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Abstract: -   We show that the nth term of an algebraic homogeneous linear-recurrence, can be expressed as a

weighted sum of the nth terms of a finite number of rational homogeneous linear recurrences. The weights in this

weighted sum belong to a finite set of algebraic constants, no two of which are rational multiples of each other.

1.     Introduction

The topic of Homogenous Linear Recurrences (HLRs) has long intrigued mathematicians for more than a century. The

construction of HLRs is simple indeed, that the next term in the sequence is a linear function of the preceding L terms. Yet

HLR Problems such as the Skolem Problem (on whether some term in the HLR can be zero) and the Positivity Problem (on

whether all terms of the HLR will always be positive) continue to remain unsolved.

Recent research [1] has found efficient algorithms for computing the nth term of the Rational HLR (RHLR), where all

starting points and coefficients are rational constants. But research has also acknowledged the difficulty of finding a similar

efficient algorithm for the Algebraic HLR (AHLR). By "computing" the nth term of an AHLR, we shall mean expressing the

nth term as a rationally weighted sum of algebraic constants, such that no two of these algebraic constants are rational

multiples of each other.

In this paper, we express the problem of computing the nth term of an ALHR, as a problem of computing the nth terms of

a finite set of RHLRs. Though the complexity of our approach can grow super exponentially to the problem size, the

importance of this link between ALHRs and RHLRs is discussed.

Notations

We use the following well-known notations that:

1. A number x is said to be algebraic, if x is a root of some univariate polynomial with integer coefficients. That is, x is

said to be algebraic if there exist integers {c0 , c1 , c2 , ... , cd , d} where d > 0, such that cd xd + cd-1 xd-1 + cd-2 xd-2 + ...

+ c0 = 0.

2. A number x is said to be rational if x=p/q, where both p and q are integers and q≠0.

3. (x y) denotes the product of x and y.

4. x^y and xy both denote x to the power of y. We use both notations to our convenience. Here, x is called the base,

while y is called the exponent.

5. If A and B are two boolean statements, then

A→B denotes "If A is true, then B is true"

A↔B denotes "A is true, if and only if, B is true"

6. LCM denotes Least Common Multiple. For example, LCM(2, 5, 15) = 30.

7. A Homogeneous Linear-Recurrence (HLR) whose nth term, fn , is defined by the following conditions:

fn = 0, for all integers n < 0

fn = an , for all integers n in [0, (L-1)]

fn = b1 fn-1 + b2 fn-2 + b3 fn-3 + ... + bL fi-L , for all integers n > L

8. In the definition above, if each of {a0 , a1 , a2 , ... , aL-1, b1 , b2 , b3 , ... , bL} is a given constant algebraic number, then

the HLR is called an Algebraic HLR or AHLR. In the rest of this paper, "algebraic" shall imply "real algebraic",

even though all the results of our paper are easily extensible to all types of algebraic starting points and coefficients

of the HLR.  If each of {a0 , a1 , a2 , ... , aL-1, b1 , b2 , b3 , ... , bL} is a given constant rational number, then the HLR is

called a Rational HLR or RHLR.

9. L is called the degree of the HLR.
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2.     The Approach

2.1.  Definitions

We further make the following definitions:

1. We say that an algebraic number is in Standard Algebraic Format (SAF), if it is expressed as num/den, where each

exponent in num and den, is a positive rational < 1. For example, if we are given the algebraic constant

b1 = 0.1(2)-2/5 +1.5(2 + (2/7)-2/3)-1/2,

then we can express b1 in SAF as follows:

b1 = 0.1(2)-2/5 +1.5(2 + (2/7)-2/3)-1/2

= 0.1/22/5 + 1.5/(2 + (7/2)2/3)-1/2)

= ((2 + (7/2)2/3)1/2 + 15 (22/5))/(10(22/5)(2 + (7/2)2/3)1/2)

= ((2(2)2/3 + (7)2/3)1/2 / (21/3) + 15 (22/5))/(10(22/5)(2 + (7/2)2/3)1/2)

= ((2(2)2/3 + (7)2/3)1/2 + 15 (22/3)(22/5))/(10(22/5)(2(22/3) + 72/3)1/2), which is finally in SAF.

