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Abstract 

 Generators in generative adversarial networks 

map latent distributions into data distributions. 

GAN inversion is mapping data distribution to 

latent distribution by inverting the generator of 

GAN.  

 In this paper, I introduce a direction 

embedding discriminator GAN in which the 

discriminator learns the inverse mapping of the 

generator. In the suggested method, when the 

latent vector is sampled from an i.i.d. 

(independent and identically distributed) 

random variable, the latent vector is considered 

as angular coordinates of spherical coordinates. 

Thus, the latent vector can be transformed into 

a point on the surface of the hypersphere in 

cartesian coordinates. 

 Discriminator embeds the generated data 

point into cartesian coordinates. The direction 

of embedded coordinates represents predicted 

cartesian coordinates of latent vector, and the 

log of magnitude represents an adversarial 

value (real/fake). The generator and 

discriminator are trained cooperative to 

decrease the angle between the embedded 

cartesian coordinates from the discriminator 

and the cartesian coordinates converted from 

the latent vector considered as angular 

coordinates of spherical coordinates. The 

suggested method can be applied during GAN 

training, does not require additional encoder 

training, and does not use a reconstruction loss. 

 

1. Introduction 

It is very useful to learn the inverse transform 

of the generator of GAN. It can perform the role 

of feature learning or can be used for various 

useful applications such as data manipulation. 

Many useful applications and methods for GAN 

inversion are introduced in the GAN inversion 

survey paper [1]. 

In this paper, I introduce direction embedding 

discriminator GAN that a discriminator learns 

the inverse mapping of a generator during the 

GAN training. Unlike the previous methods of 

training an additional encoder with a 

reconstruction loss after training GAN, the 

suggested method does not require an 

additional encoder and does not use a 

reconstruction loss.  

 



2. Training of direction embedding 

discriminator GAN 

 In this section, I introduce a method for the 

discriminator 𝐷 to learn the inverse mapping 

of the generator 𝐺. 

 In suggested method, when the latent vector 

𝑧  is sampled from i.i.d. random variable, the 

latent vector 𝑧  is considered as angular 

coordinates of spherical coordinates. When the 

radius is set to 1, and the dimension of the 

latent vector is 𝑑 , the latent vector 𝑧  can be 

considered as spherical coordinates and can be 

transformed into a point on the surface of the 

hypersphere defined in 𝑑 + 1  dimension 

cartesian coordinates, whose center is 0 and the 

radius is 1. Discriminator 𝐷  embeds the 

generated data 𝐺(𝑧 ) into 𝑑 + 1 dimensional 

cartesian coordinates. The direction of 

embedded coordinates represents cartesian 

coordinates of latent vector, and the log of 

magnitude represents an adversarial value 

(real/fake).  

 Both the generator 𝐺 and the discriminator 𝐷 

are trained to decrease the angle between the 

cartesian latent vector 𝑧  and the vector 

embedded by the discriminator.  

 The discriminator is trained to lower the log 

magnitude of the embedded vector when the 

input is real data and to raise it when input is 

generated data. The generator is trained to 

lower the log magnitude of the embedded 

vector of generated data. 

 The following algorithm shows the process of 

obtaining the generator and discriminator loss 

of the proposed method. 

 

𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 𝐺𝑒𝑡𝐿𝑜𝑠𝑠(𝐷, 𝐺, 𝑥):  

1   𝑧 ← 𝑠𝑎𝑚𝑝𝑙𝑒 𝑈 0,  

2   𝑧 ← 𝑠𝑝ℎ𝑒𝑟𝑖𝑐𝑎𝑙 𝑡𝑜 𝑐𝑎𝑟𝑡𝑒𝑠𝑖𝑎𝑛(𝑧 )  

 

3   𝑧 ← 𝐷 𝐺(𝑧 )  

4   𝑣 ← log(‖𝑧 ‖ ) 

5   𝑣  ← log(‖𝐷(𝑥)‖ )  

 

6   𝑧 ←
‖ ‖

  

7   𝐿 ← 𝑡𝑎𝑛 𝑎𝑟𝑐𝑐𝑜𝑠(𝑧 ∙ 𝑧 )   

 

8   𝐿 ← 𝑓 (𝑣 ) + 𝑓 𝑣 + λ 𝐿   

9   𝐿 ← 𝑓 𝑣 + 𝜆 𝐿   

10  𝑟𝑒𝑡𝑢𝑟𝑛 𝐿 , 𝐿   

Algorithm 1. Loss function to train direction embedding 

discriminator GAN 

In the above algorithm, 𝐷 , 𝐺 , and 𝑥 

represent discriminator, generator, and real data, 

respectively.  

