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1 Abstract

Let

Sj =
n∑

k=0

(
n

k

)
m

p

(a+ kd)j (1.1)

be the sums of product of powers of generalized binomial coefficients and arithmetic pro-
gression, where a, d, and p are any real or complex numbers, n and j are integers greater
than or equal to zero. Let

α(m,n,p) =
n∑

k=0

(
n

k

)
m

p

(1.2)

be the sums of real or complex powers of generalized binomial coefficients. In this paper,
we establish a relationship between S1, S2, S3, and α(m,n,p). Also, we establish a rela-
tionship between S1, S2, S3, S4, S5, and α(m,n,p). As a result, we establish a relationship
between the sum of an arithmetic progression, sum of squares of an arithmetic progression,
sum of cubes of an arithmetic progression, and the number of terms of an arithmetic pro-
gression. Also, we establish a relationship between the sum of an arithmetic progression,
sum of squares of an arithmetic progression, sum of cubes of an arithmetic progression,
sum of fourth powers of an arithmetic progression, sum of fifth powers of an arithmetic
progression and the number of terms of an arithmetic progression. We also give two new
different expressions for Franel numbers as well as the right-hand side of first Strehl identity.

Keywords: sums of powers of binomial coefficients, arithmetic progression, Franel
Numbers, first Strehl identity.
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2 Introduction

An arithmetic progression is a sequence of numbers such that the difference between
the consecutive terms is constant. For example, the sequence 1, 4, 7, 10, 13, 16, 19 · · · is an
arithmetic progression with a common difference of 3. The first number known as the first
term, the number of terms, the common difference, and the sum of n terms of an arithmetic
progression are denoted by a, d, n, and Sn resprectively . Hence, the formula for finding
the sum of n terms of an arithmetic progression is:

Sn =
n

2
(2a+ (n− 1)d).

The binomial expansion describes the expansion of (x+ y)n, for any positive integer n.
The binomial expansion is denoted by

(x+ y)n =
n∑

k=0

xn−kyk. (2.1)

For instance, if n is 4, then

(x+ y)4 = x4 + 4x3y + 6x2y2 + 4xy3 + y4.

The binomial coefficients are the positive integers that occur as coefficients in binomial
expansion. For instance, the binomial coefficients of (x + y)4 are 1, 4, 6, 4, 1. A binomial
coefficient is denoted by

(
n
k

)
, for n ≥ k ≥ 0, where n and k are integers. The formula for

finding a binomial coefficient is: (
n

k

)
=

n!

(n− k)!k!
,

where n! = 1 · 2 · 3 · · ·n is the factorial of n. The sum of all the coefficients of (x + y)n is
2n, that is

n∑
k=0

(
n

k

)
= 2n. (2.2)

Many identities involving binomial coefficients have been discovered. For instance, G.
Boros and V. Moll [1, 14–15] showed that sums of the form

∑n
k=0

(
n
k

)
kr are given by:

n∑
k=0

(
n

k

)
k = n2n−1, (2.3)

n∑
k=0

(
n

k

)
k2 = n(n+ 1)2n−2, (2.4)
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n∑
k=0

(
n

k

)
k3 = n(n+ 3)2n−3, (2.5)

n∑
k=0

(
n

k

)
k4 = n(n+ 1)(n2 + 5n− 2)2n−4, (2.6)

n∑
k=0

(
n

k

)
k5 = n2(n3 + 10n2 + 15n− 10)2n−5, (2.7)

and so on.

In 1894, Franel [2] showed that if

f(n,p) =
n∑

k=0

(
n

k

)p

, (2.8)

then

(n+ 1)2f(n+1,3) = (7n2 + 7n+ 2)f(n,3) + 8n2f(n−1,3). (2.9)

Also in 1985, Franel [3] showed that

(n+ 1)3f(n+1,4) = 2(2n+ 1)(3n2 + 3n+ 1)f(n,4) + 4(4n− 1)(4n+ 1)2f(n−1,4). (2.10)

We should note that f(n,3) is called the nth Franel number. They arise in first Strehl
identity. V. Strehl [4], in 1994 showed that

f(n,3) =
n∑

k=0

(
n

k

)2(
2k

n

)
. (2.11)

