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Abstract of Dissertation

A Geometric Variational Problem on a Periodic Domain

A diblock copolymer melt is a soft material, characterized by fluid-like disorder on
the molecular scale and a high degree of order at a longer length scale. A molecule in a
diblock copolymer is a linear sub-chain of A-monomers grafted covalently to another sub-
chain of B-monomers. The Ohta-Kawasaki density functional theory of diblock copolymer
gives rise to a non local free boundary problem. We will work on a periodic lattice in C
generated by two complex numbers and we will assume periodic boundary conditions. In
this thesis we will find two stationary sets of the energy functional of the problem. The first
set is a perturbation of a round disk in C. More specifically, we will perturb a round disk
under the polar coordinates. The radius of this perturbed disk will be sufficiently small.
Also, we will minimize the energy of this stationary set with respect to the shape and size
of the lattice. Additionally, we will show that for every K > 2, K € N there exists a
stationary set of the free energy functional that is the union of K disjoint perturbed disks
in C. Later, we will assume that ' = 2 and we will deal with the problem of finding the
centers of these two perturbed disks. We will show that the centers of these disks are close
to a global minimum of the Green’s function of the problem. We will minimize the Green’s
function of the problem looking at some special cases of lattice structures. These lattices

are the hexagonal lattice and a family of rectangular lattices.
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Chapter 1

Introduction

1.1 Diblock Copolymer Problem

Following [2], [11] and [30] a diblock copolymer melt is a soft material, characterized by
fluid-like disorder on the molecular scale and a high degree of order at a longer length scale.
A molecule in a diblock copolymer is a linear sub-chain of A-monomers grafted covalently
to another sub-chain of B-monomers. For more information about block copolymers see
[29]. The Ohta Kawasaki density functional theory of diblock copolymers gives rise to a
non local free boundary problem.The triblock copolymer system is studied in [22] and [27].

The articles [2], [18], [20] and [14] deal with this problem assuming Neumann bound-
ary conditions. In this article we deal with the problem assuming periodic boundary con-
ditions. This changes the Green’s function of the problem. To see this change, the Green’s
function of the problem assuming Neumann boundary conditions satisfies R(x,z) — oo as

x approaches the boundary of the domain, by [21]. Here, R is the regular part of the Green’s



function. In periodic boundary conditions we have that R(z, x) is a constant. The Green’s
function on Neumann boundary conditions can be found in [24]. For a treatment using the
theory of I'-Convergence see [8], [25] and [10]. For the definition of I'-Convergence see
[28]. We will study the problem in two dimensions. The article [17] mentions the problem
in one dimension. Let A be a lattice generated by two complex number a and b, where
Im(2) > 0. We have A = {na+ mb : m,n € Z}. For more information about lattices see
[33]. Alsolet D = Dy = {ta+ sb: t,s € (0,1)}. Following [4] and [44] and based on a
density functional theory of Ohta and Kawasaki, the free energy of the diblock copolymer

system on a A- periodic lattice is
J(Q) = Pp(Q) +%/ VI (Q)(2)]*dx (1.1)
D

for Q C D under the constraint |Q2| = w|D| , where I,(f2) is the A-periodic solution of

Poisson’s equation

“AL(Q)(#) = xa(z) —w, 7 €C, /D 1A )y =0, (1.2)

where xq is the characteristic function of 2 and v and w are parameters of the problem.
Here [)| stands for the 2-dimensional Lebesgue measure of (2. Also by following [5]

Pp(2) is the perimeter of the set €2 in D, defined by

Po(@) =sup{ [ divo: 6 € CHD.C),Jo] < 1) (1.3)

The perimeter is closely related with functions of bounded variation. For more details about
functions of bounded variation, see [15] and [45]. Poisson’s equation is the prototype
of an Elliptic Partial Differential Equation. For more information on Poisson’s equation
and Elliptic Partial Differential Equations see [16], [47], [36], [41] and [32]. For the free

2



energy functional on Neumann boundary conditions see [23]. As far as the perimeter part is
concerned see [15]. In our problem, if €2 is compactly contained in D and the boundary of
) is a smooth curve or a union of smooth curves in C, then the perimeter of 2 in D defined
in Equation (1.3) is simply the length of the boundary of (2. By [9] one calls 02 N D the
interface of ) because it seperates €2 and D — €). Also, for the Ohta Kawasaki model on
Neumann boundary conditions see [13] and [26].

The Green’s function G5 associated to the above Poisson equation of [, can be found
in [1]. We have

Ga(r,y) = G(x —y),
where

1 27| z| |2|?

G(z) = ——log(m) + 4D

2m
where H is a harmonic function on (C — A) U {0}. given by

+ H(z),z € C—A, (1.4)

H) - Ltog (=, b (eGP

27r10g‘6(4a|D|i_% 12a) 2rz

" nb + z nb— z

< [JI0 —e(——D —e(—I (15)
n=1

For harmonic functions see [39]. The infinite product on the formula for // converges
absolutely for z € C — A. For more information about infinite products see [40]. Here, we
define e(w) = > for w € C and a is the conjugate of the complex number a. With the

help of the Green’s function, we write the function [, as

I ) (x) = / Gz — y)dy. (1.6)



For an alternative treatment using periodic boundary conditions see [12]. Here, we note
that all integrals discussed are of Lebesgue type. For more information about Lebesgue

integration theory, see [5], [42], [43] and [38].

1.2 Perturbed Disks

This dissertation can be divided into two parts. The first part (also called the first problem)
is to find a stationary set of the energy functional J which is a perturbed disk in D. The
second part (also called the second problem) is to prove that for every K > 2 there exists
a stationary set of J which is the union of K disjoint perturbed disks in D). Consider the
problem with the one disk first. Let B = B(,r) be a round disk in C that is compactly
contained in D. We perturb the disk B under the polar coordinates using a function ¢ and

we form the set
Ey={¢+we?:0€0,2r],w € [0,/r2+ 6(0))} (1.7)

under the constrains ¢ € H?(S') and fo% #(0)d0 = 0. We can view S! as the interval
[0, 27] with the endpoints identified. Here, H?(S") is the Sobolev space consisting of all
functions ¢ € L?*(S') and two times weakly differentiable such that the weak derivatives
belong to L?(S'). Here, we are considering weak derivatives of functions. For weak

derivatives see [37]. Here, we require fOQﬂ ¢(0)df = 0 in order to fix the area of Ej to

7'("]“2

2
mr*. We set w =
| D

and from now on r replaces w.

Definition 1.1. The set Ey defined in Equation (1.7) is a stationary set of the energy func-

tional J if and only if@’eZO = 0 for every ¢ € H*(S') with fozwz/z(ﬁ)dQ = 0. Here,



we write J(¢ + e) = J(Epiey).

Note also, that by [3] H2(S') C CV2(S%), where C2(S") is the Holder space con-
sisting of all functions that they belong to C*(S') and their first derivatives are Holder
continuous with exponent 3. From now on, we will identify the function ¢ € H?(S") with

its C13 (S1) version. Also, calculations show the following lemma.
g

Figure 1.1: One disk on the Hexagonal lattice

Lemma 1.2. For a function ¢ € H?(S') with fo% ®(0)do = 0, we have
Yored)| =1 [275(¢)(0)y(0)db for all b € H*(SY) such that [™(8)d6 = 0. Here,
J is defined in Equation (1.1) and
S(0)6) = W)O)+7 [ Gle+ Va7 o0 ~ y)dy, (1.8
s
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where

W (p)(0) = A+e@) 2 (1.9)

7(0))2 3
(1 + 6(0) + z3tam)

W (¢) is the signed curvature of the boundary of the set E,.

For the definition of signed curvature see [46].
In the light of the previous lemma we have the following definition.

Definition 1.3. The Euler Lagrange equations of the function ¢ are S(¢)(0) = X for every

0 € [0, 27|, where \ is a constant.

It is evident that if the function ¢ satisfies the Euler Lagrange equations then by 1.1
and 1.2 the set F, is a stationary set of the functional J. The Euler-Lagrange equations
assuming Neumann boundary conditions can be found in [19]. In this paper we will prove
that there exists a function ¢ € H?(S') such that S(¢)(8) = X for every § € [0, 27,
where ) is a constant. The H? norm of ¢ will be small compared to r and also r will be
sufficiently small, so we can ensure that r? 4+ ¢(6) > 0 for all 6 € [0, 27| and also that £,
is compactly contained in D. In the first problem we will assume that r is sufficiently small
and y7r® < 12 — § for some § > 0. This means that v can be large, because we are taking

r > 0 small enough. For a treatment where ~ is small, see [31].

Remark 1.4. In the first problem we will assume & = 0, since the Euler-Lagrange equa-

tions remain the same for a translation of the set Ey, by the periodic boundary conditions.

Now, we consider the problem with the K perturbed disks. We will prove that for
every ' > 2, K € N there exists a stationary set of the free energy functional that is the
union of K disjoint perturbed disks in D. Let p be a sufficiently small positive number

6



and let py, pa, .., px be positive numbers so that Zfil p? = Kp?. Let K disjoint round
disks B(&1,p1), ..., B(€k, px) compactly contained in D. We perturb these disks using K

functions @1, s, .., ¢k and we form the set £, = Uszl E,,, where

By, = {& +we” : 0 € [0,27],w € [0,/ pi? + ¢1(6))}. (1.10)

Here, we set ¢ = (¢1, s, ..., pi ). We take p sufficiently small so that the /K perturbed
disks remain disjoint. The function ¢ belongs to H?(S') and also the H? norm of ¢ is suf-
ficiently small compared to p, so we can ensure that p;? + ¢ (6) > 0 forall @ € S* and also
that F, is compactly contained in 1. We also assume fo% or(0)dd =0fork =1,2,.., K,

so that |E,| = S5 mp? = Krp?. We set w = Kgf and p replaces w.

In the second problem we consider the function () = >, G(§; — &) for &y, .., {k €
D and ¢ # & for i # j. Let U; be a small open neighborhood of the set {n : F(n) =

mingepi ¢, z¢; F(€)}. Alsolet Uy = {(p1, p2, -, p) : p € ((1=01)p, (1461)p), So1y P} =

K p?}, where ¢, is sufficiently small.

Remark 1.5. In the second problem we assume that the centers of the K perturbed disks
belong to Uy, i.e. (&1,&,..,8k) € Uy. Also we assume that (py, pa, ..., px) € Us. We will
show that there exist centers ((1,Cs, ..., (i) € Uy and radii (p, .., px) € Us such that with
these centers and radii ¢ satisfies the Euler-Lagrange equations. Thus, the centers of the

K perturbed disks are close to a global minimum of the function F(§).

dJ (p+ey) ’
de =0

Definition 1.6. The set E,, is a stationary set of the functional J if and only if
0 forevery ) = (11,y, .., ) € H?*(S1) such that Zszl fo% 1(0)dO = 0. Here we write

J(p+ep) = J(EsoJra/J)-



By a direct computation we can prove the following lemma.

Lemma 1.7. For a function ¢ = (1, @a, .., px) € H*(S') with fo% ©ox(0)dd = 0, we have
WOt o = L [27T(§)(0) - (0)d0 for all ¥ = (1, s, ..., k) € H(S") such that

Zle f027r y(0)dO = 0. Here - denotes the dot product and

T(p)(0) = (T1(0), T2(0), ..., Tk (0)).

E,,

16) = Wl )+ Yo [ 66+ i+ a0~y

where k € {1, ..., K}.

2 3¢5, (0) e (0)
Py + ng(Q) + v -
Wk(‘,@k)(e) _ 4(Pk+¥’k(0)) 2 ) (112)

(0 (0))% 2
(o + ¢x(0) + 250y

Wi (@x) is the signed curvature of the boundary of the set E, .
We have the following definition.

Definition 1.8. The Euler-Lagrange equations for the function p are Ti(¢)(0) = X for all

0 € S* and for every k € {1, .., K}, where \ is a constant.

By Lemma 1.7 it is evident that if the function ¢ satisfies the Euler-Lagrange equations
then the set £, is a stationary set of J. In this article we will show that there exists a
function ¢ which satisfies the Euler-Lagrange equations. The H? norm of ¢ will be small
compared to p and also p will be sufficiently small, so we can ensure that p? + ¢x(6) > 0

for all § € [0, 27| and also that £, is compactly contained in D.



q
|
|
|
|
q
|
|

Figure 1.2: Two disks on the Hexagonal lattice



Chapter 2

Statement of the results

2.1 The Results of the First Problem

For the first problem we have the following.
We assume that 7 is sufficiently small and also yr3 < 12 — §, where 6 > 0. We will work

on the Hilbert space H?(S) N {1,cos®,sin0}+, where

2m 2m 2w
{1,cos0,sin0}+ = {¢ € L*(S*) : (0)do = ¢(0) cos0dh = ®(0) sin 6df = 0}.

0 0 0
Definition 2.1. For functions u,v,v € L*(S') and for an operator A we define A’(¢))(u)

and A" (1) (u,v) to be the first and second Gateaux derivatives of A respectively. That is,

¥+ eu)

A’(w)(u):dA( - AW+ eu+ o)

|€:07 A// ('l/]) (U’7 U) - dEd'r] ’527]:0'

We can write S(¢) = S(0) + 5'(0)(¢) + N(¢), where N (¢) is a higher order term.
Let IT be the orthogonal projection from L?(S') to L*(S') N {1, cos®,sin6}+. Now,
we will state the main results of the first problem.
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Proposition 2.2. Let S be the operator defined in Equation (1.8). The operator 115°(0) :

H2(SY) N {1,cosf,sinf0}+ — L*(S) N {1,cosb,sin O} is one to one and onto.
By Proposition 2.2 we can write the equation II(S(¢)) = 0 equivalently as

6 = —(I15'(0)) " (ILS(0) + TN (4)). 2.1)

Proposition 2.3. There exists a function ¢ € H?*(S*)N{1,cos0,sin 0} such that T1S(¢) =
0. Equivalently, there exist constants X, i, v such that S(¢)(0) = A + pcos @ + vsin 6 for

all 0 € [0, 2. Also, the solution ¢ satisfies ||¢||g= = O(yr7) = O(r?).

Proposition 2.4. The constants i, v in Proposition 2.3 satisfy y = v = 0. That is, ¢

satisfies the Euler-Lagrange equations.
By Propositions 2.2, 2.3 and 2.4 we have proved the following Theorem.

Theorem 2.5. 1. For every § > 0 and £ € D there exists vy > 0 such that if yr3 < 12 — §
and r < r( then there exists a solution to the Euler-Lagrange equations 4 with center &.

2. This solution is a perturbed disk compactly contained in D.

We denote the stationary set E, by E,. Consider J3(E,) = ﬁJA(EA). Assume

|Dx| = 1 and consider the set F;, for ¢ > 0. Then we can see that £,y = tF,. In the next

Propositions we will consider the role played by the lattice A.

Proposition 2.6. Assume that the lattice A satisfies |Dp| = 1 and consider the lattice tA,

where t > 0. A set Ey in C/A gives rise to tEy in C/tA. Then, the energy per cell area

Jia(tEA)
[tDx|

is minimized at t = t,, where

— Pp(Ey)
v Jp [VIA(Er) (2)[2dx

n )3. 2.2)

11



In the next Proposition we will consider the function A(¢) = J; (E,a), where ¢ = 2.

