
Riemann's Functional Equation When z(s) = 0 = z(1-s) 
 

ABSTRACT 

 Riemann's Functional equation z(s) = 2sps-1sin(ps/2)G(1-s)z(1-s) has values where z(s) = 

0 at negative even integers of s (-2,-4,-6...) when the function sin(ps/2) equals 0. This paper 

demonstrates that the only other case where z(s) = 0 in Riemann's functional equation is when 

z(s) = z(1-s) which is only true when the real part of s = 1/2.  

 

SECTION I 

 Riemann's Functional equation z(s) = 2sps-1sin(ps/2)G(1-s)z(1-s) can only have z(s) = 0 if 

at least one of the following criteria are true: 

2sps-1 = 0 

sin(ps/2) = 0 

G(1-s) = 0 

z(1-s) = 0 

 The function 2sps-1 can never equal 0 as there is no value of s that would satisfy 2sps-1 = 0. 

The gamma function G(1-s) can also never equal 0.  

 The function sin(ps/2) = 0 when ps/2 = whole number intervals of p. When s is a positive 

even integer, the product sin(ps/2)G(1-s) is non-zero because G(1-s) has a simple pole, which 

cancels the simple zero of the sin function. The negative even integers of s (-2,-4,-6...) 

correspond  to the trivial zeros of the Riemann zeta function where z(s) = 0. There are no other 

cases where sin(ps/2) = 0 for real, imaginary, or complex numbers except for when s equals even 

integers.  

  

SECTION II 

 The only situation remaining that could make z(s) = 0 in Riemann's functional equation is 

when z(1-s) = 0. But if one considers the occurrence where z(1-s) = 0, then it must also be true 

that z(s) = 0. Secondly, if one considers the occurrence where z(s) = 0, then it must be due to the 

fact that z(1-s) = 0. This can only be true if z(1-s) = 0 = z(s) and therefore z(1-s) = z(s).  

 The only real number value that satisfies the real or complex equation z(1-s) = z(s) is 

when the real part of s = 1/2, i.e. z(1-[1/2]) = z(1/2). There are no other real values of s that 

satisfy the equation z(1-s) = 0 = z(s). Only when the real part of s = 1/2 can this be true. Since s 

= 1/2 is the only real number that could be used to satisfy the real or complex equation z(s) = 0 = 

z(1-s) then it must be true that z(s) can only equal 0 when the real part of s = 1/2.  

 

CONCLUSION 

 Besides the trivial zeros resulting from Riemann's functional equation, the only 

occurrences where z(s) = 0 is found to be when z(1-s) = 0 = z(s). The equation z(1-s) = z(s) can 

only be true when the real part of s = 1/2, thus z(s) can only equal 0 when the real part of s = 1/2. 

Therefore all non-trivial zeros of the Riemann Zeta function must lie on the critical line where 

real part of s = 1/2. 
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