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ABSTRACT

This publication contains a mathematical approach for a reinterpretation of the “Maxwell

equations” under the assumption of a magnetic field density. The basis for this is Faraday's

unipolar induction, which has proven itself in practice, in combination with the calculation

rules of vector analysis. The theoretical approach here is the assumption, according to Paul

Dirac, that there is a magnetic field density.

In this publication the “Maxwell equations” are recalculated in their entirety. It is shown that

both the change in the magnetic field over time and the change in the electric field over time

can be derived from a second level tensor (matrix), which can be interpreted as a spatial field

distortion tensor. Likewise, both the magnetic field density and the electric field density are

derived from the unipolar induction according to Faraday. The magnetic field density results

from the fact that the div B⃗  is equal to the (Sp)grad B⃗ .

Another innovation are the two field gradients grad B⃗ , grad D⃗  and the velocity gradi-

ent grad v⃗ , which can also be derived from Faraday's unipolar induction. These three gra-

dients play an important role in the interpretation of spatially distorted fields.

1. INTRODUCTION

The “Maxwell equations” were defined in a simplified manner by Oliver Heaviside (1850-

1925) in their current form. Since vector mathematics was still in its infancy at that time, the

“Maxwell equations” were simplified by Oliver Heaviside using the methods of differential

calculus and integral calculus at that time. He assumed that there was no magnetic field den-

sity. This was later questioned by Paul Dirac through a theoretical consideration. Therefore
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this elaboration deals with the reinterpretation of the “Maxwell equations”, under the mathe-

matical requirement of a magnetic field density and with the help of vector analysis. Fara-

day's unipolar induction serves as the basis.

2. IDEAS AND METHODS

2.1 IDEA FOR REINTERPRETATION OF THE “MAXWELL EQUATIONS”

The basic idea for the reinterpretation of the “Maxwell equations” is based on the discovery

of magnetic “quasi-monopoles”, which cause a magnetic field density. These were demon-

strated in the following experiments:

1. Castelnovo, Moessner und Sondhi, 2009, Helmholz-Zentrum Berlin, Formation of “quasi-

monopoles” through neutron diffraction of a dysprosium titanate crystal.

2.  2010,  Paul-Scherrer-Institut,  Formation  of  “quasi-monopoles”  through  synchronous

radiation.

3. 2013, Technische Universitäten Dresden und München,  Formation of “quasi-monopoles”

when mining Skyrmion crystals.

 

4.  David Hall  und Mikko Möttönen,  2014, University of  Amherst  und Universität  Aalto,

Formation of “quasi-monopoles” in a ferromagnetic Bose-Einstein condensate.

Based on Faraday's unipolar induction (equation 2.1.1) and the related analog equation (equa-

tion 2.1.2), the “Maxwell  equations” can now be derived and reformulated,  based on the

mathematical requirement of a magnetic field density and with the aid of vector analysis will.

E⃗ =  electric field strength 

v⃗  =  velocity

B⃗  =  magnetic flux density

H⃗ =  magnetic field strength

D⃗ =  electrical flux density

× =  Cross product

s⃗  =  distance
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t   =  time 

ρel = electrical space charge density

ρm = magnetic space charge density

δ   = Delta

rot = rotation

div = divergence 

grad = gradient 

Farady unipolar induction:

E⃗=  v⃗  ×  B⃗                                                                                                                  (2.1.1)

Unipolar induction for magnetic fields:

H⃗ = −( v⃗  ×  D⃗)                                                                                                           (2.1.2)

2.2 BASICS OF VECTOR CALCULATION

In order to be able to derive the set of equations of the “Maxwell equations” from vector cal-

culation, the basics of vector calculation used for this are described in this chapter.

First, three meta-vectors  a⃗ ,  b⃗  and  c⃗  are introduced at this point. The three meta-

vectors will be used in the following basic mathematical description. In Equation 2.2.1, these

three meta-vectors are used to map the cross product.

c⃗  = a⃗× b⃗                               (2.2.1)

In equation 2.2.1, the rot-operator is now used on both sides of the equation. This results in

equation 2.2.2.

rot c⃗  =  rot ( a⃗×b⃗)                                           (2.2.2)

Now the right side of equation 2.2.2 is rewritten according to the calculation rules of vector

calculation. This results in equation 2.2.3.

rot c⃗  =  rot (a⃗×b⃗)  = (grad a⃗)  b⃗  −  (grad b⃗)  a⃗  +  a⃗  div b⃗  − b⃗  div a⃗                       (2.2.3)
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On the right side, two vectorial gradients (grad) and two vectorial divergences (div) are creat-

ed. If a minus sign is now used on all sides of equation 2.2.3, equation 2.2.3 changes to equa-

tion 2.2.4.

rot (−a⃗× b⃗)  =  - rot (a⃗× b⃗)  = - (grad a⃗ )  b⃗  + (grad b⃗)  a⃗  − a⃗  div b⃗  +  b⃗  div a⃗     (2.2.4)

2.3 UNIPOLAR INDUCTION FOR DESCRIBING ELECTRIC AND MAGNETIC
FIELDS

The rot operator is calculated according to the calculation rules from Eq. 2.2.2, to Eq. 2.1.1

and Eq. 2.1.2 applied. Taking into account equation 2.2.4, the two expressions from equations

2.3.1 and 2.3.2 arise

rot E⃗=  rot ( v⃗  x B⃗)                                                                                                      (2.3.1)

rot H⃗=  −rot (v⃗  x D⃗)                                                                                                  (2.3.2)

