Semicircles in the arbelos with overhang and division by zero

Hiroshi Okumura
Maebashi Gunma 371-0123, Japan
hokmr@yandex.com

2010 Mathematics Subject Classification, 01A27, 51M04.

keywords: arbelos, arbelos with overhang, Aida arbelos, semicircle touching at the endpoints, insemicircle, Archimedean semicircle, division by zero.

Abstract. We consider special semicircles, whose endpoints lie on a circle, for a generalized arbelos called the arbelos with overhang considered in [4] with division by zero.

1 Introduction

For a point O on the segment $A B$ such that $|A O|=2 a,|B O|=2 b$, let A_{h} (resp. B_{h}) be a point on the half line $O A$ (resp. $O B$) with initial point O such that $\left|O A_{h}\right|=2(a+h)$ (resp. $\left|O B_{h}\right|=2(b+h)$) for a real number h satisfying $\min (a, b)<h$. In [4] we have considered a generalized arbelos consisting of the three semicircles α, β and γ of diameters $A_{h} O, B_{h} O$ and $A B$, respectively, constructed on the same side of $A B$. The figure is denoted by $(\alpha, \beta, \gamma)_{h}$ and is called the arbelos with overhang h (see Figure 1). The ordinary arbelos is obtained from $(\alpha, \beta, \gamma)_{h}$ if $h=0$, which is denoted by $(\alpha, \beta, \gamma)_{0}$.

Figure 1: $(\alpha, \beta, \gamma)_{h},-\min (a, b)<h<0$.

Let $c=a+b$. The circle touching α (resp. β) externally, γ internally, and the axis from the side opposite to B (resp. A) has radius

$$
r_{\mathrm{A}}=\frac{a b}{c+h}
$$

The two circles are called the twin circles of Archimedes of $(\alpha, \beta, \gamma)_{h}$. Circles of radius r_{A} are called Archimedean circles of $(\alpha, \beta, \gamma)_{h}$ or said to be Archimedean with respect to $(\alpha, \beta, \gamma)_{h}$.

In this article we consider special semicircles, which are counterpart to the incircle and Archimedean circles of $(\alpha, \beta, \gamma)_{h}$ using division by zero. At the last part of this paper we consider special case of $(\alpha, \beta, \gamma)_{h}$ considered by Aida [1]. We consider using a rectangular coordinate system with origin O such that the farthest point on α have coordinates $(a+h, a+h)$ (see Figure 1). The radical axis of α and β is called the axis.

2 Incircle and insemicircle

In this section we consider the incircle of $(\alpha, \beta, \gamma)_{h}$ and an inscribed semicircle in $(\alpha, \beta, \gamma)_{h}$. If a circle touches α and β externally and γ internally, we call the circle the incircle of $(\alpha, \beta, \gamma)_{h}$ (see Figure 2). If the endpoints of a semicircles lie on a circle, we say that the semicircle touches the circle at the endpoints. If a semicircle touches α and β, and γ at the endpoints, we say that the semicircle is inscribed in $(\alpha, \beta, \gamma)_{h}$. We have considered such a semicircle in [2] for $(\alpha, \beta, \gamma)_{0}$. We use the next proposition.

Proposition 1. A semicircle of radius stouches a circle of radius r at the endpoints if and only if $d^{2}+s^{2}=r^{2}$, where d is the distance between the centers of the semicircle and the circle.

Let $v=\sqrt{(c+h)^{2}-2 a b+h^{2}}$.
Theorem 1. The following statements hold.
(i) The incircle of $(\alpha, \beta, \gamma)_{h}$ has radius

$$
\begin{equation*}
i_{c}=\frac{a b(c+2 h)}{(c+h)^{2}-a b} . \tag{1}
\end{equation*}
$$

(ii) If a semicircle is inscribed in $(\alpha, \beta, \gamma)_{h}$, then it has radius

$$
\begin{equation*}
i_{s}=\frac{-v^{2}+\sqrt{8 a b(c+2 h)^{2}+v^{4}}}{2(c+2 h)} \tag{2}
\end{equation*}
$$

