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Abstract – Time and space average of an ergodic systems following the 5-tuple relations ( , ~, , Σ, ) 

through the initial increment from +  to + +  indicates the entropy to be reserved in the 

deterministic yet dynamical and conservative systems to hold for the set = ∑∞  keeping  as the 

entropy ∃( ∞ = ⋯ = ) >  obeying the Poincar ́ recurrence theorem throughout the constant attractor 

. This in turn states the facts of the equivalence closure as the property of the induced systems to 

resemblance an entropy conserving scenario.  
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Introduction – Periodicity of a system can be defined by the number of periodical iterations, the function is 

taking place over a period of time. That function in most cases, as has been observed in nature is chaotic 

making the system totally unpredictable in its future outcomes, but to some extent physicists have been able 

to determine whether the function with initial bifurcations is making a pattern observable in the final 

bifurcations. This tendency of a system is natural and the order emerges from the disorder. Thus every chaotic 

function that initially started making large bifurcations might settle down to a small bifurcations after a 

repeated interval till again it starts to behave with chaotic bifurcations. The system is then evolving with time 

and hence dynamical in its own periodicity. It is not necessary that the system is generated and continued with 

iterations in a confined place, it can randomize to a much more spacious way where some parts may dissipate 

outwards without returning back. Hence, the property of that function has not been conserved over time. Its 

time and space measure may give random values at the initial and final state. But there are instances of the 

non-dissipative functions and that too being a conserved one. Thus the notion of ergodicity been developed 
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with a more probably conservative limit that the system generates over a finite period of time. It is 

nevertheless crucial to determine the nature of such a function where the system is both dynamical and 

conservative, thus being ergodic. This is the prospects of this paper. Just as, any equation can be plotted as a 

graph, a special type of equation has been discussed here where there is the capacity of a central attractor 

around which the points of the equation evolves in accordance with the limits of the variables. This in turn 

imposes the system to act repeatedly taking the shape over and over without losing its track between the 

initial and the final states. Thus, the points which are monodromic around the attractor might revolve 

infinitely taking its initial pattern over and over again. Therefore, one might suggest that, the function itself 

acts over the space where the entropy is increasing with each iterations, but it has been shown in this paper 

that, such a case does not exist over the modified Archimedean spiral equations that have been considered in 

the function space. Therefore, the initial state when jumps to its next periodic state may give rise to many 

other, rather numerous periodic states without naturally losing any kind of entropy. That being said, the 

entropy has been conserved throughout the process. Both the case of joint and conditional entropy has been 

considered while making this paper and it has been deliberately proved that, its only through the equivalence 

closure, that the function stops its entropy from getting increased over time thus violating the 2nd law of 

thermodynamics. Saying that, it needs to be considered that, entropy is also the ‘quantized’ information 

carriers where the mutual information from one state to another is being conveyed by  in the modified 

equations of + + + + ⋯ + . This mutual information that has been transmitted by the function over 

the period of time makes the entropy conserved through the repeated iterations. Set theoretic approach of 

analysis has been provided in this paper to depict the states of the function through a series of five diagrams 

where the base points ( , ) has been made as the initial pole from where the spiral is generated by a 

generator that continues up to infinity, provided the values are bounded over a certain interval. It has also 

been demonstrated that the system loses its track of dynamicity and behaves as a circle that expands and 

contracts depending on the determinants of the spinner and spreader. 

 
 
Methodology – To measure the dynamical evolution of a system in a geometric space, think of the system as a 

particle and space as a state where a typical temporal evolution term  acts on all points  of the space  
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through both time and space evolution operators that goes on the 5-tuple relations ( , ~, , Σ, ) where each 

item is defined as [1]; 

 

  is the attractor of the space of the evolving system where every union takes place surrounding its 

boundary point  defined as ∪ ∪ …  in the set ∈ | = ⋃∞

⊂
 where the initial 

evolution parameter  keeps track of all the positions from  onwards in the space  thereby 

conserving entropy over the whole set . 

 ~ is the equivalence closure where ∐ /~∈  forms the locus of the periodicity that makes the 

boundary points  evolves keeping the entropy conserved with the initial state as the final state.  

  is the non-empty set where ∈ Σ ∃ \ ∈ Σ that has been closed by countable unions ∪ ∪

…  then ∈ Σ. 