In line 1, 𝑈 0,  is a 𝑑  dimensional i.i.d. 

random variable following uniform distribution 

in range 0, . 𝑠𝑎𝑚𝑝𝑙𝑒  is a function that 

samples a single value from a random variable. 

𝑧  is a (spherical) latent vector. Also, 𝑧  is the 

input of generator 𝐺.  

In line 2, 𝑧  is cartesian latent vector. 



𝑠𝑝ℎ𝑒𝑟𝑖𝑐𝑎𝑙 𝑡𝑜 𝑐𝑎𝑟𝑡𝑒𝑠𝑖𝑎𝑛  is a function that 

converts spherical coordinates to cartesian 

coordinates. All input values of this function 

exist within the range 0, , and the radius for 

the function is set to 1. That is, all elements in 

cartesian latent vector 𝑧  are positive, and the 

L2 norm of the vector is always 1. Also, when 

the dimension of the input vector is 𝑑 , the 

dimension of the output vector 𝑑  is 𝑑 + 1.  

In line 3, The discriminator embeds the 

generated data 𝐺(𝑧 ) to the embedded vector 

𝑧 . The input of the generator 𝐺 is the spherical 

latent vector 𝑧 . Since 𝑧  follows a uniform 

distribution, by adding a quantile function to 

preprocessing of the generator, the neural 

network part of the generator can be trained 

with any desired distribution such as 𝑈(−1,1) 

or 𝑁(0,1). 

In lines 4 and 5, ‖𝐷(𝑥)‖  and ‖𝑧 ‖  

represents the magnitude (L2 norm) of 

embedded vectors of real data and generated 

data, respectively. 𝑣  and 𝑣  are adversarial 

values for generated data and real data, 

respectively. Since the magnitude of the vector 

is always positive, log  is added so that the 

adversarial value can have a negative value. 

In line 6, 𝑧  is the predicted cartesian latent 

vector by the discriminator. As previously 

defined, all elements of a cartesian latent vector 

𝑧  are positive. Therefore, the predict cartesian 

latent vector 𝑧  must also have all elements 

positive. I used the 𝑠𝑜𝑓𝑡𝑝𝑙𝑢𝑠  function ( 𝑦 =

log(1 + 𝑒 )) for discriminator output activation 

so that discriminator always outputs positive 

vectors. 

In lines 7, “∙”, 𝑎𝑟𝑐𝑐𝑜𝑠, and 𝑡𝑎𝑛 represents an 

inner product, arccos function, and tangent 

function, respectively. Since the L2 norm of both 

cartesian latent vector 𝑧  and predicted 

cartesian latent vector 𝑧  are 1, the dot 

product of the two vectors is cosine similarity. 

Therefore, embedding loss 𝐿  is the tangent 

of the angle between the two vectors. 

Embedding loss 𝐿  makes predicted 

cartesian latent vector 𝑧  in the same direction 

as cartesian latent vector 𝑧 . The following 

figure shows the visualization of embedding 

loss 𝐿 . 

 

Figure 1. Embedding loss visualization. 

In the figure above, the purple arrow 

represents embedding loss 𝐿 . Embedding 

loss 𝐿  makes predicted cartesian latent 

vector 𝑧  to move in the same direction as 

cartesian latent vector 𝑧 . 𝜃  is the angle 

between two vectors 𝑧  and 𝑧 . Since the 

radius is assumed to be 1, 𝑟 in the figure is 1. 

Also, since all elements of cartesian latent 

vector 𝑧  and predicted cartesian latent vector 



𝑧  are always positive, 𝐿  is always greater 

than or equal to zero.  

 In lines 8 and 9, 𝑓 , 𝑓 , and 𝑓  are adversarial 

loss functions. There are several adversarial loss 

functions such as Original GAN [2], NSGAN [3], 

LSGAN [4], WGAN-gp [5], etc. Note that the 

discriminator is trained to lower 𝑣  and raise 

𝑣 , and the generator is trained to lower 𝑣 . 

This is because the latent vector of real data is 

unknown, so if real data is mapped to a vector 

with a very large magnitude in the wrong 

direction, it is difficult to move it to the correct 

direction. Also, if the magnitude of the 

embedded vector for the generated data is too 

low, the direction changes too quickly, make 

training difficult. 𝐿  and 𝐿  represent 

discriminator loss and generator loss, 

respectively. 𝜆  is the embedding loss 

weight. One can see that the embedding loss 

𝐿  is applied to both the generator and the 

discriminator. 

