
Inverting generator of GAN

through direction embedding discriminator
Jeongik Cho

jeongik.jo.01@gmail.com

Abstract

 Generators in generative adversarial networks

map latent distributions into data distributions.

GAN inversion is mapping data distribution to

latent distribution by inverting the generator of

GAN.

 In this paper, I introduce a direction

embedding discriminator GAN in which the

discriminator learns the inverse mapping of the

generator. In the suggested method, when the

latent vector is sampled from an i.i.d.

(independent and identically distributed)

random variable, the latent vector is considered

as angular coordinates of spherical coordinates.

Thus, the latent vector can be transformed into

a point on the surface of the hypersphere in

cartesian coordinates.

 Discriminator embeds the generated data

point into cartesian coordinates. The direction

of embedded coordinates represents predicted

cartesian coordinates of latent vector, and the

log of magnitude represents an adversarial

value (real/fake). The generator and

discriminator are trained cooperative to

decrease the angle between the embedded

cartesian coordinates from the discriminator

and the cartesian coordinates converted from

the latent vector considered as angular

coordinates of spherical coordinates. The

suggested method can be applied during GAN

training, does not require additional encoder

training, and does not use a reconstruction loss.

1. Introduction

It is very useful to learn the inverse transform

of the generator of GAN. It can perform the role

of feature learning or can be used for various

useful applications such as data manipulation.

Many useful applications and methods for GAN

inversion are introduced in the GAN inversion

survey paper [1].

In this paper, I introduce direction embedding

discriminator GAN that a discriminator learns

the inverse mapping of a generator during the

GAN training. Unlike the previous methods of

training an additional encoder with a

reconstruction loss after training GAN, the

suggested method does not require an

additional encoder and does not use a

reconstruction loss.

2. Training of direction embedding

discriminator GAN

 In this section, I introduce a method for the

discriminator 𝐷 to learn the inverse mapping

of the generator 𝐺.

 In suggested method, when the latent vector

𝑧 is sampled from i.i.d. random variable, the

latent vector 𝑧 is considered as angular

coordinates of spherical coordinates. When the

radius is set to 1, and the dimension of the

latent vector is 𝑑 , the latent vector 𝑧 can be

considered as spherical coordinates and can be

transformed into a point on the surface of the

hypersphere defined in 𝑑 + 1 dimension

cartesian coordinates, whose center is 0 and the

radius is 1. Discriminator 𝐷 embeds the

generated data 𝐺(𝑧) into 𝑑 + 1 dimensional

cartesian coordinates. The direction of

embedded coordinates represents cartesian

coordinates of latent vector, and the log of

magnitude represents an adversarial value

(real/fake).

 Both the generator 𝐺 and the discriminator 𝐷

are trained to decrease the angle between the

cartesian latent vector 𝑧 and the vector

embedded by the discriminator.

 The discriminator is trained to lower the log

magnitude of the embedded vector when the

input is real data and to raise it when input is

generated data. The generator is trained to

lower the log magnitude of the embedded

vector of generated data.

 The following algorithm shows the process of

obtaining the generator and discriminator loss

of the proposed method.

𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 𝐺𝑒𝑡𝐿𝑜𝑠𝑠(𝐷, 𝐺, 𝑥):

1 𝑧 ← 𝑠𝑎𝑚𝑝𝑙𝑒 𝑈 0,

2 𝑧 ← 𝑠𝑝ℎ𝑒𝑟𝑖𝑐𝑎𝑙 𝑡𝑜 𝑐𝑎𝑟𝑡𝑒𝑠𝑖𝑎𝑛(𝑧)

3 𝑧 ← 𝐷 𝐺(𝑧)

4 𝑣 ← log(‖𝑧 ‖)

5 𝑣 ← log(‖𝐷(𝑥)‖)

6 𝑧 ←
‖ ‖

7 𝐿 ← 𝑡𝑎𝑛 𝑎𝑟𝑐𝑐𝑜𝑠(𝑧 ∙ 𝑧)

8 𝐿 ← 𝑓 (𝑣) + 𝑓 𝑣 + λ 𝐿

9 𝐿 ← 𝑓 𝑣 + 𝜆 𝐿

10 𝑟𝑒𝑡𝑢𝑟𝑛 𝐿 , 𝐿

Algorithm 1. Loss function to train direction embedding

discriminator GAN

In the above algorithm, 𝐷 , 𝐺 , and 𝑥

represent discriminator, generator, and real data,

respectively.

