
Unishox - A hybrid encoder for Short Unicode
Strings

Arundale Ramanathan

August 22, 2021

Abstract
Unishox is a hybrid encoding technique with which short unicode

strings could be compressed using context aware pre-mapped codes and
delta coding resulting in surprisingly good ratios.

1 Summary
This article discusses a hybrid encoding method for compressing Short Unicode
Strings of arbitrary lengths including Latin/English text and printable special
characters. This has not been sufficiently addressed by lossless entropy encoding
methods so far.

Although it appears inconsequential, space occupied by such strings be-
come significant in memory constrained environments such as Arduino Uno and
ESP8266. Text exchange in Chat applications is another area where cost sav-
ings could be seen using such compression. It is also possible to achieve savings
in bandwidth and storage cost by storing and retrieving independent strings in
Cloud databases.

2 Basic Definitions
In information theory, entropy encoding is a lossless data compression scheme
that is independent of the specific characteristics of the medium [1].

One of the main types of entropy coding is about creating and assigning a
unique prefix-free code to each unique symbol that occurs in the input. These en-
tropy encoders then compress data by replacing each fixed-length input symbol
with the corresponding variable-length prefix-free output code word.

According to Shannon’s source coding theorem, the optimal code length for
a symbol is −logbP , where b is the number of symbols used to make output
codes and P is the probability of the input symbol [2]. Therefore, the most
common symbols use the shortest codes.

The most popular method for forming optimal prefix-free discrete codes is
Huffman coding [3].

1

Data Compression techniques • Information Science • Unishox - A hybrid
encoder for Short Unicode Strings

A Dictionary coder, also sometimes known as a substitution coder, is a
class of lossless data compression algorithms which operate by searching for
matches between the text to be compressed and a set of strings contained in a
data structure (called the ‘dictionary’) maintained by the encoder. When the
encoder finds such a match, it substitutes a reference to the string’s position in
the data structure.

The LZ77 family of encoders use the dictionary encoding technique for com-
pressing data. [4]

Delta coding is a technique applied where encoding the difference between
the previously encoded symbol or set of symbols is smaller compared to encoding
the symbol or the set again. The differnce is determined by using the set minus
operator or subtraction of values. [5]

In contrast to these encoding methods, there are various other approaches
to lossless coding including Run Length Encoding (RLE) and Burrows-Wheeler
coding [6].

3 Existing techniques
While technologies such as GZip, Deflate, Zip, LZMA are available for file com-
pression, they do not provide optimal compression for short strings. Eventhough
these methods compress far more than what is proposed in this article, they often
expand the original source for short strings because the symbol-code mapping
also needs to be attached to aid decompression.

For compressing Unicode sequences, three other technologies are available:
SCSU [10] and BOCU [11] and FAST [12]. A survey of these compression
algorithms was published by Doug Ewell in 2004 [13].

The Standard Compression Scheme for Unicode (SCSU) is defined in Uni-
code Technical Standard #6 and is based on a technique originally developed
by Reuters. The basic premise of SCSU is to define dynamically positioned
windows into the Unicode code space, so that characters belonging to small
scripts (such as the Greek alphabet or Indic abugidas) can be encoded in a
single byte, representing an index into the active window. These windows are
preset to blocks expected to be in common use (e.g. Cyrillic), so the encoder
doesn’t have to define them in these cases. There are also static windows that
cannot be adjusted. [10] [13]

The Binary Ordered Compression for Unicode (BOCU) concept was devel-
oped in 2001 by Mark Davis and Markus Scherer for the ICU project. The main
premise of BOCU-1 is to encode each Unicode character as the difference from
the previous character, and to represent small differences in fewer bytes than
large differences. By encoding differences, BOCU-1 achieves the same compres-
sion for all small alphabetic scripts, regardless of the block they reside in. [11]
[13]

It is to be noted that SCSU is a Unicode Technical Standard (UTS#6) and
BOCU is published as a Unicode Technical Note (UTN#6), although both have
the same number assigned (6).

Licensed under CC 4.0 Int’l Attribution License ©2019-21 Siara Logics (cc) 2

Data Compression techniques • Information Science • Unishox - A hybrid
encoder for Short Unicode Strings

Fast Compression Algorithm For Unicode Text (FAST) is a compression
algorithm developed based on Lempel Ziv algorithm [4]. Essentially it achieves
faster compression by finding repeating unicode sequences instead of repeating
bytes. There are other assumptions and variations made to LZ technique in
addition to this. [12]

Other technologies available are Smaz and shoco, which are not developed
with Unicode in mind.

