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Abstract

Recently, we have demonstrated that the Dirac equation can be cast
into a form involving higher-order spinors. We have shown that the trans-
formed Dirac equation splits into two equations, describing charged spin
0 and (massless) spin 1

2
particles. We apply this result to the problem of

spin-charge separation.

1 Introduction

It was found in a very recent experiment that in a solid-state, under extreme
conditions, the electron behaves as if made of two particles – one spinless particle
carrying a negative charge (known as a holon or chargon) and another having
spin 1

2 (a spinon) [1]. For a comment on this discovery, see [2]. Moreover,
spinons were directly imaged by scanning tunneling spectroscopy in a thin layer
of tantalum diselenide sample [3]. Kivelson, Rokhsar, and Sethna proposed
existence of such a spin-charge separation [4] in the context of quantum spin
liquids (QSL), predicted by Anderson [5].

Recently, we have demonstrated that the Dirac equation can be cast into
a transformed form involving higher-order spinors [6, 7]. Furthermore, we have
demonstrated that such solutions can describe decaying, unstable particles –
the transformed Dirac equation splits into two equations, describing spin 0 and
(massless) spin 1

2 particles.
We shall examine the possibility that this splitting of the Dirac equation can

correspond to the spin-charge separation of the electron.
In the next Section, we split the Dirac equation in the interacting case,

following approach described in [6, 7], obtaining three equations: two spin 0
equations, describing particles with charge q and −q, and one massless spin 1

2
Weyl equation.

Finally, in Section 3, we apply our results to the problem of spin-charge
separation.
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2 Splitting the Dirac equation

The Dirac equation:
γµπ

µΨ = mΨ, (1)

in spinor notation is [8]:

πAḂηḂ = mξA

πAḂξ
A = mηḂ

}
. (2)

In what follows tensor and spinor indices are µ = 0, 1, 2, 3 and A = 1, 2,
Ḃ = 1̇, 2̇, respectively. Note that π11̇ = π22̇, π12̇ = −π21̇, π21̇ = −π12̇, π22̇ = π11̇.
The Minkowski space-time metric tensor is gµν = diag (1,−1,−1,−1) and we
sum over repeated indices. Four-momentum operators are defined as pµ = i ∂

∂xµ

where natural units are used: c = 1, ~ = 1. The interaction is introduced via
minimal coupling,

pµ −→ πµ = pµ − qAµ, (3)

with a four-potential Aµ and a charge q.
We have demonstrated that for a class of longitudinal potentials [9] Eq. (2)

can be written in a covariant form as [6, 7]:


0 0 π11̇ π21̇
0 0 π12̇ π22̇

π11̇ π12̇ 0 0

π21̇ π22̇ 0 0




ψ1
11̇

ψ2
21̇

ψ1
12̇

ψ2
22̇

ξ1 0

0 ξ2

 = m


ψ1
11̇

ψ2
21̇

ψ1
12̇

ψ2
22̇

ξ1 0

0 ξ2

 , (4)

with higher-order spinors defined as:

π11̇ξ
1 = mψ1

11̇
, π21̇ξ

2 = mψ2
21̇
, π12̇ξ

1 = mψ1
12̇
, π22̇ξ

2 = mψ2
22̇
, (5)

however, some components of the spinor ψC
AḂ

are missing.

The problem of missing components of spinor ψA
BĊ

is quite severe because
the theory is not fully covariant. Therefore, to solve the problem in the spirit
of Ref. [10], we make the following assumptions:

ξ1 (x) = α1 (x) χ̂ (x) , ξ2 (x) = α2 (x) χ̌ (7x) ,
ψ1
BĊ

(x) = α1 (x)χBĊ (x) , ψ2
CḊ

(x) = α2 (x)χCḊ (x) ,
(6)

where

χAḂ =
1

m

(
π11̇χ̂ π21̇χ̌
π12̇χ̂ π22̇χ̌

)
, (7)

and αA (x) = α̂Ae−ik·x, kµkµ = 0, is a two-component neutrino spinor, i.e. it
fulfills the Weyl equation [8]:

pAḂα
A (x) = 0. (8)
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Substituting (6) into Eq. (4), with αA (x) fulfilling (8), we get Klein-Gordon-
type equations with rescaled four momentum π̃µ = πµ + kµ:(

π̃µπ̃
µ + iqE

(
x0, x3

)
+ qH

(
x1, x2

))
χ̂ = m2χ̂, (9a)(

π̃µπ̃
µ − iqE

(
x0, x3

)
− qH

(
x1, x2

))
χ̌ = m2χ̌, (9b)

where E = ∂0A3−∂3A0, H = ∂2A1−∂1A2 and E = (0, 0, E), H = (0, 0, H).

3 Dual nature of the electron

Recently, quantum oscillations have been observed in the spin-liquid state of
α-RuCl3 at temperatures T . 0.4 K and in a magnetic field H ∈ (7.3, 11)
Tesla [1] and were directly imaged in a three-atoms thick layer of tantalum
diselenide [3]. These observations confirm the existence of spinons in a QSL.

On the theoretical side, we have shown in Section 2 that the Dirac equation
for the electron in longitudinal fields can be transformed into a spin 0 Klein-
Gordon-type equations (9), describing particles with charge q and −q, and a
spin 1

2 Weyl equation (8 ), describing a neutrino. Therefore, we have achieved,
within the formalism of the Dirac equation, a spin-charge separation into a holon
and antiholon (chargon and antichargon), described by Eqs. (9), plus a spinon,
described by the massless Weyl equation (8).
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[10] A. Okniński, ”On the mechanism of fermion-boson transformation,” Int J
Theor Phys. 53 (2014) 2662-2667.

4


	Introduction
	Splitting the Dirac equation
	Dual nature of the electron

