A Proof of the Erdös-Straus Conjecture

Zhang Tianshu
Emails: chinazhangtianshu@126.com
xinshijizhang@hotmail.com
Zhanjiang city, Guangdong province, China

Abstract

In this article, we classify positive integers step by step, and use the formulation to represent a certain class therein until all classes.

First, divide all integers ≥ 2 into 8 kinds, and formulate each of 7 kinds therein into a sum of 3 unit fractions.

For the unsolved kind, again divide it into 3 genera, and formulate each of 2 genera therein into a sum of 3 unit fractions.

For the unsolved genus, further divide it into 5 sorts, and formulate each of 3 sorts therein into a sum of 3 unit fractions.

For two unsolved sorts i.e. $4 /(49+120 c)$ and $4 /(121+120 c)$ where $c \geq 0$, we use an unit fraction plus a proper fraction to replace each of them, then take out the unit fraction as $1 / \mathrm{x}$. After that, we take out an unit fraction from the proper fraction and regard the unit fraction as $1 / y$, and finally, prove that the remainder can be identically converted to $1 / \mathrm{z}$.

AMS subject classification: 11D72; 11D45; 11P81
Keywords: Erdös-Straus conjecture; Diophantine equation; unit fraction

1. Introduction

The Erdös-Straus conjecture relates to Egyptian fractions. In 1948, Paul Erdös conjectured that for any integer $n \geq 2$, there are invariably $4 / n=1 / x+1 / y+1 / z$, where x, y and z are positive integers; [1].

Later, Ernst G. Straus further conjectured that x, y and z satisfy $x \neq y, y \neq z$ and $\mathrm{z} \neq \mathrm{x}$, because there are the convertible formulas $1 / 2 \mathrm{r}+1 / 2 \mathrm{r}=1 /(\mathrm{r}+1)+$ $1 / \mathrm{r}(\mathrm{r}+1)$ and $1 /(2 \mathrm{r}+1)+1 /(2 \mathrm{r}+1)=1 /(\mathrm{r}+1)+1 /(\mathrm{r}+1)(2 \mathrm{r}+1)$ where $\mathrm{r} \geq 1 ;[2]$. Thus, the Erdös conjecture and the Straus conjecture are equivalent from each other, and they are called the Erdös-Straus conjecture collectively. As a general rule, the Erdös-Straus conjecture states that for every integer $n \geq 2$, there are positive integers x, y and z, such that $4 / n=1 / x+1 / y+1 / z$. Yet it remains a conjecture that has neither is proved nor disproved; [3].

2. Divide integers ≥ 2 into 8 kinds and formulate 7 kinds therein

First, divide integers ≥ 2 into 8 kinds, i.e. $8 k+1$ with $k \geq 1$, and $8 k+2,8 k+3$, $8 \mathrm{k}+4,8 \mathrm{k}+5,8 \mathrm{k}+6,8 \mathrm{k}+7,8 \mathrm{k}+8$, where $\mathrm{k} \geq 0$, and arrange them as follows:
$\mathrm{K} \backslash \mathrm{n}: 8 \mathrm{k}+1, \quad 8 \mathrm{k}+2, \quad 8 \mathrm{k}+3, \quad 8 \mathrm{k}+4, \quad 8 \mathrm{k}+5, \quad 8 \mathrm{k}+6, \quad 8 \mathrm{k}+7, \quad 8 \mathrm{k}+8$
$0, \quad$ (1) , $2, \quad 3, \quad 4, \quad 5, \quad 6, \quad 7, \quad 8$,
$1, \quad 9, \quad 10, \quad 11, \quad 12, \quad 13, \quad 14, \quad 15,16$,
$2, \quad 17, \quad 18, \quad 19, \quad 20, \quad 21, \quad 22, \quad 23, \quad 24$,
$3, \quad 25, \quad 26, \quad 27, \quad 28, \quad 29, \quad 30, \quad 31, \quad 32$,
..., ..., ..., ..., ..., .., ..., ..., ...,