In a next step, the right-hand side of equations 2.3.1 and 2.3.2 is rearranged according to the

calculation  rules  from equations  2.2.3 and 2.2.4.  This  gives  rise  to  the  expressions  from

equations 2.3.3 and 2.3.4.

rot E⃗  = (grad v⃗ )  B⃗  − (grad B⃗) v⃗  +  v⃗  div B⃗  −  B⃗  div v⃗                                         (2.3.3)

rot H⃗  =  −((grad v⃗)  D⃗  − (grad D⃗) v⃗  + v⃗  div D⃗  − D⃗  div v⃗ )                                (2.3.4)

If equation 2.3.4 is simplified further, equation 2.3.5 arises.

rot H⃗  =  −(grad v⃗ )  D⃗  +  (grad D⃗) v⃗  −  v⃗  div D⃗  + D⃗  div v⃗                                   (2.3.5)

4

105

106

107

108

109

110

111
112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138



2.4 DERIVATION OF THE “MAXWELL EQUATIONS”

2.4.1 “MAXWELL EQUATIONS”

First, the simplified forms of the “Maxwell equations” are listed by the equations 2.4.1, 2.4.2,

2.4.3 and 2.4.4, to which reference is made in this publication.

Gaussian law:

div D⃗  = ρel                                                                                                                  (2.4.1)

Gaussian law for magnetic fields:

div B⃗  = 0                                                                                                                    (2.4.2)

Induction law:

rot E⃗  = −
δ B⃗
δ t

                                                                                                             (2.4.3)

Flooding law:

rot H⃗  =  
δ D⃗
δ t

 +  j⃗                                                                                                       (2.4.4)

2.4.2  MATHEMATICAL DERIVATION OF THE “MAXWELL EQUATIONS”

In the following chapters, equations 2.4.2 and 2.4.3 are derived from equation 2.3.3. In addi-

tion, equations 2.4.1 and 2.4.4 are derived from equation 2.3.4. The derivation is based on the

physical assumption that there is no magnetic field density. It is also assumed here that no

distortions occur in the velocity vector field as well as in the magnetic field and in the electric

field. As a result, the (grad v⃗ )  and the (div v⃗ ) have no influence on the overall result.

Furthermore,  the  two  expressions  v⃗ (grad B⃗)  and  v⃗ (grad D⃗)  become  
δ B⃗
δ t

 and

δ D⃗
δ t

.
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2.4.3 DERIVATION OF GAUSSIAN LAW FOR MAGNETIC FIELDS AND THE LAW
OF INDUCTION

rot E⃗  = (grad v⃗ )  B⃗  − (grad B⃗) v⃗  +  v⃗  div B⃗  −  B⃗  div v⃗                                         (2.3.3)

First, the individual components from equation 2.3.3 are considered. Assuming a homoge-

neous velocity vector field,  the  (grad v⃗ )  and the  (div v⃗ )  have no influence on the

overall result and therefore assume the value 0. The (div B⃗)  also assumes the value 0 ac-

cording to the “Maxwell equations”. This results in equations 2.4.5, 2.4.6 and 2.4.2

(grad v⃗ )  = 0                                                                                                               (2.4.5)

(div v⃗ )  =  0                                                                                                                 (2.4.6)

(div B⃗)  =  0                                                                                                                (2.4.2)

From the physical assumption that there is no magnetic field density, Gauss's law for magnet-

ic fields follows directly from equation 2.4.2.

Under the conditions from equations 2.4.5, 2.4.6 and 2.4.2, Eq. 2.3.3 can be simplified to

equation 2.4.7.

rot E⃗  = (grad v⃗ )  B⃗  − (grad B⃗) v⃗  +  v⃗  div B⃗  −  B⃗  div v⃗                                         (2.3.3)

rot E⃗  = 0  ∗B⃗  − (grad B⃗) v⃗  +  v⃗  ∗0  − B⃗   ∗0                                                        (2.4.7)

If the terms that make no contribution to the overall result are eliminated in equation 2.4.7,

the overall expression from equation 2.4.7 can be further simplified. This results in equation

2.4.8.

rot E⃗  = - (grad B⃗) v⃗         (2.4.8)

(grad B⃗) v⃗  from equation 2.4.8 can  be rewritten in  the column notation.  The changed

notation is shown in equation 2.4.9.
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−(grad B⃗)  ⋅ ( v⃗ )  =  −(
δ B⃗x

δ x

δ B⃗x

δ y

δ B⃗ x

δ z
δ B⃗y

δ x
δ B⃗y

δ y
δ B⃗ y

δ z
δ B⃗z

δ x

δ B⃗ z

δ y

δ B⃗ z

δ z
)  ⋅ (

vx

v y

vz
)                                         (2.4.9)

If now, in equation 2.4.9, the velocity vector  v⃗  is multiplied by  (grad B⃗) , equation

2.4.10 results.

