Semicircles in the arbelos with overhang and division by zero

Hiroshi Okumura

Maebashi Gunma 371-0123, Japan hokmr@yandex.com

2010 Mathematics Subject Classification, 01A27, 51M04.

keywords: arbelos, arbelos with overhang, Aida arbelos, semicircle touching at the endpoints, insemicircle, Archimedean semicircle, division by zero.

Abstract. We consider special semicircles, whose endpoints lie on a circle, for a generalized arbelos called the arbelos with overhang considered in [4] with division by zero.

1 Introduction

For a point O on the segment AB such that |AO| = 2a, |BO| = 2b, let A_h (resp. B_h) be a point on the half line OA (resp. OB) with initial point O such that $|OA_h| = 2(a + h)$ (resp. $|OB_h| = 2(b + h)$) for a real number h satisfying min(a, b) < h. In [4] we have considered a generalized arbelos consisting of the three semicircles α , β and γ of diameters A_hO , B_hO and AB, respectively, constructed on the same side of AB. The figure is denoted by $(\alpha, \beta, \gamma)_h$ and is called the arbelos with overhang h (see Figure 1). The ordinary arbelos is obtained from $(\alpha, \beta, \gamma)_h$ if h = 0, which is denoted by $(\alpha, \beta, \gamma)_0$.

Let c = a + b. The circle touching α (resp. β) externally, γ internally, and the axis from the side opposite to B (resp. A) has radius

$$r_{\rm A} = \frac{ab}{c+h}.$$

The two circles are called the twin circles of Archimedes of $(\alpha, \beta, \gamma)_h$. Circles of radius r_A are called Archimedean circles of $(\alpha, \beta, \gamma)_h$ or said to be Archimedean with respect to $(\alpha, \beta, \gamma)_h$.

In this article we consider special semicircles, which are counterpart to the incircle and Archimedean circles of $(\alpha, \beta, \gamma)_h$ using division by zero. At the last part of this paper we consider special case of $(\alpha, \beta, \gamma)_h$ considered by Aida [1]. We consider using a rectangular coordinate system with origin O such that the farthest point on α have coordinates (a + h, a + h) (see Figure 1). The radical axis of α and β is called the axis.

2 Incircle and insemicircle

In this section we consider the incircle of $(\alpha, \beta, \gamma)_h$ and an inscribed semicircle in $(\alpha, \beta, \gamma)_h$. If a circle touches α and β externally and γ internally, we call the circle the incircle of $(\alpha, \beta, \gamma)_h$ (see Figure 2). If the endpoints of a semicircles lie on a circle, we say that the semicircle touches the circle at the endpoints. If a semicircle touches α and β , and γ at the endpoints, we say that the semicircle is inscribed in $(\alpha, \beta, \gamma)_h$. We have considered such a semicircle in [2] for $(\alpha, \beta, \gamma)_0$. We use the next proposition.

Proposition 1. A semicircle of radius s touches a circle of radius r at the endpoints if and only if $d^2 + s^2 = r^2$, where d is the distance between the centers of the semicircle and the circle.

Let $v = \sqrt{(c+h)^2 - 2ab + h^2}$.

Theorem 1. The following statements hold.

(i) The incircle of $(\alpha, \beta, \gamma)_h$ has radius

$$i_c = \frac{ab(c+2h)}{(c+h)^2 - ab}.$$
 (1)

(ii) If a semicircle is inscribed in $(\alpha, \beta, \gamma)_h$, then it has radius

$$i_s = \frac{-v^2 + \sqrt{8ab(c+2h)^2 + v^4}}{2(c+2h)}.$$
(2)

Proof. We prove (ii). Let (x, y) and i_s be the coordinates of the center and the radius of the semicircle inscribed in $(\alpha, \beta, \gamma)_h$. Then we get $(x - (a + h))^2 + y^2 = ((a + h) + i_s)^2$, $(x + (b + h))^2 + y^2 = ((b + h) + i_s)^2$ and $(x - (a - b))^2 + y^2 + i_s^2 = c^2$ by Proposition 1. Eliminating x and y from the three equations and solving the resulting equation for i_s , we get (2). The part (i) is proved similarly.