Smaz is a simple compression library suitable for compressing very short
strings [14]. It was developed by Salvatore Sanfilippo and is released under the
BSD license.

Shoco is a C library to compress short strings [15]. It was developed by
Christian Schramm and is released under the MIT license.

While both are lossless encoding methods, Smaz is dictionary based and
Shoco classifies as an entropy coder [15].

In addition to providing a default frequency table as model, shoco provides
an option to re-define the frequency table based on training text [15].

4 This research
A hybrid encoding method is proposed relying on the three encoding techniques
viz. Entropy encoding, Dictionary coding and Delta encoding methods for op-
timal compression.

While existing techniques focus on either Unicode character sequences or
only English characters, Unishox uses multiple techhniques to achieve the best
compression ratio all round.

For Unicode, Delta encoding is proposed because usually the difference be-
tween subsequent symbols is quite less while encoding text of a particular lan-
guage. SCSU is slightly better with switching windows, but overall it was found
that plain Delta coding works well considering that usually there is only one
language text to be compressed and some languages span a lot of windows.

SCSU and BOCU do have special features for Unicode that Unishox does not
address such as dynamic windows, binary order maintenance, XML suitability
and MIME friendliness. Unishox uses plain delta encoding to achieve the best
compression.

For English letters, unlike shoco, a fixed frequency table is proposed, gen-
erated based on the characterestics of English language letter frequency. The
research carried out by Oxford University [7] and other sources [7] [9] have been
used to arrive at a unique method that takes advantage of the conventions of
the language.

A single fixed model is used because of the advantages it offers over the
training models of shoco. The disadvantage with the training model, although
it may appear to offer more compression, is that it does not consider the patterns
that usually appear during text formation. It can be seen that this performs
better than pre-trained model of shoco (See performance section).

Licensed under CC 4.0 Int’l Attribution License ©2019-21 Siara Logics (cc) 3

Data Compression techniques • Information Science • Unishox - A hybrid
encoder for Short Unicode Strings

Unlike smaz and shoco, no a priori knowledge about the input text is as-
sumed. However knowledge from the research carried out on the language and
common patterns of sentence formation have been used to come out with pre-
assigned codes for each letter.

5 Model
In the ASCII chart, we have 95 printable letters starting from 32 through 126.
For the purpose of arriving at fixed codes for each of these letters, two sets of
prefix-free codes are used.

The first set consists of 27 codes, which are: 00, 010, 011, 1000, 1001,
1010, 1011, 1100, 11010, 11011, 111000, 111001, 111010, 1110110, 1110111,
1111000, 1111001, 1111010, 11110110, 11110111, 11111000, 11111001, 11111010,
11111011, 11111100, 11111101, 11111110, 11111111. These are called vertical
codes (vcodes).

The second set consists of 5 codes, which by default will be 00, 01, 10, 110,
111. These are called horizontal codes (hcodes). These 5 codes can be configured
according to the composition of text that needs to be compressed.

With these two sets of codes, several sets of letters are formed as shown in
the table below and some rules are formed based on how patterns appear in
short strings.

Licensed under CC 4.0 Int’l Attribution License ©2019-21 Siara Logics (cc) 4

Data Compression techniques • Information Science • Unishox - A hybrid
encoder for Short Unicode Strings

hcode → 00 01 10 110 111

↓ vcode Set 1 Set 2 Set 3 Set 4 Set 5
Alpha Sym Num Dictionary Delta

00 switch “ switch

<length>
<distance>

<code>
<sign>
<delta>

010 sp { ,
011 e / E } .
1000 t / T _ 0
1001 a / A < 1
1010 o / O > 9
1011 i / I : 2
1100 n / N lf 5
11010 s / S crlf -
11011 r / R [/
111000 l / L] 3
111001 c / C \ 4
111010 d / D ; 6
1110110 h / H ’ 7
1110111 u / U tab 8
1111000 p / P @ (
1111001 m / M *)
1111010 b / B & sp
11110110 g / G ? =
11110111 w / W ! +
11111000 f / F ^ $
11111001 y / Y | %
11111010 v / V cr #
11111011 k / K seq4
11111100 q / Q ‘ seq5
11111101 j / J seq1 seq6
11111110 x / X seq2 rpt
11111111 z / Z seq3 term

6 Rules
6.1 Basic rules

• It can be seen that the more frequent symbols are assigned smaller codes.