Proposition 2.7. Let ( = g Then for every ¢ with Im(¢) > 0 and { # e% we have

A(C) > A(e%) for r small enough.

2.2 The Results of the Second Problem

For the second problem we have the following.
We assume that p is sufficiently small and also vp® < 12 — &, where § > 0. We assume
also that vp? log% > 1+04.

We will work on the Hilbert space X, where

27 2 27
X = {p € H*(S'" R¥): / or(0)dd = / x(0) cos 0dl = / ©r(0) sin0df = 0,
0 0 0

We define

2w 2m 2
Y = {p e L*(S", RN : / or(0)do = / ©r(0) cos 0dl = / ©r(0) sin@df = 0,
0 0 0
ke{l,.,K}}.

In the space L?( S, R¥) the inner product is defined as < u,v >= fo% u(6) - v(0)do.
Also, the inner product in the space H?(S', R¥) is defined as

<u,v>= fo%u-v—l—u’-v’qLu”-v”.

Let IT be the orthogonal projection from L?(S!, RX) to Y.

We can write T'(¢) = T'(0) + 77(0)(¢) + N(p), where N(y) is a higher order term.
Now we can state the main results of the second problem.

12



Proposition 2.8. The operator I1T"(0) : X — Y is one to one and onto.

Thus, we can write the equation I17'(¢) = 0 equivalently as
p = —(I7"(0)) " (TIT(0) + IIN(p)). (2.3)

Proposition 2.9. There exists a function p € X such that 11T (p) = 0. Equivalently, there

exist constants \y, jii, Vi such that
Ti(@)(0) = A + pug cos O + v sin§ (2.4)
forall k € {1,..., K}. Also this solution satisfies ||¢|| 2 = O(p?).

Proposition 2.10. There exist centers (C1, ...,k ) € Uy for E, such that in these centers the
constants in Proposition 2.9 \i, . and vy, satisfy 1 = ... = ug =1, = ... = vg = 0 and
A = Ao = ... = Ax = A\ That is, the function @ satisfies the Euler-Lagrange equations

with centers ((1, .., (k).
By Propositions 2.8, 2.9 and 2.10 we have proved the following theorem.

Theorem 2.11. Let K > 2 be an integer.

1. For every § > ( there exists py > 0 such that if ~p® log% > 146, yp® < 12— 6 and
p < po then there exists a solution to the Euler-Lagrange equations L.

2. This solution is the union of K disjoint perturbed disks compactly contained in D with
centers ((1,..,Cx) € Uy and radii py, .., px € Us. The radius of every perturbed disk is
close to p.

3. Let the centers of these perturbed disks be (,..,(x. Then ( = (1, ..,(k) is close to a
global minimum of the function F, where F(§) = Zi#j G(& — &) for&, ... x € D.

13



For the following Proposition we assume that K = 2, i.e. we consider the case where
we have two perturbed disks. By Theorem 2.11 we can see that the location of the centers
(C1, (o) is close to a global minimum of the function F'(§1,&) = G(&& — &). Therefore,
to find the location of these centers we need to find the global minima of the function F'.
We consider the following cases. The first case is for ( = % — ¢% and the second is

¢ =Y =t fort > 482
a s

Proposition 2.12. Assume K = 2.

1. If( = g = ¢5, then the difference of the centers (i, (3 of E, are close to the points “TH’

2(a+d)
and ==

2. IfC = g = ti, where t > 41?T—g2 = 0.8825..., then the difference of the centers (1, (s of

E, is close to the point “T*b

14



Chapter 3

Proof of the main results of the first

problem

3.1 Important Lemmas
We write S(¢)(0) = W (¢)(0) + A(¢)(0) + B(¢)(6), where

A@)6) =~ [ 5o+ o) ~ yldy

Ey

and

B(6)(6) = / ROV 1 6(0)” — y)dy.

Eg

Here, W is the operator defined in Equation 1.9. Also, we write G(z) = —3= log ||+ R(z).
R is the regular part of the Green’s function.

Following [2] calculations show that if u € H*(S') and fozﬂ u(0)df = 0, then

u// + U
23

W (0)(u) = — 3.1

15



v [ yu(h)

A'(0)(u) = 5 /). u(w) log(1 — cos(f — w))dw — 1 (3.2)
/ o i0 iw u(f)y i0 i0
B'(0)(u) = 5/0 u(w)R(re” —re*)dw + or /B(O )VR(TG —y)edy. (3.3)

Let Ly (1) = W'(0)(u) + A(0)(w).

Lemma 3.1. Let )\, = "227},1 + & — 1, where n. > 2. Then Li(cos(nf)) = A, cos(nfl) and
Li(sin(nf)) = A\, sin(nf) for n > 2. The eigenvalues of Ly are A\, n € N, n > 2 with

corresponding eigenfunctions cos(nf) and sin(nf).

Proof. Using Equations (3.1), (3.2) and (3.3) and differentiating e that

. 1—n? , , S
Ly(e™) = — 21“? e — %em@ - 8l7r/0 e log(1 — cos(f — w))dw.
Also, calculations show that fo% e™ log(1 — cos(f — w))dw = —2 ™. Now by the
linearity of L, and considering real and imaginary parts we get the lemma. [

Now we will get an estimate on B’(0)(u).

Lemma 3.2. There exists a constant C' > 0 independent of r and 7y such that || B'(0)(u)|| 2 <

Cryr|lul|pz for every u € H*(S') N {1}+.

Proof. We have by following [2] that
1B @@ < 2 [ u) RO —re)dullpot H1ul®) [ FREe"y)edy o
27 Jo 2r B(0,r)

By Taylor’s expansion we have that R(re? — re™) = R(0) + O(r). Thus,

" w(w)R(re® — re)dw = " w(w)O(r)dw
/ /

16



since u € {1}*. This shows that

2
||/ u(w)R(re — re’ Vw22 = / / (r)dwl|?db.
0

Also, we have
27 27
|/ (r)dw| < C’r/ |u(w)|dw.
0

|/2ﬂ (F)dw|? < O (/Ozﬂ ()] )2

By Holder’s inequality we get

Thus,

2
([ o) < Cllul
0
Thus, finally
'7 27 ) ]
5“/ u(w)R(rew —re™)dwl|rz < Cyr||ul|ge.
0

We will prove now that
s i0 i0
||u(9)/ VR(re” —y)edy||r2 < Cyr||ul|L:.
B(0,r)

We have

| VR(rew — y)ewdy| < Or?
B(0,r)

by the smoothness of R near 0. Thus,

0 . .
]—uér) / VR(T@ZG — y)ewaly]2 < CTQ\u(Q)P.
B(0,r)

Therefore,

2r

T u(6) if i 7,12 2 [T 2
| — VR(re” —y)edy|*dd < Cr |u(0)|d6.
0 B(0,r) 0

17



Then, it follows easily that

L0) [ VR(e? — y)edylse < e
2r B(O,r)
which completes the proof of the lemma. [

The next lemma shows that the operator

I1S(0) : H2(SY) N {1,cosf,sin O} — L2(S') N {1, cosd,sinf} is one to one.

Lemma 3.3. There exists a constant C' > 0 independent of v and 7y such that ||u||2 <

Cr3||1S"(0)(u)|| 2 for every u € H*(S) N {1,cosf,sin O}+.

Proof. We have < u,1 >=< wu,cosf >=< u,sinf >= 0, where < . > is the inner

product in L?. By considering Fourier series we have

oo

Z a, cos(nd) + b, sin(nh).

n=2

Thus,

[e.9]

Ly(u) =Y _ anLi(cos(nd)) + b, La(sin(nd)).

n=2

Now, by Lemma 3.1 we get
Li(u) = Z ap A cos(nf) + b\, sin(nf).
n=2

Thus,
27
||L1(u HL2 Z/ a, )\2 cos? (n0) +b2>\2 sin? (nf)do = Wzanﬂ\i +bi)\i7

where

(3.4)

2n(n+1) — ’yr3)
413n '



Also, we have yr® < 12 — 4. This is equivalent to say that 2(n + 1)n —yr® > en? for some
e sufficiently small and all n > 2. Therefore, by Equation (3.4) we can see that \,, > T%

Thus, A2 > T% Also,
il = O3 a2 412 = 00 S %0 4 B 05 e g - |y )2
ull7e = n_Zan ;= rn:2r6 5 < rn_Qann 2X2 = CrY|Ly(u)]|7z.

So, finally we have

lullzz < Cr||Ly(w)]| 2.

It is evident that L; (u) = I1L, (u). To finish the proof we will show that
[Jullze < CrP|TIS(0) (u)] 2.

We have

118'(0) = I1L, + I1B'(0).

Thus,
LS (0) (|22 = [ITLLy (u)[[ 2 = [[TLB/(0)(w)l|z> = [[TLLy (u)[| L2 — Cyr{ful| 2.
Also, we have
lullze < Cr||La(u)]] 2 < CrP(|[TLS"(0)(w)][ 22 + Cyrlful 2]

Thus,

(1= Cyr)llullz2 < Cr||TLS"(0) (w)] | 2.

But ~7* is sufficiently small. Therefore, it is evident that

[lullz2 < Cr||1LS"(0) (u)]| 2
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Remark 3.4. By Lemma 3.3 it is evident that I1S’(0) is one to one. To complete the proof

of Proposition 2.2 it suffices to show that 115'(0) is onto L*(S') N {1, cos @, sin 6} .
We will now prove an improvement of Lemma 3.3.

Lemma 3.5. There exists a constant C > 0 independent of v and ~ such that ||u||gz <

Cr3||T1S"(0)(u)|| 2 for every u € H*(S) N {1,cosf,sin O}+.

Proof. We have

Z a, cos(nd) + b, sin(nh).
n=2
Thus,
u = Z nan,(— sin(n#)) + nb, cos(nd)
n=2
and
u' = Z —na,, cos(nh) — n’b, sin(nf).
n=2
Therefore,
lul[f =7} + b7
n=2
W32 = 7 Z n*a’ + n’b?
and
|32 =7 Z naZ +n'b?.
So,
||u||H2—7TZ (14 n? +n*) + b2 (1 + n? +n?)] Za + b2 )n
n=2
Also,

ITILy(u)]|72 = 7Y A2(a +D2).

n=2
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We have 71 — 2n(n + 1) < —en? for every n > 2.

Also we have A, = (n — 1)(25 — L) =(n— 1)[2("+42§‘n_7r3]> (”4_T13);"2 > Cr—@fz Thus,

MLl = 732+ 1) > 7 3 (e +12) = Sl
n=2 n=2
Therefore, we get
lull iz < CrP||TILy (w)|] 2.
Also,
[ Ly(u)l]z2 = |[TLLy (w)][z2 = [[TLS"(0)(u)=T1B'(0) (u)| |22 < [|TLS"(0)(w)||2+Cryrlful| 2.
Therefore, we have

C C
LS (0) (]2 = | La (w)l[z2=Cryrllullze = Fllullze=Cyrflullaz = (T—;—CWT)HU||H2~

Then, we have % — Coyr = %3””4 < % Since r* is small we have %3”7"4 > 0.
Thus,

lullz2 < CrP[[ILS"(0) (u)]] -
which proves the lemma. ]

It is known that the operator I15’(0) : H?(S')N{1, cos 6, sin §}+ — L2(S1)N{1,cos0,sinO}+
is self adjoint. Also, it is known that self adjoint operators have closed graph. In the next lemma we
will show that the range of I15’(0) is closed in L2(S') N {1, cos @, sin 6}~.

Lemma 3.6. 15" (0)(H?(S') N {1,cos6,sin0}) is closed in L*(S') N {1,cos,sin§} .
Proof. We will show that I1S’(0)(H?(S') N {1, cos,sin §}+) is closed in

L?(SY) N {1, cosf,sin §}+. For this purpose and by arguing as in [2],

let a sequence u,, such that I1S’(0)(u,,) — w in L?(S') N {1, cos f,sin 6}+.
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Then, we have that I15”(0) (uy,) is a Cauchy sequence. Thus,
[ITLS"(0) (1) — TLS"(0) ()| |2 — O

as n,m — +o0o0. Now, by Lemma 3.5 we get ||u, — um ||z — 0 as n,m — +o00. Thus, u, is a

Cauchy sequence in H?2. Therefore, u,, — v in H? for some v € H?. This gives that
(tt, TLS"(0) (un)) — (u, w)

in the space

(H%(SY) N {1,cos6,sin0}1) x (L2(SY) N {1, cosh,sinh} ).

This gives that w = ILS’(0)(u), since the graph of ILS’(0) is closed. This completes the proof. [

3.2 Proof of the main results of the first problem

In this section we will use the previous lemmas to prove the Propositions 2.2, 2.3 and Proposition
2.4.

Proof of Proposition 2.2

We let z € L2(S1) N {1, cosf,sin§}+ with z € R(ILS’(0))*, where R(ILS’(0)) is the range of the
operator I15’(0). Let z € H?(S') N {1,cos,sin§}+. Then we have < I15’(0)(x), z >= 0. This
gives that the map x —< I157(0)(x), z > is the zero map. This means that z belongs to the domain
of the adjoint of TLS’(0). Thus, z € H2(S") N {1, cosf,sin #}+, since I15'(0) is self adjoint.

This gives that < ILS'(0)(z),z >= 0.

But H2(S') N {1,cos#,sin O}~ is dense in L(S') N {1, cos @, sin 6}+.

Therefore, < I15'(0)(z),z >= 0 for every x € L?(S') N {1, cos@,sin #}*. Thus, I1S’(0)(z) = 0

and because I1S’(0) is one to one we have z = 0. So we have showed that

[L2(SY) N {1, cos 0, sin 0}1] N R(I1S'(0))* = {0}.
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Also, since R(I15'(0)) is closed in L?(S') N {1, cos §,sin O} we have
L3(SY) N {1,cos6,sin 0} = R(I1S’(0)) ® R(I1S'(0))*.

This proves R(I1S’(0)) = L?(S') N {1, cos @, sin §}+ and I15’(0) is onto. Now by Remark 3.4 the

proof is complete. O

‘We consider

W()(0) = (r2+¢(9)) .

(¢'(0))2
(r2 +o(0) + m)

‘We define the function ® to be & = % Also, we define the function

2 "

E 1"‘@"‘5(14;2} _%
W((I),(I)/,(I)”): ( q>/)2 3
2

(14 @+ 31125)

Then, we can see easily that

o~

W (e, 2, 2") =rW(s,¢',¢").
The next lemma is an estimate of W”(¢)(u,v), A”(¢)(u,v) and B”(¢)(u,v) for u,v € H?(S').

