
Motion Tracking with

Raspberry Pi
─

Saarang Srinivasan
National Public School Koramangala, Bengaluru

Intern at Mistral Solutions Pvt Ltd, Bengaluru

saarangsrini35@gmail.com

 Motion Tracking with Raspberry Pi

1

Abstract

The aim of this project is to detect the motion in a video and accordingly follow

the motion. This program uses python and contour detection to find the moving

objects in the video and determine which direction we must move in order to

follow the motion. We move the camera in the direction of the motion in order to

follow it.

2

Table of Contents

1.1 Introduction 3

1.2 Block Diagram 4

1.3 Features and Applications 4

2. Component’s Build Equipment 5

3.1 Algorithm 5

3.1.1 Basic Algorithm 5

3.1.2 Flaw with Basic Algorithm 5

3.1.3 Background Frame 5

3.1.4 Direction of Motion 6

3.2 Circuit Diagram 8

3.3 Device Construction 8

4.1 Advantages and Limitations 9

4.2 Results and Analysis 9

4.2.1 Basic Algorithm 9

4.2.2 Adjacent Frames 11

4.2.3 Background Frame Algorithm 11

4.2.4 Following the Motion 12

4.3 Conclusion 14

5. Acknowledgements 14

6. References 14

3

1.1 Introduction

Objects move all the time. Tracking and following them is a task by itself. The project

targets the tracking of an object's motion and following it.

1.2 Block Diagram

4

1.3 Features and Applications

Motion tracking has a variety of applications in the military and in security. Security

cameras, drones, military weapons usually have object tracking features to aid in object

identification and counting as well as detection of dangerous substances and/or people.

2. Component’s Build Equipment

1. Raspberry Pi - The Raspberry Pi is a low cost, credit-card sized computer which can

be used to run python scripts and other programs.

2. Camera - A camera is used to take the video input for the motion tracking program

3. Servo/Motor - A servo/motor was used for debugging and to point out the direction

in which the camera should move to follow the motion.

4. Motor Controller - If a motor is used, a motor controller is needed to connect the

motor to the raspberry pi and a battery.

5. Python - On the software side, python was used to write the program.

Pictures of the build equipment (servo not shown)

5

3.1 Algorithm

3.1.1 Basic Algorithm

The most basic algorithm to detect motion in an image is to compare the frame differences

between the first frame and the current frame and extract the contours. Contours can be

explained simply as a curve joining all the continuous points (along the boundary), having

the same color or intensity. Finding the contours can, therefore, help you find the object

boundaries in a frame. Contour detection works more accurately on binary images so the

frames are binarized based on a certain threshold (pixels above the threshold are and1

below are).0

3.1.2 Flaw with Basic Algorithm

The flaw with this algorithm is that it makes the assumption that the camera is stationary

and the background for all frames remains the same. In a real life scenario, say a webcam

on a drone, the camera may be moving as well and the background changes. To fix this

issue, we cannot continue to compare the first frame and the current frame. Would

comparing the current and the previous frame to find contours work? This heuristic looks

like it'll work but in a video there are thousands of frames and the differences between two

adjacent frames is usually minute and therefore the motion will not be detected over the

entire video.

3.1.3 Background Frame

The major idea used in the motion detection algorithm is to compare two frames with

something which works as a background frame. In the initial algorithm explained, the first

frame works as the background frame (this works for stationary backgrounds). Therefore to

make a working algorithm for mobile cameras, we will need to construct a background

frame as such to detect motion.

How do we create this background frame? There are two possible approaches to make this

background frame. The more format, complicated approach which possibly works much

better is to create the background frame using the previous frames. Our approach is to

"move" the background frame to the current frame on the specified amount. We shift this

background frame slightly in the direction of the current frame. In the second approach of

comparing adjacent frames, we assume the previous frame works as the background

frame. In the current heuristic, we shift the background frame only slightly towards the

current frame i.e achieving a more accurate background frame. This approach is quite

difficult as we will have to morph the frames in specific percentages and find the numbers

6

for which the motion is detected the most accurately. Morphological operations such as

erosion and dilation were used on the frames to make the object boundaries more clear

before the contour detection.