The theorem shows that an inscribed semicircle in $(\alpha, \beta, \gamma)_h$ is determined uniquely. Hence we can call it the insemicircle of $(\alpha, \beta, \gamma)_h$.

We consider a condition where a semicircle of radius i_s touches γ . If one of the endpoints of a semicircle S_1 lies on a semicircle S_2 and the other endpoints of S_1 lies on the reflection of S_2 in its diameter, we still say that S_1 touches S_2 at the endpoints. The circle of center of coordinates ((a+h)m, 0) (resp. (-(b+h)n, 0) and passing through O is denoted by α_m (resp. β_n) for a real number m (resp. n) (see Figure 3). For points P and Q on a semicircle δ , we say that P, Q and the endpoints of δ lie counterclockwise if P, Q and one of the endpoints of δ lie counterclockwise. If a circle touches α_m , β_n and γ internally so that the points of tangency of this circle and each of β_m , α_n and γ lie counterclockwise, we say that the circle touches α_m , β_n and γ appropriately. Also if a semicircle touches α_m and β_n , and γ at the endpoints so that the points of tangency of the semicircle and each of β_n , α_m , and the endpoints lie counterclockwise, then we say that the semicircle touches α_m , β_n and γ appropriately. **Theorem 2.** If $m \neq 0$ and $n \neq 0$, the following three statements are equivalent.

(i) A circle of radius i_c touches α_m , β_n and γ appropriately.

(ii) A semicircle of radius i_s touches α_m , β_n and γ appropriately.

(iii)
$$c + 2h = \frac{a+h}{m} + \frac{b+h}{n}$$
.

Proof. Assume that (i) and (x, y) are the coordinates of the center of the circle in (i). Then we have $(x - m(a + h))^2 + y^2 = (m(a+h)+i_c)^2$, $(x+n(b+h))^2 + y^2 = (n(b+h)+i_c)^2$ and $(x-(a-b))^2 + y^2 = (c-i_c)^2$. Eliminating x and y from the three equations with (1), we get (iii). Conversely we assume (iii), and a circle of radius i_c touches α_m , $\beta_{n'}$ and γ appropriately for a real number n'. Then we have a + b + 2h = (a + h)/m + (b + h)/n' just as we have shown, i.e., n = n'. Hence $\beta_n = \beta_{n'}$, i.e., (iii) implies (i). Therefore (i) and (iii) are equivalent. The equivalence of (ii) and (iii) is proved similarly.

Figure 3: 1 < m and 0 < n < 1.

Theorem 2 does not consider the case in which α_m or β_n coincides with the axis. We consider the case in the next theorem (see Figure 4).

Theorem 3. The following statements hold.

(i) A circle of radius i_c touches α_m (m > 0) externally, γ internally and the axis if and only if

$$m = m_0 = \frac{a+h}{c+2h}.$$
(3)

(ii) A semicircle of radius i_s touches α_m (m > 0) and the axis, and γ at the endpoints if and only if (3) holds. (iii) A circle of radius i_c touches β_n (n > 0) externally, γ internally and the axis if and only if

$$n = n_0 = \frac{b+h}{c+2h}.\tag{4}$$

(iv) A semicircle of radius i_s touches β_n (n > 0) and the axis, and γ at the endpoints if and only if (4) holds.

Proof. We prove (i). Let (x, y) be the coordinates of the center of the circle of radius i_c in (i). Then we have $x = i_c$, $(x - m(a + h))^2 + y^2 = (m(a + h) + i_c)^2$ and $(x - (a - b))^2 + y^2 = (a + b - i_c)^2$. Eliminating x and y from the three equations with (1), and solving the resulting equation for m, we get (3). Conversely, we assume that (3) and a circle of radius i_c touches $\alpha_{m'}$ (m' > 0) externally, γ internally and the axis for a real number m'. Then we have $m' = m_0 = m$ as just we have proved. Therefore $\alpha_{m'} = \alpha_m$ and the converse is true. The rest of the theorem is proved similarly.

