An Equation Relating Planck Length, Planck's Constant and the Golden Ratio

Bhatt, Ankur S. Becker, F.M.

July 31, 2021

Abstract

Planck's constant, Planck length and the golden ratio can all be written as a simple equation. It is not yet clear if this is simply a mathematical coincidence or rather something with a deeper fundamental meaning. A few ideas will be suggested that might be physical in nature.

1 Discussion

First start with the uncertainty principle at its limit to be an equality.

$$\Delta x \Delta p = \frac{\hbar}{2} \tag{1}$$

Next look logarithmic spiral equation. Here the growth factor is $b = \frac{\ln \phi}{\pi/2}$ where ϕ is the golden ratio [1].

$$\frac{dr}{d\theta} = br \tag{2}$$

From the above two equations l_p could be thought of as the incremental radius change in the cross section of a growing sphere, namely $\frac{dr}{d\theta}$, while the momentum is set to unity; $|\hat{p}| = 1$. Therefore, the following can be correlated to Planck length, Planck's constant and the growth factor.

$$\frac{l_p}{b} \cdot |\hat{p}| = \frac{\hbar}{2} \tag{3}$$

$$l_p \cdot |\hat{p}| = b\frac{\hbar}{2} \tag{4}$$

A potential physical connection might be that the maximum entropy per generator for a braid with three strands is $\ln \phi$. [3] [2] Additionally, the growth factor *b* might be correlated to a factor of cosmic expansion. Due to fairly strong convergence, further investigation appears essential to see if this equation does indeed have a physical meaning.

Table 1: Conve	ergence Table
Equation	Error %

1	
$l_p \cdot \hat{p} = b\frac{\hbar}{2}$	0.06

References

- [1] Logarithmic spiral. https://mathworld.wolfram.com/ LogarithmicSpiral.html.
- [2] J. Baez. The golden ratio and the entropy of braids. https://johncarlosbaez.wordpress.com/2017/11/22/ the-golden-ratio-and-the-entropy-of-braids/, Nov. 2017.
- [3] D. D'Alessandro, M. Dahleh, and I. Mezic. Control of mixing in fluid flow: a maximum entropy approach. *IEEE Transactions on Automatic Control*, 44:1852–1863, 1997.