In this paper, we establish two relationships between the generalizations of (2.2), (2.3),
(2.4), (2.5), (2.6) and (2.7). Consequently, we obtain some interesting results among which
are finding two new different expressions for f(n,3). We present our main result in section
three and list some important special cases of our main result in the same section.
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3 Main Result

Let
(
n
0

)
,
(
n
1

)
,
(
n
2

)
,
(
n
3

)
· · ·
(
n
n

)
be a sequence of binomial coefficients such that β =

∑n
k=0

(
n
k

)
is the sum of binomial coefficients, and

(
n
k

)
=
(

n
n−k

)
holds for n ≥ k ≥ 0. We define(

n
0

)
m
,
(
n
1

)
m
,
(
n
2

)
m
,
(
n
3

)
m
· · ·
(
n
n

)
m

as a sequence of generalized binomial coefficients such that

α(m,n,p) =
n∑

k=0

(
n

k

)
m

,

is the sum of generalized binomial coefficients, where
(
n
k

)
m

=
(

n
n−k

)
m

holds for n ≥ k ≥ 0,

and
(
n
0

)
m

=
(
n
n

)
m
,
(
n
1

)
m

=
(

n
n−1

)
m
,
(
n
2

)
m

=
(

n
n−2

)
m
· · · are any real or complex numbers.

For instance, 2,−5, 7, 10, 7,−5, 2 is a sequence of generalized binomial coefficients because
the first number and the last number of the sequence are the same, the second number
and the penultimate number of the sequence are the same, and so on. So, we may say(
n
0

)
m

= 2,
(
n
1

)
m

= −5,
(
n
2

)
m

= 7,
(
n
3

)
m

= 10,
(
n
4

)
m

= 7,
(
n
5

)
m

= −5, and
(
n
6

)
m

= 2.

Theorem 1: Let α(m,n,p) be the sums of powers of generalized binomial coefficients,
that is

α(m,n,p) =
n∑

k=0

(
n

k

)
m

p

.

If

Ap =
n∑

k=0

(
n

k

)
m

p

(a+ kd), (3.1)

Bp =
n∑

k=0

(
n

k

)
m

p

(a+ kd)2, (3.2)

and

Cp =
n∑

k=0

(
n

k

)
m

p

(a+ kd)3, (3.3)

where a, d, p are real or complex numbers, then

Cp =
A

α2
(m,n,p)

(3Bpα(m,n,p) − 2Ap
2). (3.4)

We should note that if
(
n
k

)
m

=
(

n
n−k

)
m

for n ≥ k ≥ 0, then(
n

k

)p

m

=

(
n

n− k

)p

m

, (3.5)

also holds for any real or complex p.
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Proof. Let Sj =
∑n

k=0

(
n
k

)
m

p
(a+ kd)j, where j is any integer greater than or equal to zero,

we can see that for all real or complex a, d, p, Sj can be written as

Sj =

(
n

1

)
m

p

(a)j +

(
n

2

)
m

p

(a+ d)j +

(
n

3

)
m

p

(a+ 2d)j + · · · +

(
n

n

)
m

p

(a+ nd)j. (3.6)

Since
(
n
k

)p
m

=
(

n
n−k

)p
m

is true for n ≥ k ≥ 0, we see that Sj can also be written as

Sj =

(
n

1

)
m

p

(a+ nd)j +

(
n

2

)
m

p

(a+ (n− 1)d)j + · · · +

(
n

n

)
m

p

(a)j. (3.7)

Adding (3.6) and (3.7), we have

2Sj =
n∑

k=0

(
n

k

)
m

p

((a+ kd)j + (a+ (n− k)d)j),

Sj =
1

2

n∑
k=0

(
n

k

)
m

p

((a+ kd)j + (a+ (n− k)d)j), (3.8)

We know that S1 = Ap, S2 = Bp, S3 = Cp. So, we have that

Ap =
(2a+ nd)

2
α(m,n,p). (3.9)

Putting (3.9) in (3.4), we have

Cp =
(2a+ nd)

2

(
3Bp −

(2a+ nd)2

2
α(m,n,p)

