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Abstract—Skin cancer is one of the deadly types of cancer
and is common in the world. Recently, there has been a huge
jump in the rate of people getting skin cancer. For this reason, the
number of studies on skin cancer classification with deep learning
are increasing day by day. For the growth of work in this area,
the International Skin Imaging Collaboration (ISIC) organization
was established and they created an open dataset archive. In this
study, images were taken from ISIC 2017 Challenge. The skin
cancer images taken were preprocessed and data augmented.
Later, these images were trained with transfer learning and fine-
tuning approach and deep learning models were created in this
way. 3 different mobile deep learning models and 3 different
batch size values were determined for each, and a total of 9
models were created. Among these models, the NASNetMobile
model with 16 batch size got the best result. The accuracy value
of this model is 82.00%, the precision value is 81.77% and the
F1 score value is 0.8038. Our method is to benchmark mobile
deep learning models which have few parameters and compare
the results of the models.

Index Terms—Benchmarking, Deep Learning, Skin Cancer,
Mobile Deep Learning Models

I. INTRODUCTION

Skin cancer is a dangerous and a common type of cancer
that exist in our today’s world. Sun is important for human
skin and body but comes with ultraviolet (UV) radiation which
is the main source of skin cancer. Due to UV radiation, the
melanocyte, a type of skin cell, begin to develop uncontrol-
lably and becomes skin cancer lesion. One in three newly
diagnosed malignancies is a skin cancer [1]. In the last decade
the amount of skin cancer cases increased by nearly 50%. The
high percentage of increase shows the importance of working
in the field of skin cancer and its early detection [2]. Melanoma
is the term used to describe a type of skin cancer categorized
as a malignant tumor caused by melanocytes. Melanoma is
responsible for more than 75% of skin cancer-related deaths.

When skin cancer lesions appear, certain patterns also occur.
These patterns can be seen better with the dermoscopes, but
a dermatologist is still needed for diagnosis. However, the
procedure of diagnosing skin cancer can become lengthy in
economically under-developed and developing regions that
lack well-trained dermatologists. To contribute to this circum-
stance, research on deep learning models capable of detecting
skin cancer has begun. Dermatology is a field of medicine that
focuses on skin disorders, and dermatologists are experts in
the field. Dermatologists primarily examine the lesion with the
naked eye. However, for further examination, they require der-
moscopy devices called dermoscopes, which contain a lens and
an polarized or non-polarized light source for magnification.
These devices make superficial and deeper patterns of lesions
noticeable and enables data collection. Dermoscopy devices
come in fixed and hand-held variants. Fixed devices also
can be called digital dermoscopy devices, such as Molemax,
consist of a computer, camera and a dermoscope. Handhelds
are small, designed to be portable, consist of dermoscope
and may not come with camera. Due to the design, the
mobile phones can also be used as a image capturing devices.
Literature provides lots of research and studies of different
deep learning approaches on skin cancer and ISIC one of them.
The ISIC archive serves as a primary dataset for studies on
skin cancer. The ISIC archive contains skin cancer datasets
from more than one institution and grows by incorporating
different datasets every year. The annual competitions orga-
nized by ISIC consist of three parts: lesion segmentation,
dermoscopic feature classification, and disease classification.
Participants are asked to create a deep learning model that
automatically predicts lesion segmentation from dermoscopic
images with binary masks in the lesion segmentation part.
In the dermoscopic feature classification section, participants



are asked to identify four clinically defined dermoscopic
features automatically. In the disease classification section,
participants are asked to classify images according to cancer
types [3]. Mohammed et al. [4] gather the dataset consisting
of 2750 images from the ISIC 2017 Challenge. The training
dataset contains 2000 images, the validation dataset contains
150 images, and the test dataset contains 600 images. For
data augmentation, they used the Hue-Saturation-Value (HSV)
format and image rotations. They added the images in the
dataset in HSV format and reached 4000 images in total. The
images in the dataset were rotated 0◦, 90◦, 180◦ and 270◦