−(grad( B⃗))  ⋅ v⃗  =  −(
δ Bx

δ x
 ⋅ v x  + 

δ B x

δ y
 ⋅ v y  + 

δ Bx

δ z
 ⋅ v z

δ B y

δ x
 ⋅ v x  + 

δ B y

δ y
 ⋅ v y  + 

δ By

δ z
 ⋅ vz

δ B z

δ x
 ⋅ vx  + 

δ B z

δ y
 ⋅ v y  + 

δ B z

δ z
 ⋅ v z

) = x⃗
(grad B⃗ ) v⃗                    (2.4.10)

The velocity vector v⃗  can be rewritten in 
δ s⃗
δ t

. Equation 2.4.11 shows this relationship.

v⃗  = (
v x

v y

v z
)  = 

δ s⃗
δ t

 = (
δ x
δ t
δ y
δ t
δ z
δ t

)                                                                                            (2.4.11)

If the modified expression from equation 2.4.11 is inserted into equation 2.4.10, equation

2.4.12 results.

−(grad( B⃗))  ⋅ v⃗  =  −(
δ Bx

δ x
 ⋅ 

δ x
δ t

 + 
δ B x

δ y
 ⋅ 

δ y
δ t

 + 
δ Bx

δ z
 ⋅ 

δ z
δ t

δ B y

δ x
 ⋅ 

δ x
δ t

 + 
δ B y

δ y
 ⋅ 

δ y
δ t

 + 
δ By

δ z
 ⋅ 

δ z
δ t

δ B z

δ x
 ⋅ 

δ x
δ t

 + 
δ B z

δ y
 ⋅ 

δ y
δ t

 + 
δB z

δ z
 ⋅ 

δ z
δ t

)                               (2.4.12)
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Assuming a distortion-free magnetic field, the magnetic flux density can only change in the

respective effective direction. This simplifies the expression from equation 2.4.12 to equation

2.4.13.

−(grad( B⃗))  ⋅ v⃗  =  −(
δ Bx

δ x
 ⋅ 

δ x
δ t

 + 0  + 0

0  + 
δ By

δ y
 ⋅ 

δ y
δ t

 + 0

0  + 0  + 
δ B z

δ z
 ⋅ 

δ z
δ t

)                                                             (2.4.13)

Now  δ x , δ y und δ z  in equation 2.4.13 can be shortened and the total expression

from equation 2.4.14 results.

−(grad( B⃗))  ⋅ v⃗  =  −(
δ Bx

δ t
δ B y

δ t
δ B z

δ t
) =   −

δ B⃗
δ t

                                                                     (2.4.14)

Equation 2.4.14 depicts part of the law of induction. If equation 2.4.14 is now inserted into

equation 2.4.8, equation 2.4.15 results.

rot E⃗  =  −(grad( B⃗))  ⋅ v⃗  =   −
δ B⃗
δ t

                                                                          (2.4.15)

Equation 2.4.15 can now be simplified to equation 2.4.3, the result is the law of induction.

rot E⃗  = −
δ B⃗
δ t

                                                                                                             (2.4.3)

At this point, the note is inserted that the track of the magnetic flux density gradient, i.e.

(Sp)(grad B⃗) , corresponds to the divergence of the magnetic flux density, i.e.  div B⃗ .

This mathematical requirement results in the fact that if the  div B⃗  is set equal to 0, the

(Sp)(grad B⃗)  must also be set equal to 0. However, since the (Sp)(grad B⃗)  consists of
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the individual components that ultimately become the expression  
δ B⃗
δ t

 in equation 2.4.3,

the question arises which values the individual components of the expression 
δ B⃗
δ t

 assume

under these conditions and what results physically from this conclusion? These questions are

dealt with from Chapter 2.5.

2.4.4 DERIVATION OF THE GAUSSIAN LAW AND THE FLOOD LAW

As in chapter 2.4.3, it is assumed in this chapter that neither the velocity vector field nor the

vector  field  of  the  electric  flux  density  experience  any  distortion.  This  means  that  the

(grad v⃗ )  and the (div v⃗ )  have no influence on the overall result. In contrast to Chapter

2.4.3, however, the field divergence, i.e. (div D⃗) , makes a contribution to the overall re-

sult. This means that there is an electric field density. These physical assumptions are shown

in equations 2.4.5, 2.4.6 and 2.4.1.

(grad v⃗ )  = 0                                                                                                               (2.4.5)

(div v⃗ )  =  0                                                                                                                 (2.4.6)

div D⃗  = ρel                                                                                                                  (2.4.1)

From the assumption that there is an electric field density, Gauss' law follows directly from

equation 2.4.1. Under the conditions of equation 2.4.5 and 2.4.6, equation 2.3.5 can now be

simplified to equation 2.4.16.

rot H⃗  =  −(grad v⃗ )  D⃗  +  (grad D⃗) v⃗  −  v⃗  div D⃗  + D⃗  div v⃗                                   (2.3.5)

rot H⃗  =  −0  ∗D⃗  +  (grad D⃗) v⃗  − v⃗  ∗div D⃗  +  D⃗   ∗0                                          (2.4.16)

If the terms that make no contribution to the overall result from equation 2.4.16 are eliminat-

ed, the overall expression from equation 2.4.16 can be further simplified. The result is equa-

tion 2.4.17.
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rot H⃗  =  (grad D⃗) v⃗  − v⃗  ∗div D⃗                                                                              (2.4.17)

The  term  (grad D⃗) v⃗ ,  from equation  2.4.17,  can  be  rewritten  in  the  form of  equation

2.4.18.

(grad D⃗)  ⋅ ( v⃗ )  =  (
δ Dx

δ x
δ D x

δ y
δ D x

δ z
δ D y

δ x
δ D y

δ y
δ D y

δ z
δ D z

δ x

δ Dz

δ y

δ D z

δ z
) ⋅ (

vx

v y

vz
)                                         (2.4.18)

If now, in equation 2.4.18, the velocity vector  v⃗  is multiplied by (grad D⃗) , equation

2.4.19 results.