Excepting $n=8 k+1$, formulate each of other 7 kinds into $1 / x+1 / y+1 / z$:
(1) For $\mathrm{n}=8 \mathrm{k}+2$, there are $4 /(8 \mathrm{k}+2)=1 /(4 \mathrm{k}+1)+1 /(4 \mathrm{k}+2)+1 /(4 \mathrm{k}+1)(4 \mathrm{k}+2)$;
(2) For $n=8 k+3$, there are $4 /(8 k+3)=1 /(2 k+2)+1 /(2 k+1)(2 k+2)+1 /(2 k+1)(8 k+3)$;
(3) For $\mathrm{n}=8 \mathrm{k}+4$, there are $4 /(8 \mathrm{k}+4)=1 /(2 \mathrm{k}+3)+1 /(2 \mathrm{k}+2)(2 \mathrm{k}+3)+1 /(2 \mathrm{k}+1)(2 \mathrm{k}+2)$;
(4) For $n=8 k+5$, there are $4 /(8 k+5)=1 /(2 k+2)+1 /(8 k+5)(2 k+2)+1 /(8 k+5)(k+1)$;
(5) For $n=8 k+6$, there are $4 /(8 k+6)=1 /(4 k+3)+1 /(4 k+4)+1 /(4 k+3)(4 k+4)$;
(6) For $\mathrm{n}=8 \mathrm{k}+7$, there are $4 /(8 \mathrm{k}+7)=1 /(2 \mathrm{k}+3)+1 /(2 \mathrm{k}+2)(2 \mathrm{k}+3)+1 /(2 \mathrm{k}+2)(8 \mathrm{k}+7)$;
(7) For $\mathrm{n}=8 \mathrm{k}+8$, there are $4 /(8 \mathrm{k}+8)=1 /(2 \mathrm{k}+4)+1 /(2 \mathrm{k}+2)(2 \mathrm{k}+3)+1 /(2 \mathrm{k}+3)(2 \mathrm{k}+4)$.

By this token, n as above 7 kinds of integers be suitable to the conjecture.

3. Divide the unsolved kind into 3 genera and formulate 2 genera therein

For the unsolved kind $n=8 k+1$ with $k \geq 1$, divide it by 3 and get 3 genera:
(1) the remainder is 0 when $\mathrm{k}=1+3 \mathrm{t}$; (2) the remainder is 2 when $\mathrm{k}=2+3 \mathrm{t}$;
(3) the remainder is 1 when $\mathrm{k}=3+3 \mathrm{t}$, where $\mathrm{t} \geq 0$, and ut infra.
k:
$1,2,3, \quad 4,5,6,7,8,9,10,11,12,13,14,15, \ldots$
$8 \mathrm{k}+1: \quad 9,17,25, \quad 33,41,49, \quad 57,65,73, \quad 81,89,97, \quad 105,113,121, \ldots$
The remainder: $0,2,1,0,2,1,0,2,1,0,2,1,0,2,1, \ldots$
Excepting the genus (3), we formulate other 2 genera as follows:
(8) For $(8 k+1) / 3$ per the remainder $=0$, there are $4 /(8 k+1)=1 /(8 k+1) / 3+$ $1 /(8 \mathrm{k}+2)+1 /(8 \mathrm{k}+1)(8 \mathrm{k}+2)$.

Due to $\mathrm{k}=1+3 \mathrm{t}$ and $\mathrm{t} \geq 0$, there are $(8 \mathrm{k}+1) / 3=8 \mathrm{t}+3$, so we confirm that
$(8 \mathrm{k}+1) / 3$ in the preceding equation is an integer.
(9) For $(8 k+1) / 3$ per the remainder $=2$, there are $4 /(8 k+1)=1 /(8 k+2) / 3+$ $1 /(8 \mathrm{k}+1)+1 /(8 \mathrm{k}+1)(8 \mathrm{k}+2) / 3$.

Due to $\mathrm{k}=2+3 \mathrm{t}$ and $\mathrm{t} \geq 0$, there are $(8 \mathrm{k}+2) / 3=8 \mathrm{t}+6$, so we confirm that $(8 \mathrm{k}+2) / 3$ in the preceding equation is an integer.

4. Divide the unsolved genus into 5 sorts and formulate 3 sorts therein

For the unsolved genus $(8 k+1) / 3$ per the remainder $=1$ when $k=3+3 t$ and $t \geq 0$, i.e. $8 \mathrm{k}+1=25,49,73,97,121$ etc. we divide them into 5 sorts: $25+120 \mathrm{c}$, $49+120 \mathrm{c}, 73+120 \mathrm{c}, 97+120 \mathrm{c}$ and $121+120 \mathrm{c}$ where $\mathrm{c} \geq 0$, and ut infra.