In this example, b1 = num/den. Here, num = ((2(2)2/3 + (7)2/3)1/2 + 15 (22/3)(22/5)), where the set of exponents are {1,

2/3, 1/2, 2/5}. Also, den = (10(22/5)(2(22/3) + 72/3)1/2), where the set of exponents are {1, 2/3, 1/2, 2/5}.

2. In an ALHR, we assume, without loss of generality, that each element of the set of given algebraic constants {a0 , a1 ,

a2 , ... , aL-1, b1 , b2 , b3 , ... , bL} is expressed in SAF. This is because any algebraic number can be expressed in SAF.

We accordingly denote the set S = {num_a0 , den_a0 , num_a1 , den_a1 , num_a2 , den_a2 , ... , num_aL-1 , den_aL-1 ,

num_b1 , den_b1 , num_b2 , den_b2 , num_b3 , den_b3 , ... , num_bL , den_bL}.

3. From all the elements of S, we identify the set P of all possible unique factor algebraic constants, where the

exponent of each algebraic constant is the inverse of a positive integer. That is, P = {p1^(1/s1) , p2^(1/s2) , p3^(1/s3) ,

... , pu^(1/su)}, where u is the number of elements in set P, where each si is a positive integer > 1, and where pi≠pj for

i≠j. If S contains two or more candidate factors p^(1/si1) , p^(1/si2) , p^(1/si3) , ... , p^(1/sim) then we exclude  p^(1/si1)

, p^(1/si2) , p^(1/si3) , ... , p^(1/sim) from P, and instead include p^(1/LCM(si1 , si2 , si3 , ... , sim)) into P. In our

previously used example of b1 in SAF where b1 = ((2(2)2/3 + (7)2/3)1/2 + 15 (22/3)(22/5))/(10(22/5)(2(22/3) + 72/3)1/2), the

candidate elements to be inserted into P are {21/LCM(3,5) , 71/3 , (2(2)2/3 + (7)2/3)1/2}, that is {21/15 , 71/3 , (2(2)2/3 + (7)2/3)1/2},

4. Using P, we define the initial version of set Q to contain all possible (s1s2s3...su) combinations of the following

product of algebraic numbers:

(p1
i1/s1 p2

i2/s2 p3
i3/s3 … pu

iu/su),

for all integers i1 in [0, s1 - 1]

for all integers i2 in [0, s2 - 1]

…

for all integers iu in [0, su - 1].

If P = {31/2, 21/2 , 21/3}, then we make P = {31/2, 21/LCM(2,3)}, which is {31/2, 21/6}, for which, Q = {(30 20), (30 21/6), (30

22/6), (30 23/6), (30 24/6), (30 25/6), (31/2 20), (31/2 21/6), (31/2 22/6), (31/2 23/6), (31/2 24/6), (31/2 25/6)}.

5. We then iteratively prune set Q to remove  elements that are rational multiples of each other. That is, we repeatedly

check if Q has two elements qi and qj such that i≠j and qi=rqj where r is a rational, then qi is included in Q while qj is

excluded from Q. We denote the final set Q = {q1 , q2 , q3 , ... , qv}, that has no two elements qi and qj such that i≠j

and qi=rqj where r is rational. One reason why this pruning is needed, is that the product of two irrational algebraic

numbers can be a rational. For example, ((370.5 + 1)(370.5 - 1))0.5 = 6. Another example is (20.5 20.5 ) = 2.

6. DEN_PRODUCT is the product of all the denominators of the given algebraic constants in SAF, that is,

DEN_PRODUCT = (den_a0 den_a1 den_a2 ... den_aL-1 den_b1 den_b2 den_b3 ... den_bL).

We now state the main result of this paper in Theorem 1.

