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ABSTRACT

The Collatz Conjecture remains an intriguing problem. Expanding on an altered formula first
presented in “Bits of Complexity”, this paper explores the concept that “3N + Least-Significant-Bit”
of a number allows the complete separation of the step of “dividing by two on an even number”
within the Collatz Conjecture. This alternate formula replaces the original Collatz on a one-for-one
basis. The breadth and depth of graphs of the resulting path of numbers resolving with this new
formula illustrate its fractal nature. Lastly, we explore the predictability of this data, and how the
ultimate goal of reaching one prevented previous work from finding the key to understanding 3N+1.
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1 Introduction

The Collatz Conjecture has been described by Lagarias [2010] as an “extraordinarily difficult problem”. Part of that
difficulty depends on the integer’s value, optionally dividing by two or multiplying by three and adding one.

This paper expands on the author’s method to separate these two actions such that division by two is not performed
until the resulting integer is equal to two to a power, or a perfect power of two (2z). A graph of this new formula fully
documents all predecessors; provides bounds for the breadth and width of this graph; illustrates the fractal nature of
successive graphs; demonstrates the predictability of predecessors; and can be seen as a simplification of a graph of the
same values under the original Collatz.

2 3N + Least Significant Bit

As shown in “Bits of Complexity” [Tylock, 2018], the original Collatz Conjecture method of dividing even numbers by
2 and multiplying odd numbers by 3 and adding 1 can be replaced with “3N + Least Significant Bit” without changing
the outcome. The ending state becomes “Is the number 2z?” Let us review.

First, consider an odd number. The original Collatz specifies 3N + 1. The new method also specifies 3N + 1 because, as
an odd number, its Least Significant Bit (LSB)1 is 20, or 1.

Next, consider a number that is divisible by 2 but not 4. Following the original Collatz Conjecture, the number is
divided by two and 3N + 1 is applied to the resulting odd number. Following the new method, 3N + 2 is applied to the
number because its LSB is 2, or one power of 2 (21). When that outcome is divided by 2, the result is identical to the
original Collatz. Futher, since the new method converges to the same number as the Collatz for one multiple of 2, it can
be seen that this happens for any multiple of 2. Collatz divides by two at the start and middle of operations, but 3N +
LSB delays all divisions to the end. Once a number has reached 2z, the number is “solved” to 1 after dividing by 2, Z
times. 3N + LSB has an identical number of steps / iterations as Collatz, and so the 3N + LSB formula is a perfect
replacement of the original.

1The Least Significant Bit of a number is defined as the smallest power of two that is present in the binary representation of the
number. Example - the number 12 is represented in binary as 4 + 8 or two to the power of two plus two to the power of three; its least
significant bit is 4 or two to the power of two.
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3 Predecessors

Because every application of the formula increases the numerical value, we can now consider all possible numbers that
are predecessors of Y, or all X such that 3X + LSB(X) = Y. Predecessors can be calculated with the following algorithm.

Algorithm to Identify Predecessors:

For any number Y.

Function Name: Predecessors
Input Variable: Any positive integer, Y (The number whose predecessors we are interested in)

BEGIN
Integer i = log2(LSB(Y)) - 1
WHILE (i ≥ 0)

Potential Predecessor = Y−2i
3

IF (Remainder(Y−2i
3 ) == 0) AND (LSB(Potential Predecessor) == 2i)

THEN Potential Predecessor is a Predecessor of Y
i = i - 1

END WHILE
END

As explanation, first, we know that the LSB(X), where X is any predecessor of Y, must be less than the LSB(Y), so we
can start evaluating numbers whose LSB is at least smaller than Y’s. Then, if we reverse the 3N + LSB transaction by
subtracting the LSB and dividing the remainder by three, we will have a predecessor if there is both no remainder when
we divide by three, and the LSB is equivalent.

The predecessor is that number that is multiplied by three and has its LSB added. After evaluating all possible bits
smaller than the LSB(Y), we will have identified the set of all numbers that are predecessors of Y.

A special case exists for a number 2z such that 2z = 3N+LSB(N) where N = 2a and z = a+2. Symbolically, this looks
like: 2z = 3N+LSB(N) = 3×2a+LSB(2a) = 3×2a+2a = 4×2a = 2a+2. Or stated differently, any power of two has two-less
of the power of two as a predecessor. If one does not want to consider this case, the algorithm above must specifically
test for and exclude it.

It should also be noted at this point that any number that is a multiple of three can never have a predecessor (as shown
in “Bits of Complexity”).

4 Graph

Since this new method does not loop, a graph can be made to show how numbers simplify towards 2z. To do this,
consider any power of two, determine its predecessors, and recursively find each predecessor’s predecessors.

This tree of predecessors can then be organized in a directed graph where each node represents a number and the edges
represent the application of 3N + LSB.

The graph of 215 is presented in Figure 1 on the next page. This graph shows the clear progression of all numbers that
resolve at 215 (32768).

