A Proof of the Erdös-Straus Conjecture

Zhang Tianshu

Emails: chinazhangtianshu@126.com xinshijizhang@hotmail.com Zhanjiang city, Guangdong province, China

Abstract

In this article, we classify positive integers step by step, and use the formulation to represent a certain class therein until all classes.

First, divide all integers ≥ 2 into 8 kinds, and formulate each of 7 kinds therein into a sum of 3 unit fractions.

For the unsolved kind, again divide it into 3 genera, and formulate each of 2 genera therein into a sum of 3 unit fractions.

For the unsolved genus, further divide it into 5 sorts, and formulate each of 3 sorts therein into a sum of 3 unit fractions.

For two unsolved sorts i.e. 4/(49+120c) and 4/(121+120c) where $c \ge 0$, we use an unit fraction plus a proper fraction to replace each of them, then take out the unit fraction as 1/x. After that, we take out an unit fraction from the proper fraction and regard the unit fraction as 1/y, and finally, prove that the remainder can be identically converted to 1/z.

AMS subject classification: 11D72; 11D45; 11P81

Keywords: Erdös-Straus conjecture; Diophantine equation; unit fraction

1. Introduction

The Erdös-Straus conjecture relates to Egyptian fractions. In 1948, Paul Erdös conjectured that for any integer $n \ge 2$, there are invariably 4/n=1/x+1/y+1/z, where x, y and z are positive integers; [1].

Later, Ernst G. Straus further conjectured that x, y and z satisfy $x\neq y, y\neq z$ and $z\neq x$, because there are the convertible formulas 1/2r+1/2r=1/(r+1)+1/r(r+1) and 1/(2r+1)+1/(2r+1)=1/(r+1)+1/(r+1)(2r+1) where $r \ge 1$; [2]. Thus, the Erdös conjecture and the Straus conjecture are equivalent from each other, and they are called the Erdös-Straus conjecture collectively. As a general rule, the Erdös-Straus conjecture states that for every integer

 $n \ge 2$, there are positive integers x, y and z, such that 4/n=1/x+1/y+1/z. Yet it remains a conjecture that has neither is proved nor disproved; [3].

2. Divide integers≥2 into 8 kinds and formulate 7 kinds therein

First, divide integers ≥ 2 into 8 kinds, i.e. 8k+1with k ≥ 1 , and 8k+2, 8k+3, 8k+4, 8k+5, 8k+6, 8k+7, 8k+8, where $k\geq 0$, and arrange them as follows:

K\n:	8k+1,	8k+2,	8k+3,	8k+4,	8k+5,	8k+6,	8k+7,	8k+8
0,	1),	2,	3,	4,	5,	6,	7,	8,
1,	9,	10,	11,	12,	13,	14,	15,	16,
2,	17,	18,	19,	20,	21,	22,	23,	24,
3,	25,	26,	27,	28,	29,	30,	31,	32,
,	,	,	,	,	,	,	,	,

Excepting n=8k+1, formulate each of other 7 kinds into 1/x+1/y+1/z: (1) For n=8k+2, there are 4/(8k+2)=1/(4k+1)+1/(4k+2)+1/(4k+1)(4k+2); (2) For n=8k+3, there are 4/(8k+3)=1/(2k+2)+1/(2k+1)(2k+2)+1/(2k+1)(8k+3); (3) For n=8k+4, there are 4/(8k+4)=1/(2k+3)+1/(2k+2)(2k+3)+1/(2k+1)(2k+2); (4) For n=8k+5, there are 4/(8k+5)=1/(2k+2)+1/(8k+5)(2k+2)+1/(8k+5)(k+1); (5) For n=8k+6, there are 4/(8k+6)=1/(4k+3)+1/(4k+4)+1/(4k+3)(4k+4); (6) For n=8k+7, there are 4/(8k+7)=1/(2k+3)+1/(2k+2)(2k+3)+1/(2k+2)(8k+7); (7) For n=8k+8, there are 4/(8k+8)=1/(2k+4)+1/(2k+2)(2k+3)+1/(2k+3)(2k+4).