(grad( D⃗))  ⋅ v⃗  =  (
δ D x

δ x
 ⋅ v x  + 

δ Dx

δ y
 ⋅ v y  + 

δ D x

δ z
 ⋅ v z

δ D y

δ x
 ⋅ v x  + 

δ D y

δ y
 ⋅ v y  + 

δ D y

δ z
 ⋅ vz

δ D z

δ x
 ⋅ vx  + 

δ D z

δ y
 ⋅ v y  + 

δ D z

δ z
 ⋅ v z

) = x⃗
(grad D⃗ ) v⃗                        (2.4.19)

The velocity vector v⃗  can, according to equation 2.4.11, be rewritten in 
δ s⃗
δ t

. This fact

results in equation 2.4.20 from equation 2.4.19.

v⃗  = (
v x

v y

v z
)  = 

δ s⃗
δ t

 = (
δ x
δ t
δ y
δ t
δ z
δ t

)                                                                                            (2.4.11)
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(grad( D⃗))  ⋅ v⃗  =  (
δ D x

δ x
 ⋅ 

δ x
δ t

 + 
δ D x

δ y
 ⋅ 

δ y
δ t

 + 
δ D x

δ z
 ⋅ 

δ z
δ t

δ D y

δ x
 ⋅ 

δ x
δ t

 + 
δ D y

δ y
 ⋅ 

δ y
δ t

 + 
δ D y

δ z
 ⋅ 

δ z
δ t

δ D z

δ x
 ⋅ 

δ x
δ t

 + 
δ D z

δ y
 ⋅ 

δ y
δ t

 + 
δ Dz

δ z
 ⋅ 

δ z
δ t

)                                  (2.4.20)

Assuming that the electric field effect only changes in the respective effective direction, i.e. a

distortion-free,  electric flux density field is assumed, the expression from equation 2.4.20

changes to equation 2.4.21.

(grad( D⃗))  ⋅ v⃗  =  (
δ D x

δ x
 ⋅ 

δ x
δ t

 + 0  + 0

0  + 
δ D y

δ y
 ⋅ 

δ y
δ t

 + 0

0  + 0  + 
δ D z

δ z
 ⋅ 

δ z
δ t

)                                                                  (2.4.21)

The components δ x ,  δ y  and  δ z  from equation 2.4.21 can now be reduced and

equation 2.4.22 is formed.

(grad( D⃗))  ⋅ v⃗  =  (
δ Dx

δ t
δ D y

δ t
δ D z

δ t
) =   

δ D⃗
δ t

                                                                            (2.4.22)

Equation 2.4.22 depicts part of the law of flow and can later be used in equation 2.4.4.

Flooding law:

rot H⃗  =  
δ D⃗
δ t

 +  j⃗                                                                                                       (2.4.4)

If the relationships from equations 2.4.1 and 2.4.22 are now inserted into equation 2.4.17,

equation 2.4.23 results.
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div D⃗  = ρel                                                                                                                  (2.4.1)

(grad( D⃗))  ⋅ v⃗  =  (
δ Dx

δ t
δ D y

δ t
δ D z

δ t
) =   

δ D⃗
δ t

                                                                            (2.4.22)

rot H⃗  =  (grad D⃗) v⃗  − v⃗  ∗div D⃗                                                                              (2.4.17)

rot H⃗  =  (grad D⃗) v⃗  − v⃗  ∗div D⃗  =  
δ D⃗
δ t

 − v⃗  ∗ ρel                                               (2.4.23)

The  velocity  vector  v⃗  multiplied  by  the  electrical  space  charge  density  ρel ,  i.e.

v⃗  ∗ ρel ,  are combined to form the electrical  current density  j⃗ .  This relationship is

shown in equation 2.4.24.

j⃗  = −v⃗  ∗ ρel                                                                                                            (2.4.24)

If equation 2.4.24 is used in equation 2.4.23, the simplified variant of the flow law in equa-

tion 2.4.4 results.

rot H⃗  =  
δ D⃗
δ t

 +  j⃗                                                                                                       (2.4.4)

 2.5 THE REINTERPRETATION OF THE “MAXWELL EQUATIONS”

 

In order to be able to reinterpret the “Maxwell equations”, the framework conditions for them

are first redefined. The first general condition is that it cannot be ruled out that both the vec-

tor field of the velocity and the two vector fields of the magnetic flux density and the electri-

cal flux density can be subject to deformation. Accordingly, the velocity gradient grad ( v⃗ ) ,

cannot be equated with 0. In addition, the two field gradients  grad( B⃗)  and  grad( D⃗)

cannot  be  simplified,  as  in  Chapters  2.4.3  and  2.4.4.  All  three  the  div( v⃗ )  and  the

div( B⃗)  and the  div( D⃗)  are dependent on the trace (Sp) of the respective gradient.
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From a mathematical point of view, these framework conditions result in equations 2.5.1,

2.5.2 and 2.5.3.