Proof. We prove (ii). Let (x, y) and i_{s} be the coordinates of the center and the radius of the semicircle inscribed in $(\alpha, \beta, \gamma){ }_{h}$. Then we get $(x-(a+h))^{2}+y^{2}=\left((a+h)+i_{s}\right)^{2},(x+(b+h))^{2}+y^{2}=\left((b+h)+i_{s}\right)^{2}$ and $(x-(a-b))^{2}+y^{2}+i_{s}^{2}=c^{2}$ by Proposition 1. Eliminating x and y from the three equations and solving the resulting equation for i_{s}, we get (2). The part (i) is proved similarly.

Figure 2.
The theorem shows that an inscribed semicircle in $(\alpha, \beta, \gamma)_{h}$ is determined uniquely. Hence we can call it the insemicircle of $(\alpha, \beta, \gamma)_{h}$.

We consider a condition where a semicircle of radius i_{s} touches γ. If one of the endpoints of a semicircle S_{1} lies on a semicircle S_{2} and the other endpoints of S_{1} lies on the reflection of S_{2} in its diameter, we still say that S_{1} touches S_{2} at the endpoints. The circle of center of coordinates $((a+h) m, 0)$ (resp. $(-(b+h) n, 0)$ and passing through O is denoted by α_{m} (resp. β_{n}) for a real number m (resp. n) (see Figure 3). For points P and Q on a semicircle δ, we say that P, Q and the endpoints of δ lie counterclockwise if P, Q and one of the endpoints of δ lie counterclockwise. If a circle touches α_{m}, β_{n} and γ internally so that the points of tangency of this circle and each of β_{m}, α_{n} and γ lie counterclockwise, we say that the circle touches α_{m}, β_{n} and γ appropriately. Also if a semicircle touches α_{m} and β_{n}, and γ at the endpoints so that the points of tangency of the semicircle and each of β_{n}, α_{m}, and the endpoints lie counterclockwise, then we say that the semicircle touches α_{m}, β_{n} and γ appropriately.

Theorem 2. If $m \neq 0$ and $n \neq 0$, the following three statements are equivalent.
(i) A circle of radius i_{c} touches α_{m}, β_{n} and γ appropriately.
(ii) A semicircle of radius i_{s} touches α_{m}, β_{n} and γ appropriately.
(iii) $c+2 h=\frac{a+h}{m}+\frac{b+h}{n}$.

Proof. Assume that (i) and (x, y) are the coordinates of the center of the circle in (i). Then we have $(x-m(a+$ $h))^{2}+y^{2}=\left(m(a+h)+i_{c}\right)^{2},(x+n(b+h))^{2}+y^{2}=\left(n(b+h)+i_{c}\right)^{2}$ and $(x-(a-b))^{2}+y^{2}=\left(c-i_{c}\right)^{2}$. Eliminating x and y from the three equations with (1), we get (iii). Conversely we assume (iii), and a circle of radius i_{c} touches $\alpha_{m}, \beta_{n^{\prime}}$ and γ appropriately for a real number n^{\prime}. Then we have $a+b+2 h=(a+h) / m+(b+h) / n^{\prime}$ just as we have shown, i.e., $n=n^{\prime}$. Hence $\beta_{n}=\beta_{n^{\prime}}$, i.e., (iii) implies (i). Therefore (i) and (iii) are equivalent. The equivalence of (ii) and (iii) is proved similarly.

Figure 3: $1<m$ and $0<n<1$.
Theorem 2 does not consider the case in which α_{m} or β_{n} coincides with the axis. We consider the case in the next theorem (see Figure 4).
Theorem 3. The following statements hold.
(i) A circle of radius i_{c} touches $\alpha_{m}(m>0)$ externally, γ internally and the axis if and only if

$$
\begin{equation*}
m=m_{0}=\frac{a+h}{c+2 h} \tag{3}
\end{equation*}
$$

(ii) A semicircle of radius i_{s} touches $\alpha_{m}(m>0)$ and the axis, and γ at the endpoints if and only if (3) holds.
(iii) A circle of radius i_{c} touches $\beta_{n}(n>0)$ externally, γ internally and the axis if and only if

$$
\begin{equation*}
n=n_{0}=\frac{b+h}{c+2 h} \tag{4}
\end{equation*}
$$

(iv) A semicircle of radius i_{s} touches $\beta_{n}(n>0)$ and the axis, and γ at the endpoints if and only if (4) holds.