Lemma 3.7. (1) There exists a constant C' > 0 independent of v and ~ such that for ¢ € H*(S') N

1, cos 6, sin O} with > < cr? where c is sufficiently small and u,v € H*(S') we have
H

C
W () (w, v)ll 2 < —llullm2[lo]] -

(2) There exists a constant C' > 0 independent of v and y such that for ¢ € H?(S")N{1,cos 6, sin §}+

with ||¢|| 2 < cr? where c is sufficiently small and u,v € H?(S') we have

Cvy
147 (9)(w, 0)ll12 < —z[lullm2[lvl| g2
(3) There exists a constant C' > 0 independent of v and y such that for ¢ € H?(S")N{1,cos 6, sin §}+
with ||¢|| g2 < cr? where c is sufficiently small and u,v € H?(S') we have
Cy
1B"(8)(w, v)ll 2 < —=llullg> |10l 2
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Proof. To prove (1) we argue as in [2]. We consider the function W(@, ', ®") defined above. By

assumption we can prove that ||®|| 1 is sufficiently small. We will prove that
W) (u, )2 < Cllull 20| 2
By a direct calculation, we can prove that

W”(@)(u, U) = DH(W)’LLU + Doy (W)’Ulu + D31(/V[7)U//u + Dm(W)U’LL/ + DQQ(W)U/UI+

o~ o~

+D32(/W)’U”u/ + D13(W)UU” + D23(W)U,'LL”.

Also, we have that

(D W)(®, @', ") < C

by the smoothness of w. Thus, we have
(D W)(2, @, @ )uvl| L < Cllul|Los| vl < Cllullg2|lv]] g2

Also,

|(Do2W)(@, @, ®" )| e < C|u || o< [0/ < Cfull 2] 0] 22
By arguing similarly we can prove that
[W7(@)(u, v)l[ Lo < Clullg2][v]] 2.
Also, we have that
[W(@)(u, )l L2 < ClW (@) (u, v)||Lo,

which proves that
(@) (w022 < Cllullzl[v]| 2.
Now we use that
W(2, 8, 2") =rV(9,¢',¢)
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and also that ® = 1% to conclude that
" C
W5 (@) (w,0)l|2 < sllullmzlvll
which proves (1). To prove (2) we consider the function

21/ 14+P(w) ) ]
= / / log|\/1+ ®(0)e? — se|sdsdw
0 0

with ® = 7% Then, we can show that A(¢) = —gﬁ(@) Arguing as in [2] we have by calculations

that
AY(®)(u,v) = A1(®) + Az () + A3(®) + Ag(®) + A5(9),
where
U ei@ 27
A1(®) = 41({1)@@ ; K(0,w)v(w)dw
1}(9)610 27
Ag(®) = ZJ:\/TW ; K(0,w)u(w)dw
1 T K0, w)u(w)v(w)e™
A= ), 1+ ow)
~u(0)v(0) IV/14+ ®(0)e? —y|?> —2(\/1 + ®(0) — ePy)?
A = a0 MHT Dei* —ylt v
and
___u(®)v(0) (V1+2(0)e” — y)e”
A= e ) 3/&1) VI 00—y
Here,

K(0.w) = V14+®(0)e — /1 + d(w)e™
W1+ 20)e? — /1 + B(w)eiw|?

Then arguing as in [2] we can prove (2). To prove (3), by a direct calculation we can show that

B"(¢)(u,v) = Bi(¢) + B2(¢) + Bs(¢) + Ba(¢) + Bs(¢),

where

2
Bi(¢) = ) ; Ww)VR(VT2 + ¢(0)e? — /12 + dp(w)e™)edw

44/r?2 + ¢(6)
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_ yu(f) o 0 _ /e D)) et duw
BQ(¢)_74\/7W ; V(W)VR(V1? + ¢(0)e” — /12 + p(w)e™ e d

Bs(¢) = W /E [(VV1R)(\/72 + ¢(0)e — y) cos O+
¢

(r? + 6(0))
+H(VV2R) (V12 + 6(0)e” — y) sin 0]edy
Yu(6)v(6) o
By(¢) = ———"——= [ VR(Jr?+¢(0)e"” — d
o A(r? + ¢(0))> [m W e0em muendy
and
2
B =1 [ A g T g0 — T e
4 Jo r2 4+ o(w)
where V. R is the kth component of V R. Using the smoothness of R (3) follows. ]

Now, we will prove a helpfull lemma.

1 2

Lemma 3.8. Let m = 3= Jo
Yy

S(0)df. Then there exists a constant C' > 0 independent of r and
7 such that ||S(0) — m — yrr3VH(0) - ?||2 < Cyr. Also, the operator norm of (118'(0))~*

satisfies ||(I1S"(0))~1|| < Cr3 for a constant C > 0 independent of v and .

Proof. From lemmas 3.5 and 3.6, it is obvious that ||(TLS”(0)) || < Cr3. Also, it is evident that

r

1 .
S(0)(0) = -+~ /B o )G(re’e — y)dy. (3.5)

Therefore, by Equation (1.4)

1 27|z — y| |z — y|?
G(x —y)d ——/ ——1lo + + H(z — vy)l|dy.

Also, we have that
/ log |z — y|dy = 7r?log |z| = 7 logr
B(0,r)

if z = re?. Thus,

1 21lr — gy log(2m 1 2
/ SR e it L0 T L LIRS W U W 0V
B(0,r) 2 2 2

2N
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Also, we have that

|33 - y‘z 1 2 2
dy = |z|” + |y|“dy
S 00 = 107 Ly

since

/ xydy = 0.
B(0,r)

0

By using polar coordinates and setting 2 = re?’, we can show that

1 3mrd
1 / |z —y[*dy = 3
B(0,r)

Also, since the function H defined in Equation (1.5) is harmonic we can use the mean value theorem

for harmonic functions and prove that

/ H(z — y)dy = nr*H(x).
B(0,r)

Thus, we have by Equation (3.5) that

1 log(2 1 2 3mrd
S(0)(6) = * + w2 H @) + 7(=r2(E2 1 Liog i) 49 tog(V/ID]) + vt =
r 2 2 2 8D
= C + ynr2H(re®).
Therefore,
1 2 2m .
m= — S(0)(w)dw = C + ’)/777“2/ H(re*)dw.
27T 0 0
So,
. 1 [27 .
S(0) —m = yrr?(H(re'?) — — H(re")dw).
27'[' 0
By using Taylor’s formula we have that
i0 1 [ iw 1 [ i0 2
H(re")— — H(re")dw = H(0) — — H(0)d0 +rVH(0)-e" 4+ 0(r?) =
2 0 2 0

=rVH(0) - + O(r?).
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Thus,
S(0) —m = yrr2(rVH(0)e? + O(r?)) = 4nr3VH(0) - € + O(yr?).
15(0) = m — A3V H(0) - ][ = < Cyr
which implies that
15(0) = m —Amr®VH(0) - €] 12 < Oyt

O]

Now, we are in a position to prove Proposition 2.3. Firstly, we will state and use a well known

proposition about complete metric spaces.

Proposition 3.9. (Contraction Mapping Principle) Let M be a complete metric space with metric
d. Assume that we have a function f : M — M such that there exists a real number q < 1 such that
d(f(x), f(y)) < qd(z,y) for all x,y € M(such a map is called a contraction). Then the function

f admits a unique fixed point, i.e. there exists a unique x € M such that f(x) = x.

We will argue as in [2] and we will use Proposition 3.9 to prove that there exists a function ¢
such that ¢ solves the Equation (2.1). We have already seen that the above equation is equivalent to

I1S(¢) = 0.

Proof of Proposition 2.3

We define an operator 7' : D(T') — D(T') with
T(¢) = —(115'(0)) ™ (I1S(0) + IIN(9)),

where
D(T) = {¢ € H*(SY) N {1,cos0,sin 6} : ||@|| 2 < M~r"}
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and M is a constant sufficiently large to be determined. Firstly we write

N(¢) = Ni(¢) + Na(o),

where

and
Na(¢) = A(¢) — A(0) — A'(0)(¢) + B(¢) — B(0) — B'(0)(¢).
Let a function ) € L2. We use the Taylor’s formula from [34] to write

2
<W(t6),6 >=< W(0), 6 >+ < W(0)(9), ¥ > +5 < W(76)(,0),6 >

for some 7 € (0, 1). Thus we have by setting t = 1
1
| <W(@) = W(0) =W (0)(9),9 > | = 5| <W'(r)(¢,),9 > |

<

W (76)(d, &)l 2] 2.

N

Now, we take the supremum for all t» € L? with |[t)||z2 < 1 and we have

W (¢) = W(0) = W (0)(d)ll12 < ClIW"(7)(¢,¢)l| 2
Here we use Lemma 3.7 part 1 to conclude that
! c 2
W (@) = W(0) = W (0)(&)ll2 = 5 Iglle-

Similarly, we can show that

Cc Cv

IN@)lIz2 < (5 + 51817

2
Thus, by Lemma 3.8 we have
- ¢ Cy
101" ()) (TN (@) 12 < Cr (5 + “lI6 3
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Also,
[1(ILS7(0)) ™ (TLS(0) || 2 = ||(118"(0)) "' (T(S(0) — m — 47r*VH(0) - €))[ |2 <

< Cr3Cyrt = Cyr’
by Lemma 3.8. Thus, we have that

C C”y

C
IT(0)lgz < Cyr” +CT"( )0l = Cyr +(3 + Cyr)l| |13

Also, we have that € D(T). So, ||¢|| g2 < M~r”. Thus,
IT(O)lg= < Cryr” +C( + ) (M),

Now, take M such that M/ > 3C. Then, we have that Cyr7 < 2~r7. Also, we have CM?y%r!? =
CryrT(M?~r®). Also we have that y7° is small. So, we write 77> = §, where § is small. We take &
such that M?2§ < 1. Then we can see easily that CM?~2r'2 = CyrT(M?%yr®) < Cyr’ < %71"7.
Now, we have that

C3M?*r'® = Cyr” (M 77‘477”4) < C'yr7(M262).

We take 6 such that M262 < 1. Then, finally we have Cv3M?r!® < Cyr < %77"7. Thus, finally
we have ||T(®)|| g2 < M~yr”.

. Take ¢1 and ¢2 € D(T'). Then we have

T(¢1) = —(115"(0)) " (ILS(0) + LN (¢1))

and
T(¢2) = —(115(0)) ' (ILS(0) + IIN (¢2)).
So, we have

T(¢1) = T(¢p2) = —(I1S'(0)) " (1IN (¢1) — TIN (2)).

30



We have
N(¢1) = S(¢1) — S(0) — S(0)(¢1)
and
N(¢2) = S(¢2) — 5(0) — 5'(0)(¢2).
Thus,
N(¢1) — N(¢2) = S(¢1) — S(¢2) — S(0)(d1 — ¢2).
By taking a function ¢ € L? and using Taylor’s formula again we have

< S(t(p1 — ¢2) + ¢2), ¢ >

2
=< S(¢2), 1 > +t < S'(¢2)(dp1—2), ¥ > +% < S"(7(p1— ¢2) +P2) (d1— b2, 1 — ¢2), Y > .

for some 7 € (0, 1). Therefore, by setting t = 1 we get
< S(¢1), ¥ >=< (), ¥ > + < §'(¢2)(¢1 — b2),9 > +

% < S"(1(d1 — ¢2) + ¢2)(d1 — P2, b1 — ¢2), U > .

Now, we take the supremum for 1) € L? with ||¢||;2 < 1 and we get
15(61) = S(62) — 8'(62)(61 — Ba)llz2 < Clo + B)llon — il
This gives,
NG = N@allze < Cg + D)llb1 = dalla + 18(@2)(61 — 2) — S O)(1 — 621
Similarly, we can prove that

1
15" (¢2)(¢1 — 2) — S"(0)(p1 — ¢2)|[ 2 < 0(75 + %)||¢2||H2||¢2 — ¢1|| g2

Thus,

1 1
IN(81) = N(92)l[12 < C(5 + 5)lI61 = dallfe + Cl5 + )lIalli 162 — ol
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Now we use that ||¢g|| 2 < Myr” and ||y — ¢o|| 2 < 2M~r7 to conclude that
IN(@1) = N@allz2 < Cllr — boll O + 5)(3MT).
This gives that
IT(¢1) = T(¢2)ll g2 < Or?|IN(¢1) — N(¢2)l|2 <
Cr(Cllgr — <I52HH2C(%5 + %)3M7?“7) = (CM1° + CM~*r®)||1 — 2|2
But if we take yr* = € with ¢ small, we get
CM~rd + CM~*r® < CMer + CMe* < 1

for € small. Thus T is a contraction. Therefore, by Proposition 3.9 we have that 7" admits a unique
fixed point. O
Now, we will use a reparametrization trick to prove Proposition 2.4.

Proof of Proposition 2.4

By Proposition 2.3 we have that S(¢)(0) = A + pcosd + vsin6. Let 7 = (11, 72) € R% Consider
theset 7+ E, = {T +2 : € Ey}. Then we have 7 + Ey = {7 + we® : 6 € [0,27],w €
[0,4/72 4+ ¢(0))}. We reparametrize T + E,, by changing the center to 0. So we let 7 + E, = E;,_
for some function ¢, € H?(S'). Here Ey_ = {we® : 0 € [0,27],w € [0,/72 +¥-(0))}. Ttis
easy to see that for the energy functional J we have J(7 + Ey) = J(FEy) for |7| small enough by

the periodic boundary conditions. Thus, we have

(B o =0 (3.6)
and
N I — (37)
dry
For 6 € [0, 27| we have
T4+ 12+ 0(0)e? = \/r2 + 70, 7), 7)) (3.8)
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for some function 77(¢, 7), where 77(., 7) : [0,27] — [0, 27] is one to one and onto. Let a function

f:ACR’ — R? where
A ={(z1, 29,73, 24, 75) € R%: 29 > —12 25 € (0,2m)}
with
f(zy, x9, 23, 24, 25) = /72 4 206 — (14, 25) — \/Wem?’.
Also, we have by Equation (3.8)

f(ﬁ(037)7¢(ﬁ(977)a 7—)’ 037—177_2) =0

for every 6 € (0,27) and |7| small. Let a function g such that

9(9’ T1, 7—2) = (5(9’ T)’ 7/}(77(‘97 7—)7 7—))

Then, we have

f(g(evThTQ)aeuThTQ) =0

for every 6 € (0, 27). Let a function ¥ such that

\11(9, T) = w(ﬁ(ev T)v T)'

Thus, using the implicit function theorem(see [35]) we have

677(0771772) 677(977-1 yTQ) 85(977-177-2)
00 or1 OTo
ov ov ov
L 00 ori O0To i

- S -1
—Vr2 4+ Using 2\/7% cos 7

V12 4+ Ucosn Nﬁsinﬁ_
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1 2 i _
2m¢(0)cosg+\/7" +¢(0)sinfd —1 0

(0)sin® — /12 + $(f)cosd 0 —1

o 1 /
i 2\/7“2+¢(9)¢
Evaluating at 7y = 7 = 0, we have

- S -1
—Vr? 4+ Using Nﬁcosﬁ

Vr2 + Wcosny 5 r12+\1] sinﬁ_

- q-1

_ 2 ; 1
V2 + ¢(0)sind 2\/’T¢(‘9)C089

2y/r+6(0)

2+ ¢(f)cosd ——L—sinf

and also .