C $\backslash n:$	$25+120 c$,	$49+120 c$,	$73+120 c$,	$97+120 c$,	$121+120 c$,
0,	25,	49,	73,	97,	121,
1,	145,	169,	193,	217,	241,
2,	265,	289,	313,	337,	361,
\ldots,	\ldots,	\ldots,	\ldots,	\ldots,	\ldots,

Excepting $\mathrm{n}=49+120 \mathrm{c}$ and $\mathrm{n}=121+120 \mathrm{c}$, formulate other 3 sorts as follows:
(10) Forn $=25+120 \mathrm{c}$, there are $4 /(25+120 \mathrm{c})=1 /(25+120 \mathrm{c})+1 /(50+240 \mathrm{c})+1 /(10+48 \mathrm{c})$;
(11) For $n=73+120 c$, there are $4 /(73+120 c)=1 /(73+120 c)(10+15 c)+1 /(20+30 c)+$ 1/(73+120c)(4+6c);
(12) For $\mathrm{n}=97+120 \mathrm{c}$, there are $4 /(97+120 \mathrm{c})=1 /(25+30 \mathrm{c})+1 /(97+120 \mathrm{c})(50+60 \mathrm{c})+$ $1 /(97+120 c)(10+12 c)$.

For each of listed above 12 equations which express $4 / n=1 / x+1 / y+1 / z$,
please each reader self to make a check respectively.

5. Prove the sort $4 /(49+120 c)=1 / x+1 / y+1 / z$

For a proof of the sort $4 /(49+120 \mathrm{c})$, it means that when c is equal to each of positive integers plus 0 , there always are $4 /(49+120 c)=1 / x+1 / y+1 / z$. After c is given any value, $4 /(49+120 \mathrm{c})$ can be substituted by each of infinite more a sum of an unit fraction plus a proper fraction, and that these fractions are different from one another, as listed below:

```
4/(49+120c)
=1/(13+30c)+3/(13+30c)(49+120c)
=1/(14+30c)+7/(14+30c)(49+120c)
=1/(15+30c)+11/(15+30c)(49+120c)
=1/(13+\alpha+30c)+(3+4\alpha)/(13+\alpha+30c)(49+120c), where \alpha\geq0 and c\geq0
```

As listed above, we can first let $1 /(13+\alpha+30 c)=1 / x$, then go to prove $(3+4 \alpha) /(13+\alpha+30 c)(49+120 c)=1 / y+1 / z$, where $c \geq 0$ and $\alpha \geq 0$, ut infra.

Proof. First, we analyse $3+4 \alpha$ on the place of numerator, it is not hard to see, except $3+4 \alpha$ as one numerator, it can also be expressed as the sum of an even number plus an odd number to act as two numerators, i.e. $(4 \alpha+3)$, $(4 \alpha+2)+1,(4 \alpha+1)+2,(4 \alpha)+3,(4 \alpha-1)+4,(4 \alpha-2)+5,(4 \alpha-3)+6, \ldots$

If there are two addends on the place of numerator, then these two
addends are regarded as two matching numerators, and that two matching numerators are denoted by ψ and φ, also there is $\psi>\varphi$.

In numerators with the same denominator, largest ψ is denoted as ψ_{1}. It is obvious that ψ_{1} matches with smallest φ, and $\psi_{1}=4 \alpha+2$ and smallest $\varphi=1$.

And then let us think about the denominator $(13+\alpha+30 c)(49+120 c)$, actually just $13+\alpha+30 \mathrm{c}$ is enough, while reserve $49+120 \mathrm{c}$ for later.

In the fraction $(4 \alpha+3) /(13+\alpha+30 c)$, let each α be assigned a value for each time, according to the order $\alpha=0,1,2,3, \ldots$ So the denominator $13+\alpha+30$ c can be assigned into infinite more consecutive positive integers.

As the value of α goes up, accordingly numerators are getting more and more, and newly- added numerators are getting bigger and bigger.

When $\alpha=0,1,2,3$ and otherwise, the denominators $13+\alpha+30 \mathrm{c}$ and the numerators $4 \alpha+3, \psi$ and φ are listed below.