 Σ is the -algebra on the set . 

 ( ) is the Haar measure of the space ( , Σ)  

 

A dynamical space that is measure preserving, under a transformation : ⟶  is the probability space such 

that [2]; 

∀ ∈ Σ, ( ) = ( )   

Elaborating this particular transformation ; a number of iterations can be taken to develop a total trajectory 

space as; 

, … , , , … ∈  

 is then a computable ergodic for the transformation functions in  with Σ as , either, ( ) = 0 or 

( ) = 1 . In a ergodic system, the 5-tuple relations ( , ~, , Σ, )  is a measure space where  is a -

integrable function for ∈ ( ) provided the time average over all iterations  starting from the boundary 

domain  over points from  stated as [3]; 
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= lim
⟶∞

1
 

And if the Haar measure ( ) ≥ 0 everywhere, the space average can be defined as; 

̅ =
1
( )  , ∀ ( ) = 1 

In ergodicity, the time average is equal to space average where for every  there exists a , the function takes 

place in conjugation with ∘  as; 

∘ =   ∀ ∈ ( ) 

For the normalization to make sense along the trajectory with ( ) ≥ 0 everywhere, the relation that needs to 

be satisfied are; 

 =  , ∀ ̅ =   

Thus proving the essence of ergodicity as; 

lim
⟶∞

1
=

1
( )   

To establish this, we will briefly proceed with a spiral equation starting as +  with its gradual evolution 

to + +  where the use of the incomplete elliptic integral of the 2nd kind ( , ) is inevitable through the 

norm of the space  that is the ensemble of the closed union of the entropy point under the inverse image 

through  up to  where the base points ( , ) ∈  generating the spiral is a quotient space as regards to 

their smash product provided we take the generators of the space as an ensemble of ℎ points of  and  as; 

 

( , ) ( , ) = ( , ) × ( , )\( , ) ( , ) 
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Figure (a) 

 

 
Figure (b) 
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Figure (c) 

 
 

Figure (d) 
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Figure (e) 

 

An extensive analysis could be done regarding the properties of the 5 figures portrayed upwards. The equation 

governing the figures is = + +  where the intervals of , ,  is [-10,10] and  is 0 ≤ ≤ 12 .  is 

the parameter controlling the curves while  amplifies  and  amplifies . Figure (a) shows the normal 

Archimedes spiral with the pole being in the middle with the equation parameters being = 0, = 0, =

−0.1 which is essentially the same if we plot the equation = + . The interesting property started to 

emerge from figure (b) which is an ellipse with one side being smashed to make a cone, which we prefer to 

say as the smashed ellipse more than an oval. The base points ( , ) have been taken as a pole at the figure 

(a) which is the entropy function . From that upon altering the values as = 0, = −4.7, = 1 the pole 

emerge as a smashed ellipse which is revolving around the attractor boundary point  as we proceed 

further. The entropy function is now  which is greater than . Upon altering the parameters again as 

= −3.1, = −4.8, = 1 in figure (c), the smashed ellipse created another smashed ellipse around itself 

with a kink at its right side with the entropy function , then upon altering the parameters as = −10, =

0.9, = −9.8 the figure (d) emerges which is just repetitions of figure (c) with entropy function . This will 
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tend to continue but the whole process collapsed to a circle in figure (e) when we change the parameter as 

= −10, = −10, = 0.  This gives us hint that any process can continue forever unless the angular 

parameter  has been turned to 0. This proves that, there exists an equivalence closure and also exists a close 

union such that a repetition occurs in the form = ∑∞  keeping  as the entropy ∃( ∞ = ⋯ = ) >

 if we ignore the kink in the figure (b), as the smashed ellipse produces first after the kink produced which 

takes effect from figure (c), the equivalence closure can be given for all points  in the whole set  where 

ℎ ∈  as; 

 

/~
∈

 