Accordingly, the starting point for the reinterpretation of the “Maxwell equations” is equa-

tions 2.3.3 and 2.3.5.

rot E⃗  = (grad v⃗ )  B⃗  − (grad B⃗) v⃗  +  v⃗  div B⃗  −  B⃗  div v⃗                                         (2.3.3)

rot H⃗  =  −(grad v⃗ )  D⃗  +  (grad D⃗) v⃗  −  v⃗  div D⃗  + D⃗  div v⃗                                   (2.3.5)

(Sp)(grad v⃗)  = div ⃗(v )                                                                                                  (2.5.1)

(Sp)(grad B⃗)  = div ⃗( B)                                                                                                (2.5.2)

(Sp)(grad D⃗)  = div ⃗( D)                                                                                               (2.5.3)

When substances are deformed, the velocity gradient  grad( v⃗ )  contributes to the overall

result of equations 2.3.3 and 2.3.5 in the form shown in equation 2.5.4.

(grad v⃗ )  =  (
δv x

δ x
δ v x

δ y
δ v x

δ z
δv y

δ x
δ v y

δ y
δ v y

δ z
δ vz

δ x

δ v z

δ y

δ v z

δ z
)                                                                                   (2.5.4)

Both in equation 2.3.3 and in equation 2.3.5, the velocity gradient is multiplied by the respec-

tive field size vector. For equation 2.3.3 this is B⃗  and for equation 2.3.5 this is D⃗ . For

the second term from equation 2.3.3, equation 2.5.5 can therefore be written. Similarly, for

the second term from equation 2.3.5, equation 2.5.6 can be written.

rot E⃗  = (grad v⃗ )  B⃗  − (grad B⃗) v⃗  +  v⃗  div B⃗  −  B⃗  div v⃗                                         (2.3.3)
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(grad v⃗ )  ⋅ ( B⃗)  =  (
δ vx

δ x
δv x

δ y
δv x

δ z
δ v y

δ x
δv y

δ y
δv y

δ z
δ v z

δ x

δvz

δ y

δv z

δ z
) ⋅ (

B x

B y

Bz
)                                                             (2.5.5)

rot H⃗  =  −(grad v⃗ )  D⃗  +  (grad D⃗) v⃗  −  v⃗  div D⃗  + D⃗  div v⃗                                   (2.3.5)

(grad v⃗ )  ⋅ (D⃗)  =  (
δ vx

δ x
δv x

δ y
δv x

δ z
δ v y

δ x
δv y

δ y
δv y

δ z
δ v z

δ x

δ vz

δ y

δv z

δ z
) ⋅ (

D x

D y

Dz
)                                                            (2.5.6)

If the velocity gradient is now multiplied by the respective field vector, the expression from

equation 2.5.7 results from equation 2.5.5 and equation 2.5.8 results for equation 2.5.6.

(grad v⃗ )  ⋅ ( B⃗)  =  (
δv x

δ x
 ⋅B⃗ x  + 

δvx

δ y
 ⋅B⃗ y  +  

δ vx

δ z
 ⋅B⃗ z

δ v y

δ x
 ⋅B⃗ x  + 

δ v y

δ y
 ⋅B⃗ y  +  

δv y

δ z
 ⋅B⃗ z

δ v z

δ x
 ⋅B⃗ x  + 

δv z

δ y
 ⋅B⃗ y  +  

δ v z

δ z
 ⋅B⃗ z

)  = x⃗
(grad v⃗) B⃗                             (2.5.7)

(grad v⃗ )  ⋅ (D⃗)  =  (
δv x

δ x
 ⋅D⃗ x  +  

δ vx

δ y
 ⋅D⃗ y  +  

δ v x

δ z
 ⋅D⃗ z

δ v y

δ x
 ⋅D⃗ x  +  

δv y

δ y
 ⋅D⃗ y  +  

δ v y

δ z
 ⋅D⃗ z

δv z

δ x
 ⋅D⃗ x  + 

δv z

δ y
 ⋅D⃗ y  +  

δ v z

δ z
 ⋅D⃗ z

) = x⃗
( grad v⃗ )D⃗                          (2.5.8)

Under the assumption from equation 2.5.1, equation 2.5.8 yields a statement about the diver-

gence of the velocity vector. This results in equation 2.5.9.

(Sp)(grad v⃗)  = div ⃗(v )                                                                                                  (2.5.1)
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(Sp)(grad v⃗)  = div ⃗(v )  = 
δ vx

δ x
 +  

δv y

δ y
 +  

δv z

δ z
                                                          (2.5.9)

If equation 2.5.9 is now multiplied by the respective field vector  B⃗  or  D⃗ , equation

2.5.10 results for the fifth term from equation 2.3.3 and equation 2.5.11 results for the fifth

term from equation 2.3.5.

rot E⃗  = (grad v⃗ )  B⃗  − (grad B⃗) v⃗  +  v⃗  div B⃗  −  B⃗  div v⃗                                         (2.3.3)

B⃗  div ⃗(v )  = (
Bx (

δ vx

δ x
 +  

δv y

δ y
 +  

δv z

δ z
)

By (
δv x

δ x
 + 

δv y

δ y
 +  

δv z

δ z
)

B z(
δv x

δ x
 +  

δv y

δ y
 + 

δv z

δ z
)
) = x⃗ B⃗div v⃗                                                     (2.5.10)

rot H⃗  =  −(grad v⃗ )  D⃗  +  (grad D⃗) v⃗  −  v⃗  div D⃗  + D⃗  div v⃗                                   (2.3.5)

D⃗  div ⃗(v )  = (
D x (

δ vx

δ x
 +  

δ v y

δ y
 + 

δv z

δ z
)

D y (
δv x

δ x
 +  

δ v y

δ y
 + 

δv z

δ z
)

D z(
δv x

δ x
 +  

δv y

δ y
 +  

δv z

δ z
)
) = x⃗ D⃗div v⃗                                                    (2.5.11)

The electrical field density results from the mathematical prediction from equation 2.5.3. This

relationship is shown in equation 2.5.12.