• Set 1 is always active when beginning compression. So the letter e has the
code 011, t 1010 and so on.

6.2 Upper case symbols
• For encoding uppercase letters, the switch symbol is used followed by 00

and the code against the symbol itself. For example, E is encoded as 00
00 011.

Licensed under CC 4.0 Int’l Attribution License ©2019-21 Siara Logics (cc) 5

Data Compression techniques • Information Science • Unishox - A hybrid
encoder for Short Unicode Strings

• If uppercase letters appear continuously, then the encoder may decide to
switch to upper case using the prefix 00 00 00 00. After that, the same
codes for lower case are used to indicate upper case letters until the code
sequence 00 00 is used again to return to lower case.

6.3 Numbers and related symbols
• Symbols in Set 2 are encoded by first switching to the set by using 00

followed by 01. So the symbol ” is encoded as 00 01 00.

• Numbers in Set 3 are encoded by first switching to the set by using 00
followed by 10. So the symbol 9 is encoded as 00 10 1010.

• For Set 3, whenever is switch is made from Set 1 to any number (0 to 9),
it makes Set 3 active. So subsequent numbers symbols in Set 3 can be
encoded without the switch symbol, as in 111000 for 3, 111001 for 4 and
so on.

• To return to Set 1 in this case, the code 0000 is used.

• However, when other symbols in Set 3 are encoded from Set 1, Set 3 is
not made active.

6.4 Sticky sets
• When switching to Set 3 for encoding numbers (0-9), it becomes active

and is said to be sticky till Set 1 is made active using the symbol 0000.

• Encoding Upper case symbols become sticky when switching using 0000
0000.

• Encoding Unicode symbols become sticky when switching using 0000 010,
as seen in a subsequent section.

• However, no other set is sticky. Set 1 is default. Set 3 automatically
becomes sticky when any numeral is encoded and Upper case letters can
be made sticky by using 00000000.

• Symbols in Set 2 are never sticky. Once encoded the previous sticky set
becomes active.

6.5 Special symbols
• term in Set 3 indicates termination of encoding. This is used if length of

the encoded string is not available. In case the length of encoded string is
available, term symbol need not be encoded and encoding can stop with
the last symbol encoded. However, the first part of the term symbol needs
to be encoded in the last byte after the bits for the last symbol. Further if
Unicode set is sticky and active, first it needs to be exited using the exit
sequence 11111 00 and then the term symbol should be encoded.

Licensed under CC 4.0 Int’l Attribution License ©2019-21 Siara Logics (cc) 6

Data Compression techniques • Information Science • Unishox - A hybrid
encoder for Short Unicode Strings

• rpt in Set 3 indicates that the symbol last encoded is to be repeated
specified number of times.

• CRLF in Set 2 is encoded using a single code. It will be expanded as two
bytes CR LF. If only LF is used, such as in Unix like systems, a separate
code is used in Set 2. Also, in the rare case that only CR appears, another
code is provided in Set 2.

6.6 Repeating letters
• If any letter repeats more than 3 times, a special code (rpt) is used as

shown in Set 3 of the model.

• The encoder first codes the letter using the above codes. Then the rpt
code is used followed by the number of times the letter repeats.

• The number of times the letter repeats is coded using a special bit sequence
as explained in section ”Encoding counts” that follows.

6.7 Repeating sections
• If a section repeats, the switch code (00) and another horizontal code (110)

is used followed by two fields as described next.

• The first field indicates the length of the section that repeats.

• The second field indicates the distance of the repeating section. The dis-
tance is counted from the current position.

• The optional third field is coded only if an array of text is encoded. It is a
number indicating the index of the array that the section belongs. If only
one text is encoded, then this field is not included.

• The first, second and third fields are encoded as explained in the following
section ”Encoding counts”.

6.8 Encoding Counts
• For encoding counts such as length and distance, five codes are used: 0,

10, 110, 1110, 1111, each code indicating how many bits will follow to
indicate count.