Proof. We prove (i). Let (x, y) be the coordinates of the center of the circle of radius i_{c} in (i). Then we have $x=i_{c},(x-m(a+h))^{2}+y^{2}=\left(m(a+h)+i_{c}\right)^{2}$ and $(x-(a-b))^{2}+y^{2}=\left(a+b-i_{c}\right)^{2}$. Eliminating x and y from the three equations with (1), and solving the resulting equation for m, we get (3). Conversely, we assume that (3) and a circle of radius i_{c} touches $\alpha_{m^{\prime}}\left(m^{\prime}>0\right)$ externally, γ internally and the axis for a real number m^{\prime}. Then we have $m^{\prime}=m_{0}=m$ as just we have proved. Therefore $\alpha_{m^{\prime}}=\alpha_{m}$ and the converse is true. The rest of the theorem is proved similarly.

If $m=m_{0}$, then $(a+h) / m=c+2 h$. Therefore if $(b+h) / n_{x}=0$, and $\beta_{n_{x}}$ coincides with the axis, then we can consider that Theorem 2 is true in the case $(m, n)=\left(m_{0}, n_{x}\right)$. Similarly if $n=n_{0}$ and $(a+h) / m_{x}=0$ and $\alpha_{m_{x}}$ coincides with the axis, we can also consider that Theorem 2 holds in the case $(m, n)=\left(m_{x}, n_{0}\right)$. Therefore Theorems 2 and 3 can be unified in this case. We consider about this in section 4.

Figure 5.

Theorem 4. If $A_{0} O$ and $B_{0} O$ are the diameters of the circles $\alpha_{m_{0}}$ and $\beta_{n_{0}}$, respectively, then the circles of diameters $A_{0} A_{h}$ and $B_{0} B_{h}$ are Archimedean circles of the arbelos made by α, β and the semicircle of diameter $A_{h} B_{h}$ constructed on the same side of $A B$ as γ. Therefore the circle of diameter $A_{0} B_{0}$ is concentric to γ and touches the twin circles of Archimedes of the arbelos.

Proof. Since the radius of the circle $\alpha_{m_{0}}$ equals $(a+h) m_{0}=(a+h)^{2} /(c+2 h)$ by (3), the circle of diameter $A_{0} A_{h}$ has radius

$$
(a+h)-\frac{(a+h)^{2}}{c+2 h}=\frac{(a+h)(b+h)}{c+2 h}
$$

which equals the radius of Archimedean circles of the arbelos made by α, β and the semicircle of diameter $A_{h} B_{h}$ (see Figure 5). Since the radius of the circle is symmetric in a and b, the other circle also has the same radius.

3 Archimedean semicircles

In this section we consider another kind of semicircles touching γ at the endpoints.
Theorem 5. The semicircle touching α and the axis and γ at the endpoints is congruent to the semicircle touching β and the axis and γ at the endpoints. The common radius equals

$$
\begin{equation*}
s_{\mathrm{A}}=\frac{1}{2}\left(\sqrt{(c+2 h)^{2}+8 a b}-c-2 h\right) . \tag{5}
\end{equation*}
$$

Proof. Let (s, y) be the coordinates of the center of the semicircle touching α and the axis, and γ at the endpoints. Then s equals the radius of the semicircle, and we have $(s-(a-b))^{2}+y^{2}+s^{2}=c^{2}$ by Proposition 1 and $(s-(a+h))^{2}+y^{2}=((a+h)+s)^{2}$. Eliminating y from the two equations and solving the resulting equation for s, we have $s=s_{\text {A }}$. Since s is symmetric in a and b, the other semicircle also has the same radius.