$13+\alpha+30 c$,	α,	$(4 \alpha+3)$,	$(4 \alpha+2)+1$,	$(4 \alpha+1)+2$,	$(4 \alpha)+3$,	$(4 \alpha-1)+4$,	$(4 \alpha-2)+5,(4 \alpha-3)+6, \ldots$
$13+30 c$,	0,	3,	$2+1$,	$1+2$			
$14+30 \mathrm{c}$,	1,	7,	$6+1$,	$5+2$,	$4+3$,	$3+4$,	$2+5$,
$15+30 \mathrm{c}$,	2,	11,	$10+1$,	$9+2$,	$8+3$,	$7+4$,	$6+5$,
$16+30 c$	3,	15,	$14+1$,	$13+2$,	$12+3$,	$11+4$,	$10+5$,
$17+30 c$	4,	19,	$18+1$,	$17+2$,	$16+3$,	$15+4$,	$14+5$,

As can be seen from the list above, every denominator $(13+\alpha+30 \mathrm{c})$ corresponds with two special matching numerators ψ_{1} and 1 , from this,
we get the unit fraction $1 /(13+\alpha+30 c)$.
For the unit fraction $1 /(13+\alpha+30 c)$, multiply its denominator by $49+120 \mathrm{c}$ reserved, then we get the unit fraction $1 /(13+\alpha+30 c)(49+120 c)$, and let $1 /(13+\alpha+30 c)(49+120 c)=1 / y$.

After that, we start to prove that $\psi_{1} /(13+\alpha+30$ c $)$ i.e. $(4 \alpha+2) /(13+\alpha+30 c)$ is an unit fraction.

Since the numerator $4 \alpha+2$ is an even number, such that the denominator $(13+\alpha+30 c)$ must be an even numbers. Only in this case, it can reduce the fraction, so α in the denominator $13+\alpha+30$ c is only an odd number.

After α is assigned to odd numbers $1,3,5$ and otherwise, and the fraction $(4 \alpha+2) /(13+\alpha+30 \mathrm{c})$ after the values assignment divided by 2 , then the fraction $(4 \alpha+2) /(13+\alpha+30 \mathrm{c})$ is turned into the fraction $(3+4 \mathrm{t}) /(\mathrm{k}+15 \mathrm{c})$ identically, where $\mathrm{c} \geq 0, \mathrm{t} \geq 0$ and $\mathrm{k} \geq 7$.

The point above is that $3+4 \mathrm{t}$ and $\mathrm{k}+15 \mathrm{c}$ after the values assignment make up a fraction, they are on the same order of taking values of t and k, according to the order from small to large, i.e. $(3+4 t) /(k+15 c)=3 /(7+15 c)$, $7 /(8+15 c), 11 /(9+15 c), \ldots$

Such being the case, let the numerator and denominator of the fraction $(3+4 t) /(k+15 c)$ divided by $3+4 t$, then we get a temporary indeterminate unit fraction, and its denominator is $(\mathrm{k}+15 \mathrm{c}) /(3+4 \mathrm{t})$, and its numerator is 1 . Thus, be necessary to prove that the denominator $(\mathrm{k}+15 \mathrm{c}) /(3+4 \mathrm{t})$ is able
to become a positive integer in which case $t \geq 0, k \geq 7$ and $\mathrm{c} \geq 0$.
In the fraction $(k+15 c) /(3+4 t)$, due to $k \geq 7$, the numerator $k+15 c$ after the values assignment are infinite more consecutive positive integers, while the denominator $3+4 t=3,7,11$ and otherwise positive odd numbers. The key above is that each value of $3+4 t$ after the values assignment can seek its integral multiples within infinite more consecutive positive integers of $\mathrm{k}+15 \mathrm{c}$, in which case $\mathrm{t} \geq 0, \mathrm{k} \geq 7$ and $\mathrm{c} \geq 0$.

As is known to all, there is a positive integer that contains the odd factor $2 \mathrm{n}+1$ within $2 \mathrm{n}+1$ consecutive positive integers, where $\mathrm{n}=1,2,3, \ldots$

Like that, there is a positive integer that contains the odd factor $3+4$ t within $3+4$ t consecutive positive integers of $k+15 \mathrm{c}$, no matter which odd number that $3+4 t$ is equal to, where $t \geq 0, k \geq 7$ and $c \geq 0$. It is obvious that a fraction that consists of such a positive integer as the numerator and $3+4$ t as the denominator is an improper fraction.

