
A Unique Step Function and Stitching Piecewise

Defined Functions

William Blickos

May 26, 2021

Abstract

This paper discusses a unique complex logarithmic function that can
be used as an alternative to piecewise defined step functions such as the
Heaviside function. It describes how to create second tier logical functions
such as multi-steps, boxcars, and valleys, and it provides a method to
stitch the components of piecewise functions into a single function.

Contents

1 Introduction 2

2 A Complex Logarithmic Step Function 2
2.1 The Basic Step Function . 2
2.2 The Full Form of the Function 3
2.3 Symbolic Evaluation and the Limits 4

3 Logical Constructions 6
3.1 Multi-steps . 6
3.2 Boxcar or Plateau . 7
3.3 Valleys . 7
3.4 Further Combinations . 8
3.5 In 3-D . 9

4 Piecewise Defined Function Stitching 9

5 A Rapidly Converging Step Approximation 11

6 Conclusion 12

1

1 Introduction

In many situations it is useful to define piecewise functions, with one of the
most common examples being the Heaviside step function. This often leads to
special considerations and additional actions that must be made when handling
each part of the function, especially for procedures such as taking the derivative
or integral. As such, it may sometimes be convenient to have a step function
that is singular rather than piecewise, and it may also be useful to turn other
more general piecewise defined functions into singular forms.

As described in the abstract, this paper discusses a unique complex loga-
rithmic function that can be used as an alternative to piecewise defined step
functions. It also shows how to use that function to create second tier logical
functions such as multi-steps, boxcars, and valleys, and it provides a method to
stitch the components of piecewise functions into a single equation.

2 A Complex Logarithmic Step Function

While working with periodic functions to explore the prime distribution, I often
found myself looking for a way to map certain numbers to either 0 or 1. This
led to manipulating many functions, searching for ways to do so. During that
time, I stumbled into expressing a unique equation that accomplishes this binary
separation. Plotting different variants of equations, and tweaking parameters,
I was a bit surprised when I found it. At a first glance of the equation, most
wouldn’t expect it to take the graphical form that it does, contributing to the
reasons as to why I consider it unique. Not to mention, it’s also relatively
simple, basically invoking only pi, i, and the natural log; a curious form indeed.

2.1 The Basic Step Function

There isn’t much more to be said about the history of the development of the
function, and it serves at this point to simply state it outright, that the reader
may become familiar with it, and discuss it further. The basic function is:

F (x) =
π + (i ∗ ln(i ∗ (−x))) − (i ∗ ln(i ∗ (x)))

2π
(1)

2

As the graph shows, it takes the traditional step function shape, set to a
height of 1, with the floor along the axis. There really isn’t much more to it,
until one looks closely at the form of the equation.

The first thing to notice, is the variable x inside the natural log. The log
exists for all real values x, except when x = 0, in which case it triggers an
undefined value. This is discussed in a subsection below. The next thing to
notice, is that an i can be factored out, and the logs combined and simplified,
giving ln(-1) = iπ. With further simplification of the factored i and lone π in the
numerator, F(x) simplifies to 0. What is being shown in the graph is technically
the real portion of a complex output, and this becomes more clear when looking
at the full form of the step function. For now, the last thing to note, is what
happens when the i inside the log is removed, equation 2. The step flips over
the y axis as shown.

F (x) =
π + (i ∗ ln(−x)) − (i ∗ ln(x))

2π
(2)

2.2 The Full Form of the Function

While the basic version can be scaled with a multiplier to make the step any
height, one may want to move the step to a desired location. This is accom-
plished with the introduction of a parameter k into the log. The full function is
equation 3, and the step in the example is moved to x = 3 by making k = 3. It
is shown on the graph on the next page.

F (x) =
π + (i ∗ ln(i ∗ (k − x))) − (i ∗ ln(i ∗ (−k + x)))

2π
(3)

Of course one can also scale the full function, and one could have added
the parameters to the flipped version, making the step travel in the opposite
direction. Another option for the flipped version, is to leave the i inside, and
to simply exchange x for -x. This turns out to be a more consistent approach,
due to the requirement of an i inside the log for many of the full constructions

3

to work. Otherwise, everything works as expected, and it’s time to look at the
limits, symbolic evaluation, and the case when the logs are evaluated at 0.

2.3 Symbolic Evaluation and the Limits

When centered at 0, the left and right hand limits of the function behave like
a traditional Heaviside step. That is, the limit from the left is 0, and from the
right it is 1. What about at 0? If the limit is handled explicitly, it returns an
undefined, does not exist result as shown in the calculations below.

4

Instead of running it explicitly, what happens when it’s handled symbolically
prior to calculation? When both logs are 0, the function becomes equation 4.
Treating the log quantity as a symbolic whole, allows it to cancel with itself.
That is, let ln(x) = q, then ln(0) - ln(0) = q - q = 0. This then makes F(x)
equal to 1/2, which allows further calculations to continue, and it is conveniently
equal to the half-maximum definition of the Heaviside version.