The two congruent semicircles in Theorem 5 may be called the twin semicircles of Archimedes (see Figure 6). A semicircle of radius s_{A} is called an Archimedean semicircle of $(\alpha, \beta, \gamma)_{h}$ or said to be Archimedean with respect to $(\alpha, \beta, \gamma)_{h}$. Let $w_{k}=\sqrt{a^{2}+k m n+b^{2}}$. Theorem 5 shows that $(\alpha, \beta, \gamma)_{0}$ has Archimedean semicircles of radius $\left(w_{10}-c\right) / 2$.

Theorem 6. Assume that $(m, n) \neq(1,0),(0,1)$ and a semicircle touches α_{m}, β_{n} and γ appropriately. Then the semicircle is Archimedean with respect to $(\alpha, \beta, \gamma)_{h}$ if and only if

$$
\begin{equation*}
\frac{1}{m}+\frac{1}{n}=1 \tag{6}
\end{equation*}
$$

Proof. Assume that a semicircle of radius s_{A} touches α_{m}, β_{n} and γ appropriately and (x, y) are the coordinates of its center. Then we get $(x-m(a+h))^{2}+y^{2}=\left(m(a+h)+s_{\mathrm{A}}\right)^{2},(x+n(b+h))^{2}+y^{2}=\left(n(b+h)+s_{\mathrm{A}}\right)^{2}$, and $(x-(a-b))^{2}+y^{2}+s_{\mathrm{A}}{ }^{2}=c^{2}$. Eliminating x and y from the three equations, we have (6). Conversely we assume (6) and assume that a semicircle of radius s_{A} touches $\alpha_{m}, \beta_{n^{\prime}}$ and γ appropriately. Then we have $1 / m+1 / n^{\prime}=1$. Hence we get $n=n^{\prime}$, i.e., $\beta_{n}=\beta_{n^{\prime}}$. Hence the converse holds.

While we have obtained the next theorem in [4].
Theorem 7. If $(m, n) \neq(1,0),(0,1)$ and a circle touches α_{m}, β_{n} and γ appropriately, then the circle is Archimedean with respect to $(\alpha, \beta, \gamma)_{h}$ if and only if (6) holds.

By Theorems 6 and 7 we have the next theorem.
Theorem 8. If $(m, n) \neq(1,0),(0,1)$, the following statements are equivalent.
(i) The circle touching α_{m}, β_{n}, and γ appropriately is Archimedean with respect to $(\alpha, \beta, \gamma)_{h}$.
(ii) The semicircle touching α_{m}, β_{n}, and γ appropriately is Archimedean with respect to $(\alpha, \beta, \gamma)_{h}$.
(iii) (6) holds.

It is commonly considered that the circles α_{0} and β_{0} are point circles and coincide with the origin O. This implies that Theorem 8 is not true in the cases $(m, n)=(1,0),(0,1)$. Therefore Theorems 8 does not consider the case of the twin circles of Archimedean and the case of the twin semicircles of Archimedes. We consider the case in the next section.

4 Division by zero

In this section we show that we can consider that the circles α_{0} and β_{0} coincide with the axis using recently made definition of division by zero [5].

For a field F we consider the following bijection $\psi: F \rightarrow F$:

$$
\psi(a)= \begin{cases}a^{-1} & \text { if } a \neq 0 \\ 0 & \text { if } a=0\end{cases}
$$

It is a custom to denote $z \psi(a)$ by z / a if $a \neq 0$, i.e., $z \psi(a)=a / z$ for $a \neq 0$. Following to this, we write

$$
\begin{equation*}
z \cdot \psi(0)=\frac{z}{0} \quad \text { for } \forall z \in F \tag{7}
\end{equation*}
$$

Then we have

$$
\begin{equation*}
z \cdot \psi(a)=\frac{z}{a} \quad \text { for } \forall a, z \in F \tag{8}
\end{equation*}
$$

Especially we have

$$
\begin{equation*}
\frac{z}{0}=z \cdot 0=0 \quad \text { for } \forall z \in F \tag{9}
\end{equation*}
$$