Theorem 1:   In an ALHR, for every n, fn = SUM ( (kn, k qk ), for all integers k in [1, v] ), where:

1. each kn,k follows a RHLR of finite degree

2. {q1, q2, q3, ... , qv} is a finite set of algebraic constants, no two of which are rational multiples of each other

Proof:   We prove this via two Lemmas. In Lemma 1.1, we show that fn can be expressed as a rationally weighted sum of

algebraic constants from a fixed set of algebraic constants. In Lemma 1.2, we show that each of these rational weights

follows a RHLR, with respect to n.

Lemma 1.1:   fn = SUM ( kn, k qk , over all integers k in [1, v] )

Proof:   Consider the recursive AHLR definition in Section 1, which can be rewritten as below:



for integers n < 0,

fn = 0.

for integers n in [0, (L-1)],

fn = (num_an/den_an).

for integers n > L,

fn = (num_b1/den_b1) fn-1 + (num_b2/den_b2) fn-2 + (num_b3/den_b3) fn-3 + ... + (num_bL/den_bL) fi-L.

For each integer n in [0, (L-1)], multiply both sides of the equation for fn with den_an. For each integer n > L, multiply both

sides of the equation for fn with DEN_PRODUCT. We get the following:

for integers n < 0,

fn = 0.

for integers n in [0, (L-1)],

den_an fn = num_an

for integers n > L,

DEN_PRODUCT fn =

(DEN_PRODUCT num_b1/den_b1) fn-1 +

(DEN_PRODUCT num_b2/den_b2) fn-2 +

(DEN_PRODUCT num_b3/den_b3) fn-3 +

... +

(DEN_PRODUCT num_bL/den_bL) fn-L.

We shall refer to the above formulation as the recursive formulation of fn. The above recursive formulation ensures that there

is no algebraic constant with a negative power, on both sides of the equations. As fn is evaluated in sequence for n > 0, the

various algebraic constants are multiplied and summed with each other, and the resulting algebraic constants produced in fn

continue to be rational multiples of the elements of Q. So each fn can continue to be described as a rationally weighted sum of

the algebraic constants in Q. That is, fn = kn, 1 q1 + kn, 2 q2 + kn, 3 q3 + ... + kn, v qv, for n > 0, which we refer to as the absolute

formulation of fn.

Hence Proved Lemma 1.1

Lemma 1.2:   Each kn,k is a rational that follows some RHLR definition with respect to n.

Proof:   Substitute the absolute formulations for fn , fn-1 , fn-2 , ... , fn-L into the recursive definition of fn , and we get:

DEN_PRODUCT (kn, 1 q1 + kn, 2 q2 + kn, 3 q3 + ... + kn, v qv) =

(DEN_PRODUCT num_b1/den_b1) (kn-1, 1 q1 + kn-1, 2 q2 + kn-1, 3 q3 + ... + kn-1, v qv) +

(DEN_PRODUCT num_b2/den_b2) (kn-2, 1 q1 + kn-2, 2 q2 + kn-2, 3 q3 + ... + kn-2, v qv) +

(DEN_PRODUCT num_b3/den_b3) (kn-3, 1 q1 + kn-3, 2 q2 + kn-3, 3 q3 + ... + kn-3, v qv) +

... +

(DEN_PRODUCT num_bL/den_bL) (kn-L, 1 q1 + kn-L, 2 q2 + kn-L, 3 q3 + ... + kn-L, v qv).

The resulting Left Hand Side (LHS) and Right Hand Side (RHS) will contain rational multiples of algebraic constants,

where all such algebraic constants are elements of Q.

For each integer i in [1, v], we then compare coefficients of qi , on the LHS and RHS, to obtain the following equation:

wi, 0, 1 kn, 1 + wi, 0, 2 kn, 2 + ... + wi, 0, v kn, v

=

wi, 1, 1 kn-1, 1 + wi, 1, 2 kn-1, 2 + ... + wi, 1, v kn-1, v

+

wi, 2, 1 kn-2, 1 + wi, 2, 2 kn-2, 2 + ... + wi, 2, v kn-2, v

+

...

+

wi, L, 1 kn-L, 1 + wi, L, 2 kn-L, 2 + ... + wi, L, v kn-L, v.