By this token, n as above 7 kinds of integers be suitable to the conjecture.

3. Divide the unsolved kind into 3 genera and formulate 2 genera therein

For the unsolved kind n=8k+1 with k \geq 1, divide it by 3 and get 3 genera: (1) the remainder is 0 when k=1+3t; (2) the remainder is 2 when k=2+3t; (3) the remainder is 1 when k=3+3t, where t \geq 0, and *ut infra*.

k:1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, ...8k+1:9, 17, 25, 33, 41, 49, 57, 65, 73, 81, 89, 97, 105, 113, 121, ...The remainder: 0, 2, 1, 0, 2, 1, 0, 2, 1, 0, 2, 1, 0, 2, 1, ...Excepting the genus (3), we formulate other 2 genera as follows:

(8) For (8k+1)/3 per the remainder=0, there are 4/(8k+1)=1/(8k+1)/3+
1/(8k+2)+1/(8k+1)(8k+2).

Due to k=1+3t and $t\geq 0$, there are (8k+1)/3=8t+3, so we confirm that

(8k+1)/3 in the preceding equation is an integer.

(9) For (8k+1)/3 per the remainder=2, there are 4/(8k+1)=1/(8k+2)/3+1/(8k+1)+1/(8k+1)(8k+2)/3.

Due to k=2+3t and $t\ge 0$, there are (8k+2)/3=8t+6, so we confirm that (8k+2)/3 in the preceding equation is an integer.

4. Divide the unsolved genus into 5 sorts and formulate 3 sorts therein

For the unsolved genus (8k+1)/3 per the remainder=1 when k=3+3t and t ≥ 0 , i.e. 8k+1=25, 49, 73, 97, 121 etc. we divide them into 5 sorts: 25+120c, 49+120c, 73+120c, 97+120c and 121+120c where c ≥ 0 , and *ut infra*.

C\n:	25+120c,	49+120c,	73+120c,	97+120c,	121+120c,
0,	25,	49,	73,	97,	121,
1,	145,	169,	193,	217,	241,
2,	265,	289,	313,	337,	361,
,	,	••••,	,	••••,	••••,

Excepting n=49+120c and n=121+120c, formulate other 3 sorts as follows: (10) For n=25+120c, there are 4/(25+120c)=1/(25+120c)+1/(50+240c)+1/(10+48c); (11) For n=73+120c, there are 4/(73+120c)=1/(73+120c)(10+15c)+1/(20+30c)+1/(73+120c)(4+6c);

(12) For n=97+120c, there are 4/(97+120c)=1/(25+30c)+1/(97+120c)(50+60c)+1/(97+120c)(10+12c).

For each of listed above 12 equations which express 4/n=1/x+1/y+1/z,

please each reader self to make a check respectively.

5. Prove the sort 4/(49+120c)=1/x+1/y+1/z

For a proof of the sort 4/(49+120c), it means that when c is equal to each of positive integers plus 0, there always are 4/(49+120c)=1/x+1/y+1/z. After c is given any value, 4/(49+120c) can be substituted by each of infinite more a sum of an unit fraction plus a proper fraction, and that

these fractions are different from one another, as listed below:

4/(49+120c) = 1/(13+30c) + 3/(13+30c)(49+120c) = 1/(14+30c) + 7/(14+30c)(49+120c) = 1/(15+30c) + 11/(15+30c)(49+120c)... $= 1/(13+\alpha+30c) + (3+4\alpha)/(13+\alpha+30c)(49+120c), \text{ where } \alpha \ge 0 \text{ and } c \ge 0$...

As listed above, we can first let $1/(13+\alpha+30c)=1/x$, then go to prove $(3+4\alpha)/(13+\alpha+30c)(49+120c) = 1/y+1/z$, where $c\geq 0$ and $\alpha\geq 0$, *ut infra*.