— 2 ; 1
Vr2+ ¢(0)sind T cos 0

2 4+ ¢(0) cos 0 wa sin 6
1 : 1
2m81n9 2%0086

_—\/mcosﬁ —/1r2 4+ ¢(0) sin@_

Also, we have by using that ||¢|| 2 = O(yr")

2 i 1 / - 2 i 6
72+ ¢(0)sin b NCETO) ¢'(0) cos b 2+ ¢(0)sinf + O(yr®)
and
2 1 / : _ 2 6
—v/12+ () cosh — PN ¢(9)¢ (0)sinf = —+/r2 + ¢(0) cos 6 + O(yr°).
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Thus,

oo =1+ 0%,
Also,
on sin 6
b0 =
and
on cos 6

o A o)

Now, using that ||¢|| 2 = O(y7") we get that

ov

o, _ 7
80 |T:0 O('y'f’ )

Also, we have
owv
8—\7:0 =212 4 ¢(0) cos b
T1
and

\\
g—|7-:0 =2/1r2 4+ ¢(#) sin .
T2

We will now prove that

2 27
/ 0T, 72,0), g — / Ov(n,m.0), g — o

‘We have

2m
Y0, 7)df =0
0

because the area of Ey,_ is 72, Also we have that

27
»(0)do =0
0
and also ¢(6,0) = ¢(6). This gives that
O fy" (0,10 2[5 (0, 7)dd
|T=O = ’7':0 = 0.
07'1 67’2
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Thus, by dominated convergence theorem we get

2T (11, 72,0) 2T O (11, o, 0)

~—odf = +=0dfd = 0.
0 87’1 ‘ 0 0 87’2 ‘ 0
Also, using Lemma 1.2 we can prove that
0J(Ey,) 1/2’r oY(r,0)
— 0= = S +—0df
o1 =0 2 Jo (¢) ory =0
and also
0J(Ey,) 1 /% (T, 0)
S == ——odf.
I l7=0 2/0 S(e) 07 lr=0
Now, we will calculate
oY (r, 9)|
87’1 7=0
and
oY(r, 9),
87’2 =0

Since 77(., 7) : [0, 27] — [0, 27] is one to one and onto we can invert 77 and have

nm,7),7)=n

for every 7 € [0, 2] for some function 6 : [0, 27r] — [0, 27]. Then we have

Y(n, 1) =W¥(O(n,7),7).

We have by the Chain Rule that for €, (1) = 6(n, 71) and ex(71) = 7

8\11(0(77,7-),7-)| _87\1’, %‘ +8£‘ @|
87’1 T=07 861 51:"871 T1=0 862 62:7787'1 T1=0
Also, we have

Oea

2l _o=1

371| 1=0

Thus,

ov(0(n,1),7) oV

| o, 99(n, 7) o
R

|T=U + 877_1|‘r:0-
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‘We have that
ov
%\ezn = 0(77“7)

and also
ov 5
87’1 |T:0 =2 VT + ¢(77) COs 7).

Thus,

G o6(n,
aiTﬂF:O@ﬂ) g;ﬂh:o+2vﬂ+ﬂﬂm0%n

Now we will calculate

Differentiating the relation

we get
a0(n, ) sinn
14 O(yr® > o — =0.
Thus,
85(17, T) sinn

o 0T T T s )1+ 0

Thus, we have

071# L O(yrT)sinn 5 B 5 6y
00 T T T g1 1 0y VT T el conn =2V ef)cosf O =

= 2rcos 0 + O(yr®).

Similarly, we can prove that
O : 6 : 6
(977"7:0 =212 4+ ¢(0)sinh + O(yr°) = 2rsinf + O(yr°).
2

Now, we have by Equations (3.6) and (3.7) that

1 (% oY(t,0) 1 2 oY(t,0) B
5 0 S(¢) 87'1 ‘7-:0(10 — 2/0 S(¢)Tﬁ’720d0 — 0
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From Proposition 2.3 we have that
S(¢)(0) = X+ pcosf + vsinf

which gives

2

2m
/ (A+ucos@+ysin9)8¢170d6:/ (A—i—ucos@—i—usin&)a—w]ﬁod&:o
0 87’1 0 87’2

which gives
2m 2m
/ (ucos@+ysin9)a—w|720d0 = / (uc050+ysin9)a—w|720d9 =0
0 87'1 0 87’2

since

o 21
/ M\T:ode — / M|T:0d9 = 0.

Also, we have

oY B 6

877'1|T:0 = 2rcosf + O(vr°)
and

§Z|T:0 = 2rsinf + O(yr).

Therefore, we have a non-singular linear system which implies that 4 = v = 0 and the proof is
complete. O

Proof of Proposition 2.6

To prove this Proposition we follow [4] and we consider the energy functional J;5 in the new lattice

tA. Then, we have Jia (tEg) = Pip(tEg) + 3 [, [VIa(tEy)(x)*da where,

CALA(tE)(2) = xep, (2) —w,z € C, /t RACHOTE

By [1] we have |D| = Im(ab). Thus |tD| = t*|D| = t>. Also, we have P;p(tE,) = tPp(Ey). It
has been proved in [4] that
Iin(tEg)(ty) = t* 1z (Eg)(y)
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for every y € D. Therefore, by differentiating we get VIix(tEy)(x) = tVIx(Ey)(F) for every

x € tD. Thus,

x
| B @Pde = [ AVINE) G = [ AVIE) @Ry
tD tD t D
Therefore, if we set A = Pp(Ey) and B = § [}, |[VIA(Ey)(z)|*dz and put it all together we get

NG A
tA( ¢) - ? + Bt2.

tD|
By taking the derivative of the function g(t) = % +Bt?, t > 0 we have that ¢ has a global minimizer

for t = t5, where t, is defined in Equation (2.2) and the proof is complete. O

Lemma 3.10. Denote J(Ey) by J(¢). Then we have

J(p) = —% log( \/2%|)7r7“4 + 271 + ﬁw%ﬁ — %Wr4(logr — %) + Ayt R(O)+
2 2 2
ST [T HE 000+ [ S o060
0 0

for some T € (0,1).
Here, R(¢) = @ where H is the harmonic function on (C — A) U {0} occuring in the formula of

the Green’s function G. By [1] H(0) depends only on ¢ and D.

Proof. By the Taylor’s formula for JJ we get

J(top) = J(0 t d J t* d* J
(tg) = J(0) + %\nzo (77¢)+5d772\n:7 (no)

for some 7 € (0, t).
By setting t = 1, we get

d 1 d?
J(¢) = J(0) + %\n:OJ(W?) + 57772|n:7z7(77¢)

for some 7 € (0, 1).
Consider J(0). We have J(0) = 271 4 3 fB(O ") fB(o ") G(z — y)dzdy.

39



Also,
27T|{L‘ y|
(x — y)dxdy = / / dxdy+
/B(Or /B(Or B(0,r) J B(0,r) 271' \/W )

2
+/ / =~y d:z:dy+/ / H(x — y)dzdy.
By JBOy) 4D B(0,r) J B(0,r)

It can be shown that

1 s 1
——log |z — y|dzdy = —=r*(logr — =
/B(Dm) /B(D,r) 2 18| | 2" ¢

/ / lx — y|2dzdy = 7*rS.
B(0,r) J B(0,r)

Also, since H is harmonic around 0 we get

and

/ / H(z — y)dady = 7°r* H(0) = 20°r*R(()
0,r 0,r

by the mean value theorem for harmonic functions. Therefore,

J(0) = 271 + %[—% log( \/2%)777“4] + 2 grrtogr — D) + ﬁﬂ%%
()
Now,
ro =3 [ SO0
and
SO0 =47 [ e -y
Also,

. 1 2m
Grezg—ydy:/ ——log ret? —y dy+/ ret —y|?dy+
/B(o,r) ( ) B(0,) 27T (\/\D|| ) B(0,r) 4\D’| |

+/ H(re'? —y)dy.
B(0,r)
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Thus,

S(0)(0) = C + mr*H(re'?),

where C' is a number which does not depend on 6. Therefore,

2

’)’7T7“2

H(re?)¢(6)db,
2 Jo

J'(0)(¢)

because fOQW ¢(0)df = 0. Now, can prove easily that

d /
an” (ng) = J'(n)(¢)-
Also,
d J _1 27rS 0)p(6)do
@’uzo (n¢ + uep) = 2/ (1) (6)¢(6)do.
Thus,
& J _d ! 2TrS 0 9d9—1 T S 0)o(0)do
Tl 100) = ooy [ SO0 = 5 [ Ll S 0)60)
and also
d /
%InzTS(n¢)(9) = 5'(7¢)(9).
If we put it all together we have the result. O

Proof of Proposition 2.7

To minimize J(¢) it is equivalent to minimize

J(¢) + 7 log( 2n yard — 2mr — ﬁw%ﬁ + %m"‘l(logr — %)

=N VIDI
J(¢) = —
Then, we have
. 27 ) 2T
T0) =700 + 513 [ HE"o0)a0+ o [ 5 r0) () 0)6(0)as

by Lemma 3.10. Also, we have

2 2

2m
| ; H(re")¢(0)dd| = I/O (H(0) + O(r))p(6)do]| = | ; O(r)p(0)dd| < [|O(r)l|z2ll¢l] >
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< Crllgll g2 < Cyr®.

Therefore, finally

Consider the term

1 2m ,
ree ) R GOIOIOE O
We have
1 2m / 1 / C’YT’? /
T [ SEa@0)00)d8) < LIS o elellz < IS o) @ll -

= Cr2||S" () ()l 2
I will show that ||S"(7¢)(¢)||r2 = O(r). In the proof of Proposition 2.3 we can find that
, 1
15'(é2)(é1 = 62) = S'(0)(61 = é2)ll12 < C(5 + 5)l|eallmallér - dol |

for ¢1, o € D(T) = {u € H*(S') N {1, cosh, sinf}* : ||u|| g2 < M~rT}. Thus, for ¢; = 0 and
P2 = TP we get

18(r6)(r6) = S'O)(r6) |12 < O + )l
Therefore,
186)(@) = S OOlz2 < O + Dl < Clog + )Mt =
= C(yr®)(yr®) + Cyr?)?yr®.
Here, we use that 73 = O(1). Thus, we get
I8'(76)(6) = S O)(@)|z2 = O(r*) = O(*).

Thus, to prove that ||.S"(7¢)(¢)||2 = O(r) it suffices to show that ||.S"(0)(¢)|| 2 = O(r). We have

that S"(0)(¢) = L1(¢) + B'(0)(¢). Also, by 3.2 we get

1B'(0)(9)|2 < Cyrl|@ll2 < CyrMarT = Cy*r® = O(r?).
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Consider now

Li(¢) = A e e ” o(w)log(l — cos(f — w))dw.

We can prove easily that the first two parts of the equation are of order O(r).

Now,
2m 2m 2m
I p(w)log(1 — cos( — w))dwl|3, = / | B(w)log(1 — cos(h — w))dwl|*df <
0 0 0

27 21
< C/ / w)[?|log(1 — cos(f — w))[Pdwdh <
2 27
< C|9|[3 / / |log(1 — cos(f — w))|*dwdf =
o Jo
= C|¢lli= < Cllgll7-
Therefore,
27
[l d(w)log(1 — cos(f — w))dw|| 2 < Cyr.
0
Thus,
2T
H81 d(w)log(l — cos(0 — w))dwl| 2 < Cy?rT = o(r).
™ Jo

Therefore, we proved that ||L1(¢)||z2 = O(r), which proves that ||S’(0)(¢)||2 = O(r). Thus
[1S"(7¢)(¢)||r2 = O(r). If we put it all together we can see that

1 27

g S'(16)(9)(0)6(0)do = O(r*).

Finally we get
J(¢) = T°R(¢) + O(r®).

To finish the proof, we have that R(¢) > R(e%r) for { # s by [1]. Therefore, for every ( # s

J(6,¢) > J(o, e%ﬁ) for r small enough. O
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Chapter 4

Proof of the main results of the second

problem

4.1 Important Lemmas

We have seen in the introduction of this dissertation that for the second problem the Euler-Lagrange

equations are Tk () (6) = X for some constant A\, where

T(p)(0) = (T1()(0), -, T ()(0))

K
Ti()(0) = Wi(r)(0) +> 7 : G(& +1\/p} + wu(0)e” —y)dy,
=1 Pi

where k € {1, ..., K'}. Here, E, is defined in the Equation (1.10) and 7 is defined in the Equation
(1.11).

Thus, we can follow [2] and write

T(0)(8) = Wi(0r)(8) + T (0r)(0) + Ar(21) () + Brl(r)(0) + Y cralr, 01)(0),  (4.1)
17k
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where [ € {1,..., K} and [ # k. Denote by R the regular part of the Green’s function. Here, we

have
7 log pi
Li(or)(0) = —— By
0 k@) 0 Y
Ao =L [ 1oglyf14 20w Vg,
™ E(()’ka) pk pk
and

Bi(p1)(6) = — 3 R(\/} + en(0)e" — y)dy,

E(O#’k)

where E(g ) = {we® : 6 € S',w € [0, 1/p? + ¢r(6))} and also for [ # k we have

i 20)(0) = /E G+ /02 + on(0)¢” — y)dy.

Also, the operator Wy, is defined in Equation (1.12). Here, we note that the operators I, Hy, Ag
and Bj, do not depend on the centers 1, ..., . Also, these operators depend only on ¢g. The term

¢k, 18 the interaction term. Also, by the first problem we get

u// _|_u
W(0)(ug) = — kQ Bl (4.2)
Pk
and also calculations show
/ log pi; o
1)) (0) = 1252 [ ) @3)
™ Jo
27 ) ) un (6
LO()0) =~ [ unle) o e — ey — T240) @
T 0 4
v 2 ) )
BLOwe)0) = 3 [ ue@)Rlpie — pre) ot
0
0 ) )
+7uk( ) / VR(pkew —y)- edy. 4.5)
2px B(0,px)

Also, we have

2
CZ,Z(O, 0)(ug,u)(0) = /0 u(w)G(& — &§ + pretd — pre™)dw+

o[22
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+7uk(9)

5 / VG(&, + pre —y) - edy.
Pk B(&,p1)

Let
K
X ={o=(¢1,.,0K) 1 px € H*(S),Y @i =0}
=1

and

Vi ={p = (p1,....0K) : o € L*(5), ;= 0},

.Eﬂw

=1

where gy, = ot [ @1 (0)d0. Now, let Ly . (u)(8) = Wi (0) (ug) (8)+ A7, (0) () (6)+}.(0) (ur,) (6)+
l1(u). The operator [1 () is independent of &k and 6. It is chosen in order for L; to map X« to Y.

Let IT be the orthogonal projection from L?(S', RX) to Y. We will prove the following lemma.

Lemma 4.1. The operator I1L : X — Y has eigenvalues N\, = = + ﬁ —  with eigen-

functions cosnfey, sinnbey, where e = (eq, .., ex) is the standard basis for RE and n € Z with

n # 0.

