Definition and Applications of Anti-factorial.

Juan Elias Millas Vera
juanmillaszgz@gmail.com

Zaragoza (Spain)

August 2021

0- Abstract:

In this paper I want to show a new concept, the anti-factorial. This is the inverse operator of the factorial. I introduce a full (and necessary) new notation for this concept. The main idea is to develop an operator (notated by n_{i}) that is able of do the inverse form of an expanded number n to a contracted number k and if you do the factorial of k you will end up back at n , that is $\mathrm{k}!=\mathrm{n}$.

1- Introduction:

Firstly we are going to introduce some concepts and notations. Factorial of n is the function defined on the set of non-negative integers with value at n equal to the product of the natural numbers from 1 to n . [1] Or what is the same, product from n to 1 . In formula:

$$
\text { (1) } n!=1 \cdot 2 \cdot \ldots \cdot(n-2) \cdot(n-1) \cdot n=n \cdot(n-1) \cdot(n-2) \cdot \ldots \cdot 2 \cdot 1
$$

Now we are going to see a review of my first paper "New nomenclature in operators" [2]. In that article I submitted four new type of serial operators (restory, divisory, exponentory and rootory), but for this topic we only need the help of one of them, the divisory. To have a broad vision of the tools that we need lets to a review of the first two in comparative with the classic operators:

- Summation or Sigma notation: Is the serial operator which sums from a number a to a number b a determinate function $f(n)$.
(2) $\sum_{n=a}^{b} f(n)=+f(a)+f(a+1)+f(a+2)+\ldots+f(b-2)+f(b-1)+f(b)$

$$
n=a
$$

If the function are represented just for n , we have simply:

$$
\text { (3) } \sum_{n=a}^{b} n=+a+(a+1)+(a+2)+\ldots+(b-2)+(b-1)+b
$$

- Restory or Rho notation: Is the serial operator which subtracts from a number a to a number b a determinate function $f(n)$.

$$
\text { (4) } \underset{n=a}{\mathrm{P}} \underset{n=a}{\mathrm{P}} f(n)=-f(a)-f(a+1)-f(a+2)-\ldots-f(b-2)-f(b-1)-f(b)
$$

In this case also, we can have the most simple theoretical example:

$$
\text { (5) } \stackrel{b}{\mathrm{P}} n=-a-(a+1)-(a+2)-\ldots-(b-2)-(b-1)-b
$$

- Product or Pi notation: Is the serial operator which multiplies from a number a to a number b in a determinate function $f(n)$. If we want, we can see this operator as the evolution of the primitive factorial operator. Pi notation permits us to realize the ordered serial products between two different numbers or functions.

$$
\text { (5) } \prod_{n=a}^{b} f(n)=f(a) \cdot f(a+1) \cdot f(a+2) \cdot \ldots \cdot f(b-2) \cdot f(b-1) \cdot f(b)
$$

We will see too which is the easiest form of this serial operator:

$$
\text { (6) } \prod_{n=a}^{b} n=a \cdot(a+1) \cdot(a+2) \cdot \ldots \cdot(b-2) \cdot(b-1) \cdot b
$$

Now we are going to compare it to the factorial:

$$
\text { (7) } n!=\prod_{m=1}^{n} m=1 \cdot 2 \cdot \ldots \cdot(n-2) \cdot(n-1) \cdot n
$$

Next step, is just define the inverse function of product, which is obviously division.

- Divisory of Delta notation: Is the serial operator which divides from a number a to a number b in a determinate function $f(n)$.

$$
\text { (8) }{ }_{n=a}^{b} f(n)=f(a) \div f(a+1) \div f(a+2) \div \ldots \div f(b-2) \div f(b-1) \div f(b)
$$

As we did in the previous operators, we are going to see the basic form of this serial operator with a function n :

$$
\text { (9) } \quad \stackrel{b}{\Delta} \begin{aligned}
& n=a
\end{aligned} n=a \div(a+1) \div(a+2) \div \ldots \div(b-2) \div(b-1) \div b
$$

2- Anti-factorial definition:

The anti-factorial $\left(n_{i}\right)$ is defined as the necessary operation which implies an ordered serial divisions by the numbers [1,2 ..., (k-1), k] of a number n. An anti-factorial will be successful if only if (A) the operations end in the number 1 independently of the number of steps and (B) $k!=n$. In formula:

Where:
" n ": the number (constant) we want to analyze.
"m": The variable of positive integers $=[1,2, \ldots,(k-1), k]$
" k ": the number of the resulting factorial.

In the other hand if the result of any step of the ordered serial divisions we have a non-integer number, we can assure that n is not the result of any factorial number.

3- Examples:

Two cases with successful anti-factorial:

$$
\begin{aligned}
& \text { (11) } 6_{i}={ }_{\Delta}^{k} 6 \div m=(((6 \div 1) \div 2) \div 3)=((6 \div 2) \div 3)=3 \div 3=1 \quad \Rightarrow \quad k!=3!=6 \\
& m=1 \\
& \text { (12) } \quad 120_{i}=\begin{array}{l}
k \\
\Delta
\end{array} 120 \div m=((((120 \div 1) \div 2) \div 3) \div 4) \div 5=(((120 \div 2) \div 3) \div 4) \div 5= \\
& m=1 \\
& =((60 \div 3) \div 4) \div 5=(20 \div 4) \div 5=5 \div 5=1 \quad \Rightarrow \quad k!=5!=120
\end{aligned}
$$

Now two cases where an exact result is not possible:
(14) $\quad 140_{i}={ }_{m=1}^{k} 140 \div m=(((140 \div 1) \div 2) \div 3=(140 \div 2) \div 3)=70 \div 3=23 . \hat{3} \quad \Rightarrow 23 . \hat{3} \notin \mathbb{N} \Rightarrow \nexists k$

4- Conclusions:

As we have seen, this is an application of the divisory operator, a powerful mathematical tool. It may have more applications of course, but for the moment this paper confirms the usefulness of the new serial operators.

5- References:

[1] https://encyclopediaofmath.org/wiki/Factorial
[2] Millas Vera, Juan Elias (2020) https://vixra.org/abs/2010.0077