Notice that the concept of the reduction to common denominator can not be used for $z / 0$, i.e., we have the following relation in general in the case $b=0$ or $d=0$:

$$
\frac{a}{b}+\frac{c}{d} \neq \frac{a d+b c}{b d}
$$

We consider the circle α_{m} in the case $m=0$. The circle α_{m} has an equation $(x-m(a+h))^{2}+y^{2}=m^{2}(a+h)^{2}$, or

$$
\begin{equation*}
-2 m(a+h) x+\left(x^{2}+y^{2}\right)=0 \tag{10}
\end{equation*}
$$

This implies $x^{2}+y^{2}=0$ if $m=0$. Hence α_{0} coincides with the origin in this case. On the other hand, (10) can be written as

$$
\begin{equation*}
-2(a+h) x+\frac{x^{2}+y^{2}}{m}=0 . \tag{11}
\end{equation*}
$$

Therefore we get $-2(a+h) x=0$, i.e., $x=0$ if $m=0$ by (9), i.e., α_{0} coincides with the axis in this case. Now we can consider that α_{0} is the origin or the axis, or the axis as the union of them. Similarly β_{0} can be considered as the origin or the axis.

We can now consider that α_{0} and β_{0} coincide with the axis. Then Theorem 2 holds in the case $(m, n)=$ $\left(m_{0}, 0\right),\left(0, n_{0}\right)$ by (9). Also Theorem 8 holds in the case $(m, n)=(1,0),(0,1)$. Our current mathematics avoids to consider (9). But our above observation shows that (9) is useful.

Division by zero was founded by Saburou Saitoh in 2014. He has been making a list of successful example applying division by zero and its generalization called division by zero calculus, and there are more than 1200 evidences. It shows that a new world of mathematics can be opened if we admit them. For an extensive reference of division by zero and division by zero calculus including those evidences, see [5].

5 Aida arbelos

Aida (1747-1817) considered a figure consisting of two touching semicircles at their midpoints and the circle passing through the endpoints of the semicircles [1] (see Figure 7). He gave several notable properties of this figure, which are summarized in [3]. We conclude this paper by considering special circles and special semicircles for this figure.

Figure 7: Aida's figure.

Figure 8: Aida arbelos.
Aida's figure is obtained from $(\alpha, \beta, \gamma)_{h}$, when $h=r_{\mathrm{A}}[3]$, or

$$
\begin{equation*}
h=\frac{a b}{c+h} \tag{12}
\end{equation*}
$$

Because (12) is equivalent to

$$
\begin{equation*}
r_{\mathrm{A}}=h=\frac{1}{2}\left(w_{6}-c\right), \tag{13}
\end{equation*}
$$

and (13) implies that the farthest points on α and β from $A B$ lie on γ, where recall $w_{k}=\sqrt{a^{2}+k a b+b^{2}}$. In this case we call $(\alpha, \beta, \gamma)_{h}$ an Aida arbelos (see Figure 8). Replacing h in the denominator of the right side of (12) by the right side of (12) repeatedly, we get a continued fraction expansion of r_{A} for the Aida arbelos:

$$
r_{\mathrm{A}}=\frac{a b}{c+h}=\frac{a b}{c+\frac{a b}{c+h}}=\frac{a b}{c+\frac{a b}{c+\frac{a b}{c+\ddots}}}
$$

We assume $h \geq 0$. Let $\bar{\alpha}$ and $\bar{\beta}$ be the semicircles of diameters $A O$ and $B O$, respectively, constructed on the same side of $A B$ as γ, i.e., $\bar{\alpha}, \bar{\beta}$ and γ form $(\alpha, \beta, \gamma)_{0}$. The incircle of the curvilinear triangle made by $\alpha, \bar{\alpha}$ (resp. $\beta, \bar{\beta}$) and the radical axis of α (resp. β) and γ has radius $\left(1 / r_{\mathrm{A}}+1 / h\right)^{-1}$ for $(\alpha, \beta, \gamma)_{h}[4]$. Therefore the radius equals $r_{\mathrm{A}} / 2$ for the Aida arbelos. The circles are denoted by green in Figure 9. The circle touching α or β externally, γ externally and the axis has radius $a b / h$ for $(\alpha, \beta, \gamma)_{h}[4]$. Hence the radius equals $a b / r_{\mathrm{A}}=c+r_{\mathrm{A}}$ for the Aida arbelos by (12). The circles are denoted by magenta in Figure 9.