Proof. We will prove the result for n > 1. The other case can be proved similarly. We have, by

following [2] that ITLq (u) = Li(u) — li(u) — I;,(0)(ux) on X. By considering Fourier series we

1 o —

get ugp(n) = 5= 5" ur(0)e="d6. We claim that ITLy j, (uy ) (n) = A uk(n). To prove this claim

we consider

— 1 2m "(9) + 0 ) 1 o ‘
HLl,k(Uk)(n) = 27r/0 _Me—mﬂde + /O _luk(g)e—mede_'_

203 27 4

1

— . ~ 1 /27r ug(w) log | — e|e =™ dwds.
2w 0 47 0

Consider the first term in the sum. Using integration by parts we can show that

LT 0+ w) gy L
2 Jo 2p3, 2p3,

Also, we can see that



Now, we consider the last term on the sum. We get

27 27
- / u(w) log e — e~ dhdw =
47r 27‘(’

y 1 2w 27 () -
- log|1 — e"“ ™" |e™"™ dfdw.
Lo [ [ st - g

Here, we will use that
[o¢]
- cos(mb)
1 0 - _ SOOIV )
og |l — e E p”
m=1

and also that cos(a — b) = cos a cos b + sin a sin b. Thus, we can prove that

™2
~ 1 00 2 1 2w
+47727TT§:1 i %sm(mﬁ) _medé?/ ug(w) sin(mw)dw.

Thus by orthogonality of sin and cos we get

1 27 2 . . 1__
o [ wton it — e e s = 3 n)

and the proof of the Claim is complete. Thus, we have proved that

MLy 4 (k) (n) = Mg n@i(n).

Thus,

IIL; (cosnd) Z HL1 k(v el = Z Ae,m0(m el

m=—0oQ m=—00

where v = cosnf. Also, we have 9(m) = 3 when m = +n and 0 otherwise. Therefore, we can
see that

IIL; i (cosn@) = Aj,, cosnb.

By arguing similarly we can prove the Lemma. O
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Now, we define an operator Ly as Lo(u) = T7(0)(u) — L1 (u) + l1(u) + l2(u).

l2(u) is included so that Ly maps X * to Y and it is independent of 6.

Lemma 4.2. There exists C' > 0 independent of &;, p; and ~y such that

L2l 2 < Gllulle for every u € X.

Proof. Let Ly, be the k-th component of L. By following [2] and by Equation (4.5) we have

27
Lo (u)(6) = 1 /0 un(@)(R(pre™ — pre™) — R(0))duw+

0
+Wk( )
2pk

/ VR(& + pre® —y) - edy+

27
+) % / w(W)(G (& + pre” — & — pe™) — G(&, — &))dw+
£k < 70
Yug(0)

+ Y / VG(& + pre? —y) - ePdy + Iy (u).
£k Pk JB(&.m)

We observe that by Taylor’s expansion we have

and also

G(& — & + pee” — pre™) — G(&, — &) = O(p).
Thus,

27 ) .
Hg/o w (w)[G (& — & + pre — pe™) — G(& — &)dw|| 2 <
27

< 0@l [ sl < Oyl

Also,

2w
H;/o ur(w)(R(pre” — pre™) — R(0))dw|| 2 < Cypllul| 2

ug (0 i i
HW/ VR(& + pre’ —y) - e“dyl|r2 < Cypllull 2
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since R is smooth near 0 and

HWk(@)

2O [ VGl + me —y) - e < Crplluls
Pk JB(&.pm)

by the smoothness of G, because B (&, px), B(&, pi) are disjoint. To finish the proof we can see

that the condition Zszl Lo ), = 0 implies that |l2(u)| < Cyp. Thus, we have proved that

L2 (w)]l2 < Cypllullz < pCQIIU\Im
because vp® = O(1). O
Lemma 4.3. There exists a constant C' > 0 such that ||u|| g2 < Cp?||[TIT'(0)(u)]|| 2 forallu € X.

Proof. By Lemma 4.1 and Equations (4.1), (4.2), (4.3) and (4.4), we have that \;, ,, are eigenvalues

of I1Ly, where A\, = ”22;)_31 + ’y(ﬁ — 1)- Thus, since |yp® — 2n(n + 1)| > en® forn € Nyn > 2
k

we can see that

A -1
| kén’ > 6(”3 ) > %
n dppn p

Now, using Fourier series we can write

ug(0) = Z Aj n cos(n) + By, p, sin(nf).

n=2

Therefore, we get

00
HukH%P =7 Z Az,n + Bl%,n
n=2

[e.e]
||u§i‘”%2 =7 Z n2Ak7n + n2Bk,n

n=2
and
o0
lugl[72 =7 Y n*(AR,, + BP,.)-
n=2
Thus,

o0 o0
luglFe = 7> AR (L4 n? +0*) + B ,(1+n” +n") <C> n*(A7, + Bi,).
n=2

n=2
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Also,

o0
Ly glug] = L1k Z Ak,n cos nd + By, , sin n@)) =

o0 o0
= Z Ag Ly j(cosnb) + By, Ly p(sinnf) = Z Ap n Ak cosnl + By p Ap , sinnd.

n=2 n=2
Thus,
o0
HHLL]C(U’/C)H%? =7 Z )‘i,n(Ai,n + Blz,n)
n=2
and
4
N> O
p
Thus,
C
|ITLL g (ug) |72 > Z“ A7 +Bﬁ,n)ZEHUkH?{2-
Thus,

uk|| gz < CpP||TILy ()] |2

which proves that

[ull 2 < CpP|TLLy (u)| 2

Now, to finish the proof we have

c
I0T7(0)(w)|lz2 = [[TILy(w)llz2 — [[ML2(u)]| 2 = ;HUHHz = [IL2(u)llz2 =

C C Ch — Cap
> —lullgz — < llull gz = =525 |ful| 2.
p p? P

By taking p small enough we have C — Cyp > C > 0. It is easy to see now that
lull gz < Cp*| T (0) (w)]l 2,

which proves the Lemma.
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Remark 4.4. By Lemma 4.3 it is evident that TIT"(0) is one to one from X to'Y. To prove Propo-
sition 2.8 it suffices to prove that TIT'(0) is onto Y. It is known that IIT"(0) is self-adjoint and also
self-adjoint operators have closed graph. We will use the self-adjointness of IIT"(0) to prove that it

isontoY.
Lemma 4.5. Consider the operator I1T"(0) : X — Y.Then the range IIT"(0)(X) is closed in Y.

Proof. We argue as in [2]. Suppose that we have a sequence wu,, such that I17"(0)(u,) — win Y.

Then T177(0) (uy,) is a Cauchy sequence. Thus,
|ITIT(0) (un) — TIT7(0) (wm)|| 2 — 0,
when n, m — oo. Thus, by Lemma 4.3 we get
[lun — uml[g2 — 0

when n, m — oo. Thus, u,, is a Cauchy sequence in H? and since H? is a Banach space we have

that there exists w such that u,, — u in H2. Then we have
(U, IIT(0) () — (u,w).
Therefore, since II7”(0) has closed graph we get
w = TT'(0)(u)

This shows that the range of TI7”(0) is closed and proves the Lemma. O

4.2 Proof of the main results of the second problem

In this section we will prove the main results of the second problem as presented in chapter 2.

Proof of Proposition 2.8
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Let z € Y with z € R(IIT’(0))*, where R(IIT’(0)) is the range of the operator I17”(0). We have
< I7T"(0)(z),z >= 0 for every € X. Then, we have that z is in the domain of the adjoint of
II77(0) and since IT77(0) is self adjoint we have z € X.

Thus, < 2, II77(0)(z) >= 0 for every x € X. Also X is dense in Y which gives that II7"(0)(z) =
0. Also, we have already proved that II7”(0) is one to one, which gives z = 0. Thus, Y N
R(T'(0))* = {0}. Now, we have Y = R(IIT"(0)) ® R(IIT'(0))*, because R(IIT"(0)) is closed
in Y by Lemma 4.5. Now it is easy to see that Y = R(II7”(0)) and by Remark 4.4 the proof is

complete. O

Lemma 4.6. (1) There exists a constant C > 0 independent of p and =y such that for p € X with

llol| g2 < cp® where c is sufficiently small and u,v € H*(S') we have

C
W (er) (ur, ve) [ 22 < o el el 12

IN
no

(2) There exists a constant C' > 0 independent of p and ~ such that for ¢ € X with ||¢||g2 < cp

where c is sufficiently small and u,v € H?(S') we have

Cy
|| A% (@r) (ur, vp) |22 < FHUkaHkam-

IN
[N}

(3) There exists a constant C' > 0 independent of p and v such that for ¢ € X with ||¢||g2 < cp

where c is sufficiently small and u,v € H*(S') we have

Cvy
|| By (¢r) (ur, vp) || 2 < 7||uk||H2HUk||H2~

(4) There exists a constant C' > 0 independent of p and ~y such that for ¢ € X with |||| 2 < cp?
where c is sufficiently small and u,v € H?(S') we have

¢

ek 1 (ks 00) (i, 1) (U, )l 22 < — (el [z + el ) okl + vl 2)-

hs)

Note that I" = 0.
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Proof. The formulas (1) to (3) have been proved in the first problem (Lemma 3.7). Also, calcula-

tions show that

i1 (P 1) (g, wr) (vi, v1) (6) =

v 27 ‘ ‘
Yor (0 / w(w VGfk—fl‘i‘W \/mew)'ewdw—i—
4W
U 27 ' '
’Vk / VG&C—&—FW \/mezw),ezedw
4W
27
/ \/7 VO — &+ /o2 + or(0)e” — \JoE +u(w)e) - et
P+ oi(w

Yug(0)vr (0) i
+m /E [(VV1G) (& + \//me  _ ) cos 0+

Pl

+H(VV2G) (& + 1/ o} + r(0)e” — y)sind] - dy

4(p2 + ¢1(0))2 JE,,

Now, observe that since E,, and E,, have positive distance and also they are compactly contained

in D.Thus, we have that G(z — y) is smooth for z € E,, andy € E,,. Therefore VG is bounded.

Thus,
1/ 1

|1 (@rs 1) (g, w) (Vg 1) (0)] < C’Y|\UkHooHHUlHooHQ—HooJF

\/Pk“‘(ﬁkw)

1 1

+07||uk||oollvz|oo||2—||oo+Cvllul|!oo!|vl|\oo\|27||oo+

\/ Pk +90k(0) \/ Pi + ¢

1 1

+Cp} IIUkHooHvkllooHQi()lloo + Cyptluglloolvglloo | [loo

Pkt ¥ (0} + 1 (0))2

But, H\/ﬁﬂw < % since ||¢|| 2 < cp? and c is sufficiently small. Also,

1

PzHWHoo:O(l)
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and

L =0

Al
(0% + 01(0))? p

By combining the previous results and using that vp3 = O(1), ||[¥)||cc < C|[%|| g2 for every ) and

|lek 1 (ns o0) (ur, wr) (vg, v) (0) || L2 < Cllef 1 (@, 1) (un, w) (g, v1)(0) || oo We proved the result.

Lemma 4.7. It holds that ||TIT(0)|| ;2 = O(vp?).

Proof. We have as in [2]

T(0)(0) = —+3 7 / (& + prc” — y)dy.

pk =1 B(élvpl)

We consider two cases. Firslty, [ = k and secondly [ # k. If | = k we have

’y/ G(& + pre® — y)dy = 7/ G(pre™ — y)dy =

/ ! log 2n |pre®® — y|dy+
= ———log ——|pre" — y|dy
B(0.py) 27 /D]
o _ 2 ‘
+V/ |pk4Dy| + ’Y/ H(Pkeze —y)dy.
Bop) 4D B(0,0x)

By [1]

/ log |pre” — y|dy = pj log pi.
B(0,p)

Also, by [1]

/ ok —y|* _ / lpre®® + 1y _

where (] is independent of §. Now,
/ H(ppe™ — y)dy = wpi H (pre”)
B(0,px)
because H is harmonic near 0. Thus, finally
7/ G(pre” — y)dy = C + ympp H(pre'),
B(0,px)

54

O]

(4.6)



where C is independent of . Now, by Taylor’s expansion we write H (ppe®) = H(0) + VH(0) -

e pi, + O(p3?). Thus, finally

Y / Glpre® — y)dy = C + ymgR (H(0) + VH(0) - py, + O(47)) =
B(0,pk)
= M + (M3, Ma) - € + O(yp*),

where M, My, M, are independent of 6.

Now we consider the case [ # k. We have

’Y/ G(& — & + pre®® — y)dy = C — 7/ log |& — & + pre™® — yldy+
B(0,01) 21 JB(0,0)
1

+7/ & — & + pre™ —y?
B(0.01) 4[D|

dy + 7/ H(& — & + pre® — y)dy.
B(O’Pl)

Consider the first term in this sum. We have

_
27 JB(0,p)

log &, — & + pre™ — y|dy = — oot log |6 — & + pre’|

because the log [ — & + pre? — y| function is harmonic for y near 0. Now,

. 1 1 .
& — & + pre? —yP——dy = Y2 + & — & + pre®Pdy =
/B(o,m 4|D| 4D JB 0,0

= Cy + Comp}|&x — & + pre®®)?.

Also,
/ H(& — &+ pre® — y)dy = mpf H(&k — & + pre™®).
B(O,pl)

Thus, finally
’Y/( : G(& — & + pre® — y)dy = C — gpzz log |& — & + pre™| + Cypi |k — & + pre” [P+
B(0,p1

yrpPH (& — & + pre™?).
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By the Taylor’s expansion of the functions log |&;, — & + pre®|, |&x — & + pre®®|? and H (&, — & +

pre'®) near 0 we have
log ¢ — & + pre™’| = log|&k — & + (C1, Ca) - ¢ + O(p})

€k — &+ pre”? = 1€, — &l + (C3,Ca)e” + O(p})
and
H(& — &+ pee) = H(& — &) + peVH (& — &) - € + O(p}),
where the C;’s are independent of 6. Thus, we can see that
7/ G — & + pre” —y)dy = M + (M, Ms) - € + O(yp?),
B(0,p1)
where the M’s are independent of 6. Therefore, by Equation (4.6)
Ti(0)(6) = Wi + (W1, Wiz) - € + O(yp"),

where the W}, s are independent of 6.

1T (0)]|7. = ZHHTk iz = ZHHTk — Wi, — (W1, Wia) - €”)]|72 <

K
ZHTk — Wi — (Wi, Wia) - €72 = ZHO’YP )72 = 0(*p%).
k=1

(0)[|z2 = O(vp?h). O

Proof of Proposition 2.9

We take M (¢) = —(I7T7(0)) "1 (IIT(0) + IIN(¢p)) for ¢ € D(M), where

D(M) ={p € X : |||y < Cp*},

for a constant C suffiiciently large to be determined.