• If code is 0, 2 bits would follow, that is, count is between 0 and 3.

• If code is 10, 4 bits would follow, that is, count is between 4 and 19.

• If code is 110, 7 bits would follow, that is, count is between 20 and 147.

• If code is 1110, 11 bits would follow, that is, count is between 148 and
2195.

Licensed under CC 4.0 Int’l Attribution License ©2019-21 Siara Logics (cc) 7

Data Compression techniques • Information Science • Unishox - A hybrid
encoder for Short Unicode Strings

• If code is 1111, 16 bits would follow, that is, count is between 2196 and
67732.

• This is shown in tabular form below

Code Range Number of bits
0 0 to 3 2
10 4 to 19 5
110 20 to 147 7
1110 148 to 2195 11
1111 2196 to 67732 16

6.9 Encoding Unicode characters
• The switch code 00 followed by 111 is used as prefix to indicate that a

Unicode character is being encoded.

• First, the unicode number is decoded from the input source depending on
how it was encoded, such as UTF-8 or UTF-16.

• For the first unicode character, the number decoded is re-coded to the
output as it is, using 00 111 followed by a code as shown in the table
below followed by a sign bit 0 (positive), followed by given number of bits
shown in the table, depending on the range that the code belongs.

Code Range Number of bits
0 0 to 63 6
10 64 to 4159 12
110 4160 to 20543 14
1110 20544 to 86079 16
11110 86080 to 2183231 21
11111 Special code -

• The Special code is explained in the next section.

• For subsequent unicode characters, only the difference between the previ-
ous character is re-coded to the output, using sign bit as 1 if the difference
is negative. Thus, here, delta coding is used.

• After 00 111, one of the above codes is used, followed by the sign bit. The
sign bit is a single bit. 1 indicates that the number following is negative
and 0 indicates that the number following is positive.

• After the sign bit, the unicode value (or difference) is encoded as a number.
The number of bits used depends on the range, as shown in the above table.

• After encoding the unicode number, the state returns to Set 1, or whichever
set was active earlier, unless continuous unicode encoding was started.
This is explained in the next section.

Licensed under CC 4.0 Int’l Attribution License ©2019-21 Siara Logics (cc) 8

Data Compression techniques • Information Science • Unishox - A hybrid
encoder for Short Unicode Strings

6.10 Encoding continuous Unicode characters
• Since the prefix 00 110 may become an overhead when several Unicode

are to be encoded contigously, a continuous unicode encoding code is used
(0000 010).

• After 0000 010 is encoded, unicode characters are encoded continously
using delta encoding, until an English character is encountered. When
this happens, state is returned to Set 1 using the Special code 11111 00 in
the table shown in previous section is used.

• The Special codes are used only when Unicode characters are coded contin-
uously, to indicate special characters and situations occuring in-between.
What follows the Special code 11111 is indicated using the table below:

Code Character/Situation
0 Space character
10 Switch
110 Comma (,)
1110 Full stop (.)
1111 Line feed (LF)

• It is found that the above characters appear frequently in between conti-
nous Unicode characters and so Special codes are needed to avoid switch-
ing back and forth from Set 2.

• Other symbols in Set 2 or Set 3 can also be encoded within continuous
Delta encoding mode using the Switch Code in the above table.

6.11 Multi way access for Set 2
• Set 2 can be accessed regardless of which set is active, such as Set 1, Set

3, Continuous delta coding or even when continuous Upper case is active.
This is because the symbols occur commonly in both Set 1 and 3 and
Unicode symbol sequences.

• For the same reason, the space symbol appears both in Set 1 and Set 3.

6.12 Encoding punctuations
• Some languages, such as Japanese and Chinese use their own punctua-

tion characters. For example full-stop is indicated using U+3002 which is
represented visually as a small circle.

• Encoding such special full-stops were supported in the earlier version of
Unishox for better compression. However since this was leading to con-
fusion and ambiguity, any special treatment for such punctuations are
excluded in the present version of Unishox (2) and this is left to delta
coding. It also does not make much difference in compression ratio.

Licensed under CC 4.0 Int’l Attribution License ©2019-21 Siara Logics (cc) 9

Data Compression techniques • Information Science • Unishox - A hybrid
encoder for Short Unicode Strings

6.13 Common templates
• Some special templates are known to occur frequently and are encoded

using 00 10 00 followed the codes mentioned in the table below.