 
Where repetition with equal valued functions of entropy are seen taking place from the  onwards such that 

 are acting on the boundary domain  where each smashed ellipse behaves as a pole while giving 

numerous iterations around the base points ( , ). As the points that are travelling through this Hamiltonian 

trajectories are of fixed density throughout, its possible to incorporate the Liouville’s theorem for this space, 

if and only if, we take, where the density given by  takes on the functions of canonical coordinates  and the 

conjugate momenta , where = 1 … . , we will get a 3-tuple relationship ( , ̇ , ̇ ) with the Hamiltonian 

flow  being conserved throughout the system, the equation reads as [4]; 

 

 = + +  

= + ̇ + ̇  

                                   = +
( ̇ )

+
( ̇ )

−
̇
+

̇
 

                                                              = +
( ̇ )

+
( ̇ )

− + −  

                        ∃ + − = 0 
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The pole in the equation = + +  which acts as the equation = +  at the base points ( , ) 

can be stated providing = 0, =  can be expressed as; 

 

2 1 + + + 1 +  

 
While progressing = 0 got displayed in the − + quadrant left taking the area generated through the poles 

by the smashed sphere as given by incomplete elliptic integral of the 2nd kind ( , ) with the major radius 

being  and minor radius being  having the norm ≥  and ≥ ≥ 0 as expressed by the length ℓ of the 

closed curve [7]; 

⎩
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎧

( )
, −

( )
,

( ) = ( ) cos , = 1 −

( ) =
 +  

= 0⋄, = 360⋄, = [0∘ ⟶ 90∘]

 

 
− 2 + − 2( − ) + ( − )  

 
This is the equation of the second pole with the entropy function . The equation of the third generated pole 

with the kink is given by; 

⎩
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎧

( )
, −

( )
,

( ) = ( ) cos , = 1 −

( ) =
 +  

= 0⋄, = 360⋄, = [0∘ ⟶ 90∘]

 

 
− ( × ) + 2( × ) + 2 ( × ) + 2( × )  

 

ℎ

⎩
⎪
⎨

⎪
⎧ =

=

, ≠ 0
>
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Then this trajectory repeats itself along the boundary point  with the relation = ∑∞  keeping  

as the entropy ∃( ∞ = ⋯ = ) >  over dynamical iterations. To establish our relation of the violating 

thermodynamics, we can construct a set  obeying the relation = ∈ : ∉  ∀ > 0  provided its 

important that we take ∀ > 0 and not    > 0 otherwise the relation won’t suffice. 

 

Thus in formal definition this can be rewritten as [6]; 

= ∩
∞

( \ )  

Therefore, from this construction of  it is evident that ∈  satisfying , , ∉  which implies 

that ∉  so, ∩ =  which makes us to see that each set , , …  is a 

pairwise disjoint. By properties of dynamical transformations, for each , ∈ ℕ, > , the relation 

becomes [5]; 

∩ = ∩ ( ) =  

Then, the inequality can only be disjoint in each set , , , …  are disjoint allowing the 

Haar measure to be invariant under ( ) = 0 on the measure space ( , Σ) following [8]; 

1 ≥
∞

=
∞

= ( )
∞

 

Thus we can conclude that every repeating pole other than the entropy function  generated by the generators 

( , )  around the domain of attractor boundary  is a equivalence closure with ( ) ∈  having the 

indexed family of base points ( ) ∈ ,( , )∈  the relation suffices as [9]; 

=
∈

/~
∈

 

Which is closed through equivalence with the infinite iteration state occurring but the  generates the states 

with the entropy being conserved thus violating the second law of thermodynamics according to the second 

law of thermodynamics, entropy of a closed system always tends to increase with time. [10]. 
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+ +  can be generalized to any number of variables as to + + + + + … +  ∀ = =

= = =  ∃ = , = , = , = , = , = … = , the equation becomes; 

+
∞

=  

Let , , , , …  be the set of points belong to , ∃ ∑ ∈ , then as  

amplifies , the stated equation becomes; 

= −
∞ ∞

 

Now, let , , ,  be the element of ∑ . Then , , ,  be the element of ∑  such 

that the relation suffices into an equality; 

= = …
= = …
= = …

⋮ = ⋮ = ⋮ …
= = …

 

Then, ∑∞  amplifies ∑∞  ∃ ( )  on a subset { , } of a open set { , , , … } where the 

point  on { , } as { , }  revolves through  via ( ) + 2  which being a continuous function on { , }  