We will use the Contraction Mapping Principle to show that there exists a function ¢ which solves
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Equation (2.3). Equivalently, we will show that the Equation (2.4) holds. By Lemma 4.7, we have
that ||TIT(0)||z2 = O(vp*) = O(p). Now, take
Nl,k(SOk) = Wk(tpk) - Wk(O) — W;,,C(O)(@k) for k € {1, ,K}

By problem 1 we have that

[ Wi(r) = Wi(0) = Wi (0)(r)llr2 < ClWR (Tr) (@rs )l 2

for some 7 € (0,1).Thus,

IN

Wi(0r)=Wi(0) =W (0) (i)l 2 < S lpkl[32. Thus, [Ny (on)| 2

pQSHQOkH%{Q Now, take N1 = (Nl}l,Nl’Q, ...,lek). We have
o 2 2,1
[IN1] 2 = (/ INL™ + 4 [Nk )2 < [Nuallze + - 4 [Nz <
0

c 2 c 2 c 2
< gllelle &+ ZSllerllae = el

Thus, finally || N1(p)]|72 < p%”gp”%m Let
Nok(p) = Ap(p) = Ax(0) = A'(0)i (@) + Br(0) = Bi(0) = By (0) () + Ce () — Ci(0) = Cr(0) (¢0),

where C(p) = Zlik Ck,l(SOkv ®1)-

We have

C C
|1 Ak(er) — Ar(0) — A(0) (i)l 2 < ClIAL(Tor) (0rs i)l L2 < T;YHCPkH%{? S p?HsDkH?{zv

by problem 1. Also, ||By(¢r) — Bi(0) — B.(0)(¢r)||r2 < %H‘Pk’ﬁ[z again by problem 1. By

arguing similarly as in the proof of Proposition 2.3 we get

ICka(@)l L2 < Cllck () (ers o0)ll 2

for some 7 € (0, 1). Therefore by 4.6 we have

1Cka(Izz < Si(llenllaz + lleillaz)? < S5 llellF.. Thus, finally [N (@)l 22 < el

Therefore,
_ C C
|77 (0)) " (TIN (@) || 2 < ;CPSI\sDI\?{z = ﬁl\sal\?p
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Therefore, || M (¢)||z2 < Cp* + %: Cp* 4+ CC?pb= Cp* + (Cp2C)Cp*. Now, we have
Cp>C < 1 for p small enough. Thus if we take C' > 2C we get |M(@)||z2 < Cp*. This
means that M is a function from D(M) to D(M). Now, let p1,00 € D(M). Then M(¢1) =
—(IIT(0)) "1 (IIT(0) + IIN (1)) and M (ps) = —(IIT"(0))~H(IIT(0) + TIN(yp2)). We have
M(g1) — M(3) = —(IIT'(0))" (TN (1) — TN (22)). Also, we have N (i21) = T(¢1) — T(0) —
T'(0) (1) and N () = T(2) — T(0) — T'(0) (2).

Thus, N(¢1) — N(p2) =T (1) — T(p2) — T'(0)(¢1 — ¥2)-

By similar proof as in 2.3 we have ||Tj (1) — Tk (¢2) — Ti.(¢2) (1 — p2)||L2 <
< ITE (7(p1 = @2) + ¢2) (1 — @2) (01 — pa)| 2 for some 7 € (0, 1). But,

IT3 (7(p1 = 2) +92) (01 — 2) (01 — 92)l|12 < Slle1 — w2l[3/2 by Lemma 4.6.

Now,

N(@1) = N(p2) = T(p1) = T(p2) = T'(0)(¢1 — p2) =
=T(p1) = T(p2) = T'(p2) (1 — p2) + T'(w2) (1 — w2) = T'(0) (01 — 2).

Thus,

C
[IN(¢1) = N(p2)|2 < EH% — |32 + || T (p2) (01 — 2) — T'(0) (01 — 2)||2-

Now, again by the proof of Proposition 2.3 we get
1T (p2) (01 = 02) = T'(0)(sp1 = 2)ll12 < [IT"(r02) (02) (01 = @2)ll12 <

C
EII@zI!mII%—«pQHm

Thus, finally

C C
[[N(p1) = N(p2)|lr2 < ;H@l — ¢al|F + ;Hm”m“% — @ol| 2.
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We have || o] ;2 < Cp* and ||p1 — 2|2 < 2Cp*.

Thus, finally

C C
[IN(p1) = N(o2)llr2 < [ee1 — 902HH2(;H<P1 — pa||g2 + ;HWHHZ) <

cC 200
<1 = 2|l g2 (— + ——
p p

C
) < ;le — ol 2.

Therefore,

_ C
1M (1) = M (2)l[ 2 < [|(IT7(0))H[[[TIN (1) = TIN (i02) 2 < CP?’;HSCH — pallg2 =

CP2H<P1 —<P2HH2-

To finish the proof we have that for p small enough C'p? < 1. Thus M is a contraction and from the
Contraction Mapping Principle (Proposition 3.9) we have that M has a unique fixed point and the

proof is complete. O

Lemma 4.8. For the solution ¢ in Proposition 2.9 and for the energy functional J, we have J(p) =

J(0,..,0) + O(p?).

Proof. Wehave J(¢) = Pp(Ey) + 3 [ [VIA(E,)(x)*dx by Equation (1.1).

By Equation (1.2) we have

_AIV(©)(2) = yalz) —w,z € C, /D 10 (Q)(y)dy = 0.

Thus, by using integration by parts and Equation (1.6) we get

| 19naE @iz = [ @ / Gle— )y

Also, we have Pp(FE,) = S K i1 PD(Ey,). Also we can see that
/ Glx—y dmdy—ZZ/ G(z — y)dzdy.
Ep JE, i=1 j=1 Eg;
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We have for i # j
[ [ G-y <ot
By JEy,

since the closures of E,, and E,; are disjoint. Thus,

K

J(0) = (i) + Op*)

i=1
Thus, fori € {1,.., K}
2m

T 2 2 ) 1
Tei) = J0p) + 150 | H(pie")ei(@)d0 +5 | 8/ (rei) ()00

by Lemma 3.10. Also, J(0,..,0) = S>5 J(0, p;) + O(pY).
K 2w

wpd (2 A
T0,0) = 30 = T [ H e 000~ [ S (o020 0)d0] + 0",
=1

2 27 ) 2

; H (pie")pi(0)df + 1)/, S'(Ti) (i) pi(0)dd + O(p*).
i=1

Thus, it suffices to show that

2

’yﬂp? °n i0 1 / 3
T[T )i+ [ oeed0a0 = O

We have

T 2 2 ) 2
T [ i) < 0t [ ooyl

. Also,

27
/0 0:(0)]d8 < Cllgilly> < Cligillie < Cro™

Thus, finnaly

2 2T
‘m H

> pie”®)pi(0)d] < Cy*p° = O(p?),

since = . INOW, the proot of Proposition 2.3 we have for sufficient arge
ince v2p% = O(1). Now, by the proof of Proposition 2.3 we have for M sufficiently larg

1
15 () (g — w2) — ') wn —wa)l 2 < O + ) lwall el fwr — ws |
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for all wy,we € D(T) = {w € H2(SY) : ||w||gz < M~yp!}. Now for we = ; and w; = 0 we
have

I15'(e0)(=1) = SO0z < C + Tl

% )

Change ; to T¢;. Then we have

I v
18" (i) (Ti) = S'(0)(T3) | 12 < C(pﬁ + ?)TQI\%H?{»

Thus,
I
1S (T0i) (i) = S"(0) (i) || 2 < C(ﬁ + ;)TH%H%& <

1 ol 1 5
< 0(75 + 72)”‘:01”?{2 = C(E + ?)MQ’YQPZM _
(2

7 7 7

CMQ’)/2P9 + M273p12 — O(,OS)

Consider the term ||S”(0)(¢;)||z2. We have
S'(0)(¢i) = Li(gi) + B(yi)
by Equations (3.1), (3.2) and (3.3). Also,
1B(¢i)ll> < Crpillgille < CyMApf = O(p?).

Also, we have

viten v, [T
Li(pi) = — 58 L%~ 87r/0 @i(w)log(l — cos(f — w))dw

Now using that ||¢;|| 2 = O(vp") we get L1(¢;) = O(p). Thus we proved that

[157(0)(wi)||r2 = O(p). Also, we have proved already that
S/ Vo) — S . <Ci b 2. = O(p°
15°(Ti) (i) = 57(0) (0i)l[ 2 < (p5 + pg)Tll%Hm = O(p”).
Therefore, ||.S"(T¢i)(pi)|lz2 = O(p). So,

2

& ; S'(Ti) (i) pi(0)do| < C|S" (i) (0i)l| 2] lil |2 = O(p°)

and the proof is complete. O
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Now, we will calculate the free energy of (0,...,0). This corresponds to the union of K round

disks in D.

Lemma 4.9. We have

K o
1 1 27
Z 2mp + 5 Z 4 2 tT(0) — w2 (log g — ) = Slog (2t +

4\| 47 27 /ID]

7 1
S Wi G(EG — &)+ 500 (0] + )
T3 Z- 8|D]

Proof. We have
1 27|z|

/DI

22
)+4’u’)’+H()

Then, we have

G(r —y)dxdy =

K
Y
= 2 —
‘](07 70) ; TP + 2/U

G(z — y)dzdy

B(&i,p:) /UB(&,W)
K K K
=Yooy [

k=1 i=1 j=1

K K
o
:g 27rpk+—g / / Glx—y dazdy+ E / / G(x — y)dzdy.
pet 2 = JBipi) I B(&ipi) B(&.pi) / B(&1.05)

i=1 B(&ips 2%

1\3\4

7 7p7, gj 7pJ

We have

/ / (r—vy dzdy—/ / (z — y)dzdy = 7 p{ H(0)
fupz 517/31 B(Oz,Pz 7Pz

by the mean value theorem for harmonic funactions, because H is harmonic near 0. Also,

1
/ / log |z — yldrdy = / / log |z — y|dzdy = w*pi(log pi — 7).
B(&i,pi) J B(&i,pi) B(0,p:) J B(0,p:) 4

Therefore,

27T| — 9| 1 27 o 4 TP} 1
————dady = — - log( )mep; — —5-(log pi — ).
/ B(&i,pi) / fz’ﬁz ‘ ’ 27 \/ ’D‘ ! 2 4

Now, we have

/ / |z =yl :/ / [z —y[> _ 7%}
B(&,pi) 7 B(&i,pi) 4|D| B(0,p:) J/ B(0,p;) 4|D| 4|D|
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by using polar coordinates.

Thus, we have proved that

/ / G(x — y)dzxdy =
B(&i,pi) J B(&i,pi)

Consider now ¢ # j. Then,

/ / H(z — y)dady = n°p7p}H (&5 — &)
B(&i.pi) J B(&5,p5)
by the mean value theorem for harmonic functions. Now,
[ gl - yidedy = wptedoglé; ~ &
&ipi 5,77/)_7

again my the mean value theorem for harmonic functions. Also, we have

|z — ?J|2 _ 1 2 2
dedy = —— |z]” + |y|* — 2z - ydady.
B(&ip) /B0 4D AID| J (i) /B 5)

Also, we can prove that

1 / / 1
R 22 - ydady = —/ / (x+&)(y + &)dedy =
AID] J B0 I &5 05) 21D} JB(0,0) /B(0,6) ’

2.2 2
TP

= ‘ |£Z {]

Also, we have to calculate

1 / / 2 2
—— |7 + [y|"dzdy.
4|D| B(&,pi) / B(&j.p;5)

We have

1 / / 2 2 1 2 1 2
T |2? + |y|?dedy = ——=-7p; lylPdy + =707 || d.
D] JBe; ) I BEs 7 AIDI (g 00) 4D JBeipn

Also,

/ yl2dy = / ly+ &[2dy = / W 4 16 + 20 - Edy = & Ppit
B(&5,05) B(0,p5) B(0,p5)
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+/ ly[*dy.
B(Ofpj)

and also we can see that
4

Pi T
/ ly|*dy = / s*2msds = ey
B(0,p5) 0 2

Thus, finally
4
TS
/ lwl*dy = mpjlg;* + =
B(&;.p5)
Similarly, we can see that
4
/ ]ac| dac—7rpZ ]§Z|2
B(gi:pz)
Thus,
1 2 2 2, pj 1 o 21,12, TP
—_— dxdy = ——— P4 °1&; Ly,
5 /. o / o el ey = TBT ARG + g+ e+ T

Therefore, we can see that

!:r—y!Z 1 599 2, 2 2 21412 I 994
dady = —7°p; p;|&° + T pi|&lT + TP Pt
T Ty 0120 = o AAISE + gy ISP + e

720202
2pa TPl
+8|D| pjpz 2|D| gl é'j_
72022
T PiP; 2, 2 2 9
4’D‘ |§l 53‘ 8|D’(7r pzp](pz +10])>
Finally, we get
K ol K 72 pf p 1 1 27
_ i 2 4 i 4
k=1 i=1
7 72 p2p2 1
7
+5 ) T H G &) - 772&20310@5]'_&“‘ — 18 — &I+ om0t (07 + 0F)
2 2 1D] D]

1
5 log \/WW p; P;-

Also, G(& — &) = — 5= log 2”'}&'+4|le& &[2 + H(& — &). Thus,

D=3 2 ”Z U2 H(0) — 7P log i — 1) — Llog(- Xyt
=> 2mpr+ 5 w2p}H(0) — -l (logpi — =) — p;
2 2mpet 14| | 2 O N N




’y 1
Zﬂ-2pz pj gl) + 8|D‘7r2p12p]2(pz + p])

1753

In the next lemma we will use the condition vp3 log% > 1+ 4. Also, we will consider
the sets G = {n : F(n) = mingcpx F(§)} and U2 = {(p1,.-,px) : pi € (1 —61)p, (1 +
5)p), Zszl pi = Kp?}, where &7 is sufficiently small. Also, we consider Uy to be a small open
neighborhood of G. We assume that the radii of £, belong to the set Us and the centers belong to

Uj.

Lemma 4.10. When p is sufficiently small J(E ¢ ) is minimized at some (§,7) = (¢, s) € Uy X

o

Us. Also, as p — 0 we have % — (1,..,1) and ¢ — (o along a subsequence, where (g is a global

minimum of F, where F'(&1, ... &) = >2,.; G(& — &).

Proof. Following [2] we let R = Where r = (p1,.., pr)- Also, let

J(&R) = 52—+ J(Ey,), where (£, R) € Uy x Uz and

m27ptlog

Us = {(R1,..Rk):1— 8 < R; <1+6,%, R} = K}. We have

4 4
<

7y p3 log % ~ (140w

Thus, mp;ﬁ is bounded. Thus, by Bolzano-Weierstrass Theorem we have that it has a convergent
P

subsequence. Therefore, we have

4

— by,
TP} log -

where p, — 0. Let (¢, S) be the global minimum of .J in the closure of Uy x Us, where S = s
Then we have by Bolzano-Weierstrass Theorem that (¢,.S) — ((p,So) along a subsequence as
p — 0. We claim that Sy = (1,...,1). To prove that we suppose that Sy # (1,..,1) and we will

derive a contradiction.

65



We have as p— 0 J(C’ (]-a *y 1)) = P 'yp4log 1 J(C ( )1)) -
K 4
g 1.1, 2,
T Z TSEt+— ;i lz +7r stH(0) =72 (log s; — =) — = log(——=—)ms}]+
m2yp logp P T logp P 4|D[ 2 47 2 VD]
. 12%556’ = &)+ L ——msls3(s] —1-8)]—1'% (n*),
7r p logp vy 8|D| m2yptlog :

by Lemmas 4.8 and 4.9. Note that (1,...,1) corresponds to s; = p for every i € {1,.,,K}.