Code Situation
0 Template for date, time and phone numbers
10 Hex nibbles lower case
110 Hex GUID lower case
1110 Hex nibbles upper case
11110 Hex GUID upper case
11111 Binary (ASCII 0-31, 128-255)

• The code 0 indicates that one of the codes for Date, Time or Phone number
follows, which is encoded according to the following table:

Code Description Template
0 Standard ISO timestamp tfff-of-tfTtf:rf:rf.fffZ
10 Date only tfff-of-tf
110 US Phone number (fff) fff-ffff
1110 Time only tf:rf:rf
1111 Reserved

Partial matches of the template can also be encoded using this. For ex-
ample, the string ”2021-07-15T20:00:00” can be compressed using above
template by specifying how many characters of the template are unused
the end. In this case 5 characters are unused.

The encoding sequence would be: 00 10 00 0 <template code> <number
of unused letters> <filled template>. The method described in ”Encoding
counts” section is used to encode <number of unused letters>.

In the template, following are the codes used and the size occupied in bits.
Since fewer bits are sufficient to represent a number, it results in lot of
savings.

Letter Bits Range
o 1 0 to 1
t 2 0 to 3
r 3 0 to 7
f 4 0 to F

Using this method, the ISO timestamp which is 24 bytes in length com-
presses to only 9 bytes.

For example, ”2021-07-15T16:37:35” would be encoded as 00 10 00 0 0 10
0001 10 0000 0010 0001 0 0111 01 0101 01 0110 011 0111 011 0101. The
codes are explained in the table below:

Licensed under CC 4.0 Int’l Attribution License ©2019-21 Siara Logics (cc) 10

Data Compression techniques • Information Science • Unishox - A hybrid
encoder for Short Unicode Strings

Code Description
00 10 00 Code for common templates
0 Code for string template
0 Template used (tfff-of-tfTtf:rf:rf.fffZ)
10 0001 Encode count 5 unused at the end
10 0000 0010 0001 2021
0 0111 07
01 0101 15
01 0110 16
011 0111 37
011 0101 35

• The codes 10 and 1110 are used to encode a sequence of lower and upper
Hex nibbles respectively. 10 or 1110 is followed by the count of nibbles
encoded as explained in the ”Encoding counts” section. After this, each
nibble is encoded using 4 bits each.

• The code 110 and 11110 are used to encode lower and upper GUIDs re-
spectively. 110 or 11110 is followed by each nibble of the GUID excluding
the hyphens.

• Finally the code 11111 is used for encoding binary symbols ranging from
ASCII 0 to 31 and ASCII 128 to 255. The prefix code 00 10 00 11111 is
used, followed by the number of such binary symbols encoded as explained
in ”Encoding counts” section. After this each byte is encoded with 8 bits
per character.

• Encoding binary symbols this way is not efficient and is only available to
cover the entire character set.

• The implementation actually tries to optimize encoding binary sequences
by trying to identify UTF-8 sequences within binary sequences in order
to get a better compression ratio.

6.14 Compression of frequently occuring sequences
• Provision for six frequently occuring text sequences is available with Un-

ishox.

• Depending on the type of text being encoded following sequences have
been identified.

 Type of text Frequently occuring sequences
Default (favours all types) [“: “], [“:], [</], [=“], [“:“], [://]
English sentences [the], [and], [tion], [with], [ing], [ment]
URL [https://], [www.], [.com], [http://], [.org], [.net]
JSON [“: “], [“:], [“,], [}}}], [“:“], [}}]
HTML [</], [=“], [div], [href], [class], [<p>]
XML [</], [=“], [”>], [<?xml version=“1.0”], [xmlns:], [://]

Licensed under CC 4.0 Int’l Attribution License ©2019-21 Siara Logics (cc) 11

Data Compression techniques • Information Science • Unishox - A hybrid
encoder for Short Unicode Strings

6.15 Redefinition of Horizontal codes and Presets
• The horizontal codes can be redefined to get better compression ratio,

depending on composition of the text to be encoded.

• Several ”preset” codes have been identified for achieving better compres-
sion ratios for different compositions as below (Codes are for Alpha, Sym,
Num, Dict, Delta):

• For preset 1 (Alpha only) there are no horizontal code required. For
encoding upper case symbols, just the switch code followed by the letter
code is sufficient. Further continuous upper case can be accomplished by
using two switch codes.