to increase the dataset to 16000 images. As a result, 16000
dermoscopy images were used while training the proposed
full resolution convolutional networks (FrCN) segmentation
method. The pre-trained VGG16 model was used in model
training. Their FrCN outperformed the others with overall
accuracy, dice, and Jaccard indices of 94.03%, 87.08%, and
77.11%, respectively. In contrast, U-Net achieved the highest
specificity for overall skin lesion segmentation at 97.24%.
The segmentation accuracies of the benign, melanoma and SK
cases in the ISIC 2017 test dataset for their proposed FrCN
were 95.62%, 90.78%, and 91.29%, respectively. The com-
putational speed during the training phase of their proposed
FrCN method was faster than other segmentation methods.
Jeremy et al. [5] created dermoscopic images using the ISIC
2017 Challenge image archive. They recast the classification of
clinical dermoscopic features contained within superpixels as a
segmentation problem and propose a fully convolutional neural
network for detecting clinical dermoscopic features included
within dermoscopy skin lesion images. They expand VGG16, a
convolutional neural network pre-trained on ImageNet, by im-
plementing a semantic segmentation architecture comparable
to VGG16. They remove fully connected layers of VGG16 and
use bilinear interpolation to resize chosen responses and fea-
ture maps throughout the network to match the size of the input
image. Concatenation of these enlarged feature maps enables
them to evaluate feature maps from several network levels
directly. When compared to the other models, their technique
had the highest mean AUC score. Especially, they achieve the
highest results across all measures for the pigment network
dermoscopic characteristic. Additionally, they experiment with
replacing VGG16 with more contemporary models, such as
ResNet50 and InceptionResNetV2. They discovered that alter-
ing the underlying model did not affect the outcome. Philipp
et al. [6] gathered 888, 2750, and 16691 photos, respectively,
from the EDRA, ISIC2017, and PRIV datasets. They aimed to
evaluate the diagnostic accuracy of the Content-Based Image
Retrieval (CBIR) method to that of neural network predictions.
In all three datasets, CBIR forecasts of skin cancer had AUC
values similar to those of neural networks. When employed on
an eight-class dataset, neural networks trained to detect only
three classes outperformed CBIR. On the EDRA dataset, the
neural network performed the best, predicting with a 76.2%
accuracy. The significance of this article is to benchmark mo-
bile deep learning models with different batch size parameters
on ISIC 2017 dataset and show how they perform. We used

MobileNet, MobileNetV2 and NASNetMobile architectures to
perform mobile deep learning models. The dataset is resized to
224×224×3 and is saved as numpy arrays for time efficiency.
Data augmentation is applied to overcome overfitting. The best
accuracy and precision values that were acquired for ISIC 2017
dataset classification NASNetMobile model with 16 batch size
was with accuracy of 82%.

II. METHODOLOGY

Artificial intelligence (AI) is a broad field ranging from
fundamental regression of numbers to autonomous driving and
decision making. Deep learning is a type of AI that learns
features after being fed data, thus imitating humans. Usage of
deep learning in the medical sphere mainly comes as classi-
fication and segmentation. These methods use Convolutional
Neural Networks (CNN) as a base for working with digital
images. CNN with each convolution layer learns features. With
the increasing amount of convolution layers, layers begin to
learn higher-level features. Transfer learning is an approach
that takes previously trained models and uses them on new
datasets [7]. With transfer learning, learning starts from a
higher accuracy due to previously learned features. Features
can be low or high level based on the length of transferred
model. While common features can be used nearly on every
data, high-level features should be used only on a similar
dataset on which the transferred model was trained. ImageNet
is generally used for training models. The huge variety and a
large amount of data enable models to learn a good portion
of features. Imagenet is a large dataset consisting of 21,841
classes and 14,197,122 images [8]. Typical usage of transfer
learning consists of loading a model trained on the ImageNet
dataset, making layers non-trainable, removing the last dense
layer, adding a new dense layer, and then initializing the
training. The transfer learning method predicts the shapes,
colors, and texture structure learned by a pre-trained deep
learning model on the images in the new dataset. The last
layer of the frozen pre-trained model is removed and re-added
accordingly to the new dataset. However, model accuracy may
not improve after a while if the previously mentioned dataset
issue exists. The fine-tuning method is based on retraining
the pre-trained model by opening the determined layers to
training and updating the layers according to the content of the
new dataset. To further improve accuracy, fine-tuning named
training method is used. This method is applied by making
the following changes; After training, previously made non-
trainable layers are made trainable, and the learning rate is
lowered. With fine-tuning, features will be optimized for the
current dataset, and accuracy may rise significantly. Of course,
the increase is not guaranteed as accuracy depends on the
model used, the dataset used, and the hyperparameters used.
Our study uses MobileNet, MobileNetV2, and NASNetMobile
with transfer learning. All models were pre-trained on the
ImageNet dataset and were trained on the ISIC2017 dataset.