Therefore,
J(C(1,..,1)) =
K K 4
+ 0) —m—(logp—-)—
- T 122 410g% > lim 4,D| w2 H(0) — w2 (log p - )
1 27 1
5 log( ']+ 5 Dm0 G (G — &) + e+
2 |D| m2p logpl# 4‘D’
2 () 4K Kp? +Kmm+K K
w2y pd log% P= Ty p3 log 4]D\ log L log% 27 8mlogp
K 27
log( )+
1 i
27T10g; ‘D|
w2k P8 g gy P o).
log; 4]D|logf 'yplogz
Now, we can see that % — Kby. Also, (1) — 0 and also
myp? log & g
2 7\ G(G—G) K 27
(K*—K) Jgp — 0,as p — 0. Also, we can see that Sﬂogp — 0,as p — Oand G log(m) —
0.
Now, it is easy to see that W — 0 and (K2 — K)lem% — 0. Now, we will use our
assumption yp3 log > 1+ and get - e < lf(;

Thus, we can see now that J (¢, (1, ...,1)) — Kby + K asp—0.

Now, consider J (¢, S). We have

J(¢,S) Zz st = i[w%g + 7254 H(0) 3?(1 L
- T T s — T— 0og s, — —
' T 'yp4logpk ‘ F 4log% —4|D| ’ 9 \OB% Ty
1 2 1 1
—Zlog(—— s + ———— 72s2s2G + ——712s25%(s2 + )|+
2 g(m) 7,] T p410gf1) ;[ 197 (CJ CZ> 8‘D| % j( 7 ])]



O 3
m2vyptlog L (7")
Now, we get
9 K 4 K 4 K K
) 2wy =—— Y Sp=——>"—= Y Sp—=bo Y So,
as p — 0. Now, we have
1 7r23§3
— 0
w2p*log 1 Z} 4D
Now, as p — 0 we get
1
COVE 725t H(0) — 0
T4 p log;
1 st 1 1, logs;—1 1y
- (72t (logs; — -)) = ——&" G4
, because s; = 5;p. Also, we have
2 1 27
— log( ymsi — 0.
1
7T2p4log;2 VD] !
Now, we get
1 2.2.2
as p — 0.
22,202 4 2
1 Tesysi(sy + s; 1 2
- z](z z): IO(PG):O(Ll)~
m2ptlog = 8|D| m2ptlog - log +
P P P
Therefore, as p — 0 we get
. - £ Ky,
J 1 1)) —-J(,S Kby+ — -0 Sox — = =
(Cv(a ) )) (Cv )_> o + T OZ 0,k Z o
k=1 k=1
K K ¢4
1 K S0,
= (K — So.x)bo + —(—=— — ’
( ZO,k)O+7r(2 Z 2)
k=1 k=1
Now we will prove that
K K ¢4
1 K Sok
K — bo+ —(—=— — :
( z:so,k)oer(2 > 5 ) <0

k=1 k=1



and this will be the desired contradiction since (¢, .S) is the global minimum of J. To prove that we

Njw

let f(z) = 27r + bov/z, for z > (%) . We have f/(z) = £ + % Thus, f"(z) = L — Y~

Now, since z > (%)g, we get f/(z) > L — bo[(-1)3]73 > 1 1 = 0. Here we used

+4

that by < (e 6) Thus, f is strictly convex. Letnyg = 1 — . Then for n < 1y we have

U+®3

(1-n)% > (%ﬂ;)% Also, for y such that 1 —n < Sy, < 1417, we get Sg,k > (%ﬁ)% Now since f

is strictly convex we have f(ZF52K ) < K + f(xx), with equality only if 1 = .. = 2. Now,
set xf = Sg’k. Note that we do not have 1 = .. = g since >, So = K and Sy # (1,...,1).
Now,
1+ .. +ak 1
=—+Db
I K ) o T 00
and
K K o4
1 1 So.k
> w2 fen) = 2 > 5 T boSo
k=1 k=1
. Thus, we get
K o4
1 1 < Sok
—+b < — = + bpS
9 + 0o K;2F+00,k
which gives
K K c4
1 K S0k
(K — ZS()’]{)I)() -+ ;<? — Z 7’) <0
k=1 k=1

Thus, we proved that Sy = (1,..,1).
Nextly, we claim that (p minimizes F' in U;. Let 1) be a global minimum of F in U;. Assume that

F(n) < F({o). Then we have

4(<](777S) —J(C,S)) =

1 ~ ~
log._ (70, 8) = J(¢. 8)) = 5

1
£ st — )~y stsEG(G — G+ O lor ) = Fln) — F(G) <0
i#]

as p — 0. Therefore, J (1, S)—J (¢, S) < 0 for p small enough, which is a contradiction. Therefore,

WZVP

Co is a global minimizer of F'. Thus, we have (y € U; which proves ( € U; for p small enough.

Also, Sy € ﬁ; which gives that s € U for p small enough and the proof is complete. O
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Now we will prove a helpfull Lemma.

Lemma 4.11. At £ = ¢ and r = s there exists a constant \ such that A\, = )\ for every k €

{1, .., K'}, where \i, are as in Proposition 2.9.

Proof. Letp = pz.
We will show that &J(Ew) =1 027r T(p)(0) - &(p + ¢)(0)df, where ¢ is the solution as in

Proposition 2.9. To prove this we have

J(Ey) = Pp(Ey) + g / G(z — y)dzdy.
E, JE,

The term Pp(E,) is the length of the boundary of E,,. Thus, we get

o (¢, (0))?
/ ¢% T30+ en@) ™
Let
K 27 /
W) = Al ) — " (u,(0))?
A(u) = A(uy, .., ug) ;/0 \/ k(9)+Tk(9) do.

Then we have Pp(E,) = A(p + ¢).
Let B(u) = B(ui,.,ug) = %fQ(u) fQ(u) G(z — y)dxdy, where Q(u) = Q(uy,..,ux) =

UK {& +ae - a € [0, \/u;(0))}. Then we have
J(Ep) =Alp+ )+ Blp+ o).

. We want to differentiate J(E,,) with respect to py. Let C'(u) = A(u) + B(u). Then,

J(Ey) = d;l%C(p + ).

Also, pi (e +p1) = or(p1) + Eﬁtpk + O(€?). Then, using the Chain Rule and the fact that

2
Tlodotm) = 3 [ T()0) - vio)a0
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2m
TIE) =Y [ O+ ) (O)a =

27
=35 [ B @)+ [ @O0+ o).

Now we will use the Proposition 2.9 to write Ty () = A + fx cos 0 + vy, sin 6. Therefore, by using

that ﬁ(pl 1 cosf,sin @, 1, we get that

d
—J(E,) = k.
dpk; ( 90) 7T k

Now, at £ = ( and r = s we have by Lemma 4.10 that J(E,,) is minimized under the constraint
S pe = Kp?. Thus,

K
Vi J () = wVp, Y ok — Kp?))
k=1

for some constant w, by Lagrange multiplier method, at { = ¢ and r = s. Therefore V,, J(p) =

(w, ...,w) . Therefore \; = ... = A\ = X for some constant \ and the proof is complete. O
We will now prove an important estimate that will be used later.
Lemma 4.12. There exists a constant C > 0 such that for all uw € X it holds
lull g2 < CP* T () (w) |2,
where @ is the solution to the fixed point argument of Proposition 2.9.
Proof. We have as in [2],
[T () (u)llz2 = [OT(0) ()] g2 — [T () (u) — TIT"(0) (u)|| 2

Also, by Lemma 4.3 we get

C
10T (0) ()l 2 = EHUHHQ-
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Now, we claim that
/ / C
[T (¢) = T7°(0)) ()2 < ;HUHHQ'

Let 1) € L?. Then by Taylor’s expansion we have

< T'(t0)(u), ) >=< T'(0) (), b > +tdff]rn_f < T () (), 0 >

Then, by setting ¢ = 1 we have

<TQ)w), > — < T(0)(u), b >= CZIMZT < T () (u), 0 >,

where 7 € (0, 1). Also we can see that
i T/ _ T//
a lp=rT" () (w) = T"(T0) (¢, w)-
Now, by taking the supremum for all ¢» € L2, where |[1||;2 < 1, we get
/ / /! C
[T () = T (0) (W) 2 = [[T"(T¢) (¢, u)l| 2 < ;HSDHWHUHH2
by 4.6 and the solution ¢ satisfies ||¢||2 = O(p*). Therefore,
! / C
[T () (u) = T (0) (w)][ 2 < ;HUHHQ

and the proof of the claim is complete. Now, we can see that

&) Cy Cy — ,0202
T (9) (u)|[ 2 > ;HUHW - 7HU||H2 = <p3)||u||H2-

Now, by taking p small enough we have that
Cy — p*Cy > C >0,

where C is a constant. Thus,

lullgz < Cp°|IT" (i) (u)]| 2

and the proof is complete.
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Now, we need to get an estimate of the solution function ¢ of II1T'(¢) = 0.
Lemma 4.13. The fixed point ¢ satisfies ||86€—‘p| lg2 = O(p?).
]

Proof. We have already that IIT'(p(&),£) = 0. Here the solution ¢ and the operator 7" depend on
&. Therefore by differentiating we can see that H%MT (¢(&), &) = 0.For simplicity we write £ for

&i ;- We will now use the Chain Rule and we define a function A as follows
Alu,v) = T(p(u),v).

Let also functions u(£),v(&). By letting u(§) = v(§) = £ and using the Chain Rule we have

d dA dA
digT((P(g)ag) - @’uZE + %‘v:{-
Also,
dA d
%‘u=£ = %|n:0T<¢(U +§),v).

By Taylor’s expansion we get

o0 +€) = 9l6) + 1t lamopl +€) + OGP,

By using the Chain Rule again we get

dA o dy
@’Fé =T (@)(E)-

Now, we will calculate the term %]vzg. We have that this term is about the dependence of the

operator 7" on £. It is easy to see that
d d
oy lo=eT(p(u), v) = == Z Ch ik
£k
where ey, is the standard basis for R¥, since T depends on £ only in the term ¢y ;. Also, we have

that

Crg = 'v/ G(& + /P2 + ()™ — y)dy.

Ey,
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Now, since the closures of E,, and E, are disjoint we get that the gradient of G exists and it is

bounded, since G is smooth. Therefore, we get

d
Sl = O(~p?).
dv’ —¢crg = O(vp?)

Thus, we have

H(T’(so)(il;g) L O(p?) =0

So, we get

HHT'@)(?@HLQ = 0(v2).

Therefore, by Lemma 4.12 we get

d d
udigum < c*p?’HHT%so)(d{)uLz < p*0(7p%) = 0(p)

and the proof is complete. O

Now we are in position to prove Proposition 2.10.

Proof of Proposition 2.10

Arguing as in [2], we set

Gk +1\/P} + e = & + N ore”, .7

where 7, = (0, &) and ¥, = Y (N, €). Here (i is the minimum of the energy functional J, like
in Lemma 4.10.
We set Ey, = E,, and 17,,(0,&) : (0,27) — (0, 27) is one to one and onto.

Let the function f;, : A — R?, A C R, with
A={(21,..,25) : 3 > —pi,x3 € (0,27)}

and

fr(@1, o @5) = G+ /3 + 22e"™ — (24,25) — \/Pz + (23, 14, T5)e"3.
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Then, we have by Equation (4.7)

fk(ﬁ;ﬂ(a’ 6)7 wk(’fﬁﬂ(ea 5)7 5)7 0, gk,h gk,Q) =0.

Let

gk(97 gk,la gk,2) = (%(9’ €)7 1/%(%(67 €>7 5))

Then we get

fk(gk(ea gk‘,lv 5/@,2)) 95 ék,lu 5]{),2) =0

Now, since ( is a minimum, we have that

d&w‘é ¢J(Ep) =0

for every k, 7. We will prove in the end of the proof that

dyp
dSy. j

2w
eI (B = 3 | T G- a)an

d§ k.j

We assume this result for the moment. Let A(¢)) = 57— Zf 1 f

have fo Yr(n)dn = 0, since the area of E,, is mp2, which gives that fo

we get

———le=cJ(Ey) =

l\.')\r—l

df

We claim that
Ti(¢)(0) = Ti(¥)(1(0,€))-
To prove this result we note that

Wip)(0) = Wi(4)(7(6,€))

since F, and E, have the same boundary. Now,

v [ GG o+ 0.€), 0T8O — y)dy =

Ed,k
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— A
> | @ ) g

(4.8)

4.9)

(4.10)

1(6,€))do. Also, we

" dw’“ (n)dn = 0. Thus,



7/E G (& + 1/ P} + ¢r(0)e” — y)dy,
ok

by the definition of Ey,. Therefore, we can see easily that

Ti()(0) = Ty(¥)(1(0, £))-

Now, we claim that A(¢) = A, where A is the constant of the Lemma 4.11. To show this, we use

that
Ty () (710, €)) — A1) = Ti(0)(0) — A(¥).
Also,
or K
/0 ST () (70, €)) — KA(W)do = 0
k=1
Therefore,

or K
| Ym0 - kaw) —o
0 k=1

Now, we use that

Ti(p) = X+ pg cos O + vy sin 6

to conclude that \(¢)) = A. Now, we have

27
dgd le=cJ(Ey) = Z/ (T (V) () — A(¥)) dwkl (m)dn.

Thus, by change of variables and setting n = 7(0, &)

271' dw an
dg ——le=cJ(Ey) = Z/ /\)d&fj( 1) 5, d0-

Now, we use the impicit function theorem to the Equation (4.8). Also, we define Wy (0,£) =

Yr(Mk(0, ), €). By implicit differentiation we get

- -1

Ok Ok Ok — 2+ Upsing, —COSMk
== IR k SIN M
00 08k,1  Og2 Pk 77 2¢/p2+Vy
= — X
v, AV, oYy / 2 + U o sin 7y,
= L COST — —Fre—
L 90 O&a1 Ok | i Pk K 2/p3+ |
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cos 6 39% + / + __cosf __cosfl  Op
— Sln 6 -1 -
2v/pi+er pk Pk 2v/pi+er 85k v’ - 2\/n2+en ‘%k 2

sinf Oy 2 + __sinf sin @ [ol)8
— o %k cos 0 —1— —sinf__ Oo
2v/p2+er 9 Pl T Pk C 2/t 35k v 2v/p2+ex O8k.2 |

sin 7g _ cosTy
2¢/pi+0y 24/p2+7y

Il
DO
X

—\/Pi+ rcosm  —y/pi + Ursiniy,
JoEHorsing +0(p),  ~1+0(p)  O(p)

—\//%Jr—%coséﬂrO(p?’), O(p)  —1+0(p),

Here, we used that ||¢||2 = O(p*) and also Lemma 4.13. Therefore, evaluating at £ = (, 7j = 6

and ¥ = ¢ we get

Ok O O,
00 Ok1 Ok

oV, oV oV,
90 Ok, Ok |

- 6=
2 __ sinf cos 6
1+ 0(p?) s+ 0) L+ o)

O(p*)  2\/p} +prcos@+0(p*) 24/p} + rsind + O(p?)
Also, by using that ||¢|| 2 = O(p*) we get 24/ p3 + ) cos 8 = 2py, cos 0 + O(p®) and
21/p% + psinf = 2pp sin 6 + O(p?). Thus, we have found that

oV

= 2prcosf + O
e, le=c = 201 (")

and

oV

=2p,sinf + O
e, o= = 201 ().
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Our goal is to compute jgﬁ’“] l¢=¢. For this purpose, we invert the function 7);, and we consider the

function 6y, such that 77, (85, (n, £),€) = n, for n € S*. Thus, we have

d _ ~
i, Mk (Or(n,€),§) = 0.