∀ { , }  makes a turn on the open neighborhood of { , }   in a way as; 

{ , } +

⎩
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎧

( )
, −

( )
,

( ) = ( ) cos , = 1 −

( ) =
 +  

= 0⋄, = 360⋄, = [0∘ ⟶ 90∘]

 

− ( × ) + 2( × ) + 2 ( × ) + 2( × )  

ℎ

⎩
⎪
⎨

⎪
⎧ =

=

, ≠ 0
>
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Rotates the subset of base points denoted by the function ( ) as ( , ) ⎯  ( , ) ⟶ ( , ) ⟶

( , )  ∃ ∈ ℝ, ≥ 0 the monodromy occurs in  surrounding ( , ) ∃ the initial point makes 2  

revolutions around the ( , )  ∀{ , }  while transforming through the entropy function ∑∞ , 

provided we denote the parameter; 

− ( × ) + 2( × ) + 2 ( × ) + 2( × )  = ℓ
∞

 

And,  

⎩
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎧

( )
, −

( )
,

( ) = ( ) cos , = 1 −

( ) =
 +  

= 0⋄, = 360⋄, = [0∘ ⟶ 90∘]

= ℇ 

As the starting after the base point, the equation stands out as; 

( , ) + { , } + ℇ + ℓ( )
( , ) + { , } + ℇ + ℓ( )
( , ) + { , } + ℇ + ℓ( )

⋮ + ⋮
( , ) + { , } + ℇ + ℓ( )

 

Provided, = = = ⋯ =  ∀( , ) there exists the relation; 

≥ 0 ,
{ , }∈

 

Where, 

,
∞

 ⎯⎯⎯⎯⎯ ,
∞

 

Given, the relations, it is evident from ( , ) + { , } + ℇ + ℓ( ) that the norm { , } + ℇ + ℓ( ) 

revolves around ( , ) , likewise, in ( , ) + { , } + ℇ + ℓ( ) , the norm { , } + ℇ + ℓ( ) 

revolves around ( , ) , therefore, with the inclusion on the base points as +( , )  and the points above 

the base as −( , ) , −( , )  up to −( , ) , it has been evident that taking these relations as the 
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diagonal component we would get a metric index as two types, the spinner and the spreader. The spinner is 

the spinor provided we establish a relation within a bounded limit as to say the equation + +  with 

interval ≔ [−10,10], ≔ [−10,10], ≔ [−10,10] keeping the angular parameter > 0 and < 0 we 

get the spinor = Ψ
Ψ

 where Ψ  is the anti-clockwise and Ψ   is the clockwise, there is devoid of 

collapsing the base points ( , ) into a ‘core singularity’ however, if we take the spreader relation as 

= Φ
Φ

 making the parameter = 0 while keeping the other intervals fixed, Φ  suffices for contraction 

of the circle and Φ  suffices for expansion of the circle, we would expect the ‘core singularity’ to act on the 

metric  with the signature (+, −, −, −, … , −) represented as with the core singularity point Φ  in 

the form Φ , given the metric  as ; 

( , ) + { , } + ℇ + ℓ( ) 0 0
⋮ ⋱ ⋮
0 0 − ( , ) + { , } + ℇ + ℓ( )

 

 
Provided we are getting three kernels to map the vector field in the singularity as such; 

 Ψ ⟶ Φ  

 Ψ ⟶ Φ  

 Φ ⟶ Φ  

 

And the  function runs through 4 identities to satisfy as below in order; 

 Ψ ⟶ Ψ  

 Ψ ⟶ Ψ  

 Ψ ⟶ Φ  

 Ψ ⟶ Φ  
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The  part is invariant taking all the partial sums of ℓ(∑∞ )  while the latter part derives the 

telescoping series for a relation as  is a measure preserving endomorphism of  on the operator space 

 as noted by the relations; 

 

( , ) = ,
∞

 

 