If $m = m_0$, then (a + h)/m = c + 2h. Therefore if $(b + h)/n_x = 0$, and β_{n_x} coincides with the axis, then we can consider that Theorem 2 is true in the case $(m, n) = (m_0, n_x)$. Similarly if $n = n_0$ and $(a + h)/m_x = 0$ and α_{m_x} coincides with the axis, we can also consider that Theorem 2 holds in the case $(m, n) = (m_x, n_0)$. Therefore Theorems 2 and 3 can be unified in this case. We consider about this in section 4.

Theorem 4. If A_0O and B_0O are the diameters of the circles α_{m_0} and β_{n_0} , respectively, then the circles of diameters A_0A_h and B_0B_h are Archimedean circles of the arbelos made by α , β and the semicircle of diameter A_hB_h constructed on the same side of AB as γ . Therefore the circle of diameter A_0B_0 is concentric to γ and touches the twin circles of Archimedes of the arbelos.

Proof. Since the radius of the circle α_{m_0} equals $(a+h)m_0 = (a+h)^2/(c+2h)$ by (3), the circle of diameter A_0A_h has radius

$$(a+h) - \frac{(a+h)^2}{c+2h} = \frac{(a+h)(b+h)}{c+2h},$$

which equals the radius of Archimedean circles of the arbelos made by α , β and the semicircle of diameter $A_h B_h$ (see Figure 5). Since the radius of the circle is symmetric in a and b, the other circle also has the same radius. \Box

3 Archimedean semicircles

In this section we consider another kind of semicircles touching γ at the endpoints.

Theorem 5. The semicircle touching α and the axis and γ at the endpoints is congruent to the semicircle touching β and the axis and γ at the endpoints. The common radius equals

$$s_{\rm A} = \frac{1}{2} (\sqrt{(c+2h)^2 + 8ab} - c - 2h).$$
(5)

Proof. Let (s, y) be the coordinates of the center of the semicircle touching α and the axis, and γ at the endpoints. Then s equals the radius of the semicircle, and we have $(s - (a - b))^2 + y^2 + s^2 = c^2$ by Proposition 1 and $(s - (a + h))^2 + y^2 = ((a + h) + s)^2$. Eliminating y from the two equations and solving the resulting equation for s, we have $s = s_A$. Since s is symmetric in a and b, the other semicircle also has the same radius.

The two congruent semicircles in Theorem 5 may be called the twin semicircles of Archimedes (see Figure 6). A semicircle of radius s_A is called an Archimedean semicircle of $(\alpha, \beta, \gamma)_h$ or said to be Archimedean with respect to $(\alpha, \beta, \gamma)_h$. Let $w_k = \sqrt{a^2 + kmn + b^2}$. Theorem 5 shows that $(\alpha, \beta, \gamma)_0$ has Archimedean semicircles of radius $(w_{10} - c)/2$.

Theorem 6. Assume that $(m, n) \neq (1, 0), (0, 1)$ and a semicircle touches α_m , β_n and γ appropriately. Then the semicircle is Archimedean with respect to $(\alpha, \beta, \gamma)_h$ if and only if

$$\frac{1}{m} + \frac{1}{n} = 1. \tag{6}$$

Proof. Assume that a semicircle of radius s_A touches α_m , β_n and γ appropriately and (x, y) are the coordinates of its center. Then we get $(x - m(a + h))^2 + y^2 = (m(a + h) + s_A)^2$, $(x + n(b + h))^2 + y^2 = (n(b + h) + s_A)^2$, and $(x - (a - b))^2 + y^2 + s_A^2 = c^2$. Eliminating x and y from the three equations, we have (6). Conversely we assume (6) and assume that a semicircle of radius s_A touches α_m , $\beta_{n'}$ and γ appropriately. Then we have 1/m + 1/n' = 1. Hence we get n = n', i.e., $\beta_n = \beta_{n'}$. Hence the converse holds.

While we have obtained the next theorem in [4].

Theorem 7. If $(m,n) \neq (1,0), (0,1)$ and a circle touches α_m , β_n and γ appropriately, then the circle is Archimedean with respect to $(\alpha, \beta, \gamma)_h$ if and only if (6) holds.

By Theorems 6 and 7 we have the next theorem.

Theorem 8. If $(m, n) \neq (1, 0), (0, 1)$, the following statements are equivalent.

