Riemann's Functional Equation When $\zeta(\mathrm{s})=0=\zeta(1-\mathrm{s})$

Michael C. Dickerson

ABSTRACT

Riemann's Functional equation $\zeta(\mathrm{s})=2^{\mathrm{s}} \pi^{\mathrm{s}-1} \sin (\pi \mathrm{~s} / 2) \Gamma(1-\mathrm{s}) \zeta(1-\mathrm{s})$ has values where $\zeta(\mathrm{s})=$ 0 at negative even integers of $\mathrm{s}(-2,-4,-6 \ldots)$ when the function $\sin (\pi \mathrm{s} / 2)$ equals 0 . This paper demonstrates that the only other case where $\zeta(\mathrm{s})=0$ in Riemann's functional equation is when $\zeta(s)=\zeta(1-s)$ which is only true when the real part of $s=1 / 2$.

SECTION I

Riemann's Functional equation $\zeta(\mathrm{s})=2^{\mathrm{s}} \pi^{\mathrm{s}-1} \sin (\pi \mathrm{~s} / 2) \Gamma(1-\mathrm{s}) \zeta(1-\mathrm{s})$ can only have $\zeta(\mathrm{s})=0$ if at least one of the following criteria are true:
$2^{\mathrm{s}} \pi^{\mathrm{s}-1}=0$
$\sin (\pi \mathrm{s} / 2)=0$
$\Gamma(1-\mathrm{s})=0$
$\zeta(1-s)=0$
The function $2^{s} \pi^{s-1}$ can never equal 0 as there is no value of s that would satisfy $2^{s} \pi^{s-1}=0$. The gamma function $\Gamma(1-s)$ can also never equal 0 .

The function $\sin (\pi \mathrm{s} / 2)=0$ when $\pi \mathrm{s} / 2=$ whole number intervals of π. When s is a positive even integer, the product $\sin (\pi \mathrm{s} / 2) \Gamma(1-\mathrm{s})$ is non-zero because $\Gamma(1-\mathrm{s})$ has a simple pole, which cancels the simple zero of the sin function. The negative even integers of $s(-2,-4,-6 \ldots)$ correspond to the trivial zeros of the Riemann zeta function where $\zeta(\mathrm{s})=0$. There are no other cases where $\sin (\pi \mathrm{s} / 2)=0$ for real, imaginary, or complex numbers except for when s equals even integers.

SECTION II

The only situation remaining that could make $\zeta(\mathrm{s})=0$ in Riemann's functional equation is when $\zeta(1-\mathrm{s})=0$. But if one considers the occurrence where $\zeta(1-\mathrm{s})=0$, then it must also be true that $\zeta(\mathrm{s})=0$. Secondly, if one considers the occurrence where $\zeta(\mathrm{s})=0$, then it must be due to the fact that $\zeta(1-\mathrm{s})=0$. This can only be true if $\zeta(1-\mathrm{s})=0=\zeta(\mathrm{s})$ and therefore $\zeta(1-\mathrm{s})=\zeta(\mathrm{s})$.

The only real number value that satisfies the real or complex equation $\zeta(1-\mathrm{s})=\zeta(\mathrm{s})$ is when the real part of $s=1 / 2$, i.e. $\zeta(1-[1 / 2])=\zeta(1 / 2)$. There are no other real values of s that satisfy the equation $\zeta(1-s)=0=\zeta(\mathrm{s})$. Only when the real part of $\mathrm{s}=1 / 2$ can this be true. Since s $=1 / 2$ is the only real number that could be used to satisfy the real or complex equation $\zeta(\mathrm{s})=0=$ $\zeta(1-s)$ then it must be true that $\zeta(\mathrm{s})$ can only equal 0 when the real part of $\mathrm{s}=1 / 2$.

CONCLUSION

Besides the trivial zeros resulting from Riemann's functional equation, the only occurrences where $\zeta(\mathrm{s})=0$ is found to be when $\zeta(1-\mathrm{s})=0=\zeta(\mathrm{s})$. The equation $\zeta(1-\mathrm{s})=\zeta(\mathrm{s})$ can only be true when the real part of $\mathrm{s}=1 / 2$, thus $\zeta(\mathrm{s})$ can only equal 0 when the real part of $\mathrm{s}=1 / 2$. Therefore all non-trivial zeros of the Riemann Zeta function must lie on the critical line where real part of $s=1 / 2$.

References

Riemann, Bernhard (1859), "Ueber die Anzahl der Primzahlen unter einer gegebenen Grösse", Monatsberichte der Berliner Akademie. In Gesammelte Werke, Teubner, Leipzig (1892), Reprinted by Dover, New York (1953).