• The codes marked x in the table are the sets that are not expected in the
text.

 Preset Codes Frequent Sequences
0 Default (favours all types) 00, 01, 10, 110, 111 Default
1 Alpha only None * English sentences
2 Alpha & Numeric only 0, x, 1, x, x English sentences
3 Alpha, Num & Sym only 0, 10, 11, x, x Default
4 Alpha, Num & Sym only (Text) 0, 10, 11, x, x English sentences
5 Favor Alpha 0, 100, 101, 110, 111 English sentences
6 Favor Dictionary 00, 01, 110, 10, 111 Default
7 Favor Symbols 100, 0, 101, 110, 111 Default
8 Favor Umlaut 100, 101, 110, 111, 0 Default
9 No Dictionary 00, 01, 10, x, 11 Default
10 No Unicode 00, 01, 10, 11, x Default
11 No Unicode (Text) 00, 01, 10, 11, x English sentences
12 Favor URL 00, 01, 10, 110, 111 URL
13 Favor JSON 00, 01, 10, 110, 111 JSON
14 Favor JSON No Unicode 00, 01, 10, 11, x JSON
15 Favor XML 00, 01, 10, 110, 111 XML
16 Favor HTML 00, 01, 10, 110, 111 HTML

However, the default horizontal codes work fine for most cases.

7 Applications
• Compression for low memory devices such as Arduino and ESP8266

• Sending messages over Websockets

• Compression of Chat application text exchange including Emojis

• Storing compressed text in databases

• Faster retrieval speed when used as join keys

Licensed under CC 4.0 Int’l Attribution License ©2019-21 Siara Logics (cc) 12

Data Compression techniques • Information Science • Unishox - A hybrid
encoder for Short Unicode Strings

• Bandwidth cost saving for messages transferred to and from Cloud infras-
tructure

• Storage cost reduction for Cloud databases

• Some people even use it for obfuscation

8 Implementation
According to the above Rules and Frequency table, an implementation has been
developed licensed under Apache License 2.0.

Unishox has been hosted on Github and used in several open source projects
shown below:

• Unishox
https://github.com/siara-cc/Unishox

• Unishox for Javascript
https://github.com/siara-cc/Unishox_JS

• Python bindings for Unishox
https://github.com/tweedge/unishox2-py3

• Unishox 1 ported to Python for Tasmota
https://github.com/arendst/Tasmota/tree/development/tools/unishox

• Unishox Compression Library for Arduino Progmem
https://github.com/siara-cc/Unishox_Arduino_Progmem_lib

• Sqlite3 User Defined Function for Unishox as loadable extension
https://github.com/siara-cc/Unishox_Sqlite_UDF

• Sqlite3 Library for ESP32
https://github.com/siara-cc/esp32_arduino_sqlite3_lib

• Sqlite3 Library for ESP8266
https://github.com/siara-cc/esp_arduino_sqlite3_lib

• Sqlite3 Library for ESP-IDF
https://github.com/siara-cc/esp32-idf-sqlite3

9 Performance Comparison
The performance of Unishox was compared with the various implementations
already available for short strings and shown in subsequent sections.

Licensed under CC 4.0 Int’l Attribution License ©2019-21 Siara Logics (cc) 13

Data Compression techniques • Information Science • Unishox - A hybrid
encoder for Short Unicode Strings

9.1 Comparison with Unicode compression techniques

Language and Text Size Compressed size
Unishox SCSU BOCU

English:Beauty is not in the face.
Beauty is a light in the heart.

58 30 58 58

Chinese:美是不是在脸上。
美是心中的亮光。

49 36 36 37

Spanish:La belleza no está en la cara.
La belleza es una luz en el corazón.

69 38 67 71

Hindi: सुंदरता चेहरे में नहीं ह।ै सौंदयर् हृदय में
ᮧकाश ह।ै

144 53 55 55

Bengali:সৌন্দর্য মুেখ েনই। েসৗন্দর্য হৃদয়
একিট আেলা।

117 41 48 47

Portugese:A beleza não está na cara.
A beleza é a luz no coração.

60 36 55 63

Russian:Красота не в лицо. Красота -
это свет в сердце.