(Sp)(grad D⃗)  = div ⃗( D)                                                                                               (2.5.3)

(Sp)(grad D⃗)  = div ⃗( D)  = 
δ D x

δ x
 +  

δ D y

δ y
 +  

δ Dz

δ z
                                                  (2.5.12)

In order to get the fourth term from equation 2.3.5, the expression from equation 2.5.12 must

now be multiplied by the velocity vector. The result is the electric current density j⃗ . This

fact is shown in equation 2.5.13.
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rot H⃗  =  −(grad v⃗ )  D⃗  +  (grad D⃗) v⃗  −  v⃗  div D⃗  + D⃗  div v⃗                                   (2.3.5)

v⃗  div ⃗( D)  = (
vx (

δ D x

δ x
 +  

δ D y

δ y
 +  

δ Dz

δ z
)

v y(
δ D x

δ x
 +  

δ D y

δ y
 + 

δ D z

δ z
)

v z(
δ D x

δ x
 + 

δ D y

δ y
 +  

δ D z

δ z
)
)  = j⃗ el                                                      (2.5.13)

2.5.1 THE MAGNETIC FIELD DENSITY

From the mathematical requirement from equation 2.5.14 it follows that the divergence of the

magnetic flux density div B⃗ , which is directly related to the gradient of the magnetic flux

density grad B⃗ . The sum of the diagonals of the grad B⃗ , i.e. the trace (Sp) of the mag-

netic flux density gradient (Sp)(grad B⃗ ) , forms the div B⃗ . This applies to the matrix el-

ements 
δB x

δ x
,  

δB y

δ y
 and  

δB z

δ z
. According to the “Maxwell equations”, the sum of

these three elements must result in 0. However, since these three elements are an important

part of equation 2.5.15, the following problem arises. Either 
δ B⃗
δ t

 or the sum of the indi-

vidual elements from 
δ B⃗
δ t

 must be equated with 0. This is a contradiction to the law of in-

duction.

(Sp)(grad B⃗)  = div ⃗( B)  = 
δ Bx

δ x
 +  

δ B y

δ y
 + 

δ B z

δ z
 = 0                                              (2.5.14)

(
δ Bx

δ x
 ⋅ 

δ x
δ t

δ B y

δ y
 ⋅ 

δ y
δ t

δ B z

δ z
 ⋅ 

δ z
δ t

) =  
δ B⃗
δt

                                                                                                (2.5.15)

This results directly in one of the mathematical requirements from equations 2.5.16, 2.5.17,

2.5.18 or 2.5.19.
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δ B⃗
δ t

 =  0                                                                                                                     (2.5.16)

(Sp)(grad B⃗)  = div ⃗( B)  = 
δ Bx

δ x
 =  −

δ B y

δ y
 − 

δ B z

δ z
 = 0                                            (2.5.17)

(Sp)(grad B⃗)  = div ⃗( B)  = 
δ By

δ y
 =  −

δ B x

δ x
 − 

δ B z

δ z
 = 0                                            (2.5.18)

(Sp)(grad B⃗)  = div ⃗( B)  = 
δ B z

δ z
 =  −

δB y

δ y
 −  

δ Bx

δ x
 = 0                                            (2.5.19)

Either 
δ B⃗
δ t

 is equated with 0 or in the case of the theoretical movement of a point particle

through a magnetic flux density, there is, in three-dimensional space, a dimensional direction

of movement in which the flux density changes positively and two dimensional directions of

movement, which add up to a negative one describe the change in the magnetic flux density.

However, the condition for this is that the sum of all three magnetic flux density changes in

the three possible dimensional directions of movement results in a 0. The resulting idea of the

magnetic flux density and, ultimately, the idea of a magnetic field, does not coincide with the

idea of the magnetic field in current physics.

The solution to this problem results from an approach by Paul Dirac that there is a magnetic

field density. The calculation of this magnetic field density is shown in equation 2.5.20.

v⃗  div ⃗(B)  = (
vx (

δ B x

δ x
 +  

δ By

δ y
 +  

δ Bz

δ z
)

v y(
δ B x

δ x
 +  

δ B y

δ y
 + 

δ B z

δ z
)

v z(
δ B x

δ x
 + 

δ By

δ y
 +  

δ B z

δ z
)
) = j⃗m                                                        (2.5.20)

2.5.2 REFORMULATION OF THE “MAXWELL EQUATIONS”

First, the equations 2.3.3 and 2.3.5 are written down again, since these two equations repre-

sent the fundamental statements for the reformulation of the “Maxwell equations”.

rot E⃗  = (grad v⃗ )  B⃗  − (grad B⃗) v⃗  +  v⃗  div B⃗  −  B⃗  div v⃗                                         (2.3.3)
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rot H⃗  =  −(grad v⃗ )  D⃗  +  (grad D⃗) v⃗  −  v⃗  div D⃗  + D⃗  div v⃗                                   (2.3.5)

Now the equations 2.4.10, 2.4.19, 2.5.7, 2.5.8, 2.5.10, 2.5.11, 2.5.13 and 2.5.20 are again

written below one another for better clarity. The reason for this is that these equations are

now used as individual components in equations 2.3.3 and 2.3.5. This set of equations has

general validity, since it also offers an application possibility under the prerequisites that both

the velocity vector field and the two vector fields of the magnetic flux density and the electri-

cal flux density can be subject to a deformation. In addition, equation 2.5.20 fulfills the math-

ematical requirement from Chapter 2.5.1 that there is a magnetic field density.