Undoubtedly, every such improper fraction that is found in this way, via the reduction, it is surely a positive integer.

That is to say, $(\mathrm{k}+15 \mathrm{c}) /(3+4 \mathrm{t})$ as the denominator of the aforesaid temporary indeterminate unit fraction can become a positive integer, and the positive integer is represented by μ, and thus in this case the fraction $(3+4 \mathrm{t}) /(\mathrm{k}+15 \mathrm{c})$ is exactly $1 / \mu$.

For the unit fraction $1 / \mu$, multiply its denominator by $49+120 \mathrm{c}$ reserved,
then we get the unit fraction $1 / \mu(49+120 c)$, and let $1 / \mu(49+120 c)=1 / z$. If $3+4 \alpha$ serve as one numerator, we get $(3+4 \alpha) /(13+\alpha+30 c)(49+120 c)=1 / \mathrm{y}$ likewise by the method of proving $\psi_{1} /(13+\alpha+30 c)(49+120 c)=1 / \mathrm{z}$. When $3+4 \alpha$ serve as one numerator and from this get an unit fraction, we can multiply the denominator of the unit fraction by 2 to make a sum of two identical unit fractions, then convert them into the sum of two each other's -distinct unit fractions by the formula $1 / 2 \mathrm{r}+1 / 2 \mathrm{r}=1 /(\mathrm{r}+1)+1 / \mathrm{r}(\mathrm{r}+1)$.

Thus it can be seen, the fraction $(3+4 \alpha) /(13+\alpha+30 c)(49+120 c)$ is surely able to be expressed into a sum of two each other's -distinct unit fractions, where $\mathrm{c} \geq 0$ and $\alpha \geq 0$.

Overall, there are $4 /(49+120 c)=1 /(13+\alpha+30 c)+1 /(13+\alpha+30 c)(49+120 c)$ $+1 / \mu(49+120 c)$, where $\alpha \geq 0, \mu$ is an integer and $\mu=(k+15 c) /(3+4 t), t \geq 0$, $\mathrm{k} \geq 7$ and $\mathrm{c} \geq 0$.

In other words, we have proved $4 /(49+120 c)=1 / x+1 / y+1 / z$.

6. Prove the sort $4 /(121+120 c)=1 / x+1 / y+1 / z$

The proof in this section is exactly similar to that in the section 5 . Namely, for a proof of the sort $4 /(121+120 \mathrm{c})$, it means that when c is equal to each of positive integers plus 0 , there always are $4 /(121+120 c)=1 / x+1 / y+1 / z$. After c is given any value, $4 /(121+120 \mathrm{c})$ can be substituted by each of infinite more a sum of an unit fraction plus a proper fraction, and that these fractions are different from one another, as listed below.

4/(121+120c)
$=1 /(31+30 c)+3 /(31+30 c)(121+120 c)$,
$=1 /(32+30 \mathrm{c})+7 /(32+30 \mathrm{c})(121+120 \mathrm{c})$,
$=1 /(33+30 c)+11 /(33+30 c)(121+120 c)$,
$=1 /(31+\alpha+30 \mathrm{c})+(3+4 \alpha) /(31+\alpha+30 \mathrm{c})(121+120 \mathrm{c})$, where $\alpha \geq 0$ and $\mathrm{c} \geq 0$.

As listed above, we can first let $1 /(31+\alpha+30 c)=1 / \mathrm{x}$, then go to prove $(3+4 \alpha) /(31+\alpha+30 c)(121+120 c)=1 / \mathrm{y}+1 / \mathrm{z}$, where $\mathrm{c} \geq 0$ and $\alpha \geq 0$, ut infra. Proof. First, we analyse $3+4 \alpha$ on the place of numerator, it is not hard to see, except $3+4 \alpha$ as one numerator, it can also be expressed as the sum of an even number and an odd number to act as two numerators, i.e. $(4 \alpha+3)$, $(4 \alpha+2)+1,(4 \alpha+1)+2,(4 \alpha)+3,(4 \alpha-1)+4,(4 \alpha-2)+5,(4 \alpha-3)+6, \ldots$

If there are two addends on the place of numerator, then these two addends are regarded as two matching numerators, and that two matching numerators are denoted by ψ and φ, also there is $\psi>\varphi$.