Proof First, we analyse $3+4\alpha$ on the place of numerator, it is not hard to see, except $3+4\alpha$ as one numerator, it can also be expressed as the sum of an even number plus an odd number to act as two numerators, i.e. $(4\alpha+3)$, $(4\alpha+2)+1$, $(4\alpha+1)+2$, $(4\alpha)+3$, $(4\alpha-1)+4$, $(4\alpha-2)+5$, $(4\alpha-3)+6$, ...

If there are two addends on the place of numerator, then these two

addends are regarded as two matching numerators, and that two matching numerators are denoted by ψ and ϕ , also there is $\psi > \phi$.

In numerators with the same denominator, largest ψ is denoted as ψ_1 . It is obvious that ψ_1 matches with smallest φ , and $\psi_1=4\alpha+2$ and smallest $\varphi=1$. And then let us think about the denominator $(13+\alpha+30c)(49+120c)$, actually just $13+\alpha+30c$ is enough, while reserve 49+120c for later. In the fraction $(4\alpha+3)/(13+\alpha+30c)$, let each α be assigned a value for each time, according to the order $\alpha=0, 1, 2, 3,...$ So the denominator $13+\alpha+30c$ can be assigned into infinite more consecutive positive integers.

As the value of α goes up, accordingly numerators are getting more and more, and newly- added numerators are getting bigger and bigger.

When $\alpha = 0, 1, 2, 3$ and otherwise, the denominators $13+\alpha+30c$ and the numerators $4\alpha+3$, ψ and φ are listed below.

 $13 + \alpha + 30c, \alpha, (4\alpha + 3), (4\alpha + 2) + 1, (4\alpha + 1) + 2, (4\alpha) + 3, (4\alpha - 1) + 4, (4\alpha - 2) + 5, (4\alpha - 3) + 6, \dots$

,	,	,	,	,	,	,	,	,
17+30c,	4,	19,	18+1,	17+2,	16+3,	15+4,	14+5,	13+6,
16+30c,	3,	15,	14+1,	13+2,	12+3,	11+4,	10+5,	9+6,
15+30c,	2,	11,	10+1,	9+2,	8+3,	7+4,	6+5,	5+6,
14+30c,	1,	7,	6+1,	5+2,	4+3,	3+4,	2+5,	1+6
13+30c,	0,	3,	2+1,	1+2				

As can be seen from the list above, every denominator $(13+\alpha+30c)$ corresponds with two special matching numerators ψ_1 and 1, from this,

6

we get the unit fraction $1/(13+\alpha+30c)$.

For the unit fraction $1/(13+\alpha+30c)$, multiply its denominator by 49+120c reserved, then we get the unit fraction $1/(13+\alpha+30c)(49+120c)$, and let $1/(13+\alpha+30c)(49+120c) = 1/y$.

After that, we start to prove that $\psi_1/(13+\alpha+30c)$ i.e. $(4\alpha+2)/(13+\alpha+30c)$ is an unit fraction.

Since the numerator $4\alpha+2$ is an even number, such that the denominator $(13+\alpha+30c)$ must be an even numbers. Only in this case, it can reduce the fraction, so α in the denominator $13+\alpha+30c$ is only an odd number.

After α is assigned to odd numbers 1, 3, 5 and otherwise, and the fraction $(4\alpha+2)/(13+\alpha+30c)$ after the values assignment divided by 2, then the fraction $(4\alpha+2)/(13+\alpha+30c)$ is turned into the fraction (3+4t)/(k+15c) identically, where $c \ge 0$, $t \ge 0$ and $k \ge 7$.

The point above is that 3+4t and k+15c after the values assignment make up a fraction, they are on the same order of taking values of t and k, according to the order from small to large, i.e. (3+4t)/(k+15c)=3/(7+15c), 7/(8+15c), 11/(9+15c), ...