−(grad( B⃗))  ⋅ v⃗  =  −(
δ Bx

δ x
 ⋅ v x  + 

δ B x

δ y
 ⋅ v y  + 

δ Bx

δ z
 ⋅ v z

δ B y

δ x
 ⋅ v x  + 

δ B y

δ y
 ⋅ v y  + 

δ By

δ z
 ⋅ vz

δ B z

δ x
 ⋅ vx  + 

δ B z

δ y
 ⋅ v y  + 

δ B z

δ z
 ⋅ v z

) = x
(grad B⃗ ) v⃗                    (2.4.10)

(grad( D⃗))  ⋅ v⃗  =  (
δ D x

δ x
 ⋅ v x  + 

δ Dx

δ y
 ⋅ v y  + 

δ D x

δ z
 ⋅ v z

δ D y

δ x
 ⋅ v x  + 

δ D y

δ y
 ⋅ v y  + 

δ D y

δ z
 ⋅ vz

δ D z

δ x
 ⋅ vx  + 

δ D z

δ y
 ⋅ v y  + 

δ D z

δ z
 ⋅ v z

) = x
(grad D⃗ ) v⃗                        (2.4.19)

(grad v⃗ )  ⋅ ( B⃗)  =  (
δv x

δ x
 ⋅B⃗ x  + 

δvx

δ y
 ⋅B⃗ y  +  

δ vx

δ z
 ⋅B⃗ z

δ v y

δ x
 ⋅B⃗ x  + 

δ v y

δ y
 ⋅B⃗ y  +  

δv y

δ z
 ⋅B⃗ z

δ v z

δ x
 ⋅B⃗ x  + 

δv z

δ y
 ⋅B⃗ y  +  

δ v z

δ z
 ⋅B⃗ z

)  = x⃗
(grad v⃗) B⃗                             (2.5.7)

(grad v⃗ )  ⋅ (D⃗)  =  (
δv x

δ x
 ⋅D⃗ x  +  

δ vx

δ y
 ⋅D⃗ y  +  

δ v x

δ z
 ⋅D⃗ z

δ v y

δ x
 ⋅D⃗ x  +  

δv y

δ y
 ⋅D⃗ y  +  

δ v y

δ z
 ⋅D⃗ z

δv z

δ x
 ⋅D⃗ x  + 

δv z

δ y
 ⋅D⃗ y  +  

δ v z

δ z
 ⋅D⃗ z

) = x⃗
( grad v⃗ )D⃗                          (2.5.8)
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B⃗  div ⃗(v )  = (
Bx (

δ vx

δ x
 +  

δv y

δ y
 +  

δv z

δ z
)

By (
δv x

δ x
 + 

δv y

δ y
 +  

δv z

δ z
)

B z(
δv x

δ x
 +  

δv y

δ y
 + 

δv z

δ z
)
) = x⃗ B⃗div v⃗                                                     (2.5.10)

D⃗  div ⃗(v )  = (
D x (

δ vx

δ x
 +  

δ v y

δ y
 + 

δv z

δ z
)

D y (
δv x

δ x
 +  

δ v y

δ y
 + 

δv z

δ z
)

D z(
δv x

δ x
 +  

δv y

δ y
 +  

δv z

δ z
)
) = x⃗ D⃗div v⃗                                                    (2.5.11)

v⃗  div ⃗( D)  = (
vx (

δ D x

δ x
 +  

δ D y

δ y
 +  

δ Dz

δ z
)

v y(
δ D x

δ x
 +  

δ D y

δ y
 + 

δ D z

δ z
)

v z(
δ D x

δ x
 + 

δ D y

δ y
 +  

δ D z

δ z
)
)  = j⃗ el                                                      (2.5.13)

v⃗  div ⃗(B)  = (
vx (

δ B x

δ x
 +  

δ By

δ y
 +  

δ Bz

δ z
)

v y(
δ B x

δ x
 +  

δ B y

δ y
 + 

δ B z

δ z
)

v z(
δ B x

δ x
 + 

δ By

δ y
 +  

δ B z

δ z
)
) = j⃗m                                                        (2.5.20)

The equations 2.4.10, 2.4.19, 2.5.7, 2.5.8, 2.5.10, 2.5.11, 2.5.13 and 2.5.20 are now inserted

into the equations 2.3.3 and 2.3.5. The result is equations 2.5.21 and 2.5.22. Another result is

shown by equations 2.5.23 and 2.5.24.

rot E⃗  = (grad v⃗ )  B⃗  − (grad B⃗) v⃗  +  v⃗  div B⃗  −  B⃗  div v⃗                                         (2.3.3)

rot E⃗  = x⃗
(grad v⃗) B⃗  −  x⃗

(grad B⃗ ) v⃗  + j⃗m  − x⃗ B⃗div v⃗                                                             (2.5.21)

rot H⃗  =  −(grad v⃗ )  D⃗  +  (grad D⃗) v⃗  −  v⃗  div D⃗  + D⃗  div v⃗                                   (2.3.5)
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rot H⃗  =  − x⃗
(grad v⃗) D⃗  +  x⃗

(grad D⃗) v⃗  − j⃗ el  +  x⃗D⃗ div v⃗                                                        (2.5.22)

v⃗  div ⃗( D)  = j⃗el                                                                                                           (2.5.23)

v⃗  div ⃗(B)  = j⃗m                                                                                                           (2.5.24)

The equations 2.5.21, 2.5.22, 2.5.23 and 2.5.24 therefore represent the simplified reformula-

tion of the “Maxwell equations”. Equation 2.5.24 is the mathematical-physical expression, a

magnetic field density.