In numerators with the same denominator, largest ψ is denoted as ψ_{1}. It is obvious that ψ_{1} matches with smallest φ, and $\psi_{1}=4 \alpha+2$ and smallest $\varphi=1$.

And then let us think about the denominator $(31+\alpha+30 c)(121+120 c)$, actually just $31+\alpha+30 \mathrm{c}$ is enough, while reserve $121+120 \mathrm{c}$ for later.

In the fraction $(4 \alpha+3) /(31+\alpha+30 c)$, let each α be assigned a value for each
time, according to the order $\alpha=0,1,2,3, \ldots$ So the denominator $31+\alpha+30$ c can be assigned into infinite more consecutive positive integers.

As the value of α goes up, accordingly, numerators are getting more and more, and newly- added numerators are getting bigger and bigger.

When $\alpha=0,1,2,3$ and otherwise, the denominators $31+\alpha+30 \mathrm{c}$ and the numerators $4 \alpha+3, \psi$ and φ are listed below.
$31+\alpha+30 \mathrm{c}, \alpha,(4 \alpha+3),(4 \alpha+2)+1,(4 \alpha+1)+2,(4 \alpha)+3,(4 \alpha-1)+4,(4 \alpha-2)+5,(4 \alpha-3)+6, \ldots$
$31+30 \mathrm{c}, \quad 0, \quad 3, \quad 2+1, \quad 1+2$
$32+30 \mathrm{c}, \quad 1,7, \quad 6+1, \quad 5+2, \quad 4+3, \quad 3+4, \quad 2+5, \quad 1+6$
$33+30 \mathrm{c}, \quad 2, \quad 11, \quad 10+1, \quad 9+2, \quad 8+3, \quad 7+4, \quad 6+5, \quad 5+6, \ldots$
$34+30 \mathrm{c}, \quad 3, \quad 15, \quad 14+1, \quad 13+2, \quad 12+3, \quad 11+4, \quad 10+5, \quad 9+6, \ldots$
$35+30 \mathrm{c}, \quad 4, \quad 19, \quad 18+1, \quad 17+2, \quad 16+3, \quad 15+4, \quad 14+5,13+6, \ldots$

As can be seen from the list above, every denominator $(31+\alpha+30 \mathrm{c})$ corresponds with two special matching numerators ψ_{1} and 1 , from this, we get the unit fraction $1 /(31+\alpha+30 c)$.

For the unit fraction $1 /(31+\alpha+30 c)$, multiply its denominator by $121+120 \mathrm{c}$ reserved, then we get the unit fraction $1 /(31+\alpha+30 c)(121+120 \mathrm{c})$, and let $1 /(31+\alpha+30 c)(121+120 c)=1 / y$.

After that, we start to prove that $\psi_{1} /(31+\alpha+30$ c $)$ i.e. $(4 \alpha+2) /(31+\alpha+30 \mathrm{c})$ is an unit fraction.

Since the numerator $4 \alpha+2$ is an even number, such that the denominator
$(31+\alpha+30 c)$ must be an even numbers. Only in this case, it can reduce the fraction, so α in the denominator $31+\alpha+30 \mathrm{c}$ is only an odd number.

After α is assigned to odd numbers 1, 3, 5 and otherwise, and the fraction $(4 \alpha+2) /(31+\alpha+30 c)$ after the values assignment divided by 2 , then the fraction $(4 \alpha+2) /(31+\alpha+30 c)$ is turned into the fraction $(3+4 t) /(m+15 c)$ identically, where $\mathrm{c} \geq 0, \mathrm{t} \geq 0$ and $\mathrm{m} \geq 16$.

The point above is that $3+4 \mathrm{t}$ and $\mathrm{m}+15 \mathrm{c}$ after the values assignment make up a fraction, they are on the same order of taking values of t and k, according to the order from small to large, i.e. $(3+4 \mathrm{t}) /(\mathrm{m}+15 \mathrm{c})=$ $3 /(16+15 c), 7 /(17+15 c), 11 /(18+15 c), \ldots$

Such being the case, let the numerator and denominator of the fraction $(3+4 t) /(m+15 c)$ divided by $3+4 t$, then we get a temporary indeterminate unit fraction, and its denominator is $(\mathrm{m}+15 \mathrm{c}) /(3+4 \mathrm{t})$, and its numerator is 1 . Thus, be necessary to prove that the denominator $(\mathrm{m}+15 \mathrm{c}) /(3+4 \mathrm{t})$ is able to become a positive integer in which case $t \geq 0, m \geq 16$ and $c \geq 0$.