In the above equation, wi, j, k is a rational constant, for each integer i in [1, v], for each integer j in [0, v], for each integer k

in [1, v].

We get v equations from above, and so for each integer i in [1,v], we are able to express kn, i by the  following equation:

kn, i

=

ti, 1, 1 kn-1, 1 + ti, 1, 2 kn-1, 2 + ... + ti, 1, v kn-1, v

+



ti, 2, 1 kn-2, 1 + ti, 2, 2 kn-2, 2 + ... + ti, 2, v kn-2, v

+

...

+

ti, L, 1 kn-L, 1 + ti, L, 2 kn-L, 2 + ... + ti, L, v kn-L, v.

In the above equation, ti, j, k is a rational constant, for each integer i in [1, v], for each integer j in [1, v], for each integer k

in [1, v].

Though the above seems to suggest that kn, i follows a Rational Non-Homogeneous Linear Recurrence (RNHLR), we can

show that it can also be expressed as a RHLR. To do this, we use the concept of Generating Functions, where we define Gi(x)

= SUM( kn, i xn, over all integers n in [0, infinity]). We know that kn, i = 0 for each integer i in [1, v], for n<0. So we multiply

the LHS and the RHS of the above equation for kn, i by xn, and sum up the LHS and RHS separately from n=0 to infinity, to

get the following expression of Gi(x), for each integer i in [1, v] :

Gi(x)

=

ti, 1, 1 x1 G1(x) + ti, 1, 2 x1 G2(x) + ... + ti, 1, v x1 Gv(x)

+

ti, 2, 1 x2 G1(x) + ti, 2, 2 x2 G2(x) + ... + ti, 2, v x2 Gv(x)

+

...

+

ti, L, 1 xL G1(x) + ti, L, 2 xL G2(x) + ... + ti, L, v xL Gv(x)

+

Pi(x).

In the above equation, Pi(x) is a polynomial with constant rational coefficients whose values depend on the initial given

algebraic constants {a0 , a1 , a2 , ... , aL-1, b1 , b2 , b3 , ... , bL}.

The above equation of Gi(x) may be rewritten in a neater form as follows, for each integer i in [1, v] :

Hi,1(x)G1(x) + Hi,2(x)G2(x) + ... + Hi,L(x)GL(x) = Pi(x), where each of {Pi(x), Hi,1(x), Hi,2(x), ... , Hi,L(x), Gi(x)} is a polynomial

with constant rational coefficients.

Solving for Gi(x) for each integer i in [1, v], yields a rational polynomial with constant rational coefficients, that is Gi(x) =

NUMi(x)/DENi(x), where each of NUMi(x) and DENi(x) is a polynomial in x with constant integer coefficients. That is, each

of NUMi(x) and DENi(x) is a polynomial of form cd xd + cd-1 xd-1 + cd-2 xd-2 + ... + c0 , where each of {c0 , c1 , c2 , ... , cd, d} is

an integer constant and d>0.

Next, we know that for a generic RHLR, defined in Section 1 (Introduction), the generating function [2] is given by the

following rational polynomial with constant rational coefficients:

(a0 - x(a0b1 - a1) - x
2(a0b2 + a1b1 - a2) - x

3(a0b3 + a1b2 + a2b1 - a3) - ... - x
L-1(a0bL-1 + a1bL-2 + a2bL-3 + ...  + aL-2b1 - aL-1)) / (1 - xb1 -

x2b2 - x3b3 - ... - xL-1bL-1).

So, for each integer i in [1, v], we express Gi(x) = NUMi(x)/DENi(x), such that the coefficient of x0 in DENi(x) is equal to

1, and then the coefficients of the other powers of x in each of NUMi(x) and DENi(x) can become rational constants. We are

thus able to find the starting values and the coefficients, and thus define the RHLR for kn, i for each integer i in [1, v], for each

integer n>0.

Hence Proved Lemma 1.2

Hence Proved Theorem 1

Theorem 2: The nth term fn of an ALHR can be expressed as a weighted sum of the nth terms of RHLRs, where the

algebraic weights are from a finite set of algebraic constants.