82 44 48 53

Japanese:美は顔にありません。
美は心の中の光です。

61 39 37 45

Punjabi:ਸੁੰਦਰਤਾ ਿਚਹਰੇ ਿਵੱਚ ਨਹੀਂ ਹੈ. ਸੁੰਦਰਤਾ ਦੇ
ਿਦਲ ਿਵਚ ਚਾਨਣ ਹੈ.

141 51 57 59

Marathi:सौंदर्य चेहरा नाही. सौंदयर् हे
हृदयातील एक ᮧकाश आह.े

142 52 55 58

Telugu:అందం ముఖంలో లేదు. అందం
హృదయంలో ఒక కాంతి.

104 39 42 44

Turkish:Güzellik yüzünde değil. Güzel-
lik, kalbin içindeki bir ışıktır.

72 49 64 78

Korean: 아름다움은얼굴에없습니다。
아름다움은마음의빛입니다。

82 45 61 60

French:La beauté est pas dans le vis-
age. La beauté est la lumière dans le
coeur.

76 39 73 79

German:Schönheit ist nicht im Gesicht.
Schönheit ist ein Licht im Herzen.

68 36 66 70

Vietnamese:Vẻ đẹp không nằm trong
khuôn mặt. Vẻ đẹp là ánh sáng trong
tim.

82 59 72 83

Tamil: அழகு முகத்தில் இல்ைல. அழகு
என்பது இதயத்தின் ஒளி.

128 49 50 52

* All sizes are in bytes.
The above table compares the compression performance between SCSU,

BOCU and Unishox for languages that are spoken by over 75 million people
(according to Wikipedia).

Disclaimer: Natives may not consider all translations to be accurate as they

Licensed under CC 4.0 Int’l Attribution License ©2019-21 Siara Logics (cc) 14

Data Compression techniques • Information Science • Unishox - A hybrid
encoder for Short Unicode Strings

were translated online, although some attempt was made to check accuracy by
reverse translation.

9.2 Comparison with non-Unicode compression techniques
String Size Unishox Smaz Shoco
Beauty is not in the face. Beauty is a
light in the heart.

58 30 31 46

The quick brown fox jumps over the lazy
dog.

44 31 31 38

WRITING ENTIRELY IN BLOCK
CAPITALS IS SHOUTING, and it’s
rude

63 49 72 63

Grawlix is a string of typographical
symbols (such as %@$&*!) coined in
the 1960s

82 60 58 63

Rose is a rose is a rose is a rose. 35 12 20 25
Gravitational Constant (G): 6.67300 x
10^-11 m^3 kg^-1 s^-2

59 50 65 51

039f7094-83e4-4d7f-aa38-8844c67bd82d 36 18 53 36
2021-07-15T16:37:35.897Z 24 9 32 24
(760) 756-7568 14 7 20 14
This is a loooooooooooooooooooooong
string

42 15 32 25

* All sizes are in bytes.
The above table compares the compression performance of Smaz, shoco and

Unishox for different types of strings.

9.3 Comparison of file compression
Further - world95.txt - the text file obtained from The Project Gutenberg Etext
of the 1995 CIA World Factbook was compressed using the three techniques and
following are the results:

Original size: 2,988,577 bytes
After Compression using shoco original model: 2,385,934 bytes
After Compression using shoco trained using world95.txt: 2,088,141 bytes
After Compression using Unishox (1024 block size): 1,689,289 bytes
After Compression using Unishox (65536 block size): 1,128,302 bytes

9.4 Memory requirements
As for operating memory required, Shoco requires over 2k bytes, smaz requires
over 1k. But Unishox requires only around 300 bytes for compressor and de-
compressor together, ideal for using it with even Arduino Uno.

Licensed under CC 4.0 Int’l Attribution License ©2019-21 Siara Logics (cc) 15

Data Compression techniques • Information Science • Unishox - A hybrid
encoder for Short Unicode Strings

9.5 Speed
Unishox was found to be the slowest of all since employs several to achieve the
best compression. However this should not be too much of an issue in most
cases when a single string or few strings are handled at a time.

10 Conclusion
As can be seen from the performance numbers, Unishox performs better than
available techniques. It can also be seen that it provides optimal compression
for text, numbers and special characters in different languages all round.

It is especially useful in memory constrained environments such as embedded
devices and sending text messages over websockets to implement Chat bots and
applications.