Which satisfies the limit of the series as given below taking all the four  relations; 

lim
⟶∞

1 Ψ − Ψ = lim
⟶∞

1 Ψ − Ψ  

lim
⟶∞

1 Ψ − Ψ = lim
⟶∞

1 Ψ − Ψ  

lim
⟶∞

1 Ψ − Φ = lim
⟶∞

1 Ψ − Φ  

lim
⟶∞

1 Ψ − Φ = lim
⟶∞

1 Ψ − Φ  

 

Therefore, in the measure space, ( , ~, , Σ, ), provided ( ) is finite and nonzero, the sojourn time 

[11] can be defined as the time spent on the set  having the Haar measuring function ( ) defined as, 

( )
( ) =

1
( )  = lim

⟶∞

1
 

Where  is the indicator function of set  with two elements {0,1} ∃ ⟶ 1 is probable in the measuring 

space ( , ~, , Σ, )  which is the number of iterations over  provided for the initial point ≅

( , ) = 0 ∃ = −  given as; 

+ + ⋯ +
=

( )
( ) 

While the ergodicity converges to = Φ ≅ ∞ upon the metric space  in time  expressed as; 
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1
  

The singularity being satisfied as ( , )Φ  the constant entropy is preserved without any singularity as; 

( , )
( , )Φ

≈ ( , ) ∃ ≠ 1,1 < ≤ ∞ 

Therefore, the relation between the spinor  and the spreader  can be defined as a matrix product; 

Ψ
Ψ

× Φ
Φ

= Ψ Φ Ψ Φ
Ψ Φ Ψ Φ

=  

The determinant if can be computed of the matrix  then this yields to the result; 

= Ψ Φ Ψ Φ − Ψ Φ Ψ Φ = 0 

This satisfies the inclusion of the base points at the starting of the ergodicity through a deterministic curve of 

repeated iterations as the corresponding base point equations to be developed in the way by inclusion of 

 into ( , )  as; 

Ψ Φ Ψ Φ
Ψ Φ Ψ Φ

, Ψ Φ Ψ Φ
Ψ Φ Ψ Φ

 

Satisfying the relation ( , ) ∃ = 1 as the constant time element to be preserved in the metric with the 

values taking place beyond ( , ) ∃ = 1 in ( , ) ∃ ≠ 1,1 < ≤ ∞ with the solutions being of 

the order; 

( , ) ∃ = 1 ≡ Ψ Φ Ψ Φ
Ψ Φ Ψ Φ

, Ψ Φ Ψ Φ
Ψ Φ Ψ Φ

 

Note that, as this is an element of constant time, so, ( , ) ∃ = 1 ∉ ( , ) ∃ ≠ 1,1 < ≤ ∞  

as considered in spatial iterations but remains there if we replace the identity  as  in case of 

( , ) ∃ = 1 such that it becomes, ( , ) ∃ = 1 and including this into ( , ) ∃ ≠ 1,1 <

≤ ∞ as; 

( ) ( ), ( ) ( )  ∃ ≠ 1, = 1, 1 < ≤ ∞ 

The metric being modified keeping all the previous values as the same being represented as; 
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⎝

⎜
⎛

, + , + ℇ + ℓ( ) 0 0

⋮ ⋱ ⋮

0 0 − , + , + ℇ + ℓ( )
⎠

⎟
⎞
 

 

It is evident from the fact that ( , ) are base points with the entropy function  and { , } + ℇ + ℓ( ) 

revolves around ( , )  to give the entropy function of the associated curve ℓ( ) which continues up to  

{ , } + ℇ + ℓ( ) revolving around ( , )  to give the final state although the final state is itself an 

iteration of a more sustained final state obeying the entropy formulation = ∑∞  keeping  as the 

entropy ∃( ∞ = ⋯ = ) > . Therefore, there rises the question that if ∑∞  is constant on the grounds 

of the equivalence closure  

⋁ =∈ ∐ /~∈   then there arises a conditional entropy which describes the outcome of the points 

∑∞  provided we know the initial base points revolving around the boundary ( , ) which has an 

outcome value on ∑ ( , )∞  such that, it satisfies the relation [12]; 

ℋ ( , )
∞

( , )

= − ( , ) , ( , )
∞

( , ) ∈ℓ( )
∑ ( , )∞ ∈ℓ ∑∞

( , ), ∑ ( , )∞

∑ ( , )∞  

Where ℓ( ) is the support set of ( , )  and ℓ ∑∞  is the support set of ∑ ( , )∞ . Note, that the 

definition entails the relation; 