The other approach is a basic addition to the initial approaches. Instead of comparing the

first and current frame, or adjacent two frames, we can compare the current frame and the

frame where is an independent variable chosen. Why does this work(!""#$% −))
%ℎ

)

more accurately than the other basic approaches? This is because we will choose such)

that it is not too near to the current frame (in which case the difference between the

frames will be too minor) nor is it too far from the current frame (in which case the

difference between the frames will be inaccurate for mobile cameras). Here the

frame is assumed as the background frame and it works fairly accurately(!""#$% −))
%ℎ

upon testing as well.

3.1.4 Direction of Motion

Using the above approaches, we can detect the differences in the background frame and

the current frame. We then find the contours to mark out the images and find the object

boundaries. The next step is to find which direction the object is moving in and how to

follow it. Note that there may be multiple objects detected in the video, some due to

inaccuracies in the contour detection process.

To find this "side", there are multiple approaches. The trivial idea is to just brute force over

all rectangles the camera frame can now view after moving it in that direction. For each

rectangle, we can count the number of objects and/or number of pixels with objects in it

and accordingly choose the rectangle i.e camera movement which is the most appropriate.

Since this approach is brute force, it works accurately but it has other flaws. For a camera

frame of dimensions , the total number of rectangles possible is of the order$ * - .(($-)
2
)

. As the size of the rectangle is fixed (camera frame size), this number reduces to . We.($-)

need to check the number of objects/pixels in this rectangle, therefore the total complexity

will be which can further be optimized to by precomputing prefix sums..(($-)
2
) .($-) 2/

Since the number of frames in a video is usually in thousands and camera frame

dimensions are usually quite large too, this algorithm, though accurate, is usually too

inefficient to be used for real life.

The next two approaches use the concept of center of mass. Assume each object is in the

form of a rectangle, therefore its center is the center of the rectangle. Say we have 3

objects each with the weight and their respective centers . Therefore the4
5

()
5
, 7

5
)

coordinates of the center of mass of this distribution will be given by the formulae:

7

8.9
:
 =

5=1

5=$

∑ 4
5
*)

5

5=1

5=$

∑ 4
5

8.9
<
 =

5=1

5=$

∑ 4
5
* 7

5

5=1

5=$

∑ 4
5

The center of mass of this object distribution would give the "side" where the majority of

the objects are. If the center of mass is on the left of the center of the camera frame, we

need to move the camera towards the left. Using the x-coordinate and y-coordinate of the

center of mass, we can similarly determine the directions in which the camera should be

moved in order to follow the majority of the objects and their motion. Note that finding the

center of mass would be more efficient than the algorithm as we are only traversing.($-)

through the detected objects whose area is greater than a certain threshold (set by default

to 500). These objects are likely to be disjoint components of the image further limiting the

total number of objects possible.

In the first approach, we consider each object has a weight of and find the center of mass1

using this assumption. Though this heuristic would work, its accuracy is questionable as it

will be easily influenced by outliers (objects which are small and negligible/irrelevant) as

each object is given equal weightage and priority in this algorithm. The second approach

builds on this by giving higher preference to an object of larger size than to an object of

smaller size. For each object of size pixels, we give it a weight of . Putting these" * " *

weights into the center of mass formula would give a more accurate position which would

further improve the overall motion following accuracy.

Therefore, we can both detect and follow object motion using a combination of background

detection, contour finding and using the center of mass concept. The actual following of the

motion has been implemented using a Raspberry Pi. A motor and an LED are connected

and the motor moves in the direction of motion. The program is also tested on a camera

which can rotate in the direction of motion.

8

3.2 Circuit Diagram

3.3 Device Construction

Connect 2 LEDs and resistors to the GPIO pins as mentioned in the circuit diagram. Use a

motor/servo and connect it to the Raspberry Pi. A battery may be required as well

depending on the requirements of the motor/servo.

Ensure you have Python 3 installed on your Raspberry Pi along with necessary modules

such as RPi, open-cv, imutils, argparse, logging, time and datetime. You may

need a camera to run the program as well.

9

Example of the construction and the monitor output

10

4.1 Advantages and Limitations

The major part of the algorithm is based on the tracking of contours or the object

boundaries. This method works well on both rigid and non-rigid bodies and a change in

illumination of the frame does not affect accuracy much. However, this algorithm is unable

to handle entry/exit of objects as well as a continuously shifting background well and it

leads to a drop in accuracy. This is due to the movement in the background being treated

as a moving object and the program tends to misidentify objects and backgrounds in these

situations. Using the morphing to make a continuous background frame, however, should

be able to improve accuracy even for moving backgrounds.