Proof:   This follows directly from Theorem 1, where Q is the finite set of algebraic constants

Hence Proved Theorem 2

Theorem 3:   In an ALHR, the following two statements are true:

1. (fn = 0) ↔ (kn,1 = kn,2 = kn,3 = … = kn,v = 0)

2. (fn is periodic) ↔ (each of {kn,1 , kn,2 , ... , kn,v } is periodic).

Proof:   Since no two elements of Q are rational multiples of each other, there is no non-trivial rationally weighted average of

{q1 , q2 , q3 , ... , qv} that can be equal to 0, with the exception of the trivial case where all rational weights are equal to 0.

Hence, (fn = 0) → (kn,1 = kn,2 = kn,3 = … = kn,v = 0). Also, (kn,1 = kn,2 = kn,3 = … = kn,v = 0) → (fn = 0), is obvious.



Again, since no two elements of Q are rational multiples of each other, we can say that (ft = ft+mT for two integers {t, T}

and all non-negative integers m) → (each of {kt, 1 = kt+mT, 1 , kt, 2 = kt+mT, 2 , ... , kt, v = kt+mT, v } ). The converse is obvious, that is,

(each of {kt, 1 = kt+mT, 1 , kt, 2 = kt+mT, 2 , ... , kt, v = kt+mT,  v } ) →(ft = ft+mT ).

Hence Proved Theorem 3

2.2.  The Algorithm

We now give the following algorithm, to express the ALHR as the weighted average of a finite number of RHLRs, where the

weights are algebraic constants from a finite set:

1. In the given ALHR, express each of the given starting points {a0 , a1 , a2 , ... , aL-1} and each of the given coefficients

{b1 , b2 , b3 , ... , bL} in SAF.

2. Generate set S.

3. Generate set P from S.

4. Generate the initial version of set Q0 from P, and the final pruned version and denote it as set Q having v elements.

5. Write fn = kn, 1 q1 + kn, 2 q2 + kn, 3 q3 + ... + kn, v qv, for n > 0, which is the absolute formulation for fn. Substitute this

absolute formulation into the recursive formulation, and then equate the coefficients of each of the elements of Q on

both sides of the resulting equation. As explained in Theorem 1, for each integer i in [1, v], for each integer j in [1,

v], for each integer k in [1, v], find the values of the rational constants wi, j, k and ti, j, k. This allows us to express the

rational nth term kn, i as a RNHLR, for each integer i in [1, v].

6. As explained in Theorem 1, derive the expression of Gi , the generating function of kn, i , as Gi(x) =

NUMi(x)/DENi(x), where each of NUMi(x) and DENi(x) is a polynomial in x with rational coefficients, and the

coefficient of x0 in DENi(x) is equal to 1.

7. Compare Gi(x) with the well-known standard form of the generating function of a HLR, and express kn, i as a RHLR

for every integer i in [1, v].

8. Finally, express fn = kn, 1 q1 + kn, 2 q2 + kn, 3 q3 + ... + kn, v qv, for n > 0.

2.3.  An example

Consider the following ALHR fn defined by the following conditions:

fn = 0, for integers n < 0

fn = an , for integers n in [0, 1]

fn = b1 fn-1 + b2 fn-2 , for integers n > 2

where:

a0 = 1

a1 = (1 + (2 + 72/3)1/2)/10

b1 = (1 + (2 + 72/3)1/2)/5

b2 = -1

The above AHLR is the same one used for generating the values of cos(nx) = 2cos(x)cos((n-1)x) - cos((n-2)x), where for

our example, we take cos(x) = (1 + (2 + 72/3)1/2)/10. Here, our set P = {71/3, (2 + 72/3)1/2}. Our initial set Q0 = {1 , (71/3), (72/3),

