Cauchy matrices [50, 67]). Let (a1, . . . , an, b1, . . . , bn) be a sequence
of 2n pairwise distinct elements in a field F. Then the n× n matrix

G(i|j) =
1

ai − bj
is generic.

We proceed with the remaining reduction, in which we employ the rank three
matrix completion as an intermediate problem. As in the above considerations, the
symbol ∗ denotes the unspecified entries of an incomplete matrix, and, of course,
we assume that ∗ is not used as the name of any element in R or S.



22 YAROSLAV SHITOV

Definition 9.7. Let A be a k × k matrix with entries in R ∪ {∗}, and let G be
an n × n matrix with entries in R. We assume that the rows and columns of A
are indexed with a set I, and the rows and columns of G are indexed with J . We
define the kn× kn matrix RAG with rows and columns labeled by I × J with the
formula

MAG(i1, j1|i2, j2) =

{
A(i1|i2), if A(i1|i2) ∈ R,
G(j1|j2), if A(i1|i2) = ∗.

Theorem 9.8. Let R be a subring of a principal ideal domain S. Let A be a k× k
matrix over R ∪ {∗} with exactly q entries equal to ∗. For n = (10k)8 we take a
generic n× n matrix G over R. Then

(i) A admits a completion of rank at most three over S
if and only if

(ii) (MAG, qn
2, 3) is a yes-instance of Problem 4.2.

Proof. Similarly to Definition 9.7, we declare that I is the indexing set for the rows
and columns of A, and J is the indexing set for the rows and columns of G.

If the condition (i) applies, then we can put an appropriate element aiı̂ ∈ S at
every (i|̂ı) entry of A with A(i|̂ı) = ∗ so that the resulting matrix A′ has rank at
most three. In this case, for all i, ı̂ as above, and for arbitrary j, ̂ ∈ J , we replace
the (i, j |̂ı, ̂) entry of MAG with aiı̂. Therefore, after having at most qn2 entries
of MAG changed, we get the matrix R′ partitioned into the k × k blocks in which
every block equals A′. This implies rank(R′) 6 3, which confirms the condition (ii).

Conversely, we assume the condition (ii). Then we have MAG = L+ S, where

(9.2) the matrix S has at most qn2 nonzero entries,

rank(L) 6 3, and both matrices L, S have all entries in S. For all fixed i, ı̂ ∈ I, we
consider the n× n submatrix Siı̂ obtained from S by taking the rows with indexes
(i, j) and columns with indexes (̂ı, ̂), for arbitrary j, ̂ ∈ J . If A(i|̂ı) = ∗, we get G
as the submatrix ofMAG obtained by taking the same rows and columns as in Siı̂,
and, since G is generic, the matrix Siı̂ cannot have a 4 × 4 submatrix of all zeros.
By Theorem 9.4, the matrix Siı̂ has at most

34 n1.75 + 4n < 85n1.75

zero entries, or, in other words,

(9.3) the matrix Siı̂ has at least n2 − 85n1.75 nonzero entries.

Since there are exactly q possible choices of (i, ı̂) with A(i|̂ı) = ∗, an application of
the condition (9.3) shows that S has at least

q(n2 − 85n1.75)

nonzero entries in tangible positions, that is, those (i, j |̂ı, ̂) with A(i|̂ı) = ∗. In
view of the condition (9.2), there are at most

(9.4) q · 85n1.75 6 k2 · 85n1.75 = 4
√
n/108 · 85n1.75 = 0.85n2

nonzero entries of S that are not tangible. Since the quantities (9.4) are less than
n2, there exist j, ̂ ∈ J such that no non-tangible nonzero entry gets into the k × k
submatrix S obtained from S by taking the rows with indexes (i′, j) and columns
with indexes (̂ı′, ̂), for arbitrary i, ı̂′ ∈ I. Now let M , L be the submatrices obtained
from MAG, L, respectively, by taking the same rows and columns as in S. Then
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M = L + S, and since S has all its nonzero entries tangible, the matrix M agrees
with L everywhere except possibly several tangible entries. Therefore, M is a rank-
three completion of A, and hence the condition (i) is satisfied. �

In the first statement of Theorem 4.5, the ring R is endowed with an injective
sequence oracle, so a generic matrix G can be constructed in polynomial time by
Theorem 9.6. Therefore, Theorem 9.8 gives a polynomial reduction to Problem 4.2
from the rank three completion problem of matrices with specified entries in R
and replaced entries in S. According to Theorem 3.3, this rank three completion
problem is polynomial time equivalent to deciding whether a given system of poly-
nomial equations with coefficients in R has a solution in S, and hence this latter
problems admits a polynomial reduction to Problem 4.2 as well. This confirms the
first statement of Theorem 4.5, and, since the second statement is already verified
in Corollary 9.2, the proof of Theorem 4.5 is complete.

Now we switch to Theorem 4.12 and take appropriate fields F and F′ as in its
formuation. In view of Corollary 6.10, we can construct a matrix with entries in
F which admits a rank three completion over F′ and no rank three completion
over F, and hence the conclusion of Theorem 4.12 follows by the construction in
Theorem 9.8. However, since the example used in Corollary 6.10 is large, and since
the proof of this corollary is quite complicated, it makes sense to explain how to
give a simple solution to the above mentioned problem of Babai, Kivva [4] on the
dependence of the solution to Problem 4.2 on the choice of S.

Remark 9.9. For many natural choices of S, an affirmative answer to Question 4.11
can be obtained from Theorem 9.8 alone. For instance, the matrix

A =


1 0 0 0 0
0 ∗ 1 0 1
0 2 ∗ 1 0
0 1 0 ∗ 1
0 1 1 1 ∗


admits a rank three completion over Q[

√
2] but no rank three completion over Q, so

we can apply the construction in Theorem 9.8 to the matrix A and get an instance
of the matrix rigidity problem with different answers over Q and Q[

√
2].
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