A. Dataset

ISIC 2017 dataset consists of 2750 skin cancer images. The
images consist of 2000 training datasets, 150 test datasets,
and 600 validation datasets. The images range in size from
540×722×3 to 4499×6748×3. High resolution of images in
the ISIC dataset provides an advantage over other dermoscopic
image datasets. Although the number of images in the dataset
is not high enough and the dataset is weak in terms of species
diversity, the deep learning model achieved high success in
experimental settings, although it achieved moderate success
in the clinical environment [3].

B. Models

1) MobileNet: MobileNet is a deep learning model that
was designed to be light and have low latency for mobile
and embedded devices. MobileNet has 88 layers, 4.2 million
parameters and has a size of only 16 MB, its size is very small
compared to other models. MobileNet architecture is built
on Depthwise Seperable Convolutions. Depthwise Seperable
Convolutions consists of two layers, one being depthwise
convolution and the other one being pointwise convolution.
Depthwise applies single filter per input depth, pointwise is
used to create linear combination of output from the depthwise
layer. Depthwise convolution is more efficient, uses 8 to 9
times less computation, compared to normal convolution layers
[9].

2) MobileNetV2: This deep learning model, inherits the
goals of MobileNet and further improves on them. Mo-
bileNetV2 has a lower amount of layers than MobileNet and
uses even less computational power. Amount of layers is
same as MobileNet which is 88 layers, amount of parameters
decreases to 3.5 million parameters and size also decreases
to 14 MB. With MobileNetV2, they improve MobileNet by
adding, shortcut connections, inverted residual blocks and
bottleneck blocks. Inverted residual bottleneck layers allows
to have a memory efficient implementation. This model also
does a great job in object detection and semantic segmentation
[10].

3) NASNetMobile: This model, was created by Google via
NASNet search space, named the way it is due to giving rise
to NASNet, with the goal of finding the best parameters and
creating the best model. NAS stands for Neural Architecture
Search, automates the search and finds the best algorithm.
Although the results are impressive applying NAS to a large
dataset is not efficient in terms of computation. While NAS-
NetLarge has nearly 89 million parameters NASNetMobile
only has 5.3 million parameters. Same is said for the model
sizes as the NASNetLarge is 343 MB, NASNetMobile is only
23 MB [11].

C. Implementation

In the deep learning method, the high-resolution images
filling the computer memory is one of the main reasons
that affect the duration of the training. Therefore, images
from the ISIC archive are scaled to 224×224. The photos
with reduced resolution were saved by converting the NumPy

library to array format. Following that, training was conducted
using these NumPy arrays. MobileNet, MobileNetV2, and
NASNetMobile architectures are trained with three different
batch size hyperparameters for benchmark testing. The Glob-
alAveragePooling layer has been added to the end of the
architectures. The flatten layer converts the image derived
from the architecture into a format suitable for processing in
the fully connected layer. In addition, three different dense
layers were added with a dropout value of 0.2. The output
layer containing the number of classes has been added at the
end of the architecture. Training and testing were performed
on a system with following components; Ryzen ThreadRipper
1950X, Nvidia GTX 1080Ti,32 GB of RAM and 512 GB SSD.
While time required for one epoch is relatively small, like 20
seconds averagely, due to high epoch count the overall time
required was 8 hours to complete.

Pre-trained models on the ImageNet dataset were used with
a 2-step training for fine-tuning the model. In the first step,
the layers of the models are frozen. Only the fully connected
block added to the end of the architecture is trained. Thus,
the selection was made according to the universal features
extracted from the ImageNet dataset. In the second stage,
fine-tuning was done. At this stage, all model layers were
included in the training. The universal features extracted from
the ImageNet dataset were optimized to obtain the model with
the highest performance. Model training was realized using the
Keras library.

TABLE I
GENERAL PROPERTIES OF THE MODELS

Property Value
Dataset Size 2750
Image Shape (224,224,3)

Test Data/All Data 0.15
Dropout 0.2

2D Pooling Size 2×2
Validation Data/Training Data 0.20

Epoch Number 150

D. Metrics

Metrics are used to evaluate and compare the performance
of models. The metrics show accuracy, sensitivity, specificity,
F1 score and area under the curve (AUC) score. These
parameters can be calculated by used confusion matrix. The
formulas for these classification metrics are shown sequentially
in Table I. The receive operating characteristics (ROC) curve
is another test tool for determining how probabilistically the
model provides results. It is a curve that shows the ratio of true
to false predictions when the ROC curve is used to calculate
the threshold values for each class and the decision is made
using the determined threshold value for that class.