F (x) =
π + i ∗ (ln(0) − ln(0))

2π
=
π + i ∗ 0

2π
=

1

2
(4)

Something else to consider is the use of 2 different constants for k instead of
one, that is, letting the k in the first log be different from the one in the second
log. This is mentioned here for 2 reasons. One is to help show how the step is
coming from the real part, and 2 is to simply show and comment on the effect
that it has. The graph below has the first k set to 2 and the second to 3.

Instead of a single step, there are now 2 steps, one at 2, and one at 3,
with the stair in the middle having a value of 1/2. The imaginary portion now
shows on the graph, and it’s clear to see that the steps are coming from the
real portion. This further supports the symbolic limit, as were the value of the
first and second k to come together, the middle stair with value 1/2 shrinks to
the point where the logs are symbolically evaluated at 0 to produce 1/2. This
method also acts as an alternative to, or simplification of, the multi-step logical
construction given in the next section. However, for consistency, the remainder
of the constructions are all built with the full step, as it is easier to predict
the effect of combining functions. As such, only a single, shared k is used and
discussed throughout the paper.

To summarize, the 3 key takeaways to understanding why the function is
presented in the form in which it is, are as follows. One, it allows the logs to
be evaluated symbolically when their arguments are both 0. Two, the i is left
inside the logs, and the logs are not simplified, so that real results are produced
when taken in product with the i’s outside of the logs; thus creating the steps.
And three, a single parameter is used in order to guarantee a basic single step
shape as the primary building block going forward.

5

3 Logical Constructions

With the full step function, and an understanding of how it is handled sym-
bolically, it is possible to create more complicated shapes. This section covers
the 3 basic constructions that can be made with a step, a second order example
made from the first 3, and it finishes with a brief comment on the function in
3-D. Each subsection is fairly straight forward, more formulaic in nature, and
requires little commentary once the general idea of what is being presented is
understood. The examples in each act to serve as a primary explanation. The
first shape is a multi-step.

3.1 Multi-steps

Multi-steps are made from 2 or more single steps with offset transitions, such
that the inter transition portion of the steps both interact constructively. In
the example, equation 5, two left facing steps, one at x = 4, and one at x = 5,
are added together.

π + (i ∗ ln(i ∗ (−4 + x))) − (i ∗ ln(i ∗ (4 − x)))

2π

+
π + (i ∗ ln(i ∗ (−5 + x))) − (i ∗ ln(i ∗ (5 − x)))

2π

(5)

The result is that the portions to the left of x = 4, which are both equal to
1, combine to a value of 2, the portions to the right of x = 5, which are both 0,
combine to remain 0, while the middle section, where only 1 of the steps takes
value, combines to 1. This is similar to the effect gained and mentioned in the
previous section of using different values for k.

6

3.2 Boxcar or Plateau

Boxcars, or plateaus, are made from 2 or more single steps with offset transitions,
such that the inter transition portion interacts constructively, but the steps
interact destructively. In the example, equation 6, a right facing step at x = 5
is subtracted from a right facing step at x = 4.

π + (i ∗ ln(i ∗ (4 − x))) − (i ∗ ln(i ∗ (−4 + x)))

2π

−π + (i ∗ ln(i ∗ (5 − x))) − (i ∗ ln(i ∗ (−5 + x)))

2π

(6)

The result is that the portions to the left of x = 4, and to the right of x =
5, combine to make 0, while the middle section combines to 1.

3.3 Valleys

Valleys are the opposite of plateaus. They are made from 2 or more single
steps with offset transitions, such that the inter transition portion interacts
destructively, but the steps interact constructively. In the example, equation 7,
a left facing step at x = 4 is added to a right facing step at x = 5.

π + (i ∗ ln(i ∗ (−4 + x))) − (i ∗ ln(i ∗ (4 − x)))

2π

+
π + (i ∗ ln(i ∗ (5 − x))) − (i ∗ ln(i ∗ (−5 + x)))

2π

(7)

7

The result is that the portions to the left of x = 4, and to the right of x = 5,
combine to make 1, while the middle section goes to 0. A quick note, boxcars
and valleys with unit heights can quickly be turned into each other by running
them through a linear filter which swaps 0s and 1s, such as y = -x + 1.

3.4 Further Combinations

Using the tools described so far, more specific second order shapes are formed.
As an example, 4 steps are combined to create a single function with 2 boxcars
and a valley in between.

π + (i ∗ ln(i ∗ (4 − x))) − (i ∗ ln(i ∗ (x− 4)))

2π

−π + (i ∗ ln(i ∗ (5 − x))) + (i ∗ ln(i ∗ (x− 5)))

2π

+
π + (i ∗ ln(i ∗ (6 − x))) − (i ∗ ln(i ∗ (x− 6)))

2π

−π + (i ∗ ln(i ∗ (7 − x))) + (i ∗ ln(i ∗ (−5 + x)))

2π

(8)

While not explored further here, summations over the full step using an
index of k, while also using a function of k within the step, can quickly create

8

periodic functions, power and exponentially spaced functions, and many other
designs. Before proceeding, a brief comment is made about the step function as
a surface in 3-D.