5 Breadth

An analysis of all possible predecessors of a number reveals that there is one “root” predecessor, and that all successive
predecessors include every bit of the root, any immediate prior predecessors, and LSB(previous predecessor)

4 . These
predecessors continue until the LSB is 21 or 20 (such that there is no integer value for LSB

4 ).

One can see this easiest by evaluating all numbers that directly transform into 352 (rewritten as 25 + 26 + 28). The base
for such a transformation is 112 (rewritten as 24 + 25 + 26). The next value adds 4 (rewritten as 22), and the third adds 1
to the prior predecessor (rewritten as 20). Figure 2 below illustrates this.

2
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Figure 1: Directed graph of numbers that resolve at 215, or predecessors of 215 (32768). Green indicates numbers
divisible by 3. Dark Blue indicates perfect powers of 2.

Figure 2: Table showing values that transform into 352 with 3N + LSB(N).
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6 Depth

An analysis of the tree of all possible predecessors reveals a single bit predecessor (of a single bit number) retains the
most space for further predecessors. The chain of predecessors 2B → 2B-2 → 2B-4 . . . 21 or 20 contains the greatest
quantity of values. One can generalize this to B

2 for an arbitrary power of 2.

Because we know that the predecessor of a number’s LSB is smaller than its successor, the number of values in
the chain of non-power-of-2 numbers is based on its Most Significant Bit and Least Significant Bit. It cannot have
more predecessors than its log2(MSB)

2 (based on the power of two calculations above), and it also cannot have more
predecessors than its log2(LSB)-1.

7 Fractal

Another interesting aspect of the transformation is the repetitive nature of the graphs. This is because given a graph of
predecessors for 2N, the entire graph will be present in the graph of 2N+2 with each value replaced with itself multiplied
by 4. New elements in the graph of 2N+2 will also include predecessors for every node that already has predecessor(s)
(in the same formulation as explained above).

And so the graph of 211 has the same shape as the graph of 29.

Referring to the original Collatz, the hailstone pattern of sequences has been considered part of the “interesting exercise”
of the Collatz [Banks, 2012]. The separation of the division by 2 substantially alters the graph, removes the hailstone
aspect, and allows the formula’s progression to be more fully seen.

8 Predictability

Additional information can be revealed by evaluating the successive predecessors of two to the power. Collatz enthusiasts
have long understood that most numbers have an easy solution – those can be seen in the incidents of repeat, successive
predecessor, and numbers divisible by three (examples shown in Figure 3 below).

We can also chart the predecessors for each power of two on a log scale, see Figure 4 below with a logarithmic Y axis.
The blue line indicates the count of all predecessors for each power. Interestingly, if you start a line at 210 which has 11
predecessors and chart the growth at four thirds of that for each power after, that value (displayed in yellow) nearly
exactly matches the growth of the actual number of predecessors in blue.

9 Obscuring Conclusions

The author’s novel method provides a predictable polytree whose labels all ascend in value while the Collatz conjecture
rises and falls as symbolized by the hailstone designation. Figure 5 contains the same numbers examined in Figure 1,
but organized following the Collatz Conjecture. It can thus be seen that the original Collatz obscured the patterns within
the 3N+1 formula by dividing by 2 stepwise. Examining Figures 1 and 5 side by side best illustrates the benefits of
delaying the division by 2. But because the ultimate goal as stated by Collatz was to reduce the number to 1, altering
this division was anathema to solving the puzzle. The predictability of 3N+LSB now points at a proof.
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Figure 3: Statistical information about Predecessors of odd powers of two.
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Figure 4: Log-Graph of the number of predecessors of two to the power (blue) and growth at four thirds (yellow).
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Figure 5: Graph of predecessors of 215 (32768) under original Collatz. Identical nodes from Figure 1 with new red
nodes inserted as needed after division by 2.
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10 Appendix - Excerpt from Bits of Complexity with permission

A Replacement Function - Consolidation
Let us define a number’s least significant bit as the smallest power of 2 that is added together to create its binary
representation. The (decimal) number 12 can be considered in binary notation as 23 plus 22 or eight plus four; its least
significant bit is 22.

Let us now construct a new Consolidation Function labeled CF. This function performs a single operation, multiplying
a number n by three and adding n’s least significant bit (LSB).

CF(n) = 3 * n + LSB(n)

Mapping

Now we will map the Consolidation Function (CF) to the Collatz (C). The Consolidation Function is equivalent to
delaying all “divide by 2” steps of the Collatz Conjecture until a perfect power of 2 is reached. This can be illustrated
with the following example of processing 3.

Collatz
C(3) = 3 * 3 + 1 = 10
C(10) = 10 / 2 = 5
C(5) = 3 * 5 + 1 = 16
C(16) = 16 / 2 = 8
C(8) = 8 / 2 = 4
C(4) = 4 / 2 = 2
C(2) = 2 / 2 = 1
Consolidation Function
CF(3) = 3 * 3 + 1 = 10
CF(10) = 3 * 10 + 2 = 32
32 = 25

Further, the power of 2 that the Consolidation Function stops at provides the number of “divide by 2” steps that would
normally be a part of the Collatz. The total number of steps to process a number with the Collatz function is the same as
the Consolidation Function steps to reach a power of 2, plus the power of 2 itself (5 in the case of processing 3 above).