((2 + 72/3)1/2) , ((2 + 72/3)1/2 71/3) , ((2 + 72/3)1/2 72/3)}. In this example, we are given the starting points and coefficients, directly

in SAF, and there are also no denominators, making our example easier to manually compute. Since there is nothing to prune,

set Q0 is the same as the final version of set Q having v=6 elements. So our absolute formulation is: fn = kn, 1 + kn, 2 (71/3) + kn, 3

(72/3) + kn, 4 ((2 + 72/3)1/2) + kn, 5 ((2 + 72/3)1/2 71/3) + kn, 6 ((2 + 72/3)1/2 72/3), for n > 0. Substituting this absolute formulation into

the recursive formulation yields:

kn, 1 + kn, 2 (71/3) + kn, 3 (72/3) + kn, 4 ((2 + 72/3)1/2) + kn, 5 ((2 + 72/3)1/2 71/3) + kn, 6 ((2 + 72/3)1/2 72/3)

=

((1 + (2 + 72/3)1/2)/5)(kn-1, 1 + kn-1, 2 (71/3) + kn-1, 3 (72/3) + kn-1, 4 ((2 + 72/3)1/2) + kn-1, 5 ((2 + 72/3)1/2 71/3) + kn-1, 6 ((2 + 72/3)1/2 72/3))

-

(kn-2, 1 + kn-2, 2 (71/3) + kn-2, 3 (72/3) + kn-2, 4 ((2 + 72/3)1/2) + kn-2, 5 ((2 + 72/3)1/2 71/3) + kn-2, 6 ((2 + 72/3)1/2 72/3)).

Now we equate the coefficients of qi on the LHS and RHS, for each integer i in [1,6].

Equating the coefficient of q1=1 gives, for each integer n>2 :

kn, 1 = (kn-1, 1/5) + (2kn-1, 4/5) + (7kn-1, 5/5) - kn-2, 1.

Equating the coefficient of q2=(71/3) gives, for each integer n>2:

kn, 2 = (kn-1, 2/5) + (2kn-1, 5/5) + (7kn-1, 6/5) - kn-2, 2.

Equating the coefficient of q3=(72/3) gives, for each integer n>2:

kn, 3 = (kn-1, 3/5) + (kn-1, 4/5) + (2kn-1, 6/5) - kn-2, 3.



Equating the coefficient of q4=(2 + 72/3)1/2 gives, for each integer n>2:

kn, 4 = (kn-1, 1/5) + (kn-1, 4/5) - kn-2, 4.

Equating the coefficient of q5=((2 + 72/3)1/2 (71/3)) gives, for each integer n>2:

kn, 5 = (kn-1, 2/5) + (kn-1, 5/5) - kn-2, 5.

Equating the coefficient of q6=((2 + 72/3)1/2 (72/3)) gives, for each integer n>2:

kn, 6 = (kn-1, 3/5) + (kn-1, 6/5) - kn-2, 6.

We also know from the starting points a0 and a1, that:

k0, 1 = 1.

k0, 2 = k0, 3 = k0, 4 = k0, 5 = k0, 6 = 0.

k1, 1 = k1, 4 = 1/10.

k1, 2 = k1, 3 = k1, 5 = k1, 6 = 0.

And finally, we know that for each integer i in [1, 6], and for each integer n < 0:

kn, i = 0.

We have expressed kn, i as a RNHLR of degree 2. Our aim is now to express kn, i as a RHLR, for each integer i in [1, 6]. For

this, we derive the generating function Gi of kn, i for each integer i in [1, 6]. Using the method of generating functions on each

of the RNHLR equations obtained (multiplying the LHS and RHS of each equation by xn and summing for all n>2, we

obtain:

From the RNHLR for kn, 1 :

(G1 - k0, 1 - xk1, 1) = (x(G1 - k0, 1)/5) + (2x(G4 - k0, 4)/5) + (7x(G5 - k0, 5))/5) - (x2G1).

From the RNHLR for kn, 2 :

(G2 - k0, 2 - xk1, 2) = (x(G2 - k0, 2)/5) + (2x(G5 - k0, 5)/5) + (7x(G6 - k0, 6))/5) - (x2G2).