ℋ ( , )
∞

( , ) = ( , ) , ( , )
∞

 

Where, 

: ( , ) , ( , )
∞

 ⟶ − ( , )
∞

( , )  

In which  associates to ∑ ( , )∞ , ( , )  the information content which will be the amount of 

information needed to describe the properties of ∑ ( , )∞ = ∑ ( , )∞ , ( , ) = ( , )  

for a large number of iterations ∑ ( , )∞ , ( , ) .  
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We have denoted the support sets of ∑ ( , )∞  being ℓ ∑∞  and ( , )  being ℓ( )  where 

∑ ( , )∞  have the probability  mass  function ∑ ( , )∞ ∑ ( , )∞  where unconditional 

entropy of ∑ ( , )∞  has been calculated as ℋ ∑ ( , )∞ ≔ ∑ ( , )∞ , that is, 

 

ℋ ( , )
∞

= ( , )
∞

= ( , )
∞

( , )
∞

∑ ( , )∞ ∈ℓ ∑∞

= − ∑ ( , )∞ ( , )
∞

∑ ( , )∞ ( , )
∞

∑ ( , )∞ ∈ℓ ∑∞

 

 

Where ∑ ( , )∞  is the information content that entails the outcome of  ∑ ( , )∞  taking the 

value ∑ ( , )∞ . Therefore, the conditional expectation of the associated entropy can be defined as 

the entropy of  ∑ ( , )∞  with the known value of ( , )  having the expectation value [13, 14]; 

 

ℋ ( , )
∞

( , ) = ( , )

= − ( , )
∞

= ( , )
∞

∑ ( , )∞ ∈ℓ ∑∞

( , )

= ( , ) ( , )
∞

= ( , )
∞

( , )  

 

Now, it is to be noted that in case of ℋ ∑ ( , )∞ ( , )  the resultant averaging 

ℋ ∑ ( , )∞ ( , ) = ( , )  over every possible values of ( , )  that ( , )  can also take 

provided the sum is taken over the convention ∑ ( , )∞  the expected value becomes, 
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( , ) ℋ ∑ ( , )∞ ( , ) = ( , )  for each and every possible values of ( , )  with the 

probabilistic weight ( , )  suffices to the following; 

 

ℋ ( , )
∞

( , ) ≡ ( , )
( , ) ∈ℓ( )

ℋ ( , )
∞

( , ) = ( , )

= − ( , )
( , ) ∈ℓ( )

( , )
∞

( , ) ( , )
∞

( , )
∑ ( , )∞ ∈ℓ ∑∞

= − ( , ) , ( , )
∞

∑ ( , )∞ ∈ℓ ∑∞( , ) ∈ℓ( )

( , )
∞

( , )

= − ( , ) , ( , )
∞ ( , ) , ∑ ( , )∞

( , )
( , ) ∈ℓ( )

∑ ( , )∞ ∈ℓ ∑∞

= ( , ) , ( , )
∞ ( , )

( , ) , ∑ ( , )∞
( , ) ∈ℓ( )

∑ ( , )∞ ∈ℓ ∑∞

= 0 if [ = = ⋯ = ] 

 
If the whole system can be defined by the random variables, ( , )  and ∑ ( , )∞  then the joint 

entropy be determined as; 

 

ℋ ( , ) , ( , )
∞

 

= − ( , ) , ( , )
∞

( , ) , ( , )
∞

( , ) ∈ℓ( )

∑ ( , )∞ ∈ℓ ∑∞

 

 

Which means, we need ℋ ( , ) , ∑ ( , )∞   bits of information to establish its exact state, as we 

have the first hand knowledge of the base points ( , )   the information that can be gained from ( , )  

is ℋ( , )  we need ℋ ( , ) , ∑ ( , )∞  − ℋ( , ) bits to provide the system giving the chain 

relation of the entropy as; 
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ℋ ( , )
∞

 ( , ) = ℋ ( , ) , ( , )
∞

 − ℋ( , )  

 