Using this relation and using the Chain Rule, we can prove that

dife dfy | die _
do dg;  d&j

and also we have already proved that % =1+ O(p?) and also

sin 0

cos 6

dny,
d&p. j

Therefore,

_ sin 6 +O(1)

~ P2+<P .
B o =1
dé.k’.] - cos 6 +O(1)

P%erk

o 0 J =2
Now, using the Chain Rule again and the relation

Ui (n,€) = U(0x(n, £), €)

we get
sin @
- +0(1)
diy 3y, VP ter 2
= + 2pg cosn + O =
0(p*)(0(;) +0(1))
— 9 2) —
15 00) + 2pp cosn + O(p”)
= 2py, cosn + O(p?)

and similarly we get

Ay

=2prsinn + O 2).
dErs prsinn + O(p?)
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When [ # k, by implicit differentiation we get
on Oy oy
00 0k Ok

0w,  av, oy
00 0k1 Ok |

- 1 -1

2 fo~ cos
— + \I’ Sin —
\/ Pi l mog 0,

p? + Wy cos S0

L 2\/ Pl2+‘1’l_ £:<

X

cosf Oy + 2 + . cos @ %)} cos [o1%)]
——2 Sl 4/ sinf, — —
2 PZZ‘HPZ 00 Py ¥l ’ 2\//)12"'@91 O8p,17’ 2\/pl2+90l Ok,2

sinf Oy 2 + sin s} sin Oy
—— e — cosf, — —
oot 90 NPT RLCOS T e Bk o[y Ok |

sin 6 __ cosf
ot N

—\/plQ—l-(plCOSH —\/pl?—l—cplsine
Vot +eisind +0(p*)  O(p) O(p)

|—\/P +prcos0+0(p") Op) O(p)]
Here, we used that ||¢|| 2 = O(p*) and H%H]p = O(p?). Thus, finally we get
2J

on on; on;
& b 1+0(p*) O(1) O1)

0w,  ov, o
0 96 agké_gz< I o) 0(p?) O(PQ)_
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Therefore, we proved that d(igflj le=¢ = O( p?).

Now, we invert the function 77; and we have

(0:(€,0),€) = 6.

Thus, by using the Chain Rule we get

i, AV, d¥, df,

= el .
ds;  déry;  dO déy;

At & = (, we have

— =0
70 (r")
and also
~ dn
do; €y, ;
—— oO(1
Therefore, finally
dwl 2
0]
dErs (p°)

Then we have by equation (4.9)

dJ(E 2m 2m

? dékj)gzc _/0 (Tk(2)(0) =) 2 0089+0(p2))d9+;/0 (Ti(#)(6) = \)O(p*)d = 0
2 o

2%53} e :/0 (Ti(2)6) =N pesin 6+ 0()d0+ 3 / (Ti() (0)=N)O(p*)d0 = 0.

1#k 70

Here, we used that d”?}fl le=c = O(p®) and also FL|._- = 1+ O(p?). Now, we use that Ty () (0) =
3]

A+ g cos 8 + vy sin 0 and by taking approximations we get that iy, = v = 0 for every k.

The only thing it remains to prove is that

d 1 27 d1/1
s el (B =5 [ 1)) G-

To prove that we use the Taylor’s expansion and have

dipr (6
U0, 6) = 06(0.Goy) + 6y — Ge) 0Dt 0l - o))
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Also, we write

1/} = le 7¢K)

Therefore, (0, &) = $(0, Crj) + (€ry — Ceg) Fele=cp, + OIéhs — Crjl?)- Let
d
Aler, e2) = J(¥(0, Crz) + 61%&:@“ +0(e3)).

Thus, by using the Chain Rule and setting €; = €3 = &, ; — (x,;, we have

dA ’ — %’ + %’
N R

Also,

dA 1 [ dyp
0 = — T B P [
d€1| 1=0 2/0 <®) dm| Chsd

Also, we can see that

dA
d7€2’62:0 =0.

Thus, finally
d

1 2T
@k:CJ(Ew) = 2/0 T(3)(n)

LW
dy. j

(m)dn.

and Equation (4.10) holds. Therefore, we have a non-singular linear system, which implies that

W1 =..=pg =11 = ... =vg = 0 and the proof is complete. O
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Chapter 5

Finding the centers of the disks

In this Chapter we will prove the remaining results of the Second Problem. For the next proposi-
tions we assume that K = 2 and we will turn our attention on the global minima of the function
F(&1,&) = G(& — &1). This is because we are interested in locating the centers ({3, (2) of the
stationary set F,, since by Theorem 2.11 the centers of the stationary set F, are close to a global

minimum of the function F'.

Lemma 5.1. Let wy = 1 and wy = ¢ and consider the lattice generated by wy and wa, where { = g.
Also, consider the lattice generated by a and b, with g = (. Let G1 and G5 be the Green’s functions

corresponding to the first and second lattice respectively. Then, we have Gy(az) = G1(z) for every

Proof. We have

1. 2 2
Ga(az) = ——log mlaz] + laz| + Hs(az).

2T ,/‘D2‘ 4|D2|

We can see that |Dsy| = Im(ab) = |a|>Im({). Also, we can see easily that |Dy| = Im(¢).
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Therefore,

1 2 2
Ga(az) = ——log il + 12 + Hy(az).

2T ’/‘Dl‘ 4|D1|

Therefore, to prove the result it suffices to prove that Hy(az) = Hi(z). Now,

op | LD VIDA]

2maz

aaz? z C
-2+5
4|Dyli 2712

Hs(az) = ) — —

log le(———~— 5

1
Com
_% log’ H(l —e(n¢ +2))(1 —e(n¢ — 2))|.

n=1

Now, use that | Dy| = |a|?Im(¢) = |a|?|D1| to get Ha(az) = Hy(z) and the proof is complete. [

By the Lemma 5.1 we have that GG; attains a global minimum at z if and only if G attains a

global minimum at az.

Remark 5.2. Now, we take the case ( = g — % Following [7] we have that for the lattice

generated by w1 = 1 and wy = e’3 the global minimums of the Green’s function G are attained for

i
3

= He? . Therefore, by the Lemma 5.1 and for the lattice generated by a and b with { = ¢ = e

a+b 2(a+b)
3

the global minimums of G in D are attained in the points and

Consider now the lattice generated by w; = 1 and wy = t7, for t > 41?77g2. By [7], we have that
the only critical points of the Green’s function associated with this lattice are the points %, % and
%. Therefore, since the global minimum of G exists, we have that the global minimum is attained
in the one of these three points which has the smaller value.

Let’s first introduce the Dedekind eta function from [6], which is defined as n : {z € C : I'm(z) >

0} — C with

(0.9}
e’z H (1 —e(nz) (6.1
This function is central in the theory of elliptic modular functions in Number Theory.
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Lemma 5.3. Assume wy = 1 and we = ti, where t > 0. Then for the critical points of the Green’s

functlon 5 5 and Hm , we have
1 t 1 1
G(i)zﬁ—z—logQ——logH 1+ exp(—2mnt)) (5.2)
ti ()
G<f)=—flog\ = (5.3)
2 n(ti)
and
1+ti 1 n(L)
=——1 . 54
Gy = —log| L2 5.4
Proof. We have
1 1 1 1
V=——log—+-—+H
¢G5 =5 g\f+16t+ )
Also, H(3) = H1(3) + Ha(3) + Hs3(3). We have
1 1 1 1 tl 1 t1 1
Hi(Z) = ——logle(—oe — = + = :—71 2mi(— i+ = — )| =
1(5) = —g losle(ygr — 1+ 12| og |exp(2mi—qgri+ 15— 7|
gk w1t
2w 8t 6 27 16t
Also,
1 1 t(1 —e(d 1 1 t
e PR AL Ul JE S P SR L
2 2 T
Now,
1 1 = 1 1 1 a
H3(§) = —%log ] TH(I —e(nti + 5))(1 —e(nti — 5)) = —Wlognl_ll(l + exp(—2mnt)).

Finally, if we put it all together we proved that

G(5) = = - *10g2 - —log H (1 + exp(—2mnt)).

n=1
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and Equation (5.2) holds. Now,

ti 1wt ot ti
N L oo g
(F)=—grle 7+ 5 HHEZ)

and also
HE) = w5+ m() + Hy(D).
Now,
i t1)2 i 7 1
e
Now,
(5 + Hy(5) = —irlogﬂlﬁ - g toa | [L1 = et + 5 T[ (1~ elnti - )1 =
n=0 n=1
1 1 > ' -
=5 log —z — 5 Tog] [T —e(z@2n+ 1)))n:1<1 —e(5(2n—1))) =
1 11 G
=gy~ sl [0 et n 1) =
1 1
_ _%10%«?\/% — —10g\ H (1 —exp(—7t(2n — 1)))|.
Also, we have
I[[2,(1— exp(—nmt)) n(2) mt
| H (1 —exp(—7t(2n —1)))| = \H 11(1 —erp(—2nmt)) ’ = (Q)e:vp(—ﬁﬂ

n=1

Now, if we put it all together we get

ti t 5 ot 1 n(%)
oo L
) =161 T2 78l

where the function 7 is defined in Equation (5.1). Therefore, Equation (5.3) holds. Now, we will

calculate G(1%5). We have,

1+t 1 V42 142 1+ti
G( + Z):——logﬂ + n + +H( + z).
2 2 Vi 16t 2
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Then,

Now,

1+ti)+ 1+ti) 1 Vit
= —— 100 —

2 2 o e LTl

1 b B R 7 S o 14ti
—glog|H(1—e(ntz+ 5 ))711'[1(1—6(nm— 5

Hsy(

E— 0 S —
2T & it +1 27

n=1

1 Vi 1.
=~ log—— — ——log [[ (1 + exp(—t(2n — 1)))* =
7 =~ 5 gg( p(=mt(2n — 1))

1 Vi 1 a
=——Jlog——— — —1o 1+ exp(—7nt(2n — 1))).
=1 g [J (1 + exp(—nt( )))

n=1
Now,

o0

log | H(l + exp(—2mnt — wt) H(l + exp(—2mnt + wt)| =
n=0

H 1+ exp(—7t(2n — 1)) \—\H 1 —exp(—mt(2n — 1) + (2n — 1)mi))| =

n=1

I (1 - exp(2mni(24))
1,21 — exp(2mni(l + ti)))

Therefore, finally we have

14t 1+t t 1 n(Ltt
5 ) T H(—5—) =5 - )

H & 7
2( 1 7ol

If we put it all together we have

1+t t ot t 1 L4td 1 14ti
G( ):7_f+7_f10g|77(72).|:_710g|77( 2')’
2 8 6 24 7 n(1 4 ti) T n(ti)
and Equation (5.4) holds.
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Lemma 5.4. Consider the lattice generated by w1 = 1 and wy = ti, where t > 0. Then for the

1t
2°2

and 1zt2

critical points of the Green'’s function G associated with this lattice we have

1+t ti

G(—5—) < G(5

)

for everyt > 0 and also

1+t 1
%) <6(5)

G(

fort > M;r—gZ = 0.8825.... Therefore fort > % G has a unique global minimum in D attained

at the point 1;“, with value
1+ ti 1 n(5t)
=—=1 .
Gg) =~ log | 2]
Proof. We have
1 t 1 1 =
)=—— —log2— —1 1 —2mnt
G(3) =15 — 5 log2— — ogg( + exp(—2mnt))
ti 1 n(%)
Y= _21
G(z) =~ logl oy
and
1+t 1 n(H)
G =~ log| 2|
2 ™ n(ti)
by Lemma 5.3. We have
ti 1+ti 1 n(4)
G(=)-G =—-=1 —|.
| n(%) i [T, (1—e("Y))

77( 1+tz‘)| = ‘exp(ﬂ)"nzo:1(1 _ (_Dne(%tz‘)) =

We have
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where we have strict inequality for n odd. Thus,

lo—OI 1 - exp —mnt) <1
)rexp(—mnt)

)

which gives G(%) > G(152) for every ¢ > 0. For the second part, we have

1 t

G(i) o —log2 — log}_[1 (1 + exp(—2mnt)).
Also,
14 ti mt o 1= (—1)me(mL) ) e("§)
Gl=—5—) Og|e”“7’(241)£[1 T—e(nti) | 7 8! H (nti) |
Thus
1 14 ti t ot 1 1 i
G(5) = G(—5—) = 15+ 55 — - log2 — —log [ [ (1 +exp(~2mnt))+

n=1

—__ =2 (1 2mnt —71 (1-— 2mnt
WogH +eap(—2mnt)) — log [[(1 — cap(—2nnt))

n=1 n=1
+% log H(l — (=1)"exp(—mnt)).

Now, we use that

(1 —exp(—2mnt))(1 + exp(—27nt)) = 1 — exp(—4nnt).

Thus,
1 1+t t log2
0(5)_G( 5 )_g—T——l g}_‘[1 1 — exp(—4mnt))+
+—log H(l—( 1)"exp(—mnt))
n=1

Now we have

%log H(l — (=1)"exp(—mnt)) = %log H(l — exp(—2mnt))+

n=1
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+% log H(l + exp(—m(2n — 1)t)).

n=1
Thus,
eyttt 2 1, H1 (—dmnt)) + 21 ﬁu (—2mnt))+
2 2 -8 2 us 8 crp TR m o8 ol
n=1 n=1
1 o0
+—log H(l + exp(—7m(2n — 1)t)).
7r
n=1
Also,

Ly ﬁu (—dmnt)) + 1 H1 (—2mnt)) 1 H — cop(Zdmnt)
——lo —exp(—4mn o —ex nt) o =
T gn:1 p gn ] P & 1 — exp(—2mnt))

1 [e.@]
=——1 — .
- ong—i—exp( 2mnt)
n=1
Therefore,
Gy gty t sz 1, H1+ (—2mnt) + +1 ﬁ1+ (=27t + 1)
-y — :7—7——0 er ™m —lo exp(—2mnt +
2 2 8 27 us gn 1 P 7T gn:l g

and also we can see that exp(—2mnt) < exp(—2mnt + 7t), for ¢ > 0. Thus,

1 1+t t log2
G -Gl >~ 2,

> 0,

fort > 41°g2 O

Proof of Proposition 2.12

By the Lemmas 5.4 and 5.1 and also by Remark 5.2 the proof is complete. O
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