In line 1, 𝑈 0, is a 𝑑 dimensional i.i.d.

random variable following uniform distribution

in range 0, . 𝑠𝑎𝑚𝑝𝑙𝑒 is a function that

samples a single value from a random variable.

𝑧 is a (spherical) latent vector. Also, 𝑧 is the

input of generator 𝐺.

In line 2, 𝑧 is cartesian latent vector.

𝑠𝑝ℎ𝑒𝑟𝑖𝑐𝑎𝑙 𝑡𝑜 𝑐𝑎𝑟𝑡𝑒𝑠𝑖𝑎𝑛 is a function that

converts spherical coordinates to cartesian

coordinates. All input values of this function

exist within the range 0, , and the radius for

the function is set to 1. That is, all elements in

cartesian latent vector 𝑧 are positive, and the

L2 norm of the vector is always 1. Also, when

the dimension of the input vector is 𝑑 , the

dimension of the output vector 𝑑 is 𝑑 + 1.

In line 3, The discriminator embeds the

generated data 𝐺(𝑧) to the embedded vector

𝑧 . The input of the generator 𝐺 is the spherical

latent vector 𝑧 . Since 𝑧 follows a uniform

distribution, by adding a quantile function to

preprocessing of the generator, the neural

network part of the generator can be trained

with any desired distribution such as 𝑈(−1,1)

or 𝑁(0,1).

In lines 4 and 5, ‖𝐷(𝑥)‖ and ‖𝑧 ‖

represents the magnitude (L2 norm) of

embedded vectors of real data and generated

data, respectively. 𝑣 and 𝑣 are adversarial

values for generated data and real data,

respectively. Since the magnitude of the vector

is always positive, log is added so that the

adversarial value can have a negative value.

In line 6, 𝑧 is the predicted cartesian latent

vector by the discriminator. As previously

defined, all elements of a cartesian latent vector

𝑧 are positive. Therefore, the predict cartesian

latent vector 𝑧 must also have all elements

positive. I used the 𝑠𝑜𝑓𝑡𝑝𝑙𝑢𝑠 function (𝑦 =

log(1 + 𝑒)) for discriminator output activation

so that discriminator always outputs positive

vectors.

In lines 7, “∙”, 𝑎𝑟𝑐𝑐𝑜𝑠, and 𝑡𝑎𝑛 represents an

inner product, arccos function, and tangent

function, respectively. Since the L2 norm of both

cartesian latent vector 𝑧 and predicted

cartesian latent vector 𝑧 are 1, the dot

product of the two vectors is cosine similarity.

Therefore, embedding loss 𝐿 is the tangent

of the angle between the two vectors.

Embedding loss 𝐿 makes predicted

cartesian latent vector 𝑧 in the same direction

as cartesian latent vector 𝑧 . The following

figure shows the visualization of embedding

loss 𝐿 .

Figure 1. Embedding loss visualization.

In the figure above, the purple arrow

represents embedding loss 𝐿 . Embedding

loss 𝐿 makes predicted cartesian latent

vector 𝑧 to move in the same direction as

cartesian latent vector 𝑧 . 𝜃 is the angle

between two vectors 𝑧 and 𝑧 . Since the

radius is assumed to be 1, 𝑟 in the figure is 1.

Also, since all elements of cartesian latent

vector 𝑧 and predicted cartesian latent vector

𝑧 are always positive, 𝐿 is always greater

than or equal to zero.

 In lines 8 and 9, 𝑓 , 𝑓 , and 𝑓 are adversarial

loss functions. There are several adversarial loss

functions such as Original GAN [2], NSGAN [3],

LSGAN [4], WGAN-gp [5], etc. Note that the

discriminator is trained to lower 𝑣 and raise

𝑣 , and the generator is trained to lower 𝑣 .

This is because the latent vector of real data is

unknown, so if real data is mapped to a vector

with a very large magnitude in the wrong

direction, it is difficult to move it to the correct

direction. Also, if the magnitude of the

embedded vector for the generated data is too

low, the direction changes too quickly, make

training difficult. 𝐿 and 𝐿 represent

discriminator loss and generator loss,

respectively. 𝜆 is the embedding loss

weight. One can see that the embedding loss

𝐿 is applied to both the generator and the

discriminator.