Such being the case, let the numerator and denominator of the fraction (3+4t)/(k+15c) divided by 3+4t, then we get a temporary indeterminate unit fraction, and its denominator is (k+15c)/(3+4t) and its numerator is 1. Thus, be necessary to prove that the denominator (k+15c)/(3+4t) is able to become a positive integer in which case t ≥ 0 , k ≥ 7 and c ≥ 0 .

In the fraction (k+15c)/(3+4t), due to $k \ge 7$, the numerator k+15c after the values assignment are infinite more consecutive positive integers, while the denominator 3+4t = 3, 7, 11 and otherwise positive odd numbers.

The key above is that each value of 3+4t after the values assignment can seek its integral multiples within infinite more consecutive positive integers of k+15c, in which case t ≥ 0 , k ≥ 7 and c ≥ 0 .

As is known to all, there is a positive integer that contains the odd factor 2n+1 within 2n+1 consecutive positive integers, where n=1, 2, 3, ...

Like that, there is a positive integer that contains the odd factor 3+4t within 3+4t consecutive positive integers of k+15c, no matter which odd number that 3+4t is equal to, where $t\geq 0$, $k\geq 7$ and $c\geq 0$. It is obvious that a fraction that consists of such a positive integer as the numerator and 3+4t as the denominator is an improper fraction.

Undoubtedly, every such improper fraction that is found in this way, via the reduction, it is surely a positive integer.

That is to say, (k+15c)/(3+4t) as the denominator of the aforesaid temporary indeterminate unit fraction can become a positive integer, and the positive integer is represented by μ , and thus in this case the fraction (3+4t)/(k+15c) is exactly $1/\mu$.

For the unit fraction $1/\mu$, multiply its denominator by 49+120c reserved,

then we get the unit fraction $1/\mu(49+120c)$, and let $1/\mu(49+120c)=1/z$. If $3+4\alpha$ serve as one numerator, we get $(3+4\alpha)/(13+\alpha+30c)(49+120c)=1/y$ likewise by the method of proving $\psi_1/(13+\alpha+30c)(49+120c)=1/z$.

When 3+4 α serve as one numerator and from this get an unit fraction, we can multiply the denominator of the unit fraction by 2 to make a sum of two identical unit fractions, then convert them into the sum of two each other's -distinct unit fractions by the formula 1/2r+1/2r = 1/(r+1)+1/r(r+1). Thus it can be seen, the fraction $(3+4\alpha)/(13+\alpha+30c)(49+120c)$ is surely able to be expressed into a sum of two each other's -distinct unit fractions, where $c \ge 0$ and $\alpha \ge 0$.

Overall, there are $4/(49+120c)=1/(13+\alpha+30c)+1/(13+\alpha+30c)(49+120c)$ + $1/\mu(49+120c)$, where $\alpha \ge 0$, μ is an integer and $\mu=(k+15c)/(3+4t)$, $t\ge 0$, $k\ge 7$ and $c\ge 0$.

In other words, we have proved 4/(49+120c)=1/x+1/y+1/z.

6. Prove the sort 4/(121+120c)=1/x+1/y+1/z

The proof in this section is exactly similar to that in the section 5. Namely, for a proof of the sort 4/(121+120c), it means that when c is equal to each of positive integers plus 0, there always are 4/(121+120c)=1/x+1/y+1/z. After c is given any value, 4/(121+120c) can be substituted by each of infinite more a sum of an unit fraction plus a proper fraction, and that these fractions are different from one another, as listed below.

$$4/(121+120c)$$

= 1/(31+30c) + 3/(31+30c)(121+120c),
= 1/(32+30c) + 7/(32+30c)(121+120c),
= 1/(33+30c) + 11/(33+30c)(121+120c),
...

$$= 1/(31+\alpha+30c) + (3+4\alpha)/(31+\alpha+30c)(121+120c)$$
, where $\alpha \ge 0$ and $c \ge 0$.