From the RNHLR for kn, 3 :

(G3 - k0, 3 - xk1, 3) = (x(G3 - k0, 3)/5) + (x(G4 - k0, 4)/5) + (2x(G6 - k0, 6))/5) - (x2G3).

From the RNHLR for kn, 4 :

(G4 - k0, 4 - xk1, 4) = (x(G1 - k0, 1)/5) + (x(G4 - k0, 4)/5) - (x2G4).

From the RNHLR for kn, 5 :

(G5 - k0, 5 - xk1, 5) = (x(G2 - k0, 2)/5) + (x(G5 - k0, 5)/5) - (x2G5).

From the RNHLR for kn, 6 :

(G6 - k0, 6 - xk1, 6) = (x(G3 - k0, 3)/5) + (x(G6 - k0, 6)/5) - (x2G6).

The above 6 equations may be respectively rewritten in a concise form as follows:

G1(x
2 - x/5 + 1) + G4(-2x/5) + G5(-7x/5) = 1 - (x/10).

G2(x
2 - x/5 + 1) + G5(-2x/5) + G6(-7x/5) = 0.

G3(x
2 - x/5 + 1) + G4(-x/5) + G6(-2x/5) = 0.

G4(x
2 - x/5 + 1) + G1(-x/5) = -(x/10).

G5(x
2 - x/5 + 1) + G2(-x/5) = 0.

G6(x
2 - x/5 + 1) + G3(-x/5) = 0.

For each integer i in [1,6], solving for Gi gives a solution of the form (NUMi(x)/DENi(x)), where each of NUMi(x) and

DENi(x) is a polynomial in x whose coefficients are rational constants, and the coefficient of x0 in DENi(x) is equal to 1. For

example, for some i, if Gi = ((x2 - 3x + 5)/(x3 - 3x2 + 7x - 13)), then write Gi = (-1/13)((x2 - 3x + 5)/(-(x3/13) + (3x2/13) -

(7x/13) + 1))

Following the final step 7 of our algorithm, compare the expression of Gi = (NUMi(x)/DENi(x)) with the standard form of

the generating function of a generic RHLR, to find the starting points and coefficients and thus express each of {kn, 1 , kn, 2 , kn,

3 , kn, 4 , kn, 5 , kn, 6} as a RHLR.

3.   Conclusion and Future Work

Our paper showed the link between the ALHR and RHLRs. Specifically, it showed that within a finite set of steps (i.e. using

a deterministic algorithm), the nth term of an ALHR can be expressed as an weighted sum of the nth terms of a finite number

of RHLRs, where the weights belong to a finite set of algebraic constants derived from the set of starting points and

coefficients of the ALHR.  Some applications where our results could be useful are:

1. Finding when the nth terms of multiple RHLRs could be simultaneously zero for the same n. This problem could be

converted into the problem of whether or not the nth term of equivalent AHLR (representing the RHLRs) is equal to



0 for some n.

2. Evaluation of the nth term of an AHLR. Since the nth term of a RHLR can be efficiently evaluated, we would need

to find the values of the nth terms of multiple RHLRs that arise from the AHLR. The main drawback of our

approach would be that the number of such RHLRs can potentially grow super-exponentially to the data size.

3. Determination of whether or not an angle is an integer multiple of PI. If we are given the algebraic value of the sine

or cosine of an angle x, then we would be dealing with the AHLR similar to what we covered in our example in

Section 2.3, where the conclusion would be that x is an integer multiple of PI, if and only if, cos(nx) = 1 for some

n>0.

4. An interesting observation is that the degree of the numerator or denominator of the generating functions of the

RHLRs, can be > L. In other words, if an ALHR of degree L is expressible as a set of RHLRs of degree > L, the

reverse is also possible (i.e. it should be possible to "express" an RHLR of degree L as an AHLR of degree lower

than L). We know that the Skolem problem, the question of whether or not there exists some n>0 such that fn = 0, is

open for RHLRs of degree > 4. As the degree is reduced, expressing RHLRs as the equivalent AHLR, this might

prove to be a useful approach in solving the open Skolem problem.
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