Confirmation

Let us more formally show that to be true for the processing of an arbitrary number n greater than 1. Consider three
cases of n, n is a perfect power of 2, n is odd, and n is even.

n = 2x

Presents a special case, the number of iterations of “divide by 2” for the Collatz will be equal to x. The Consolidation
Function will not process at all (as the ending state has already been reached), and it will also show that the number of
steps to reach 1 will also be x.

n = odd

If n is an odd number, that means that the least significant bit of n is 1, or 20. The Consolidation Function’s processing
will be 3n + 1, which is exactly the same as the Collatz.
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n = even

If n is an even number, we can represent it as 2a * b, where b is an odd number. The next set of iterations of the Collatz
function will be to divide n by 2 exactly a times, and then perform the 3N + 1 operation (3b+1). For its counterpart,
given the LSB of n is 2a, the Consolidation Function will calculate 3N + LSB = 3n + 2a. That can be shown to be
equivalent to 2a * (3b + 1).

n = 2a * b

LSB(n) = 2a

CF(n) = 3(n) + LSB

CF(n) = 3(2a * b) + 2a

CF(n) = 2a * (3b) + 2a * (1)

CF(n) = 2a * (3b + 1)

This value can also be divided by 2 exactly a times to reach the final value of the Collatz.

As any number of repetitions of the Collatz would operate in the same manner, at the conclusion of the Consolidation
Function, it has completed the same number of 3N+LSB operations as the Collatz’s 3N+1. The value of the exponent
2x that the Consolidation Function has reached equals the number of divide by 2 steps the Collatz would have completed.

Further, if it can be shown that the Consolidation Function does in fact end at a power of 2 for all n, then the Collatz
Conjecture also terminates for all n.

10.1 Lemma 1

Lemma 1 – No number that is divisible by 3 has a predecessor.

Establishing this helps understand the nature of the 3N + LSB function.

Let us take some number P that is divisible by 3. In order for P to have a predecessor R, there must be some LSB of R
such that 3 * R + LSB(R) = P. We can also represent P instead as 3 * Q (by definition – because P is divisible by 3).

P = 3Q

3 * R + LSB(R) = P

3 * R + LSB(R) = 3Q

LSB(R) = 3Q – 3R

LSB(R) = 3(Q – R)

And this shows us that there can be no LSB of R meeting this equation – because the equation indicates that the only
possible values for R’s Least Significant Bit would also be multiples of three – and there are no powers of two that are
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also multiples of three.

10.2 Lemma 2

Lemma 2 – Any number having a predecessor with 0s in the bits representing 20 and 21, has one or more additional
predecessors.

Let us consider some number S that has a predecessor T having this property. The bits of T representing 20 and 21

represent 1 and 2 in the binary scale, and if these are 0, we know that the smallest portion (LSB) of T is at least as large
as 22 or 4.

When calculating 3 * T + LSB(T), we know that the LSB(T) is at least 22 or 4.

The number U that is equivalent to T + LSB(T)/4 will also be a predecessor of S.

Because the LSB(T) is at least 4, we know that there is at least one number fulfilling the binary representation of
LSB(T)/4.

The calculation of 3 * T + LSB(T) is equivalent to 3 * U + LSB(U).

U = T + LSB(T)/4

LSB(U) = LSB(T/4)

Starting with 3 * U + LSB(U) and substituting for U and LSB(U)

3 * U + LSB(U) = 3 * (T + LSB(T)/4) + LSB(T)/4

3 * U + LSB(U) = 3 * T + 3 * LSB(T)/4 + LSB(T)/4

3 * U + LSB(U) = 3 * T + LSB(T)

The result of the Consolidation Function, CF(U) and CF(T) are identical.

10.3 Lemma 3

Lemma 3 – After two repetitions of the 3N + LSB function, for all cases of N, the new number’s bits representing 20

and 21 will be 0.

Let us consider some number V whose bits representing 20 and 21 are both 1. On the first iteration of 3N + LSB, the
LSB is 20 or 1. And so 3N + LSB will calculate a value of 4 (22) for that bit (3 * 1 + 1), and 20 will be 0 afterwards. On
the other hand, the 21 bit that was set will still be set after being multiplied by 3 (becoming 21 plus 22).

And so after one iteration of 3N + LSB, the 20 bit will be 0, and the 21 will still be 1.

Repeating 3N + LSB will similarly clear the new LSB, or 21.

10
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Given the Consolidation Function only multiplies by three and adds the Least Significant Bit, there is no opportunity for
bits smaller than a number’s LSB to ever hold data again. This state is irreversible.
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