Figure 9: The green circles have radius $r_{\mathrm{A}} / 2$.
Substituting (13) in (5), we get that the radius of Archimedean semicircles of the Aida arbelos equals

$$
s_{\mathrm{A}}=\frac{1}{2}\left(w_{14}-w_{6}\right) .
$$

Since $i_{c}=w_{6} h / c$ for the Aida arbelos [3], we get that the inradius of the Aida arbelos equals

$$
i_{c}=\frac{w_{6}\left(w_{6}-c\right)}{2 c}
$$

by (13). Therefore we have

$$
i_{c}+r_{\mathrm{A}}=\frac{2 a b}{c}
$$

Hence the sum of i_{c} and r_{A} for the Aida arbelos equals the diameter of the Archimedean circle of $(\alpha, \beta, \gamma)_{0}$. Let $u=\left(w_{6}^{4}+16 a^{2} b^{2}\right)^{1 / 4}$.

Theorem 9. If the insemicircle of the Aida arbelos has center of coordinates $\left(x_{s}, y_{s}\right)$, we have

$$
\begin{gather*}
i_{s}=\frac{u^{2}-c^{2}}{2 w_{6}} \tag{14}\\
\left(x_{s}, y_{s}\right)=\left(\frac{(b-a) i_{s}}{w_{6}}, \frac{4 a b \sqrt{4 a b+u^{2}}}{w_{6}^{2}}\right) \tag{15}
\end{gather*}
$$

Proof．By（2）and（13），we get（14）．Solving the equations $\left(x_{s}-(a+h)\right)^{2}+y_{s}^{2}=\left((a+h)+i_{s}\right)^{2}$ and $\left(x_{s}+(b+\right.$ $h))^{2}+y_{s}^{2}=\left((b+h)+i_{s}\right)^{2}$ with（14），we get（15）．

The next theorem shows that the result for the insemicircle of $(\alpha, \beta, \gamma)_{0}$ obtained in［2］also holds for the Aida arbelos（see Figure 10）．

Figure 10.

Theorem 10．If the line joining the centers of γ and the insemicircle of the Aida arbelos meets the axis in a point V ，then the circle of diameter $O V$ is orthogonal to the insemicircle．Hence the circle passes through the points of tangency of two of α, β and the insemicircle．

Proof．From（13）and（15），the circle of diameter $O V$ has radius

$$
r_{v}=\frac{4 a b \sqrt{4 a b+u^{2}}}{w_{10}^{2}+u^{2}}
$$

and the center of coordinates $\left(0, y_{v}\right)=\left(0, r_{v}\right)$ ．Then we have $\left(x_{s}-0\right)^{2}+\left(y_{s}-y_{v}\right)^{2}=r_{v}^{2}+i_{s}^{2}$ ．

References

［1］Aida（会田安明）ed．，Sampō Chikusaku Jutsu（算法逐索術）Volume 2，no date，Tohoku University Digital Collection．
［2］H．Okumura，The arbelos in Wasan geometry，the inscribed semicircle in the arbelos，Sangaku J．Math．， 5 （2021）pp．1－8．
［3］H．Okumura，Wasan geometry．In：B．Sriraman ed．，Handbook of the Mathematics of the Arts and Sciences． 2020，Springer，pp．1－52．https：／／doi．org／10．1007／978－3－319－70658－0＿122－1．
［4］H．Okumura，The arbelos with overhang，KoG， 18 （2014）19－27．
［5］Saburou Saitoh，Introduction to the division by zero calculus，Scientific Research Publishing 2021.