)
,

(2a+ nd)3α(m,n,p) = 6(2a+ nd)Bp − 4Cp. (3.10)

Bp =
1

2

n∑
k=0

(
n

k

)
m

p

((a+ kd)2 + (a+ (n− k)d)2), (3.11)

6(2a+ nd)Bp = 3(2a+ nd)
n∑

k=0

(
n

k

)
m

p

((a+ kd)2 + (a+ (n− k)d)2). (3.12)

Cp =
1

2

n∑
k=0

(
n

k

)
m

p

((a+ kd)3 + (a+ (n− k)d)3), (3.13)
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4Cp = 2
n∑

k=0

(
n

k

)
m

p

((a+ kd)3 + (a+ (n− k)d)3). (3.14)

Subtracting (3.14) from (3.12), we have

6(2a+nd)Bp−4Cp =
n∑

k=0

(
n

k

)
m

p

[3(2a+nd)[(a+kd)2+(a+(n−k)d)2]−2[(a+kd)3+(a+(n−k)d)3]].

6(2a+ nd)Bp − 4Cp = (2a+ nd)3α(m,n,p),

which is the same as (3.10). Therefore, (3.4) is true.

Theorem 2: If

Dp =
n∑

k=0

(
n

k

)
m

p

(a+ kd)4, (3.15)

Ep =
n∑

k=0

(
n

k

)
m

p

(a+ kd)5, (3.16)

where a, d, p are any real or complex numbers, then

Ep =
Ap

α4
(m,n,p)

(5Dpα
3
(m,n,p) − 4ApCpα

2
(m,n,p) − 8A2

pBpα(m,n,p) + 8Ap
4). (3.17)

Proof. Putting (3.9) in (3.17), we have

Ep =
(2a+ nd)

2

(
5Dp − 2(2a+ nd)Cp − 2(2a+ nd)2Bp +

(2a+ nd)4

2
α(m,n,p)

)
,

(2a+ nd)5α(m,n,p) = 4Ep + 4(2a+ nd)3Bp + 4(2a+ nd)2Cp − 10(2a+ nd)Dp. (3.18)

From (3.8), we know that Bp = S2, Cp = S3, Dp = S4, Ep = S5. So, we have

Dp =
1

2

n∑
k=0

(
n

k

)
m

p

((a+ kd)4 + (a+ (n− k)d)4),

10(2a+ nd)Dp = 5(2a+ nd)
n∑

k=0

(
n

k

)
m

p

((a+ kd)4 + (a+ (n− k)d)4), (3.19)
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Also,

Ep =
1

2

n∑
k=0

(
n

k

)
m

p

((a+ kd)5 + (a+ (n− k)d)5),

4Ep = 2
n∑

k=0

(
n

k

)
m

p

((a+ kd)5 + (a+ (n− k)d)5), (3.20)

Let y be the difference of (3.20) and (3.19), we have

y =
n∑

k=0

(
n

k

)
m

p

[2[(a+kd)5+(a+(n−k)d)5]−5(2a+nd)[(a+kd)4+(a+(n−k)d)4]] (3.21)

Multiplying (3.11) by 4(2a+ nd)3, we have

4(2a+ nd)3Bp = 2(2a+ nd)3
n∑

k=0

(
n

k

)
m

p

((a+ kd)2 + (a+ (n− k)d)2). (3.22)

Multiplying (3.13) by 4(2a+ nd)2, we have

4(2a+ nd)2Cp = 2(2a+ nd)2
n∑

k=0

(
n

k

)
m

p

((a+ kd)3 + (a+ (n− k)d)3). (3.23)

Let y1 be the sum of (3.22) and (3.23), we have

y1 = 2(2a+nd)2
n∑

k=0

(
n

k

)
m

p

[(2a+nd)[(a+kd)2+(a+(n−k)d)2]+[(a+kd)3+(a+(n−k)d)3]]

(3.24)
Now, Adding (3.21) and (3.24), we see that

y + y1 = (2a+ nd)5α(m,n,p)

4Ep + 4(2a+ nd)3Bp + 4(2a+ nd)2Cp − 10(2a+ nd)Dp = (2a+ nd)5α(m,n,p)

This means that (3.18) is true. Therefore, (3.17) is true.