3.5 In 3-D

Instead of treating the function as y of x with parameter k, it can be thought
of as the surface Z(k,x). This shows how the step follows x = k in 2-D, and
creates its own step along that line in 3-D.

Z(k, x) =
π + (i ∗ ln(i ∗ (−k + x))) − (i ∗ ln(i ∗ (k − x)))

2π
(9)

Of course the concept can be formally generalized to the 3rd or higher di-
mensions, however that is not approached here.

4 Piecewise Defined Function Stitching

These designs can now be used to stitch together the components of piecewise
defined functions into a single function. Piecewise defined function stitching
is the act of taking the component functions for each domain in a piecewise
function, and combining them into a single function with a single domain. As
an example, consider the following piecewise defined function.

f(x) =

 x x < −1
0 −1 ≤ x ≤ 0
x2 x > 0

(10)

In order to stitch this together, one can use a left facing step at - 1, and
a right facing step at 0. The left step is 1 when x < -1, and 0 to the right of
that, so multiplying that step by the first function makes values < -1 take the
value of the first function, and values to the right equal to 0. Since the right

9

facing step is already 0 along the interval between -1 and 0, and this matches
the middle function, this fact is utilized, and nothing more needs to be done
for the second function. Then, since the right step is 0 when x < 0, and 1 to
the right of that, multiply the right facing step by the 3rd function in the list,
namely x2. That makes the values left of 0 equal to 0, and those to the right
equal to the function. Adding those two adapted steps together results in the
following equation and graph.

F (x) =
x ∗ (π + (i ∗ ln(i ∗ (1 + x))) − (i ∗ ln(i ∗ (−1 − x))))

2π

+
x2 ∗ (π + (i ∗ ln(i ∗ (0 − x))) − (i ∗ ln(i ∗ (−0 + x))))

2π

(11)

The single function now graphs all 3 of the piecewise components. The only
consideration is of course the value at x = -1, which will take the average value
of the functions it bridges when following symbolic evaluation, or in this case,
take the value of the 2nd adapted step when the undefined 1st adapted step is
chosen to be explicitly ignored.

In this manner, by combining the various constructs adjusted for specific
domains, often only steps are needed, with their corresponding functional com-
ponents, piecewise functions can be stitched into a single function. This tech-
nique lends itself to many piecewise functions with the main shortcoming being
point-wise defined functions; that is functions which take specific values at many
different single points within a domain. As one final simple visual example, here
is sine stitched with the natural log at x = 0.

F (x) =
sin 2πx ∗ (π + (i ∗ ln(i ∗ x)) − (i ∗ ln(−i ∗ x)))

2π

+
lnx ∗ (π + (i ∗ ln(−i ∗ x))) − (i ∗ ln(i ∗ x)))

2π

(12)

10

5 A Rapidly Converging Step Approximation

While working with the method, I stumbled upon one other noteworthy func-
tion. It’s mentionable due to its related purpose, simple form, and rapid con-
vergence. Consider G(x), equation 13.

G(x) = ln((
x− a

b− x
)

1
c) (13)

G(x) has vertical asymptotes at a and b, set to -1 and 1 in the graph, making
it very easy to set their locations and the distance between them. Then examine
what happens by increasing the c parameter. With c = 10, the rate of change of
the log is still visible, but by c = 100, it has almost disappeared. By c = 1,000,
the cusps are relatively completely square at scale, and the rate of change from
horizontal to vertical in that region is very rapid for such a simple function.
This can be used as a sort of containment boxcar, and can be set to any height
simply by adding a constant to lift the graph up the y axis. Perhaps more useful
though, it can be rotated 90 degrees and used as a step function approximation,
with accuracy and precision set by c. Swapping x and y, and then solving for y
gives equation 14, with e as the exponential.

11

G(x) =
a+ bec(x−k)

ec(x−k) + 1
(14)

A and b still control the asymptotes, c the precision and accuracy, and
equation 14 also has the parameter k added to it, so that the position along the
x axis can easily be set. To get a sense of just how good of an approximation
G(x) is, and how fast it converges, consider equation 14 with a = 2, b = -2, c =
100, and k = 0. At x = 1, the function is equal to 2 within 43 decimal places,
and at x = 10, it’s accurate to within 434 decimal places. It only gets better
from there. In fact, adding a decimal place to c, has about 10 times the effect
on the accuracy. A c of only 10,000, at x = 1, is already accurate to within
4,343 decimal places!

6 Conclusion

This concludes the general methods described in this paper for generating a
unique complex logarithmic step function, using it to create other logistical
constructions, and using it to stitch the components of piecewise defined func-
tions into a single function. It also included and briefly discussed a rapidly
converging step approximation. I hope you enjoyed the strategies, and if you
found any errors within this technique, or would like to discuss it further, please
contact me.

12