3. DISCUSSION

1. It remains to be discussed whether the expression from equation 2.4.2, div( B⃗)  = 0 , is

mathematically  permissible,  since  the  mathematical  requirement  from  equation  2.5.2,

(Sp)(grad B⃗)  = div ⃗( B)  consists. And if  div( B⃗)  = 0  is allowed, what does this mean

for equation 2.5.14?

(Sp)(grad B⃗)  = div ⃗( B)  = 
δ Bx

δ x
 +  

δ B y

δ y
 + 

δ B z

δ z
 = 0                                              (2.5.14)

2. What effects would a possible distortion of the velocity vector field v⃗  have on the ve-

locity gradient grad v⃗ ?

3. What effects would a possible distortion of the two flux density vector fields, the magnetic

flux  density and the  electrical  flux  density,  on  whose  two field  gradients  grad B⃗  and

grad D⃗  have?

4. What effects do questions 1 to 3 have on equations 2.4.10, 2.4.19, 2.5.7 and 2.5.8?

−(grad( B⃗))  ⋅ v⃗  =  −(
δ Bx

δ x
 ⋅ v x  + 

δ B x

δ y
 ⋅ v y  + 

δ Bx

δ z
 ⋅ v z

δ B y

δ x
 ⋅ v x  + 

δ B y

δ y
 ⋅ v y  + 

δ By

δ z
 ⋅ vz

δ B z

δ x
 ⋅ vx  + 

δ B z

δ y
 ⋅ v y  + 

δ B z

δ z
 ⋅ v z

) = x
(grad B⃗ ) v⃗                    (2.4.10)
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(grad( D⃗))  ⋅ v⃗  =  (
δ D x

δ x
 ⋅ v x  + 

δ Dx

δ y
 ⋅ v y  + 

δ D x

δ z
 ⋅ v z

δ D y

δ x
 ⋅ v x  + 

δ D y

δ y
 ⋅ v y  + 

δ D y

δ z
 ⋅ vz

δ D z

δ x
 ⋅ vx  + 

δ D z

δ y
 ⋅ v y  + 

δ D z

δ z
 ⋅ v z

) = x
(grad D⃗ ) v⃗                        (2.4.19)

(grad v⃗ )  ⋅ ( B⃗)  =  (
δv x

δ x
 ⋅B⃗ x  + 

δvx

δ y
 ⋅B⃗ y  +  

δ vx

δ z
 ⋅B⃗ z

δ v y

δ x
 ⋅B⃗ x  + 

δ v y

δ y
 ⋅B⃗ y  +  

δv y

δ z
 ⋅B⃗ z

δ v z

δ x
 ⋅B⃗ x  + 

δv z

δ y
 ⋅B⃗ y  +  

δ v z

δ z
 ⋅B⃗ z

)  = x⃗
(grad v⃗) B⃗                             (2.5.7)

(grad v⃗ )  ⋅ (D⃗)  =  (
δv x

δ x
 ⋅D⃗ x  +  

δ vx

δ y
 ⋅D⃗ y  +  

δ v x

δ z
 ⋅D⃗ z

δ v y

δ x
 ⋅D⃗ x  +  

δv y

δ y
 ⋅D⃗ y  +  

δ v y

δ z
 ⋅D⃗ z

δv z

δ x
 ⋅D⃗ x  + 

δv z

δ y
 ⋅D⃗ y  +  

δ v z

δ z
 ⋅D⃗ z

) = x⃗
( grad v⃗ )D⃗                          (2.5.8)

5. What is the effect of equation 2.5.24 on the electromagnetic wave equation?

v⃗  div ⃗(B)  = j⃗m                                                                                                           (2.5.24)

6. Under what circumstances is the velocity vector field and the two vector fields, the mag-

netic flux density and the electrical flux density, deformed?

4. CONCLUSION

Under  the  mathematical  requirement  from equation  2.5.2,  (Sp)(grad B⃗)  = div ⃗( B) ,  the

physical  requirement  from  equation  2.4.2,  div( B⃗)  = 0 ,  is  only  valid  provided  that

(Sp)(grad B⃗)  = 0 . This means that either the physical conception of the magnetic field has

to be reinterpreted or the assumption from equation 2.4.2 that div( B⃗)  = 0  is wrong.

By reinterpreting the “Maxwell equations” from equations 2.5.21, 2.5.22, 2.5.23 and 2.5.24, a

mathematically and physically consistent approach for the calculation of electric and magnet-
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ic fields was achieved. In addition, the distortions of the field quantities used in the equations

were taken into account in these equations. A direct analogy between electric and magnetic

fields was also derived mathematically. This analogy leads to the fact that the magnetic field

density becomes a mathematical requirement when the (Sp)(grad B⃗)  ≠ 0 . It remains to

be discussed under what circumstances this does not happen. It also remains to be discussed

what influence the equations 2.5.21, 2.5.22, 2.5.23 and 2.5.24 have on other equations that

are based on the “Maxwell equations” and which technical possibilities result from them.
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