•••

As listed above, we can first let $1/(31+\alpha+30c)=1/x$, then go to prove $(3+4\alpha)/(31+\alpha+30c)(121+120c)=1/y+1/z$, where $c\geq 0$ and $\alpha\geq 0$, *ut infra*.

Proof First, we analyse $3+4\alpha$ on the place of numerator, it is not hard to see, except $3+4\alpha$ as one numerator, it can also be expressed as the sum of an even number and an odd number to act as two numerators, i.e. $(4\alpha+3)$, $(4\alpha+2)+1$, $(4\alpha+1)+2$, $(4\alpha)+3$, $(4\alpha-1)+4$, $(4\alpha-2)+5$, $(4\alpha-3)+6$, ...

If there are two addends on the place of numerator, then these two addends are regarded as two matching numerators, and that two matching numerators are denoted by ψ and ϕ , also there is $\psi > \phi$.

In numerators with the same denominator, largest ψ is denoted as ψ_1 . It is obvious that ψ_1 matches with smallest φ , and $\psi_1=4\alpha+2$ and smallest $\varphi=1$. And then let us think about the denominator $(31+\alpha+30c)(121+120c)$, actually just $31+\alpha+30c$ is enough, while reserve 121+120c for later. In the fraction $(4\alpha+3)/(31+\alpha+30c)$, let each α be assigned a value for each time, according to the order $\alpha = 0, 1, 2, 3, ...$ So the denominator $31+\alpha+30c$ can be assigned into infinite more consecutive positive integers.

As the value of α goes up, accordingly, numerators are getting more and more, and newly- added numerators are getting bigger and bigger.

When $\alpha = 0, 1, 2, 3$ and otherwise, the denominators $31+\alpha+30c$ and the numerators $4\alpha+3$, ψ and φ are listed below.

$$31+\alpha+30c$$
, α , $(4\alpha+3)$, $(4\alpha+2)+1$, $(4\alpha+1)+2$, $(4\alpha)+3$, $(4\alpha-1)+4$, $(4\alpha-2)+5$, $(4\alpha-3)+6$, ...

,	,	,	,	,	,	,	,	,
35+30c,	4,	19,	18+1,	17+2,	16+3,	15+4,	14+5,	13+6,
34+30c,	3,	15,	14+1,	13+2,	12+3,	11+4,	10+5,	9+6,
33+30c,	2,	11,	10+1,	9+2,	8+3,	7+4,	6+5,	5+6,
32+30c,	1,	7,	6+1,	5+2,	4+3,	3+4,	2+5,	1+6
31+30c,	0,	3,	2+1,	1+2				

As can be seen from the list above, every denominator $(31+\alpha+30c)$ corresponds with two special matching numerators ψ_1 and 1, from this, we get the unit fraction $1/(31+\alpha+30c)$.

For the unit fraction $1/(31+\alpha+30c)$, multiply its denominator by 121+120c reserved, then we get the unit fraction $1/(31+\alpha+30c)(121+120c)$, and let $1/(31+\alpha+30c)(121+120c) = 1/y$.

After that, we start to prove that $\psi_1/(31+\alpha+30c)$ i.e. $(4\alpha+2)/(31+\alpha+30c)$ is an unit fraction.

Since the numerator $4\alpha+2$ is an even number, such that the denominator

 $(31+\alpha+30c)$ must be an even numbers. Only in this case, it can reduce the fraction, so α in the denominator $31+\alpha+30c$ is only an odd number.

After α is assigned to odd numbers 1, 3, 5 and otherwise, and the fraction $(4\alpha+2)/(31+\alpha+30c)$ after the values assignment divided by 2, then the fraction $(4\alpha+2)/(31+\alpha+30c)$ is turned into the fraction (3+4t)/(m+15c) identically, where $c \ge 0$, $t \ge 0$ and $m \ge 16$.

The point above is that 3+4t and m+15c after the values assignment make up a fraction, they are on the same order of taking values of t and k, according to the order from small to large, i.e. (3+4t)/(m+15c)=3/(16+15c), 7/(17+15c), 11/(18+15c), ...