(i) The circle touching α_m , β_n , and γ appropriately is Archimedean with respect to $(\alpha, \beta, \gamma)_h$.

(ii) The semicircle touching α_m , β_n , and γ appropriately is Archimedean with respect to $(\alpha, \beta, \gamma)_h$.

(iii) (6) *holds*.

It is commonly considered that the circles α_0 and β_0 are point circles and coincide with the origin O. This implies that Theorem 8 is not true in the cases (m, n) = (1, 0), (0, 1). Therefore Theorems 8 does not consider the case of the twin circles of Archimedean and the case of the twin semicircles of Archimedea. We consider the case in the next section.

4 Division by zero

In this section we show that we can consider that the circles α_0 and β_0 coincide with the axis using recently made definition of division by zero [5].

For a field F we consider the following bijection $\psi: F \to F$:

$$\psi(a) = \begin{cases} a^{-1} & \text{if } a \neq 0\\ 0 & \text{if } a = 0. \end{cases}$$

It is a custom to denote $z\psi(a)$ by z/a if $a \neq 0$, i.e., $z\psi(a) = a/z$ for $a \neq 0$. Following to this, we write

$$z \cdot \psi(0) = \frac{z}{0} \quad for \; \forall z \in F.$$
(7)

Then we have

$$z \cdot \psi(a) = \frac{z}{a} \quad for \; \forall a, z \in F.$$
(8)

Especially we have

$$\frac{z}{0} = z \cdot 0 = 0 \quad for \ \forall z \in F.$$
(9)

Notice that the concept of the reduction to common denominator can not be used for z/0, i.e., we have the following relation in general in the case b = 0 or d = 0:

$$\frac{a}{b} + \frac{c}{d} \neq \frac{ad+bc}{bd}.$$

We consider the circle α_m in the case m = 0. The circle α_m has an equation $(x - m(a+h))^2 + y^2 = m^2(a+h)^2$, or

$$-2m(a+h)x + (x^2 + y^2) = 0.$$
(10)

This implies $x^2 + y^2 = 0$ if m = 0. Hence α_0 coincides with the origin in this case. On the other hand, (10) can be written as

$$-2(a+h)x + \frac{x^2 + y^2}{m} = 0.$$
 (11)

Therefore we get -2(a+h)x = 0, i.e., x = 0 if m = 0 by (9), i.e., α_0 coincides with the axis in this case. Now we can consider that α_0 is the origin or the axis, or the axis as the union of them. Similarly β_0 can be considered as the origin or the axis.

We can now consider that α_0 and β_0 coincide with the axis. Then Theorem 2 holds in the case $(m, n) = (m_0, 0), (0, n_0)$ by (9). Also Theorem 8 holds in the case (m, n) = (1, 0), (0, 1). Our current mathematics avoids to consider (9). But our above observation shows that (9) is useful.

Division by zero was founded by Saburou Saitoh in 2014. He has been making a list of successful example applying division by zero and its generalization called division by zero calculus, and there are more than 1200 evidences. It shows that a new world of mathematics can be opened if we admit them. For an extensive reference of division by zero and division by zero calculus including those evidences, see [5].

5 Aida arbelos

Aida (1747-1817) considered a figure consisting of two touching semicircles at their midpoints and the circle passing through the endpoints of the semicircles [1] (see Figure 7). He gave several notable properties of this figure, which are summarized in [3]. We conclude this paper by considering special circles and special semicircles for this figure.

Figure 7: Aida's figure.

Figure 8: Aida arbelos.

Aida's figure is obtained from $(\alpha, \beta, \gamma)_h$, when $h = r_A$ [3], or

$$h = \frac{ab}{c+h}.$$
(12)

Because (12) is equivalent to

$$r_{\rm A} = h = \frac{1}{2}(w_6 - c),$$
 (13)

and (13) implies that the farthest points on α and β from AB lie on γ , where recall $w_k = \sqrt{a^2 + kab + b^2}$. In this case we call $(\alpha, \beta, \gamma)_h$ an Aida arbelos (see Figure 8). Replacing h in the denominator of the right side of (12) by the right of (12) repeatedly, we get a continued fraction expansion of r_A for the Aida arbelos:

$$r_{\rm A} = \frac{ab}{c+h} = \frac{ab}{c+\frac{ab}{c+h}} = \frac{ab}{c+\frac{ab}{c+\frac{ab}{c+\cdots}}}.$$