The direction embedding discriminator GAN is 

trained to minimize the losses 𝐿  and 𝐿 . This 

algorithm allows the discriminator to learn the 

inversion mapping of the generator.  

When performing inversion, one can simply 

obtain a spherical latent vector from the input 

data through the 𝑐𝑎𝑟𝑡𝑒𝑠𝑖𝑎𝑛 𝑡𝑜 𝑠𝑝ℎ𝑒𝑟𝑖𝑐𝑎𝑙 

function, which is an inverse function of 

𝑠𝑝ℎ𝑒𝑟𝑖𝑐𝑎𝑙 𝑡𝑜 𝑐𝑎𝑟𝑡𝑒𝑠𝑖𝑎𝑛 . Additionally, since the 

𝑠𝑝ℎ𝑒𝑟𝑖𝑐𝑎𝑙 𝑡𝑜 𝑐𝑎𝑟𝑡𝑒𝑠𝑖𝑎𝑛  function assumes the 

radius is 1, the input vector of the 

𝑐𝑎𝑟𝑡𝑒𝑠𝑖𝑎𝑛 𝑡𝑜 𝑠𝑝ℎ𝑒𝑟𝑖𝑐𝑎𝑙  function should be 

normalized. Thus, the spherical latent vector of 

the input data 𝑥  is 

𝑐𝑎𝑟𝑡𝑒𝑠𝑖𝑎𝑛 𝑡𝑜 𝑠𝑝ℎ𝑒𝑟𝑖𝑐𝑎𝑙
( )

‖ ( )‖
. 

 

3. Coordinate transform 

There are several ways to convert spherical 

coordinates to cartesian coordinates. However, 

when transforming spherical coordinates to 

cartesian coordinates through sequential 

transformation [6], underflow inevitably occurs 

because the latent vector dimension is very big.  

The following equations show the sequential 

transformation of spherical coordinates into 

cartesian coordinates. 

𝑥 = 𝑟𝑐𝑜𝑠(𝜑 ) 

𝑥 = 𝑟𝑠𝑖𝑛(𝜑 )𝑐𝑜𝑠(𝜑 ) 

𝑥 = 𝑟𝑠𝑖𝑛(𝜑 )𝑠𝑖𝑛(𝜑 )𝑐𝑜𝑠(𝜑 ) 

… 

𝑥 = 𝑟𝑠𝑖𝑛(𝜑 ) … 𝑠𝑖𝑛(𝜑 )𝑐𝑜𝑠(𝜑 ) 

𝑥 = 𝑟𝑠𝑖𝑛(𝜑 ) … 𝑠𝑖𝑛(𝜑 )𝑠𝑖𝑛(𝜑 ) 

𝑥  to 𝑥  represent cartesian coordinates. r is 

the radius of the spherical coordinates, and 𝜑  

to 𝜑  are the angular coordinates of the 

spherical coordinates.  

When transforming cartesian coordinates to 

spherical coordinates through sequential 

transformation, underflow occurs at 𝑥  with 

big 𝑛  because it has many 𝑠𝑖𝑛  and 𝑐𝑜𝑠 

multiplication—also, the error caused by 

continuous functions increases. 

Instead, I recommend converting the spherical 

coordinates into cartesian coordinates with a 

perfect binary tree [7]. For example, the 

transformation from an 8-dimensional spherical 

coordinate to cartesian coordinates through a 



perfect binary tree is as follows. 

𝑥 = 𝑟 sin(𝜑) sin(𝜑 ) sin(𝜑 ) 

𝑥 = 𝑟 sin(𝜑) sin(𝜑 ) cos(𝜑 ) 

𝑥 = 𝑟 sin(𝜑) cos(𝜑 ) sin(𝜑 ) 

𝑥 = 𝑟 sin(𝜑) cos(𝜑 ) cos(𝜑 ) 

𝑥 = 𝑟 cos(𝜑) sin(𝜑 ) sin(𝜑 ) 

𝑥 = 𝑟 cos(𝜑) sin(𝜑 ) cos(𝜑 ) 

𝑥 = 𝑟 cos(𝜑) cos(𝜑 ) sin(𝜑 ) 

𝑥 = 𝑟 cos(𝜑) cos(𝜑 ) cos(𝜑 ) 

Transformation in this paper always assumes a 

radius of 1, so 𝑟 is omitted in practice. With the 

sequential method, real numbers less than or 

equal to 1 are multiplied 𝑛 − 1 times in 𝑥 , but 

when using a perfect binary tree method, real 

numbers less than or equal to 1 are multiplied 

only log 𝑛 times. Therefore, underflow hardly 

occurs. In the above transformation, when the 

range of 𝜑 is set to 0, , all 𝑥  are always 

positive.  