In the fraction $(m+15 c) /(3+4 t)$, due to $m \geq 16$, the numerator $m+15 c$ after the values assignment are infinite more consecutive positive integers, while the denominator $3+4 t=3,7,11$ and otherwise positive odd numbers. The key above is that each value of $3+4 t$ after the values assignment can seek its integral multiples within infinite more consecutive positive integers of $\mathrm{m}+15 \mathrm{c}$, in which case $\mathrm{t} \geq 0, \mathrm{~m} \geq 16$ and $\mathrm{c} \geq 0$.

As is known to all, there is a positive integer that contains the odd factor $2 \mathrm{n}+1$ within $2 \mathrm{n}+1$ consecutive positive integers, where $\mathrm{n}=1,2,3, \ldots$

Like that, there is a positive integer that contains the odd factor $3+4$ t within $3+4 t$ consecutive positive integers of $m+15 \mathrm{c}$, no matter which odd number that $3+4 t$ is equal to, where $t \geq 0, m \geq 16$ and $c \geq 0$. It is obvious that a fraction that consists of such a positive integer as the numerator and $3+4 t$ as the denominator is an improper fraction.

Undoubtedly, every such improper fraction that is found in this way, via the reduction, it is surely a positive integer.

That is to say, $(\mathrm{m}+15 \mathrm{c}) /(3+4 \mathrm{t})$ as the denominator of the aforesaid temporary indeterminate unit fraction can become a positive integer, and the positive integer is represented by λ, and thus in this case, the fraction $(3+4 t) /(m+15 c)$ is exactly $1 / \lambda$.

For the unit fraction $1 / \lambda$, multiply its denominator by $121+120 \mathrm{c}$ reserved, then we get the unit fraction $1 / \lambda(121+120 c)$, and let $1 / \lambda(121+120 c)=1 / z$. If $3+4 \alpha$ serve as one numerator, we get $(3+4 \alpha) /(31+\alpha+30 c)(121+120 c)=1 / y$ likewise by the method of proving $\psi_{1} /(31+\alpha+30 c)(121+120 c)=1 / z$. When $3+4 \alpha$ serve as one numerator and from this get an unit fraction, we can multiply the denominator of the unit fraction by 2 to make a sum of two identical unit fractions, then convert them into the sum of two each other's -distinct unit fractions by the formula $1 / 2 \mathrm{r}+1 / 2 \mathrm{r}=1 /(\mathrm{r}+1)+1 / \mathrm{r}(\mathrm{r}+1)$.

Thus it can be seen, the fraction $(3+4 \alpha) /(31+\alpha+30 c)(121+120 c)$ is surely able to be expressed into a sum of two each other's -distinct unit fractions, where $c \geq 0$ and $\alpha \geq 0$.

Overall, there are $4 /(121+120 c)=1 /(31+\alpha+30 c)+1 /(31+\alpha+30 c)(121+120 c)$ $+1 / \lambda(121+120 \mathrm{c})$, where $\alpha \geq 0, \lambda$ is an integer and $\lambda=(\mathrm{m}+15 \mathrm{c}) /(3+4 \mathrm{t}), \mathrm{t} \geq 0$, $\mathrm{m} \geq 16$, and $\mathrm{c} \geq 0$.

In other words, we have proved $4 /(121+120 c)=1 / x+1 / y+1 / z$.
The proof was thus brought to a close. As a consequence, the ErdösStraus conjecture is tenable.

References

[1] J. W. Sander, On $4 / x=1 / x+1 / y+1 / z$ and Iwaniec' Half Dimensional Sieve; Journal of Number Theory, Volume 46, Issue 2, February 1994, Pages 123-136;
https://www.sciencedirect.com/science/article/pii/S0022314X84710080?via\%3Dihub
[2] Wolfram Math world, the web's most extensive mathematics resource;
https://mathworld.wolfram.com/Erdos-StrausConjecture.html
[3] Konstantine Zelator, An ancient Egyptian problem: the diophantine equation $4 / n=1 / x+1 / y+1 / z, n>o r=2$; arXiv : 0912.2458;