We assume $h \ge 0$. Let $\overline{\alpha}$ and $\overline{\beta}$ be the semicircles of diameters AO and BO, respectively, constructed on the same side of AB as γ , i.e., $\overline{\alpha}$, $\overline{\beta}$ and γ form $(\alpha, \beta, \gamma)_0$. The incircle of the curvilinear triangle made by α , $\overline{\alpha}$ (resp. β , $\overline{\beta}$) and the radical axis of α (resp. β) and γ has radius $(1/r_A + 1/h)^{-1}$ for $(\alpha, \beta, \gamma)_h$ [4]. Therefore the radius equals $r_A/2$ for the Aida arbelos. The circles are denoted by green in Figure 9. The circle touching α or β externally, γ externally and the axis has radius ab/h for $(\alpha, \beta, \gamma)_h$ [4]. Hence the radius equals $ab/r_A = c + r_A$ for the Aida arbelos by (12). The circles are denoted by magenta in Figure 9.

Figure 9: The green circles have radius $r_A/2$.

Substituting (13) in (5), we get that the radius of Archimedean semicircles of the Aida arbelos equals

$$s_{\rm A} = \frac{1}{2}(w_{14} - w_6).$$

Since $i_c = w_6 h/c$ for the Aida arbelos [3], we get that the inradius of the Aida arbelos equals

$$i_c = \frac{w_6(w_6 - c)}{2c}$$

by (13). Therefore we have

$$i_c + r_{\rm A} = \frac{2ab}{c}.$$

Hence the sum of i_c and r_A for the Aida arbelos equals the diameter of the Archimedean circle of $(\alpha, \beta, \gamma)_0$. Let $u = (w_6^4 + 16a^2b^2)^{1/4}$.

Theorem 9. If the insemicircle of the Aida arbelos has center of coordinates (x_s, y_s) , we have

$$i_s = \frac{u^2 - c^2}{2w_6},\tag{14}$$

$$(x_s, y_s) = \left(\frac{(b-a)i_s}{w_6}, \frac{4ab\sqrt{4ab+u^2}}{w_6^2}\right).$$
(15)

Proof. By (2) and (13), we get (14). Solving the equations $(x_s - (a+h))^2 + y_s^2 = ((a+h) + i_s)^2$ and $(x_s + (b+h))^2 + y_s^2 = ((b+h) + i_s)^2$ with (14), we get (15).

The next theorem shows that the result for the insemicircle of $(\alpha, \beta, \gamma)_0$ obtained in [2] also holds for the Aida arbelos (see Figure 10).

Theorem 10. If the line joining the centers of γ and the insemicircle of the Aida arbelos meets the axis in a point V, then the circle of diameter OV is orthogonal to the insemicircle. Hence the circle passes through the points of tangency of two of α , β and the insemicircle.

Proof. From (13) and (15), the circle of diameter OV has radius

$$r_v = \frac{4ab\sqrt{4ab + u^2}}{w_{10}^2 + u^2}$$

and the center of coordinates $(0, y_v) = (0, r_v)$. Then we have $(x_s - 0)^2 + (y_s - y_v)^2 = r_v^2 + i_s^2$.

References

- [1] Aida (会田安明) ed., Sampō Chikusaku Jutsu (算法逐索術) Volume 2, no date, Tohoku University Digital Collection.
- [2] H. Okumura, The arbelos in Wasan geometry, the inscribed semicircle in the arbelos, Sangaku J. Math., 5 (2021) pp.1–8.
- [3] H. Okumura, Wasan geometry. In: B. Sriraman ed., Handbook of the Mathematics of the Arts and Sciences. 2020, Springer, pp.1–52. https://doi.org/10.1007/978-3-319-70658-0_122-1.
- [4] H. Okumura, The arbelos with overhang, KoG, 18 (2014) 19–27.
- [5] Saburou Saitoh, Introduction to the division by zero calculus, Scientific Research Publishing 2021.