Some Important Special Cases of the Main Result

If we let a = 1, d = 1, and α(m,n,p) be the sums of real or complex powers of binomial
coefficients, (3.4) becomes

α(m,n,p) =
n∑

k=0

(
n

k

)
m

p
(

6

(
k + 1

n+ 1

)2

− 4

(
k + 1

n+ 1

)3
)
, (3.25)
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and (3.17) becomes

α(m,n,p) =
n∑

k=0

(
n

k

)
m

p
(

4

(
k + 1

n+ 1

)2

+ 4

(
k + 1

n+ 1

)3

− 10

(
k + 1

n+ 1

)4

+ 4

(
k + 1

n+ 1

)5
)
.

(3.26)

We can see that (3.25) and (3.26) give two different expressions for the sums of real or
complex powers of binomial coefficients. Letting p = 3 in (3.25) and (3.26) give another
two different expressions for nth Franel number as well as first Strehl identity.

If we let p = 0 and subtract one from n, (3.4) becomes

C0 =
A0

n2
(3nB0 − 2A2

0), , (3.27)

and (3.17) becomes

E0 =
A0

n4
(5D0n

3 − 4A0C0n
2 − 8A2

0B0n+ 8A4
0), (3.28)

where A0 =
∑n−1

k=0(a+kd), B0 =
∑n−1

k=0(a+kd)2, C0 =
∑n−1

k=0(a+kd)3, D0 =
∑n−1

k=0(a+kd)4,
E0 =

∑n−1
k=0(a+ kd)5.

We can see that (3.27) establishes a relationship between the sum of an arithmetic pro-
gression, sum of squares of an arithmetic progression, sum of cubes of an arithmetic pro-
gression, and the number of terms of an arithmetic progression. Also, (3.28) establishes
a relationship between the sum of an arithmetic progression, sum of squares of an arith-
metic progression, sum of cubes of an arithmetic progression, sum of fourth powers of an
arithmetic progression, sum of fifth powers of an arithmetic progression, and the number
of terms of an arithmetic progression.

If we let p = 1, α(m,n,1) be the sum of binomial coefficients, (3.4) becomes

C1 =
A1

22n
(3 · 2nB1 − 2A2

1),

and (3.17) becomes

E1 =
A1

24n
(5 · 23nD1 − 4 · 22nA1C1 − 8 · 2nA2

1B1 + 8A4
1),

where A1 =
∑n

k=0

(
n
k

)
m

(a + kd), B1 =
∑n

k=0

(
n
k

)
m

(a + kd)2, C1 =
∑n

k=0

(
n
k

)
m

(a + kd)3,

D1 =
∑n

k=0

(
n
k

)
m

(a+ kd)4, E1 =
∑n

k=0

(
n
k

)
m

(a+ kd)5.

If we let p = 2, α(m,n,2) be the sum of squares of binomial coefficients, (3.4) becomes

C2 =
A2(
2n
n

)2 (3

(
2n

n

)
B2 − 2A2

2

)
,
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and (3.17) becomes

E2 =
A2(
2n
n

)4
(

5

(
2n

n

)3

D2 − 4

(
2n

n

)2

A2C2 − 8

(
2n

n

)
A2

2B2 + 8A4
2

)
,

where A2 =
∑n

k=0

(
n
k

)2
m

(a + kd), B2 =
∑n

k=0

(
n
k

)2
m

(a + kd)2, C2 =
∑n

k=0

(
n
k

)2
m

(a + kd)3,

D2 =
∑n

k=0

(
n
k

)2
m

(a+ kd)4, E2 =
∑n

k=0

(
n
k

)2
m

(a+ kd)5.

4 Conclusion

In this paper, we have been able to establish two relationships between the generaliza-
tions of (2.2), (2.3) (2.4), (2.5), (2.6) and (2.7). As a result, some interesting formulas were
derived. Two new different expressions for the sums of real or complex powers of bino-
mial coefficients were also derived, thereby giving two new different expressions for Franel
number as well as first Strehl identity. We also generalized a set of binomial coefficients to
a set of real and complex numbers which behave like binomial coefficients as they exhibit
the property

(
n
k

)
=
(

n
n−k

)
.
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