The direction embedding discriminator GAN is

trained to minimize the losses 𝐿 and 𝐿 . This

algorithm allows the discriminator to learn the

inversion mapping of the generator.

When performing inversion, one can simply

obtain a spherical latent vector from the input

data through the 𝑐𝑎𝑟𝑡𝑒𝑠𝑖𝑎𝑛 𝑡𝑜 𝑠𝑝ℎ𝑒𝑟𝑖𝑐𝑎𝑙

function, which is an inverse function of

𝑠𝑝ℎ𝑒𝑟𝑖𝑐𝑎𝑙 𝑡𝑜 𝑐𝑎𝑟𝑡𝑒𝑠𝑖𝑎𝑛 . Additionally, since the

𝑠𝑝ℎ𝑒𝑟𝑖𝑐𝑎𝑙 𝑡𝑜 𝑐𝑎𝑟𝑡𝑒𝑠𝑖𝑎𝑛 function assumes the

radius is 1, the input vector of the

𝑐𝑎𝑟𝑡𝑒𝑠𝑖𝑎𝑛 𝑡𝑜 𝑠𝑝ℎ𝑒𝑟𝑖𝑐𝑎𝑙 function should be

normalized. Thus, the spherical latent vector of

the input data 𝑥 is

𝑐𝑎𝑟𝑡𝑒𝑠𝑖𝑎𝑛 𝑡𝑜 𝑠𝑝ℎ𝑒𝑟𝑖𝑐𝑎𝑙
()

‖ ()‖
.

3. Coordinate transform

There are several ways to convert spherical

coordinates to cartesian coordinates. However,

when transforming spherical coordinates to

cartesian coordinates through sequential

transformation [6], underflow inevitably occurs

because the latent vector dimension is very big.

The following equations show the sequential

transformation of spherical coordinates into

cartesian coordinates.

𝑥 = 𝑟𝑐𝑜𝑠(𝜑)

𝑥 = 𝑟𝑠𝑖𝑛(𝜑)𝑐𝑜𝑠(𝜑)

𝑥 = 𝑟𝑠𝑖𝑛(𝜑)𝑠𝑖𝑛(𝜑)𝑐𝑜𝑠(𝜑)

…

𝑥 = 𝑟𝑠𝑖𝑛(𝜑) … 𝑠𝑖𝑛(𝜑)𝑐𝑜𝑠(𝜑)

𝑥 = 𝑟𝑠𝑖𝑛(𝜑) … 𝑠𝑖𝑛(𝜑)𝑠𝑖𝑛(𝜑)

𝑥 to 𝑥 represent cartesian coordinates. r is

the radius of the spherical coordinates, and 𝜑

to 𝜑 are the angular coordinates of the

spherical coordinates.

When transforming cartesian coordinates to

spherical coordinates through sequential

transformation, underflow occurs at 𝑥 with

big 𝑛 because it has many 𝑠𝑖𝑛 and 𝑐𝑜𝑠

multiplication—also, the error caused by

continuous functions increases.

Instead, I recommend converting the spherical

coordinates into cartesian coordinates with a

perfect binary tree [7]. For example, the

transformation from an 8-dimensional spherical

coordinate to cartesian coordinates through a

perfect binary tree is as follows.

𝑥 = 𝑟 sin(𝜑) sin(𝜑) sin(𝜑)

𝑥 = 𝑟 sin(𝜑) sin(𝜑) cos(𝜑)

𝑥 = 𝑟 sin(𝜑) cos(𝜑) sin(𝜑)

𝑥 = 𝑟 sin(𝜑) cos(𝜑) cos(𝜑)

𝑥 = 𝑟 cos(𝜑) sin(𝜑) sin(𝜑)

𝑥 = 𝑟 cos(𝜑) sin(𝜑) cos(𝜑)

𝑥 = 𝑟 cos(𝜑) cos(𝜑) sin(𝜑)

𝑥 = 𝑟 cos(𝜑) cos(𝜑) cos(𝜑)

Transformation in this paper always assumes a

radius of 1, so 𝑟 is omitted in practice. With the

sequential method, real numbers less than or

equal to 1 are multiplied 𝑛 − 1 times in 𝑥 , but

when using a perfect binary tree method, real

numbers less than or equal to 1 are multiplied

only log 𝑛 times. Therefore, underflow hardly

occurs. In the above transformation, when the

range of 𝜑 is set to 0, , all 𝑥 are always

positive.