11 Further work
It is proposed to make Unishox available in more languages than just C, Javascript
and Python, such as Java and C#.Net. It is also proposed to make it available
for more platforms.

12 About the Author
Arundale Ramanathan has over 20 years of experience working in the IT in-
dustry. He has worked alternatively in large Corporates, MNCs and Star-
tups, including Viewlocity Asia Pacific Pte. Ltd., IBC Systems Pte. Ltd.
and Polaris Software Lab Ltd. He publishes free and open source work at
https://github.com/siara-cc. He has a masters degree in Computer Science
from Anna University, Chennai, India. He can be reached at arun@siara.cc.

References
[1] David MacKay. Information Theory, Inference, and Learning Algorithms,

Cambridge University Press, 2003.

[2] Shannon, Claude E. (July 1948). A Mathematical Theory of Communication,
Bell System Technical Journal. 27

[3] D. A. Huffman, “A method for the construction of minimum-redundancy
codes“, Proc. IRE, vol. 40, pp. 1098-1101,1952.

[4] J. Ziv and A. Lempel. A Universal Algorithm for Data Compression. IEEE
Transactions on Information Theory, 23(3):337–343, May 1977.

[5] Wikipedia, Delta Encoding, Delta encoding at Wikipedia, updated July
2019.

Licensed under CC 4.0 Int’l Attribution License ©2019-21 Siara Logics (cc) 16

https://en.wikipedia.org/wiki/Delta_encoding

Data Compression techniques • Information Science • Unishox - A hybrid
encoder for Short Unicode Strings

[6] M. Burrows and D. Wheeler. A Block-Sorting Lossless Data Compression
Algorithm. Research Report 124, Digital Equipment Corporation, Palo Alto,
CA, USA, May 1994.

[7] Statistical Distributions of English Text. data-compression.com. Archived
from the original on 2017-09-18.

[8] What is the frequency of the letters of the alphabet in English?, Oxford
Dictionary. Oxford University Press. Retrieved 29 December 2012.

[9] Wikipedia, Letter frequency, Letter Frequency at Wikipedia, updated De-
cember 2018.

[10] Misha et al., A Standard Compression Scheme For Unicode - UTR #6,
TR#6 at unicode.org, May 2005.

[11] Scherer, Markus W. and Davis, Mark., BOCU-1: MIME-Compatible Uni-
code Compression, Unicode Technical Note #6, version 1 (August 2002).
Available online at TN#6 at unicode.org

[12] Pavel Studený, Ondřej Holeček, Opera Software ASA, Mark., Fast Com-
pression Algorithm For Unicode Text, Unicode Technical Note #31, version
2 (January 2008). TN#31 at unicode.org

[13] Doug Ewell, A survey of Unicode compression, Unicode Technical Note
#14, version 1 (January 2004). TN#14 at unicode.org.

[14] Salvatore Sanfilippo, SMAZ - compression for very small strings, Smaz on
Github, February 2012.

[15] Christian Schramm, shoco: a fast compressor for short strings, Shoco
Homepage, December 2015.

Licensed under CC 4.0 Int’l Attribution License ©2019-21 Siara Logics (cc) 17

https://en.wikipedia.org/wiki/Letter_frequency
https://www.unicode.org/reports/tr6/tr6-4.html
http://www.unicode.org/notes/tn6/
http://www.unicode.org/notes/tn31
http://www.unicode.org/notes/tn14/
https://github.com/antirez/smaz
https://github.com/antirez/smaz
https://ed-von-schleck.github.io/shoco
https://ed-von-schleck.github.io/shoco

	Summary
	Basic Definitions
	Existing techniques
	This research
	Model
	Rules
	Basic rules
	Upper case symbols
	Numbers and related symbols
	Sticky sets
	Special symbols
	Repeating letters
	Repeating sections
	Encoding Counts
	Encoding Unicode characters
	Encoding continuous Unicode characters
	Multi way access for Set 2
	Encoding punctuations
	Common templates
	Compression of frequently occuring sequences
	Redefinition of Horizontal codes and Presets

	Applications
	Implementation
	Performance Comparison
	Comparison with Unicode compression techniques
	Comparison with non-Unicode compression techniques
	Comparison of file compression
	Memory requirements
	Speed

	Conclusion
	Further work
	About the Author