III. RESULTS AND DISCUSSION

In this study, a performance comparison of deep learning
models for skin cancer classification was made. Table III



TABLE II
METRICS

Metric Formula

Accuracy
TP + TN

TP + FP + TN + FN

Sensitivity
TP

TP + FN

Precision
TP

TP + FP

Specificity
TN

TN + FP

F1 Score 2 ∗
Precision × Sensitivity
Precision + Sensitivity

AUC Area under of the curve

shows the performance of the trained deep learning models on
the ISIC 2017 dataset. MobileNet model with 16 batch size
has 80.36% accuracy, 79.38% precision and F1 score with
0.7934 results. The MobileNet model with 32 batch size has
80.73% accuracy, 80.72% precision and 0.8057 F1 score. The
MobileNet model with 64 batch size has 77.64% accuracy,
76.26% precision and 0.7567 F1 score. MobileNetV2 model
with 16 batch size has 81.45% accuracy, 81.28% precision
and 0.8114 F1 score. The MobileNetV2 model with 32 batch
size has 78.55% accuracy, 78.85% precision and 0.7806 F1

score. The MobileNetV2 model with 64 batch size has 80.91%
accuracy, 80.19% precision and 0.8035 F1 score. NASNet-
Mobile model with 16 batch size has 82% accuracy, 81.77%
precision and 0.8038 F1 score. The NASNetMobile model
with 32 batch size has 79.64% accuracy, 79.38% precision and
0.7823 F1 score. The NASNetMobile model with 64 batch size
has 77.45% accuracy, 77.94% precision and 0.7510 F1 score.

The NASNetMobile model with 16 batch size got the best
accuracy and precision values when benchmarking between
pre-trained models. This accuracy, precision, and F1 score
values of the model are 82.00%, 81.77%, 0.8038, respectively.
According to the model results, models with a small batch
size performed significantly better in class generalization.
The average accuracy of the MobileNet, MobileNetV2, and
NASNetMobile models is 79.60%, 80.30%, and 79.70%, re-
spectively. Looking at the average accuracy values, we see that
the MobileNetV2 models have better performance.

IV. CONCLUSION

In this study, three different deep learning models were
used with transfer learning and fine-tuning approach. Three
different batch size values were used and in total nine models
were created. Skin cancer disease classification was made
with mobile deep learning models determined using ISIC
2017 dataset, and the performances of these models were
benchmarked. Since mobile deep learning models have fewer
parameters than other models, the training and prediction times
were shorter. Although a deep learning model generally gives a
good result on a specific dataset, hyperparameter optimization
is required to find the best result. In this study, it is compared
to what extent batch size values, one of the hyperparameters

TABLE III
RESULTS

Model - Batch Size Accuracy Precision F1 Score AUC
Score

MobileNet - 16 80.36% 79.38% 0.7934 0.9050
MobileNet - 32 80.73% 80.72% 0.8057 0.8936
MobileNet - 64 77.64% 76.26% 0.7567 0.8883

MobileNetV2 - 16 81.45% 81.28% 0.8114 0.9035
MobileNetV2 - 32 78.55% 78.85% 0.7806 0.8977
MobileNetV2 - 64 80.91% 80.19% 0.8035 0.9023

NASNetMobile - 16 82.00% 81.77% 0.8038 0.8832
NASNetMobile - 32 79.64% 79.38% 0.7823 0.8816
NASNetMobile - 64 77.45% 77.94% 0.7510 0.8684

in deep learning models, will affect the generalization ability
of these models. Models with a batch size of 16 gave good
results, while models with a batch size of 64 gave poor results
in general.
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SUPPLEMENTARY

Fig. 1. ROC Curve for MobileNet with 16 Batch Size

Fig. 2. ROC Curve for MobileNet with 32 Batch Size

Fig. 3. ROC Curve for MobileNet with 64 Batch Size



Fig. 4. ROC Curve for MobileNetV2 with 16 Batch Size

Fig. 5. ROC Curve for MobileNetV2 with 32 Batch Size

Fig. 6. ROC Curve for MobileNetV2 with 64 Batch Size



Fig. 7. ROC Curve for NASNetMobile with 16 Batch Size

Fig. 8. ROC Curve for NASNetMobile with 32 Batch Size

Fig. 9. ROC Curve for NASNetMobile with 16 Batch Size
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