4.2 Results and Analysis

4.2.1 Basic Algorithm

The basic algorithm for motion detection discussed above works amazingly accurately for

stationary cameras with stationary backgrounds as the background frame in this case is the

same as the actual background and we do not have to build it explicitly. Some example

outputs using this basic algorithm on stationary backgrounds are below.

11

Basic algorithm works on stationary backgrounds

The basic algorithm however doesn’t work accurately for mobile backgrounds at all.

Examples of the algorithm on these backgrounds are below.

Basic algorithm fails on moving backgrounds

12

The difference in accuracy for stationary and mobile backgrounds is very noticeable. The

drop in accuracy is because the movement in the background is counted as an object.

4.2.2 Adjacent Frames

This algorithm is the same as the basic one but instead of comparing the first and the

current frame, we compare two adjacent frames. It works well for videos where objects are

moving at high speeds so there are noticeable differences even between two adjacent

frames.

An example output of this on a fast moving video is below.

Adjacent frames method on fast moving video

4.2.3 Background Frame Algorithm

The algorithm based on using the background frame to detect the motion leads to an

overall increase in accuracy though its accuracy for stationary backgrounds is not as

accurate as the basic algorithm. As mentioned before, the background frame and the

current frame have to be merged. After researching a bit along with some testing, merging

the frames with around of the original image and of the overlay image60 − 80% 20 − 40%

is usually appropriate. The other background construction method works most accurately

when is between depending on the camera specifications.) 4 − 40

13

Background construction method on example videos

The accuracy using the simple background frame algorithm is not extremely high overall

but it does not have specific cases where it fails as compared to the initial algorithms.

4.2.4 Following the Motion

The accuracy of the center of mass coordinates obviously depends on the accuracy of the

object detection. Implementation wise too, finding the center of mass is quite direct. To

ensure we only consider actual objects, there is also a min-area argument passed and

objects found are only considered if their area (number of pixels) is greater than a certain

threshold. An example of the center of masses found for each frame and the camera frame

center if given below.

14

Center of Mass debug log from a video

The last 2 numbers are the center of mass x and y coordinates found and the first 2

numbers are the center of the camera. This is a screenshot of the debug log produced after

running the program on a video. The x and y coordinates are when there is no object(0, 0)

detected in that frame. This case has to be handled separately to avoid division by 0 when

finding the center of mass.

15

4.3 Conclusion

The algorithm worked fairly accurately on most environments. The constants, threshold,

amount of dilation/erosion played an important role in the accuracy. The threshold values

allowed us to neglect irrelevant objects moving such as moving leaves in a tree. The

background frame computation process used is quite direct and simple here. The

algorithm can be improved by using better background estimation and using cascade

classifiers to break images into the required objects. Another optimization can be

visualizing the frames as a graph where each connected component (pixels which are in the

same colour) is potentially an object. Motion detection and tracking already has various

uses in the current day scenario and will potentially have many more in the future.

16

5. Acknowledgements

I express my deepest thanks to Mr. Rohit Dey for taking part in the important decision

making process and giving necessary advice and guidance and arranged all facilities to

make life easier. I choose this moment to acknowledge his contribution gratefully. It is my

radiant sentiment to place on record my best regards, deepest sense of gratitude to Mr.

Rajeev Ramachandra, CTO and Founder of Mistral Solutions Pvt Ltd, for providing me this

opportunity to work on this project under Mistral Solutions. I’d like to convey my regards to

my computer science teacher Chandita Mukhopadhyay and my school principal Jyotsna

Nair for supporting me throughout and allowing me to miss school to work on and

complete this project. I perceive this opportunity as a big milestone in my career

development. I will strive to use gained skills and knowledge in the best possible way, and I

will continue to work on their improvement, in order to attain desired career objectives.

17

6. References

I. A robust and computationally efficient motion detection algorithm based on Σ − ∆

background estimation by A. Manzanera and J. C. Richefeu

https://perso.ensta-paris.fr/~manzaner/Publis/icvgip04.pdf

II. Wikipedia - https://en.wikipedia.org/wiki/Motion_detection

III. GPIO documentation and pinout.xyz for hardware with Raspberry Pi