Transformation of cartesian coordinates to

spherical coordinates can be obtained through

the proper expansion of equations. The

following function shows a practical cartesian

to spherical function.

𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 𝑐𝑎𝑟𝑡𝑒𝑠𝑖𝑎𝑛 𝑡𝑜 𝑠𝑝ℎ𝑒𝑟𝑖𝑐𝑎𝑙(𝑧):

𝑧 ← []

𝑡 ← 𝑧

𝑟𝑒𝑝𝑒𝑎𝑡 log 𝑑 𝑡𝑖𝑚𝑒𝑠:

 𝑎 ← 𝑡[𝑒𝑣𝑒𝑛 𝑖𝑛𝑑𝑒𝑥𝑒𝑠]

𝑏 ← 𝑡[𝑜𝑑𝑑 𝑖𝑛𝑑𝑒𝑥𝑒𝑠]

𝑧 . 𝑖𝑛𝑠𝑒𝑟𝑡 𝑓𝑟𝑜𝑛𝑡 𝑎𝑟𝑐𝑡𝑎𝑛

𝑡 ← 𝑎 ⊙ 𝑎 + 𝑏 ⊙ 𝑏

 𝑧 ← 𝑧 . 𝑓𝑙𝑎𝑡𝑡𝑒𝑛()

𝑟𝑒𝑡𝑢𝑟𝑛 𝑧

Algorithm 3. Cartesian to spherical function

‘[]‘ is an empty list, and ‘⊙’ is element-wise

multiplication. 𝑓𝑙𝑎𝑡𝑡𝑒𝑛() is function that

reshaping list to vector.

In the above algorithm, it is assumed that all

elements of 𝑧 are positive values.

5. Experimental results and discussion

5.1 Experiment settings

 I trained the direction embedding

discriminator GAN to generate the celeb A

dataset [8] resized to 128x128 resolution. As the

model architecture, a partially reduced version

of styleGAN2 [9] was used. For the

preprocessing of the generator, a quantile

function of normal distribution was used so that

the neural network part of the generator

receives 𝑁(0,1) as input. Batch operations

(minibatch stddev layer) of StyleGAN2 are

removed so that one data is embedded as one

latent vector. As an adversarial loss, NSGAN [3]

with r1 loss was used. The model was initially

trained with an embedding loss weight 𝜆 =

1.0 , and then trained with 𝜆 = 10.0 after

some training. The FID [10] of the model was

about 25.

5.2 Experiment results

Figure 2. Generated images

The above figure shows the data generated by

the generator of the trained GAN.

Figure 3. Reconstructed images with generated

images

 The above figure shows the reconstructed

images from generated images. In each column

separated by a thick white vertical line, the left

images show the generated images, and the

right images show the reconstructed images.

One can see that the generated images are

almost completely reconstructed.

Figure 4. Reconstructed images with real (test)

images

 The above figure shows the reconstructed

images from real (test) images. In each column

separated by a thick white vertical line, the left

images show the real images, and the right

images show the reconstructed images. As the

FID of the model is about 25, the performance

of GAN is relatively poor, so one can see that

the real images are not completely

reconstructed. However, one can see that many

features are preserved even for real images.

6. Conclusion

 In this paper, I proposed a method to make

the discriminator learn the inversion mapping

of the generator. Discriminator and generator

are trained in cooperation to decrease angle

between cartesian latent vector and predicted

cartesian latent vector. In this way, the

discriminator can learn the inversion mapping

of the generator. Also, the proposed method

can be used during GAN training and does not

use additional encoder training or

reconstruction loss.

7. References

[1] https://arxiv.org/abs/2101.05278

[2] https://arxiv.org/abs/1406.2661

[3] https://arxiv.org/abs/1801.04406v4

[4] https://arxiv.org/abs/1611.04076

[5] https://arxiv.org/abs/1704.00028

[6] https://en.wikipedia.org/wiki/N-sphere

[7]

https://aip.scitation.org/doi/10.1063/1.527088

[8]

https://mmlab.ie.cuhk.edu.hk/projects/CelebA.h

tml

[9] https://arxiv.org/abs/1912.04958

[10] https://arxiv.org/abs/1706.08500

Appendix

Big size image of figure 2. Generated images

Big size image of figure 3. Reconstructed images with generated images

Big size image of figure 4. Reconstructed images with test images