Transformation of cartesian coordinates to 

spherical coordinates can be obtained through 

the proper expansion of equations. The 

following function shows a practical cartesian 

to spherical function. 

 

 

 

 

 

 

 

 

𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 𝑐𝑎𝑟𝑡𝑒𝑠𝑖𝑎𝑛 𝑡𝑜 𝑠𝑝ℎ𝑒𝑟𝑖𝑐𝑎𝑙(𝑧 ):  

𝑧 ← [ ]  

𝑡 ← 𝑧   

𝑟𝑒𝑝𝑒𝑎𝑡 log 𝑑  𝑡𝑖𝑚𝑒𝑠:  

    𝑎 ← 𝑡[𝑒𝑣𝑒𝑛 𝑖𝑛𝑑𝑒𝑥𝑒𝑠] 

𝑏 ← 𝑡[𝑜𝑑𝑑 𝑖𝑛𝑑𝑒𝑥𝑒𝑠]  

𝑧 . 𝑖𝑛𝑠𝑒𝑟𝑡 𝑓𝑟𝑜𝑛𝑡 𝑎𝑟𝑐𝑡𝑎𝑛   

𝑡 ← 𝑎 ⊙ 𝑎 + 𝑏 ⊙ 𝑏  

 

    𝑧 ← 𝑧 . 𝑓𝑙𝑎𝑡𝑡𝑒𝑛( )  

𝑟𝑒𝑡𝑢𝑟𝑛 𝑧   

Algorithm 3. Cartesian to spherical function 

‘[ ]‘ is an empty list, and ‘⊙’ is element-wise 

multiplication. 𝑓𝑙𝑎𝑡𝑡𝑒𝑛( )  is function that 

reshaping list to vector. 

In the above algorithm, it is assumed that all 

elements of 𝑧  are positive values.  

 

 

 

 

 

 

 

 

 

 



5. Experimental results and discussion 

5.1 Experiment settings 

 I trained the direction embedding 

discriminator GAN to generate the celeb A 

dataset [8] resized to 128x128 resolution. As the 

model architecture, a partially reduced version 

of styleGAN2 [9] was used. For the 

preprocessing of the generator, a quantile 

function of normal distribution was used so that 

the neural network part of the generator 

receives 𝑁(0,1)  as input. Batch operations 

(minibatch stddev layer) of StyleGAN2 are 

removed so that one data is embedded as one 

latent vector. As an adversarial loss, NSGAN [3] 

with r1 loss was used. The model was initially 

trained with an embedding loss weight 𝜆 =

1.0 , and then trained with 𝜆 = 10.0  after 

some training. The FID [10] of the model was 

about 25. 

 

 

 

 

 

 

 

 

 

 

 

5.2 Experiment results 

 

Figure 2. Generated images 

The above figure shows the data generated by 

the generator of the trained GAN. 

 

 

Figure 3. Reconstructed images with generated 

images 

 The above figure shows the reconstructed 

images from generated images. In each column 

separated by a thick white vertical line, the left 



images show the generated images, and the 

right images show the reconstructed images. 

One can see that the generated images are 

almost completely reconstructed. 

 

 

Figure 4. Reconstructed images with real (test) 

images 

 The above figure shows the reconstructed 

images from real (test) images. In each column 

separated by a thick white vertical line, the left 

images show the real images, and the right 

images show the reconstructed images. As the 

FID of the model is about 25, the performance 

of GAN is relatively poor, so one can see that 

the real images are not completely 

reconstructed. However, one can see that many 

features are preserved even for real images. 

 

6. Conclusion 

 In this paper, I proposed a method to make 

the discriminator learn the inversion mapping 

of the generator. Discriminator and generator 

are trained in cooperation to decrease angle 

between cartesian latent vector and predicted 

cartesian latent vector. In this way, the 

discriminator can learn the inversion mapping 

of the generator. Also, the proposed method 

can be used during GAN training and does not 

use additional encoder training or 

reconstruction loss. 
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Appendix 

 

 

Big size image of figure 2. Generated images 

 

 

 

 

 



 

Big size image of figure 3. Reconstructed images with generated images 

 

 

 

 

 

 



 

Big size image of figure 4. Reconstructed images with test images 

 

 

 

 

 

 

 