Therefore, the conditional entropy states the relation as an absolute equality [15]; 

 

ℋ ( , )
∞

( , )

= ( , ) , ( , )
∞ ( , )

( , ) , ∑ ( , )∞
( , ) ∈ℓ( )

∑ ( , )∞ ∈ℓ ∑∞

= log ( , ) , ( , )
∞

log ( , )
( , ) ∈ℓ( )

∑ ( , )∞ ∈ℓ ∑∞

− log ( , ) , ( , )
∞

= −
( , ) ∈ℓ( )

∑ ( , )∞ ∈ℓ ∑∞

( , ) , ( , )
∞

log ( , ) , ( , )
∞

+ ( , ) , ( , )
∞

( , ) = ℋ ( , ) , ( , )
∞

( , ) ∈ℓ( )

∑ ( , )∞ ∈ℓ ∑∞

+ ( , ) log ( , )
( , ) ∈ℓ( )

= ℋ ( , ) , ( , )
∞

 − ℋ( , )

≅ ℋ ( , ) , ( , ) … , ( , ) = ℋ ( , ) ( , ) , ( , ) , … , ( , )  

  
 

Thus to provide the equivalence of the 5-tuple relation, we have; 

( , ) , ( , )
∞ ( , )

( , ) , ∑ ( , )∞
( , ) ∈ℓ( )

∑ ( , )∞ ∈ℓ ∑∞

+ ℋ ( , ) ( , ) , ( , ) , … , ( , )
=1

  ≈ Ψ Φ Ψ Φ
Ψ Φ Ψ Φ

+ ℓ
∞
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For the equation + ,  is the mutual information carrier between  and . Given,  and  random values,  

carries the mutual dependency between them which is the amount of information that can be obtained from one 

random variables by imposing authority on the other variables, its not necessary that the variables stick to two, it 

can be upto infinity but as we state earlier the variables are amplifiers where one variable amplifies the other like in 

the equation + + ,  amplifies  and  while  coordinates the information between them, which is linked to 

the ‘entropy’ where information of the random  variable  is  quantized. Now, in the Kullback-Leibler [16] 

divergence notation  this can be defined over the function of the entropic space (or curve) ℓ( ) × ℓ ∑∞  of a 

pair of the points, ( , ) × ∑ ( , )∞ with the joint distribution ( , ) ,∑ ( , )∞  having the marginal 

distribution ( , )  and ∑ ( , )∞  the mutual information can be denoted by the relation with  replacing  

is; 

( , ) , ( , )
∞

= ( , ) ,∑ ( , )∞ ( , ) ∑ ( , )∞  

 

Therefore, the mutual information can be stated in a formal way keeping in mind ( , ) , ∑ ( , )∞ ≤

ℋ( , )  by the relation [17]; 

 

( , ) , ( , )
∞

= ( , ) ,∑ ( , )∞ ( , ) , ( , )
∞

∑ ( , )∞ ∈ℓ ∑∞( , ) ∈ℓ( )

×
( , ) ,∑ ( , )∞ ( , ) , ∑ ( , )∞

( , ) ( , ) ∑ ( , )∞ ∑ ( , )∞

= ℋ ( , ) , ( , )
∞

− ℋ ( , ) − ℋ ( , )
∞

 

 

Discussions – Through the principle of the incomplete elliptic integral of the 2nd kind, this has been 

deliberately proved that, the system can conserve entropy by the principle of the equivalence closure provided 

entropy of the initial state which has been known, gives rise to the next state from where the conditional 
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entropy takes place and gets conserved by means of the mutual information carriers, that is,  making a way 

out for the sets to close equivalently via equivalence closure theorem to guide the elaborate process of the 

evolving dynamical system over repeated iterations in a conserved means through a local attractor. More 

emphasis has been made with respect of the mean and the support set, where through the summation 

convention, the relation of equivalence closure has been properly diversified by the spinor and spreader 

matrix determinants in the crucial base points over repeated revolutions around it. This process can run 

infinitely with a more probabilistic amplitude of the correct divergences that loops around the base points like 

its previous thereby maintaining the property of the conservative (more precisely ergodic) systems in a 5-tuple 

measure space through the generators of the space.  
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