Such being the case, let the numerator and denominator of the fraction (3+4t)/(m+15c) divided by 3+4t, then we get a temporary indeterminate unit fraction, and its denominator is (m+15c)/(3+4t) and its numerator is 1. Thus, be necessary to prove that the denominator (m+15c)/(3+4t) is able to become a positive integer in which case t ≥ 0 , m ≥ 16 and c ≥ 0 .

In the fraction (m+15c)/(3+4t), due to m ≥ 16 , the numerator m+15c after the values assignment are infinite more consecutive positive integers, while the denominator 3+4t=3, 7, 11 and otherwise positive odd numbers. The key above is that each value of 3+4t after the values assignment can seek its integral multiples within infinite more consecutive positive integers of m+15c, in which case t ≥ 0 , m ≥ 16 and c ≥ 0 . As is known to all, there is a positive integer that contains the odd factor 2n+1 within 2n+1 consecutive positive integers, where n=1, 2, 3, ...

Like that, there is a positive integer that contains the odd factor 3+4t within 3+4t consecutive positive integers of m+15c, no matter which odd number that 3+4t is equal to, where $t\geq 0$, $m\geq 16$ and $c\geq 0$. It is obvious that a fraction that consists of such a positive integer as the numerator and 3+4t as the denominator is an improper fraction.

Undoubtedly, every such improper fraction that is found in this way, via the reduction, it is surely a positive integer.

That is to say, (m+15c)/(3+4t) as the denominator of the aforesaid temporary indeterminate unit fraction can become a positive integer, and the positive integer is represented by λ , and thus in this case, the fraction (3+4t)/(m+15c) is exactly $1/\lambda$.

For the unit fraction $1/\lambda$, multiply its denominator by 121+120c reserved, then we get the unit fraction $1/\lambda(121+120c)$, and let $1/\lambda(121+120c)=1/z$. If $3+4\alpha$ serve as one numerator, we get $(3+4\alpha)/(31+\alpha+30c)(121+120c)=1/y$ likewise by the method of proving $\psi_1/(31+\alpha+30c)(121+120c)=1/z$.

When $3+4\alpha$ serve as one numerator and from this get an unit fraction, we can multiply the denominator of the unit fraction by 2 to make a sum of two identical unit fractions, then convert them into the sum of two each other's -distinct unit fractions by the formula 1/2r+1/2r=1/(r+1)+1/r(r+1).

Thus it can be seen, the fraction $(3+4\alpha)/(31+\alpha+30c)(121+120c)$ is surely able to be expressed into a sum of two each other's -distinct unit fractions, where $c \ge 0$ and $\alpha \ge 0$.

Overall, there are $4/(121+120c)=1/(31+\alpha+30c)+1/(31+\alpha+30c)(121+120c)$ + $1/\lambda(121+120c)$, where $\alpha \ge 0$, λ is an integer and $\lambda = (m+15c)/(3+4t)$, $t \ge 0$, $m \ge 16$, and $c \ge 0$.

In other words, we have proved 4/(121+120c)=1/x+1/y+1/z.

The proof was thus brought to a close. As a consequence, the Erdös-Straus conjecture is tenable.

References

[1] J. W. Sander, On 4/x=1/x+1/y+1/z and Iwaniec' Half Dimensional Sieve; Journal of Number Theory, Volume 46, Issue 2, February 1994, Pages 123-136;

https://www.sciencedirect.com/science/article/pii/S0022314X84710080?via%3Dihub [2] Wolfram Math world, the web's most extensive mathematics resource;

https://mathworld.wolfram.com/Erdos-StrausConjecture.html

[3] Konstantine Zelator, An ancient Egyptian problem: the diophantine

equation 4/*n*=1/*x*+1/*y*+1/*z*, *n*>*or*=2; arXiv: 0912.2458;